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1 | INTRODUCTION

| Gregory J. Lipps Jr. | H. Lisle Gibbs

Abstract

Managing endangered species in fragmented landscapes requires estimating dispersal
rates between populations over contemporary timescales. Here, we developed a new
method for quantifying recent dispersal using genetic pedigree data for close and
distant kin. Specifically, we describe an approach that infers missing shared ancestors
between pairs of kin in habitat patches across a fragmented landscape. We then ap-
plied a stepping-stone model to assign unsampled individuals in the pedigree to prob-
able locations based on minimizing the number of movements required to produce
the observed locations in sampled kin pairs. Finally, we used all pairs of reconstructed
parent-offspring sets to estimate dispersal rates between habitat patches under a
Bayesian model. Our approach measures connectivity over the timescale represented
by the small number of generations contained within the pedigree and so is appropri-
ate for estimating the impacts of recent habitat changes due to human activity. We
used our method to estimate recent movement between newly discovered popula-
tions of threatened Eastern Massasauga rattlesnakes (Sistrurus catenatus) using data
from 2996 RAD-based genetic loci. Our pedigree analyses found no evidence for
contemporary connectivity between five genetic groups, but, as validation of our ap-
proach, showed high dispersal rates between sample sites within a single genetic clus-
ter. We conclude that these five genetic clusters of Eastern Massasauga rattlesnakes
have small numbers of resident snakes and are demographically isolated conservation
units. More broadly, our methodology can be widely applied to determine contem-
porary connectivity rates, independent of bias from shared genetic similarity due to

ancestry that impacts other approaches.
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(Baguette et al., 2013; Benson et al., 2016; Cushman et al., 2013). For

Quantifying contemporary connectivity between populations is a
major conservation goal for threatened species living in fragmented
landscapes (Cayuela et al., 2018; Couvray & Coupé, 2018; Garner
et al., 2016; Lowe & Allendorf, 2010). For these species, contempo-
rary connectivity will influence demographic processes and impact
the likelihood of long-term persistence or the chance of recovery

example, if connectivity between two habitat patches is low, then a
disease outbreak in one patch is unlikely to spread to individuals in
the other patch which in turn reduces the chance of widespread de-
clines (Haddad et al., 2014; Ogden, 2015). In contrast, high connec-
tivity between several habitat patches with only a few individuals in
each will help reduce the probability of inbreeding depression (Beier
& Noss, 1998; Christie & Knowles, 2015; Gregory & Beier, 2014). It
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is important to note that definitions of connectivity can vary widely
between studies. Here we focus on functional connectivity, i.e., the
ability of individuals to move, survive, and potentially reproduce in
new habitats (Cayuela et al., 2018).

The use of data from neutral genetic markers to quantify con-
nectivity has become widespread as an alternative to more costly
and time intensive field techniques used to directly measure indi-
vidual movement (Cayuela et al., 2018; Couvray & Coupé, 2018;
Fountain et al., 2018; Jaquiéry et al., 2011; Lowe & Allendorf, 2010).
For example, assignment-based tests have been a commonly used
method for analysing genetic data for connectivity based on the
mismatch between capture location and genetic assignment of indi-
viduals (Cayuela et al., 2018; Wilson & Rannala, 2003). Specifically,
the program BayesAss has been shown to match dispersal rates gen-
erated from mark-recapture data for at least some species (Wang
& Shaffer, 2017). However, BayesAss has limitations including a
“golden zone” where it can best match estimated dispersal rates to
the true rates, while being less robust to low or high rates (Faubet
et al., 2007; Malenfant et al., 2016). For example, Samarasin et al.,
(2017) demonstrated that in situations where a species had high his-
torical movement rates that were recently greatly reduced, most ge-
netic methods estimate rates closer to the average dispersal. In such
a scenario, then anthropogenic impacts to fragmented populations
may be underestimated or missed entirely. These issues point to the
need for additional ways of measuring recent connectivity between
populations.

A recent alternative for determining contemporary connectiv-
ity is to analyse patterns of spatial relatedness (Escoda et al., 2017,
2019; Fountain et al., 2018; Wang, 2014b). Spatial relatedness is a
metric that captures recent past dispersal events, with clear tem-
poral bounds set by the genealogically oldest generation analysed
(Couvray & Coupé, 2018; Fountain et al., 2018; Vandergast et al.,
2019; Wang, 2014a). Generally, two broad relatedness approaches
have been used: (i) Quantifying pairwise relatedness and geographic
distance between closely related pairs (Aguillon et al., 2017), and
(i) reconstructing pedigrees to identify likely migrant individuals
(Costello et al., 2008; Kormann et al., 2012; Vandergast et al., 2019).
Methods based on pairwise relatedness often rely on binning individ-
uals with high relatedness into pedigree classes, and then comparing
geographic distances between close pedigree classes (Aguillon et al.,
2017). However, pairwise estimates may be unreliable in situations
with small, highly inbred populations of threatened species as even
distant relatives will have a high relatedness coefficient (Pemberton,
2004, 2008).

In contrast, pedigree-based approaches can resolve relation-
ships even in inbred populations and detect more distant relation-
ships such as grandparent-grandchild pairs (Kormann et al., 2012;
Pemberton, 2004, 2008). One major benefit to pedigrees is that
rates are specific to the timeframe of the pedigree itself which can
focus on recent events. However, current methods either use parent-
offspring pairs for determining movement rates, or only quantify
distance between related individuals without estimating actual dis-
persal rates (Escoda et al., 2017; Fountain et al., 2018). Furthermore,

even with extensive sampling, finding close kin to use for deriving
rates can be challenging (Costello et al., 2008; Escoda et al., 2017).

Here, we demonstrate a novel method for quantifying contem-
porary connectivity that uses pedigrees based on both recent and
more distant relatives. Specifically, we show that distant relatives
can be used to quantify connectivity with the use of a parsimony-
based stepping-stone model to estimate the location of missing in-
dividuals between distantly related ones in the data set. Kormann
etal., (2012) first proposed using parsimony modeling to incorporate
full-sibling pairs into connectivity analysis. Here we expand their ap-
proach to utilize extended pedigree relations. A key advantage of
our method is that it greatly increases the data available for inferring
pedigrees, as parent-offspring pairs can be hard to identify in wild
populations (Costello et al., 2008).

To illustrate our approach, we applied our method to estimate
connectivity within the last three generations between several local
populations of the federally threatened Eastern Massasauga rattle-
snake (Sistrurus catenatus) in North East Ohio, USA. S. catenatus is
a small rattlesnake species that was once widely distributed across
eastern North America, and now only persists in small populations
surrounded by an otherwise inhospitable landscape (Szymanski
et al., 2016). Connectivity in S. catenatus in NE Ohio has previously
been studied using BayesAss by Chiucchi and Gibbs (2010) who
found consistently low movement rates across both contemporary
and historic timeframes. However, these results are suspect as re-
cent research has found that BayesAss can be influenced by major
changes in movement rates (Samarasin et al., 2017). Additionally,
several new patches of occupied habitat have been discovered in
this region and may form connections with the previously studied
populations. To aid conservation efforts for this species, it is criti-
cal to know if current sites represent many isolated populations, or
if they form a single management unit with regular movement be-
tween populations.

The aims of our study were to: (i) Develop a novel method that
uses pedigree reconstruction between distant relatives to quantify
contemporary dispersal (within the last three generations for this
study), and (ii) apply our methodology to measure connectivity in
S. catenatus in NE Ohio to determine if local habitat patches are iso-

lated or if dispersal is occurring.

2 | MATERIALS AND METHODS

2.1 | Sampling and DNA sequencing

We collected blood and scale samples from individual S. catenatus
across 14 locations representing distinct habitat patches from 2007
to 2018 in Ashtabula County in Ohio (Figure 1). Individuals were
captured following standardized field surveys using coverboards and
were marked via scale clips to document recaptures. For individuals
over 34 g (approximately 1 year or older), a PIT tag was inserted
to allow for more detailed mark-recapture data to be collected.
Genomic DNA was extracted from 200 ul of blood or scale clips
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using a phenol-chloroform protocol. Following extraction, genomic
libraries were prepared from individual samples using a double-
digest RAD-seq approach (Peterson et al., 2012). Specifically, DNA
was first digested with EcoR1 and Pstl, and then size selected
to 300-600 bp following the modified protocol of DaCosta and
Sorenson (2014) described in detail in Sovic et al., (2019). Our pro-
tocol followed that described in Sovic et al., (2019) except we used a
6 bp cutter enzyme (Pst1) to increase the number of loci recovered.
Individual libraries were then pooled into libraries of 80-120 sam-
ples before generating SE 100 bp reads using lllumina HiSeq2500 or
HiSeq4000 platforms.

2.2 | Bioinformatic processing and SNP
identification

Raw fastq files were demultiplexed and then aligned to a whole-
genome assembly for S. catenatus (Mason et al., in preparation) using
1PYRAD (version 0.9.53). We used the following parameters in ipyrAD:
maximum of 5 bp below a minimum phred Q-score of 33 per read,
minimum coverage of 6x per base, maximum of 8 indels per read, a
minimum length of 35 bp post filtering, and we trimmed the ends
of raw reads by 5 bp after removing the adapter sequences, similar
to the recommendations made by Fountain et al., (2016). Following
alignment and preliminary filtering in 1PYrAD, we exported all poly-
morphic loci across individuals as a single VCF file. We then im-
ported the VCF of all individuals into PLINK to perform final filtering
(Purcell et al., 2007). We first filtered on a minor allele frequency
of 0.01 to remove any alleles only found in a single individual, and
then removed all nonbiallelic SNPs. We then iteratively filtered on

both missing data per individual and missing data per loci following
the recommendations of (O’Leary et al., 2018) to optimize the total

number of both individuals and loci in the final data set.

2.3 | Defining genetic clusters

Genetic data was then imported in r (version 3.5.3) via rsTupIO (Ver-
sion 1.1.463) using the package “radiator”. We then used a two-step
procedure to determine the optimal number of genetic clusters.
First, we used “adegenet” (Jombart, 2008; Jombart & Ahmed, 2011)
to identify genetic clusters in the data. This method is a model-free
clustering algorithm that identifies the optimum number of genetic
clusters in a data set by minimizing within group genetic variation
and maximizing between group variation without relying on assump-
tions of Hardy-Weinberg equilibrium or linkage equilibrium for in-
dividual loci. We initially ran the find.clusters model followed by a
discriminate analysis of principle components (DAPC) to identify the
most likely number of genetic units (K) without including sampling
locations (Jombart, 2008; Jombart & Ahmed, 2011; Jombart et al.,
2010). We also ran a separate DAPC analysis including location pri-
ors as a priori groups to visualize evidence of admixture between
sampling sites.

Second, as an alternate approach we then took the three best
K-cluster values from the find.clusters model based on the lowest
Bayesian information criterion across all K values, and modelled the
contributions of each group using the spatially-explicit algorithm in
conStruct (Bradburd et al., 2018). Unlike the find.clusters model,
conStruct includes the geographic locations of samples and uses
both genetic data and location to partition variance between groups
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Pathway 1: Shared parent (red dot) reproduces
at S1, then moves to S2 and reproduces again.
This requires a minimum of 1 dispersal event.
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Pathway 3: Shared parent (red dot) reproduces
at S1 twice, then one offspring moves to S2. This
requires a minimum of 1 dispersal event.
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Pathway 2: Shared parent (red dot) reproduces
at S2, then moves to S1 and reproduces again.
This requires a minimum of 1 dispersal event.
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Pathway 4: Shared parent (red dot) reproduces
at S2 twice, then one offspring moves to S1. This
requires a minimum of 1 dispersal event.
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FIGURE 2 Examples of potential dispersal events to recover a missing shared parent (red dot) from two half-siblings (blue dots) across
five potential habitat sites (black circles). For details, see Figure S1. This uses a simple stepping-stone model where individuals may move
only to the next nearest site. Across all four pathways, we were able to eliminate the two lower sites as potential locations under the

principle of parsimony for movement events. The uncertainty of the parental location to incorporate error into the stepping-stone model

was then used to improve dispersal estimates

(Bradburd et al., 2018). For each possible K value, we ran conStruct's
spatial model with 10 independent MCMC chains with 15,000 itera-
tions. The top chains for each K were then chosen by assessing over-
all fit before comparing between K values (Bradburd et al., 2018). To
choose the best K-clusters, we used the layer.contributions function
to quantify the amount of genetic variation each additional group
supported (Bradburd et al., 2018). We then applied the cutoff rec-
ommended by Bradburd et al., (2018) to reject K-values containing
groups with less than 10% of the overall variation from the data set
(Bradburd et al., 2018). We then compared the number of clusters
chosen under the layer contribution cutoff to the number recom-
mended using the cross-validation method in conStruct (Bradburd
etal., 2018).

We also estimated contemporary N, for each genetic clus-
ter using the LDN, method (Waples & Do, 2010), as implemented
in the program NeEstimator (Do et al., 2014) for genetic clusters

of individuals identified using the methods described above. This
method estimates N, based on patterns of linkage disequilibrium be-
tween loci and was shown to perform well relative to other methods
when calculating N, under scenarios of low N, and low migration
rates (Gilbert & Whitlock, 2015). We used a “two allele” minimum for
each locus within each population based on the recommendations
of Waples and Do (2010) relative to the sample size of individuals
(<25) in almost all our populations. Confidence intervals for N, val-
ues were estimated using a parametric approach implemented in the
program.

2.4 | Quantifying dispersal using pedigrees

To quantify if individual genetic clusters were isolated over con-
temporary timescales, we estimated per generation dispersal rates
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between each cluster, i.e., the probability that a given individual will
move from one cluster to another over its lifespan using individual
pedigree information (Cayuela et al., 2018; Fountain et al., 2018).
Here we broaden this approach developing a method that explic-
itly makes use of pedigree relations between more distantly related
individual by using a parsimony-based method to infer probable lo-
cations for missing individuals under a stepping-stone model of dis-
persal (see examples given in Figure 2, Figure S1).

Specifically, we first used all individuals to generate a pedigree
using the r package “sequoia”, which uses a maximume-likelihood
framework to identify pairwise relationships between individuals,
including those that are inbred (Huisman, 2017). We chose to use
sequoia over other pedigree programs as it is robust to moderate in-
breeding, standardizes ages across individuals to prevent erroneous
assignment, and incorporates the sex of individuals (Huisman, 2017).
We also ran the pedigree reconstruction program Colony to assess
if the choice of programs could affect our results (Jones & Wang,
2010). For our samples, sex was determined at the time of capture
via subcaudal scale counts, presence of developing embryos, and/
or probing for hemipenal pockets (G. Lipps, personal communica-
tion). Age was determined via counting rattle segments if the rattle
was unbroken, and by binning weight classes for those with incom-
plete rattles (Hileman et al., 2017). Weight classes were based on
range-wide estimates for different age groups reported by Hileman
et al., (2017), with the following classifications representing 0, 1, 2,
3, 4+ years of age, respectively: <20 g, 20-31 g, 32-50 g, 50-500 g,
>500 g. Age estimates were then subtracted from the year of cap-
ture to generate probable birth years for all individuals. Once all in-
dividuals were matched to a birth year and sex (including unknown),
we ran sequoia allowing for one erroneous allele in each pair, and
that the most likely relationship to be 95% more likely than any other

to be accepted.

2.5 | Assigning locations to missing individuals

Once the pedigree was determined, we focused on pairs of re-
lated individuals up to half niece/nephew to aunt/uncle or cousins
(r = 0.125). By only using these types of relationships, we can put a
temporal frame on our rate estimates that any dispersal events must
have occurred within the last three generations. We then generated
“dummy” individuals for all pairs other than parent-offspring, where
the dummy individual represented a missing recent shared ancestor
for a given pair.

To estimate the “dispersal” of a dummy individual, they were first
assigned to a given genetic cluster based on the following criteria (see
Figure S1). First, if both related individuals were in the same genetic
cluster, then the dummy was also assigned to that location. Second,
if related individuals were not in the same cluster, then a movement
matrix was generated for the dummy individual where matrix values
represented the number of movements required to recreate the ob-
served pattern between known individuals. Specifically, the number
of movements were calculated under a simple stepping-stone cost
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model where it would take one event to reach nearby patches, and
an additional event per occupied patch between individual locations
under the assumption that S. catenatus are unlikely to make extreme
long distance movements (Figure S1). We chose a simple model with
a single cost per patch moved to represent individuals either making
it to another patch or dying in the process. We selected these values
as we did not have information of the relative resistances between
sites to have a more detailed cost model. Once movement costs were
calculated for every site, each dummy was assigned to the location
with the lowest cost. In cases where two or more sites had the same
cost, individuals were randomly assigned to one of the sites. Our
methodology is appropriate for these populations because in this re-
gion rattlesnakes exist in discrete patches of suitable habitat mostly
surrounded by woodlands, active cropland, and impervious surfaces
that makes a simple stepping-stone movement model an appropriate
approximation of movement between occupied patches (Figure 1).
As a comparison using sites in which dispersal probably occurs,
we also applied our methods to a single focal area comprised of
three distinct occupied fields (Figure 1, GRLL-4) nested within one
genetic cluster where known movement between fields has been
documented from mark-recapture data (G. Lipps, unpublished data).
For these three sites, we chose to use each field as our a priori sam-
pling unit, as compared to the potential genetic units used previ-
ously. Despite known movement occurring between each field, the
intervening landscape is heavily wooded, and the fields are actively
threated by ongoing succession. Here, we also applied a model
where the distances between each site was a single step, since it
represents a single large field with two smaller satellite patches.
Applying our methods to these focal sites allowed us to evaluate
how pedigree-based rates perform in areas probably undergoing
frequent dispersal events. After dummy individuals were generated
and assigned to probable locations, per generation dispersal rates
were calculated by taking all pairs of parent-offspring incorporating
the pairs with dummy individuals and repeating this procedure 1000
times. We then built Bayesian models using the package “R2jags”
to determine dispersal out of each site. Bayesian models were fit
with the number of successful dispersal events to a given site repre-
sented as a binomial distribution (p[site[i]], N) with p being the prob-
ability of successful dispersal to a given site and N the total number
of parent-offspring pairs with at least one individual in the source
site. Probability of dispersal was assigned a noninformative prior of
beta(1,1). We calculated the 95% credible intervals for dispersal by
running 5000 iterations over 10 independent chains using the first
2500 iterations as a burnin and the top chain selected based on DIC

scores.

2.6 | Identifying management units

After generating per generation dispersal rates as described above,
we set out to quantify dispersal between each pair of genetic clus-
ters identified in sections 2.3 to determine if each genetic cluster
should be considered an independent management unit (MU) or not.
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We applied a cutoff of at least one migrant per generation (Mills &
Allendorf, 1996).
As a check on our identification of management units, we tested

the prediction that if connectivity is low to zero between sites then
individuals within each MU should be more related to each other than
any other individual outside the group. To test this hypothesis, we
calculated pairwise relatedness between all individuals using coan-
cesTRY (version 1.0.1.8; Wang, 2011) to calculate Wang's relatedness
for all pairs of individuals. We specifically set inbreeding equal to
true in Coancestry, and also calculated the following other pairwise
relatedness metrics to assess the sensitivity of Wang's estimator to
inbreeding: Lynch-Li, Lynch-Ritland, Ritland, Queller-Goodnight, and
Dyad Maximum-Likelihood (Wang, 2014b). We used relatedness to
assess inbreeding, as genomic estimates of relatedness have been
shown to be more accurate to quantify inbreeding in wild popula-
tions than pedigrees (Wang, 2016). Wang's relatedness is a method
of moments relatedness metric that has been shown to be robust to
unknown population allele frequencies and having a high proportion
of closely related individuals in the data set (Bink et al., 2008; Wang,
2002). Once pairwise relatedness was calculated, we grouped values
for all between and within site comparisons to get mean relatedness
for each site pair. We also calculated Nei's pairwise F, across each
group using the “pairwise.fst” function in the adegenet package with
the default settings.

2.7 | Comparison to BayesAss

To assess how well our pedigree-based dispersal rates compared to
migration rates calculated using other approaches, we also assessed
connectivity between genetic clusters with BayesAss (Wilson &
Rannala, 2003). BayesAss is based on a Bayesian assignment model
that uses sampling locations combined with neutral genetic mark-
ers to quantify migration rates in the last 5-15 generations (Broquet

et al.,, 2009; Faubet et al., 2007; Wilson & Rannala, 2003). While
the migration rates from BayesAss are calculated differently than
our dispersal per generation from our pedigree methods, estimates
from BayesAss may be closely correlated to actual dispersal rates
(Wang & Shaffer, 2017). We ran BayesAss on both the data with
individuals grouped by genetic units, and on the same subset of focal
individuals that may be undergoing frequent dispersal. We followed
the recommendations given by Meirmans (2014) and performed 10
independent runs for each of the two data sets. We then used the
supplemental code provided by Meirmans (2014) to calculate BIC
scores for each run and chose the best migration rates for each of

the two models by selecting the run with the lowest BIC score.

3 | RESULTS

3.1 | Bioinformatics and SNP filtering

We sequenced a total of 132 samples, with a minimum of 1 million
raw reads per individual. After alignment and quality control filter-
ing in IPYRAD, we recovered 235,057 polymorphic loci across all indi-
viduals. Following our initial filtering on minor allele frequencies, we
sequentially reduced the proportion of missing data allowed within
individuals and across loci until we had a final data set consisting of

86 individuals with 2996 loci and no missing data.

3.2 | Genetic clustering

Based on the Bayesian information criterion (BIC), adegenet supports
six clusters (K), representing each of the five main sampling areas while
splitting the largest sample area into two clusters (Figure 1, GRLL-4).
Examination of prior capture data shows that several individuals split
between the fifth and sixth cluster were caught within 5 m of each
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rates for the largest genetic unit (GRLL-4) U Halicn 2 HAER

of Sistrurus catenatus, comprised of three PATCH 1 0.893(0.888-898) 0.357 (0.338-0.337) 0.115

habitat patches. Values represent the (0.101-0.129)
probability of an individual dispersing PATCH 2 0.089 (0.084-0.095) 0.555 (0.535-0.574) 0.210

from the column patch to the row patch. (0.193-0.228)

o e . .

95% credibility intervals are given in PATCH 3 0.018 (0.015-0.02) 0.088 (0.077-0.100) 0.676
parentheses (0.656-0.696)

other. Five and seven clusters also had low BIC scores and under
K = 5, each of the habitat patch groups was placed with nearby fields.
Looking at the assignment probabilities for each individual under K = 5
also showed no evidence for individuals with recent admixture, indi-
cating there may be low connectivity between these sites (Figure 3).
However, one individual, a six-year-old male, was assigned with 100%
probability to a different genetic unit than it was captured in using both
the prior and prior-less DAPC models (Figure 3, captured in GRLL-4, as-
signed to GRLL-3). Given that males are known to make long distance
movements to find mates in this species, it is possible that it could have
dispersed between units (Hileman et al., 2017).

We then tested support for K = 4, 5, and 6 under the spatially ex-
plicit model in conStruct. Out of the 10 independent runs for each K
value, we first selected the top run based on MCMC chain conver-
gence. After comparing layer contributions, K = 5 was the largest K
value tested with all groups contributing at least 0.1 (10%) of the over-
all genetic variation. The grouping of each habitat patch under K = 5 for
conStruct matched those observed using adegenet after considering
capture records. Our cross-validation within conStruct supported the
spatial model over the nonspatial, and while the cross-validation rec-
ommended K = 6, this was eliminated on the basis of the layer con-
tribution thresholds. Based on the agreement between adegenet and
conStruct, we used the five genetic clusters (corresponding to the five
named boxes in Figure 1) as the units for determining dispersal.

Estimates of LDN, values ranged from 4.1 to 10.9 with a mean of
7.9 across the five patches. All 95% parametric Cls were well below
an N, of 50, matching findings reported by Sovic et al., (2019). Of
note is that our LDN, estimates overlapped with those reported by
Sovic et al., (2019) for the two patches (Figure 1: GRLL-1, GRLL-4)

also reported there.

3.3 | Pedigree inferences and dispersal estimates

Sequoia identified 110 pairs of related individuals that could be as-
signed to a specific kinship category with a minimum of 95% likelihood.
Of the pairs identified, three were parent-offspring, two were be-
tween full siblings, 40 were between half-siblings, 58 between second
degree relatives that can be identified as either niece/nephew to an
aunt or uncle, and five seconddegree pairs where the type of relation-
ship could not be further identified. The five unknown second degree
pairs were excluded from later analyses. Across all 105 related pairs,
none contained individuals found between two genetic clusters, and
our low-likelihood acceptance model also found no between cluster

pairs as did our Colony analyses (results not shown). Since no related
individuals were found across genetic clusters, we inferred that there
is no contemporary dispersal between genetic units based on the pedi-
gree data. While this runs counter to the evidence above of the male
S. catenatus in GRLL-4 having a genetic profile of GRLL-3 individuals,
that individual snake had no kin across the pedigree, and thus was not
incorporated into the model. GRLL-3 and GRLL-4 represent the two
geographically closest clusters, and low dispersal may still be occurring
there despite these results. However, the disperser has not success-
fully bred within the recipient population, and we found no evidence of
dispersal events with successful breeding in the recent past.

We then applied our method to the three occupied fields in a
single genetic cluster where mark-recapture data has documented
movement between fields. Within this cluster, sequoia recovered
48 unique pairs of related individuals. Specifically, two pairs of full
siblings, twelve pairs of half siblings, 20 identifiable second degree
pairs, and four unknown second degree pairs. After removing the
four unknown pairs, we assigned 88 dummy individuals to recreate
probable parent-offspring pairs. Across these three occupied fields,
related individuals were found between all possible combinations
of fields. Thus, we were able to generate dispersal rates and 95%
confidence intervals between each set of occupied fields (Figure 5,
Table 1). All dispersal rates were significantly different from zero,
and high rates of movement were seen from individuals leaving two
of the fields. While individuals are unlikely to leave field one (the
largest of the three), individuals have a 10%-30% chance of migrat-
ing to this patch from either of the other two (Figure 5, Table 1).

Overall, our technique estimates dispersal rates within the last
9-30 years given a mean generation time of three years for this spe-
cies (Sovic et al., 2019) and that the oldest known individual captured
in this study was approximately 10 years old based on capture data.
Based on the estimates from our pedigrees, we conclude that there
is little to no contemporary connectivity between each of the pre-
viously determined genetic units. We were able to detect frequent
movements between smaller fields located within a single genetic
unit showing that when dispersal is occurring regularly our method

will be able to derive movement rates.

3.4 | Pairwise-relatedness across all individuals
shows evidence for inbreeding

Wang's pairwise relatedness within each genetic unit show evidence
of high levels of inbreeding, matching the low LDN, values and lack
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of connectivity. While Wang's estimator can be affected by high lev-
els of inbreeding, it was closely correlated to all other relatedness
metrics calculated with a minimum of r = 0.851 to Ritland's estima-
tor and a high of 0.999 to Lynch-Li (Wang, 2014a, 2014b). Across
four out of the five genetic clusters, more than half of all individuals
were as related as outbred cousins (relatedness >0.125) (Figure 4). In
the genetic unit with the lowest mean pairwise relatedness, 25% of
individuals were still more related than cousins. Of those four more
inbred clusters, over 25% of individuals were more related than
half-siblings, and the single most inbred cluster did not have a single
pair of individuals that were not closely related (Figure 5, GRLL-5).
Despite high pairwise relatedness indicating sustained inbreeding
in this cluster, we failed to identify any pedigree relationships be-
tween pairs of individuals, probably a result of multiple familial
relationships, precluding identification of a single best one. While
such highly inbred populations pose a problem for pedigree-based
methods, at such high relatedness any dispersers into or out of the
population would be readily detected by DAPC, further emphasizing
the need to check that results from multiple analyses converge.
Between genetic units, all pairwise relatedness values were zero
or slightly negative (results not shown). Negative relatedness can arise
due to differences in calculations and can be interpreted as individuals
being completely unrelated relative to the sample set (Bink et al., 2008).
A lack of any relatedness between individuals from different genetic

units is further evidence for contemporary isolation for these units.

3.5 | BayesAss migration estimates
All BayesAss runs converged to similarly low rates of connectivity be-
tween sites. For the run with the lowest BIC score, as derived using

the code of Meirmans (2014), all between-site rates included zero in

Freq
o

1.00+

0.75-
category
. distant

0.501 . cousins
. half-sibs
. full-sibs

0.25+

0.00+

their 95% confidence intervals (Table 2). The single highest between
group migration rate was 6.5%, but most were less than 3%. The
6.5% rate was from GRLL-3 to GRLL-4, as expected given the male
disperser, but the 95% credibility interval included zero indicating
any regular dispersal between the pair of sites was negligible. Given
that all rates had confidence intervals that overlapped with zero, the
BayesAss results are consistent with the inference from the pedigree-
based method of little to no connectivity between genetic clusters.

For the single large sample size genetic cluster, BayesAss results
deviated significantly from those estimated using our pedigrees.
Specifically, BayesAss found low, but significant, migration between
nearby sites, but not between the two furthest locations. Rates from
BayesAss ranged from 3% to 12% between sites, indicating that
most individuals remain in their natal locations (Table 3). However,
BayesAss is known to overestimate connectivity in cases where
there was moderate historical connectivity and low to zero contem-
porary connectivity (Samarasin et al., 2017). Based on the critique of
previous estimates of connectivity in this system (Chiucchi & Gibbs,
2010) as discussed by Samarasin et al., (2017), the values reported
here are probably overestimates of contemporary connectivity for
the broader between genetic cluster analysis, and underestimates
for the closer within cluster analysis.

4 | DISCUSSION

4.1 | Estimating contemporary dispersal using
pedigrees

Recent advances have been made to infer the probable location of
parents based on the location of full-sibling pairs, but such pairs

can be rare in many data sets (Kormann et al., 2012). Others have

FIGURE 4 The relative proportion of
pairs of individuals within each genetic
unit binned by pairwise relatedness,

based on expectations for noninbred
populations. Thresholds of 0.125 was
used for cousins, 0.25 for half siblings, and
0.5 for full siblings. Between genetic units
not shown, as all pairs were below 0 mean

GRLL-4 GRLL-5 GRLL-1 GRLL-3

GRLL-2 relatedness
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used extended kin pairs as qualitative evidence of connectivity, or
to detect the presence of low-permeability barriers (Escoda et al.,
2017), but do not explicitly quantify levels of dispersal (Carroll &
Gaggiotti, 2019; Vandergast et al., 2019). Here, we have shown that
it is possible to use both close and distant kin relations to generate
quantitative estimates of dispersal rates. By using distant relation-
ships beyond just parent-offspring (Wang, 2014b), the number of
samples is greatly increased (e.g., from 3 to >100 in our data set), al-

lowing for higher confidence in the observed patterns. Furthermore,

Pd:0.018
Ba: 0.03

Pd: 0.089 Pd: 0.088
Ba: 0.07 Ba: 0.08
Pd: 0.21
Ba: 0.08
Pd: 0.357
Ba: 0.12

Pd: 0.115
Ba: 0.08

FIGURE 5 Dispersal estimates between habitat patches for the
genetic unit with the largest number of samples. Pd estimates are
mean pedigree-derived rates, while Ba values are mean dispersal
rates from BayesAss. 95% Cls for the pedigree rates are given in
Table 1, while 95% Cls from BayesAss can be found in Table 3
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our approach takes advantage of the fact that in small or inbred
populations, many related individuals may be found, even if parent-
offspring pairs are rare (Kormann et al., 2012). However, it is worth
noting that at very high levels of inbreeding it may become impos-
sible to distinguish between any kinship pairs, such as in our GRLL-5
population. In such situations, it may be impossible to apply the ap-
proach we have outlined here, although connectivity between popu-
lations seems unlikely in such a situation.

A second advantage of our approach is that unlike previous
methods, it explicitly takes into account habitat heterogeneity which
is typical of threatened species that often exist in highly fragmented
habitats. For nonthreatened species living in areas with more con-
tiguous habitats, evaluating dispersal based solely on geographic
distance between kin pairs may be more reasonable, as individuals
are more likely to be located across a gradient of distances (Aguillon
et al., 2017). However, many species of conservation concern persist
in fragmented landscapes (Fischer & Lindenmayer, 2007; Mortelliti
et al., 2010). Our method explicitly incorporates fragmentation with
the underlying assumption that the landscape between occupied
patches is inhospitable for the species of interest. Thus, the method
described here is probably broadly applicable to threatened and en-
dangered species.

Finally, another benefit of pedigree-based methods is that un-
like genetic assignment methods, pedigrees only incorporate poten-
tial movements over an explicit timeframe defined by the depth of
the pedigree considered. Therefore, it is possible to put a precise
estimate on the period of time over which the observed dispersal
events occurred. For example, in this study, the oldest S. catenatus
recorded at our sites was a 10-year-old female, while the average
generation time is approximately three years (Sovic et al., 2019). As
a consequence, our movement estimates represent dispersal rates
between sites within the last 30 years, well within recent modifi-
cations of the landscape for agriculture (McCluskey et al., 2018).
This contrasts with the broader and less precise estimates derived

TABLE 2 Migration rates derived from BayesAss, with 95% credibility intervals in parentheses. All 95% CI for between cluster migration
include zero. Values represent the probability of an individual travelling from the row sites to the column sites

Cluster GRLL-4 GRLL-5

GRLL-4 0.947 (0.911-0.983) 0.007 (0-0.021)
GRLL-5 0.019 (0-0.053) 0.926 (0.863-0.987)
GRLL-1 0.026 (0-0.06) 0.013 (0-0.038)
GRLL-3 0.065 (0-0.129) 0.019 (0-0.053)
GRLL-2 0.024 (0-0.067) 0.024 (0-0.067)

GRLL-1

0.007 (0-0.021)
0.019 (0-0.053)
0.920 (0.866-0.974)
0.019 (0-0.053)
0.024 (0-0.067)

GRLL-3 GRLL-2

0.015 (0-0.035)
0.019 (0-0.053)
0.026 (0-0.06)
0.876 (0.800-0.952)
0.048 (0-0.1006)

0.022 (0-0.047)
0.019 (0-0.053)
0.013 (0-0.038)
0.019 (0-0.053)
0.88(0.800-0.960)

TABLE 3 BayesAss migration rates for the largest genetic unit (GRLL-4) of Sistrurus catenatus, comprised of three habitat patches. Values
represent the probability of an individual dispersing from the column patch to the row patch. Standard deviations are given in parentheses,
and all but two rates denoted with a (*) did not include zero in their 95% Cl

PATCH 1
PATCH 1 0.90 (0.842-0.958)
PATCH 2 0.07 (0.031-0.109)
PATCH 3 0.03* (0-0.067)

PATCH 2
0.12(0.225-0.0218)
0.79 (0.693-0.886)
0.08 (0.002-0.158)

PATCH 3

0.08 (0.002-0.158)
0.08 (0.002-0.158)
0.84 (0.743-0.938)
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from BayesAss, which typically represent the last 5-15 generations
(Rannala & Mountain, 1997; Wilson & Rannala, 2003), although this
is probably only true within a band of optimal dispersal values de-
scribed by Meirmans (2014). By knowing dispersal rates are linked
to the recent past, we can make inferences on how the observed
landscape shaped these rates (Anderson et al., 2010; Boulanger
et al., 2020). The ability to link the landscape a species lives in to ob-
served movement patterns allows for better conservation decisions
to be made regarding land protection, acquisition, and management
(Cayuela et al., 2018; Escoda et al., 2017). Furthermore, unlike ge-
netic assignment methods, our model does not rely on any assump-
tions of Hardy-Weinberg equilibrium for loci used in the analyses.

One weakness of the methods used here is the need to use a
movement cost matrix based on expert opinion. For relatively sim-
ple systems with only a few sites this can be done with reasonable
ease based on species biology but can rapidly become more difficult
in systems with more diverse habitats. Some potential alternatives
would be to use a cost matrix or least cost paths between all sites
to represent potential movement costs (Cushman et al., 2015; Spear
et al., 2015; Zeller et al., 2012). Least cost paths and other more
quantitative landscape genetic techniques could allow for more
explicit linking of movement values to the landscape of the species
(Cushman et al., 2013, 2018; Dilts et al., 2016; Shirk et al., 2015;
Zeller et al., 2012).

Overall, our model was able to quantify a lack of contemporary
connectivity between several isolated sites in a threatened species,
while also showing the capacity to detect high levels of movement
in fields separated by only a few hundred meters of unsuitable land-
scape. Unlike genetic assignment methods that are commonly ap-
plied to situations like this, our method is not affected by historical
gene flow. Both our pedigree method and assignment methods re-
quire a priori groups to be tested, but as show here, the methods can
be applied at the level of individual locations up to groups of loca-
tions identified as genetic units. However, it is important to confirm
results with multiple analyses. Here, we can verify that each genetic
unit is isolated due to the low mean relatedness between units, low
N, values with high inbreeding, and high F, between each genetic
unit (Table S1). We were able to detect a single potential migrant in
the lone male discussed previously, indicating there may be some
rare dispersal between the two closest genetic units, but did not find
an evidence that it successfully bred into the local population. Both
this lone migrant and the broader variability in both sampling and
pedigree software demonstrate the need for researchers to confirm
results with alternative analyses such as N, and comparing mean re-

latedness before making final recommendations.

4.2 | Sistrurus catenatus conservation

These data support recognizing each of the five genetic units as
isolated management units (Moritz, 1994). Each genetic unit in
this study represents an isolated population with no contempo-
rary connectivity, and thus they are not affected by demographic

stochasticity in the other genetic units (Cayuela et al., 2018; Mills &
Allendorf, 1996; Moritz, 1994; Waples & Gaggiotti, 2006). However,
given the close proximity of these populations and that there was
probably historical connectivity (Chiucchi & Gibbs, 2010), restora-
tion of connectivity to form a single management unit for S. catena-
tus is a plausible conservation goal.

Past research found evidence for low contemporary connec-
tivity between a subset of these populations based on results from
BayesAss (Chiucchi & Gibbs, 2010). However, these results were re-
cently called into question on the basis of bias built into the genetic
assignment methodology used (Samarasin et al., 2017). Specifically,
Samarasin et al., (2017) showed that in populations with high his-
torical connectivity, and low to zero contemporary connectivity,
genetic-based programs will often overestimate contemporary con-
nectivity and underestimate historical rates. Our work, which incor-
porate data from newly discovered occupied patches in the region
and a different analytical method (pedigree-based dispersal rates),
confirm that connectivity in the very recent past is extremely low
- we found no evidence for dispersal between genetic clusters over
the past three generations (within the last 30 years). The observed
lack of connectivity is further supported by the fact that we ob-
served high mean kinship in every genetic unit (Figure 4) and a mean
kinship of zero between all pairs of genetic units.

These results, and those of Chiucchi and Gibbs (2010) and
Samarasin et al., (2017) also suggest that S. catenatus populations
in this region probably went from occupied patches with regular
movement between them to complete isolation in the recent past.
This may be due to the increase in forest and agricultural land from
anthropogenic events that have occurred over the last 100 years in
Northeast Ohio (McCluskey et al., 2018). We note that these ge-
netic clusters show high levels of genetic heterozygosity and lim-
ited genetic differentiation (Table S1). This supports the idea that
due to their recent isolation these S. catenatus populations may
not yet have had the corresponding reduction in genetic variability
from drift, but that this cost could be “paid” in future generations
(Sovic et al., 2019). To prevent genetic erosion due to genetic drift
and inbreeding in the future for these populations, translocations
of individuals between patches could be a prudent conservation
measure (Madsen et al., 1999, 2004). However, translocations must
be taken with care and proper study design used (Bell et al., 2019;
Dodd & Seigel, 1991; Ochoa et al., 2020), as previous attempts with
this species have been mostly unsuccessful (Harvey et al., 2014;
King et al., 2004).

As a next step to restore connectivity, we first need to determine
what landscape features promote or block movement. To do so,
landscape resistance models that match genetic distances to differ-
ences in landscape features offer a potential route to find possible
corridors or important landcover for S. catenatus to move through
(Cushman & Landguth, 2012). While we found connectivity between
close fields within the same clusters, ideally such methods should
be applied to additional landscapes where S. catenatus are shown to
move larger distances to gain a broader picture of the habitat fea-
tures that impact movement.
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4.3 | Conclusions

We have shown how to use distant kin and a gap-filled pedigree
to reconstruct dispersal rates across fragmented landscapes with
disjunct occupied sites. Like other pedigree and assignment-based
methods this approach expands our ability to assess patterns of
movement over shorter time scales than more traditional genetic
approaches which makes them sensitive to the effects of recent an-
thropogenic impacts. There are two broad improvements that could
be made to our methodology in the future: (i) Incorporating least
cost paths or other alternatives to the expert opinion cost matrix,
and (i) adding demographic data into the Bayesian model to esti-
mate sex or age bias in dispersal. Overall, these advances will add
to potential of using pedigrees to study of the factors governing the
distribution and abundance of organisms over short timescales that
have previously been out of reach for population genetics (Bradburd
& Ralph, 2019).
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