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Circadian rhythms influence multiple essential biological activities, including sleep, performance, and mood. The dim light
melatonin onset (DLMO) is the gold standard for measuring human circadian phase (i.e., timing). The collection of DLMO is
expensive and time consuming since multiple saliva or blood samples are required overnight in special conditions, and the
samples must then be assayed for melatonin. Recently, several computational approaches have been designed for estimat-
ing DLMO. These methods collect daily sampled data (e.g., sleep onset/offset times) or frequently sampled data (e.g., light
exposure/skin temperature/physical activity collected every minute) to train learning models for estimating DLMO. One
limitation of these studies is that they only leverage one time-scale data. We propose a two-step framework for estimating
DLMO using data from both time scales. The first step summarizes data from before the current day, whereas the second
step combines this summary with frequently sampled data of the current day. We evaluate three moving average models
that input sleep timing data as the first step and use recurrent neural network models as the second step. The results using
data from 207 undergraduates show that our two-step model with two time-scale features has statistically significantly lower
root-mean-square errors than models that use either daily sampled data or frequently sampled data.
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1 INTRODUCTION

Most human biology and behaviors are heavily influenced by an endogenous circadian oscillator with a period of
around 24 hours [12]. Misalignment of this endogenous circadian oscillator with the external environment, which
occurs during jet lag and shift work [13, 38], negatively affects human health, including increased risk for physical
and psychiatric disorders [1], obesity [15], and increased 24-hour blood pressure and inflammatory markers
[31]. Measuring human circadian phase (i.e., timing) accurately is essential for the clinical treatment of circadian
misalignment, possibly improving the efficiency and alertness of shift workers, and for designing other circadian-
based interventions. Since the central circadian oscillator for mammals is located in the suprachiasmatic nucleus
of the hypothalamus [37], it is not feasible to measure its status directly in humans. Therefore, markers, including
melatonin [2, 33], core body temperature, and cortisol, have been utilized for research and clinical purposes [23].
Melatonin-based assessment is the least variable marker among them when assessed under dim light conditions
[23]. The secretion of melatonin is regulated by various factors, including the circadian clock, lighting conditions,
some medications, and exercise [12]. Under dim light conditions in normally entrained humans, the secretion of
melatonin remains at a low level during the day and increases sharply about 2 hours prior to habitual bedtime
[2, 12]. The time when this increase begins is called dim light melatonin onset (DLMO).

Monitoring melatonin for DLMO, however, requires frequent collection of saliva or blood over at least 7 hours
in dim light conditions; this is expensive and inconvenient. Since these samples must be sent for assay, results are
not available immediately. Several semi-invasive or non-invasive approaches have been proposed for estimating
DLMO using other data types. With the rapid development of wearable devices in the past few years, sensors
have been used to collect information about light exposure (LE), skin temperature (ST), and accelerometer

(AC) to attempt to predict the timing of sleep onset and sleep offset [40]. Some work has been conducted using
these sensor data for estimating DLMO with the help of machine learning or statistical regression models. Most
studies leverage either daily sampled data (sleep onset/offset time) [5, 27] or frequently sampled sensor data
(including LE, ST, AC every minute) [17, 24, 25, 43]. Daily sampled data such as sleep timing on previous days
contain little information of current day’s events. Frequently sampled sensor data can contain many missing
values. The combination of the two is likely to provide a better estimation. Bonmati-Carrion et al. [3] designed
several composite phase indexes by simply averaging the onset time or the offset time of various daily variables
including LE, ST, body position, and motor activity, and calculated the linear correlations between each phase
index and DLMO. For example, their best composite index SleepWTOn is defined by averaging the sleep onset
time and the wrist temperature onset. This method, however, only considers at most two variables and does not
include LE. Some methods for predicting circadian metrics use limit-cycle oscillators to mathematically describe
the dynamics of the circadian oscillators based on frequently sampled LE or sleep-wake cycle data [20, 21, 26].
Using the model of St. Hilaire et al. [20], less than 50% of predictions were within ±1 hour of the observed DLMO
in a dataset with a wide range of DLMO [35].
In addition to the preceding drawbacks, the previous DLMO modeling methods based on frequently sampled

sensor data [17, 24, 25, 43] are designed for estimating melatonin concentrations first, and DLMO values are then
calculated based on the predicted melatonin curve. The pipeline of these methods is shown in Figure 1(a). Since
there is a wide inter-individual variation in the peak value of DLMO [6], these methods need to fit and scale the
melatonin curves, which requires the full melatonin profile. This training approach of DLMO that requires the
entire melatonin profile (rather than only DLMO), however, greatly increases the cost and participant burdens of
melatonin collection because (1) the participants must remain awake for many hours after their habitual bedtime
to collect samples and (2) processing and assaying the samples to obtain melatonin measurement is expensive.
In light of these limitations from previous methods, we propose a two-step framework for estimating DLMO

using data from two time scales. In the first step, the framework summarizes all features prior to the day of
interest. The second step combines the result of the first step and the current day’s frequently sampled data
to estimate DLMO. For the implementation, we evaluate three moving average models to summarize sleep
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Fig. 1. A comparison of model training pipelines between previous methods that use frequently sampled data and our
method. (a) The pipeline of existing methods that train a model for estimating the melatonin level. The method requires
fitting and scaling the melatonin curve first, which requires complete melatonin curves. (b) The pipeline of our method that
trains a model for estimating the DLMO directly. Our method only requires data to be collected until the DLMO threshold
is exceeded, instead of a full melatonin profile. Different colors denote melatonin profiles of different people.

onset/offset time for the first step. For the second step, we apply recurrent neural network (RNN) methods
to predict DLMO.
The main contributions of this article include the following:

(1) We construct a two-step framework for estimating DLMO using features of two time scales: both daily
sampled data and frequently sampled data. This is a generalization of all current models.

(2) To implement the framework, we compare three moving average models for the daily sampled data and
evaluate them for extracting features from the daily sleep timing data.

(3) To the best of our knowledge, this work is the first to predict DLMO directly using frequently sampled
data (using the pipeline in Figure 1(b)), which requires less data collection for training the model.

(4) We show that the model using features of two time scales is significantly better than the one using only
one type of feature.

2 DATA PREPARATION

The data were collected in the SNAPSHOT (Sleep, Networks, Affect, Performance, Stress, and Health Using
Objective Techniques) study, including approximately 1 to 3 months of daily physiological and behavioral data
and one to three DLMO laboratory assessments from 207 undergraduate college students from 2013 to 2017
[28, 35, 39, 40, 41, 44]. Participants in the 2017 cohort had DLMO calculated one to three times over ∼3 months
of data collection; all other participants have only one DLMO assessment in ∼1 month of data collection. We
split the data by using the data collected during 2013–2016 (∼1 month of data) as the training set and the data
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Fig. 2. The distribution of DLMO values in our dataset. The mean DLMO value is 23.43±1.76.

collected in the 2017 cohort (∼3months of data) as the test set. There are 192 training samples and 31 test samples.
Participants were recruited through email.

2.1 DLMO

The melatonin concentrations were assayed from saliva collected every hour from 3 pm to 7 am under dim-
light conditions (<4 lux) [28]. The environment was sound attenuated and temperature controlled. Participants
were permitted to take brief naps between samples and interact with other participants, but they were not
allowed to use any electronic devices due to the light emitted by such devices [9]. Food that might influence the
concentration of melatonin in saliva was not allowed during this time. They were also instructed to avoid eating
or drinking and to maintain stable posture for the 20 minutes prior to each sample. DLMO was determined by
linear interpolation of the time that melatonin values first exceeded a threshold of 5 pg/mL [35]. The distribution
of DLMO values collected in our dataset is shown in Figure 2. The mean and standard deviation are 23.43±1.76
(decimal hours).

2.2 Physiological and Behavioral Data

During the experiments, the participants wore (1) a wrist sensor on their dominant hand (Q-sensor, Affectiva,
USA) to continuously measure ST and three-axis AC at a 8-Hz sampling rate, and (2) a wrist actigraphy monitor
on their non-dominant hand (Motion Logger, AMI, USA) to measure activity and LE stored at 1-minute intervals.
We logarithmically transformed the LE values and computed the L2-norm for AC. We segmented the data into
1-hour bins and computed the mean values over each hour as the features of that hour. Sleep onset/offset times
were computed based on sleep diary queries every morning and Motion Logger data analyzed using Action-4
software [40]. For any missing data of each feature, we used linear interpolation to impute the data for missing
data less than 12 hours, which performs the best for our dataset with other imputationmethods (data not shown).
We did not use datasets that containmissing segments longer than 12 hours for the day prior to DLMO collection.
After those datasets were removed, the longest missing segment was about 8 hours.
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2.3 Removing the Effect of Daylight Saving Time

Since some participants were studied during the clock shift between standard time and daylight saving time,
we subtracted 1 hour from the clock time during daylight saving time to make clock times uniform across all
participants. This standardization is essential for the following reasons:

(1) Our target is to design a model that predicts DLMO tracking the user activity. A time in our dataset is
a feature (sleep time) or a label (DLMO). By standardizing the times, the model does not need to assess
whether the clock time is changed.

(2) If the clock time changes, user activity would also change due to social constraints. The standardization of
time clock allows themodel to capture this adjustment, which could provide better prediction performance
intuitively.

(3) Some participants in our dataset experienced the clock time change, whereas some did not. This standard-
ization makes the model perform consistently for both groups of participants.

3 METHODS

We represent the human circadian phase by the following formula:

ϕt = f (ψt−1,xt ), (1)

where ϕt is the circadian phase (e.g., DLMO) on day t ,ψt−1 is the extracted features from the data prior to the day
t , xt is the 24-hour frequently sampled data starting from the wake-up time of the t-th day, and f (·, ·) is the model
that combines all features for estimating ϕt . Previous studies have described this relationship mathematically
when xt is LE or sleep timing data, andψt−1 � ϕt−1 [21, 26]. In practice, the true value of ϕt−1 is never known. In
this section, we introduce our methods of estimating DLMO under this framework. Since we are only interested
in estimating the DLMO values on a specific day, t in Formula 1 is constant, and thus we rewrite this formula as
follows:

ϕ = f (ψ ,x ). (2)

The framework is composed of the following two steps:

(1) Extracting features from the data prior to the current day, (i.e., calculatingψ ).
(2) Estimating DLMO with ψ and current day’s frequently sampled data x (e.g., LE, ST, and AC) (i.e.,

modeling f ).

It should be noted that whereas x only consists of frequently sampled data of the current day,ψ can be derived
from both daily sampled data (e.g., sleep onset/offset time) and frequently sampled data before the current day.
This framework is the extension of the models that use only one type of time-scale data:

• For models only using daily sleep onset/offset times [5, 27], ϕ = ψ , whereψ is the features derived by the
daily data.

• For models only using frequently sampled data of the current day [17, 24, 25, 43], ϕ = f (0,x ).

3.1 Our Implementation of the Two-Step Framework

In the first step of the model, we use daily sleep midpoint (i.e., midpoint between sleep onset and sleep offset
times) during the past week for deriving ψ and define ψ as an estimator of ϕ. This definition allows ψ to be a
bridge between daily sleep timing parameters and ϕ. The sleep midpoint of the i-th day over the past n days is
denoted asTi . In this work, we set n = 7. The first model we evaluate is a simplemoving average (SMA)model
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Fig. 3. The structure of RNNEMA as an example of our framework. In this model, we first use an EMA model for calculating
ψ from 7-day daily sleep parameters. Then we feed the hourly frequently sampled features (“freq_data”) of LE, ST, and AC,
and the output of the EMA model into different RNN cells (GRU in our implementation) for calculating the current day’s
DLMO ϕ.

that was used in other words [5, 11, 27]:

ψSMA = a
n∑
i=1

Ti + b, (3)

where a and b are trainable parameters, and are trained by least squares.
The second model for evaluating ψ is an exponential moving average (EMA) model. The model can be

presented as

ψEMA = a
n∑
i=1

αn−iTi + b, (4)

where a and b are trainable parameters, and α is a fixed decay rate. We choose 0.9 as the value of α , as we found
that this value was the best parameter for modeling ϕ in our preliminary experiments (data not shown).
We also introduce a moving average (MA) model (a more generalized model) for comparison:

ψMA =

n∑
i=1

wiTi + b,

wherewi and b are trainable parameters.
For the second step of the model, we apply an RNN for estimating ϕ. RNN models have shown great success

in natural language processing and sequence learning [19, 29]. For the i-th cell, ψ , and the frequently sampled
data x (i.e., LE, ST, and AC) of the i-th hour on that day are used as the inputs. We input ψ to each cell be-
cause the timing of light stimuli impacts the direction and magnitude of the circadian phase shift [22]. In our
implementation, we use gated recurrent unit (GRU) cells for the RNN model because they have better perfor-
mance on small datasets [10]. As an example, our structure of RNNEMA that uses EMA in the first step is shown
in Figure 3.
The training process contains three independent steps. First, we use least squares to train the model that uses

sleep midpoints. Then, we fix the parameters in this model and train an RNN. Last, we fine-tune all trainable
parameters in the model using back-propagation.
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3.2 Comparison of Moving Average Models

SMA vs. EMA. We consider the following two averages of the sleep midpoint time.

T
SMA
t
=

∑
n−1
i=0 Tt−i

n

T
EMA
t
=

∑
n−1
i=0 α

iTt−i∑
n−1
i=0 α

i

Here, T
SMA
t

represents a simple moving average and T
EMA
t

is an exponential moving average. Suppose that Ti
follows a Gaussian channel:

Ti = T̃i + εi ,

where T̃i is the true value of sleep midpoint with i.i.d. noise εi ∼ N (0,σ 2). Therefore, we have the following.

T
SMA
t
∼ N �

�

∑
n−1
i=0 T̃t−i

n
,
σ 2

n
�
�

T
EMA
t
∼ N ��

�

∑
n−1
i=0 α

iT̃t−i∑
n−1
i=0 α

i
,

∑
n−1
i=0 α

2i

(∑
n−1
i=0 α

i

)2σ 2��
�

According to Cauchy-Schwarz inequality, (
∑

n−1
i=0 α

i )2 ≤ n
∑

n−1
i=0 α

2i .T
EMA
t

has a larger variance thanT
SMA
t

. When
σ is large (data are noisy), the average value of the sleep midpoint is a better approach for reducing the noise.

Intuitively,T
EMA
t

is amore reliable feature for estimatingDLMObecause recent sleep timingwould be expected
to be more highly correlated with DLMO than distant sleep timing, as sleep gates the LE that might shift DLMO
[12]. In addition, sleep timing of each day is highly influenced by the circadian phase of that day, as human
circadian rhythms strongly regulate human sleep timing [12, 30]. Therefore, we hypothesize that the EMAmodel
is more sensitive to noise, and it could be a better method for estimating DLMO when the noise is small.

SMA/EMA vs. MA. MA is an extension of SMA/EMAwith more tuneable parameters. Therefore, more data are
required for training MA. Green [18] suggests a sample size of N ≥ 50 + 8m for the multiple regression, where
m is the number of predictor variables.

4 EXPERIMENTS

For the two-step model we designed, we tested three questions:

(1) In the first step, which moving average model performs the best for estimating DLMO?
(2) Does the two-step model perform better for estimating DLMO than models that only use either daily

sampled or frequently sampled data?
(3) Which combination of frequently sampled data (LE, ST, and AC) performs the best for estimating DLMO?

Fewer types of data reduce the cost of required sensors.

We designed three experiments to address these three questions. The code was implemented in Python, and
the machine learning framework we used was PyTorch [34].

4.1 Question 1: Comparison Among Moving Average Models

We first compare the performance of three moving average models: SMA, EMA, and MA:

(1) We calculated three values for comparing performance:
• RMSEall: We calculate the root-mean-square error (RMSE) using all data for training the linear re-

gression model.
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• RMSEval: We evaluate the model’s generalization ability for avoiding overfitting problems by calculating
RMSE on a leave-one participant-out cross-validation dataset.

• <1h: We calculate the percentage of the test samples with absolute error of less than 1 hour using a
leave-one participant-out cross-validation dataset. Similar metrics are also reported elsewhere [5, 35].

(2) We evaluated the effect of statistical noise in the data on the SMA, EMA, and MA models by adding
Gaussian noise with standard deviation σ to each value of the sleep midpoint. For each σ , we repeatedly
generated noisy sleep data and calculated the coefficient of determination (r 2) between true DLMO and
the predicted DLMO using noisy sleep data 20,000 times.

(3) We also tested model performance with different window sizes between 3 and 8 days (i.e., the number of
days of data in the model).

4.2 Question 2: Performance of the Two-Step Model

Based on the first experiment, we choose the best moving average modelM for implementing a two-step model.
We compare the performance of the model M , the corresponding two-step model RNNM , and the RNN model
with 24-hour frequently sampled data RNN24-hour. Here we do not leverage more than 24 hours of frequently
sampled data because previous work [24] reports that 24-hour data is better than longer datasets for predicting
DLMO, and longer datasets are more likely to contain longer missing data segments. In our dataset, at least 25%
of 7-day (168-hour) frequently sampled data contain missing segments longer than 12 hours. The removal of the
missing segments leaves smaller amounts of data to analyze and makes it harder to compare the results from the
model with 7-day frequently sampled data with other models.
We use the following metrics to compare the three models:

• RMSEval: To reduce the computation cost of evaluating the model, we run 10-fold cross validation instead
of leave-one-out cross validation on the training set to get the hyperparameters with the lowest RMSE.
We define the RMSE value of the i-th validation set as ri , and we define RMSE over all validation sets as

RMSEval =

√
r
2
1+r

2
2+· · ·+r 210
10 .

• RMSEtest: After selecting the best hyperparameters based on RMSEval and training the model using all
training samples, we calculate the RMSE value on the test set.

• <1h: We calculate the percentage of the test samples with absolute error of less than 1 hour.

4.3 Question 3: Comparison Among Different Input Combinations

To address the third question, we compare the models with different combinations of frequently sampled data.
For the best model M in the first experiment (Section 4.1), we replace its frequently sampled data with one
type of input or arbitrary two-type-of-input combination. A one-input model with LE, ST, or AC is denoted

as RNN(LE)
M

, RNN(ST)
M

, and RNN(AC)
M

respectively. Similarly, we define the models with two types of input as

RNN(LE, ST)
M

, RNN(LE, AC)
M

, and RNN(ST,AC)
M

. We use the same metrics as in Section 4.2.
We use cross validation and theAkaike Information Criterion (AIC) at the same time for selecting the best

combination of features because all criteria for feature selection from high-dimensional and small sample data
have drawbacks. For example, first, small bias exists in selecting features using cross validation when the feature
number is small compared with data size [42]. Note that cross validation is always a biased estimate for feature
selection, as the feature selection process requires accessing test data [36]. Second, AIC is an information theory–
based metric that considers the performance of the model and the number of parameters in the model. Note that
there are many assumptions and approximations in AIC [14], and the degrees of freedom in neural networks are
generally much less than the number of parameters [16, 32]. For our RNN work, the degrees of freedom has not
yet been studied. Third, information theory–based feature selection methods cannot be applied in our dataset
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Table 1. Comparison Among Three Moving
Average Models

Model RMSEall RMSEval <1h
SMA 1.36 1.38 56.5%
EMA 1.36 1.37 56.9%
MA 1.33 1.38 56.8%

Fig. 4. The performance of each moving average model with different standard deviations of noise.

because our dataset is not large enough for estimating the mutual information between each high-dimensional
feature and the DLMO value.

5 RESULTS

5.1 Question 1: Comparison Among Moving Average Models

The three moving average models perform similarly on the validation sets (p = 0.97, repeated measures ANOVA)
(Table 1). For the model performance of moving average models after adding noise (Figure 4), the r 2 values
followed Gaussian distribution for each σ value (p < 0.002, D’Agostino’s K test). The MA model showed the
highest r 2 between DLMO and sleep data (Figure 4). When the level of noise was low, the features extracted by
the EMAmodel showed larger r 2 than SMA. With increased noise, all models performed worse. SMA performed
slightly better than EMA when σ > 2. When σ = 2, there was no significant difference between the r 2 of SMA
and EMA (p = 1.0, two-sample t-tests with Bonferroni correction). For other σs, the differences were significant
(p < 0.001), statistically, but their differences may not be important in practice.
There was no significant difference for each model by different data window sizes (n in the moving average

models) (p > 0.05, within-group multiple paired comparison).
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Table 2. Comparison Among Three Different
Structures

Model RMSEval RMSEtest <1h
EMA 1.38 1.42 54.8%

RNN24-hour 1.51 1.55 41.9%
RNNEMA 1.21 1.38 64.5%

Fig. 5. The RMSE of each validation set for the three models.

5.2 Question 2: Performance of the Two-Step Model

Since all three moving average models performed similarly (Section 5.1), we implemented RNNSMA (RMSEval =
1.25, RMSEtest = 1.34, <1h: 61.3%), RNNEMA (RMSEval = 1.21, RMSEtest = 1.38, <1h: 64.5%), and RNNMA (RMSEval
= 1.26, RMSEtest = 1.36, <1h: 48.4%). The training time for the cross validation sets was about 30 minutes on a
CPU (2.6-GHz Intel Core i7). The difference among these models on validation sets was not significant (p = 0.66,
repeated measures ANOVA). Therefore, in the next step, we used the model RNNEMA because it had the best
score on two of the three metrics (i.e., RMSEval and <1h).

RNNEMA showed the lowest RMSEval and RMSEtest and highest <1h (Table 2). The model performance for
EMA, RNN24-hour, and RNNEMA on the validation sets (RMSEval) was significantly different (p = 0.0022, repeated
measures ANOVA). RNNEMA performed significantly better than the other twomodels (for RNNEMA vs. EMA,p =
0.048; for RNNEMA vs. RNN24-hour, p = 0.013, using multiple paired t-test with Bonferroni correction). Therefore,
the combination of 7-day daily sampled data and 24-hour frequently sampled data (RNNEMA) showed statistically
significantly better model performance than EMA or RNN24-hour (Figure 5). Note that although the RMSE varied
across each validation set, the RMSE for RNNEMA was lowest in 9 out of 10 sets.

5.3 Question 3: Comparison Among Different Input Combinations

There was no statistically significant difference among the RMSEval values of the models with different feature
combinations (p = 0.119, repeated measures ANOVA) (Table 3). The model using all features performed the best

based on <1h and AIC. RNN(LE, ST)
EMA would be other good options for those who want to reduce the number of

sensors based on RMSEtest and <1h.
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Table 3. Comparison Among Models with Different Input

Model RMSEval RMSEtest <1h AIC
RNNEMA 1.21 1.38 64.5% 207.6

RNN(LE)
EMA 1.31 1.44 61.3% 247.3

RNN(ST)
EMA 1.27 1.48 45.2% 216.6

RNN(AC)
EMA 1.33 1.46 48.4% 280.2

RNN(LE, ST)
EMA 1.29 1.36 61.3% 220.4

RNN(LE, AC)
EMA 1.29 1.39 54.8% 231.5

RNN(ST, AC)
EMA 1.26 1.38 48.4% 210.5

5.4 Error Analysis

For the relationship between the predicted DLMO of our EMA and RNNEMA models and true DLMO value for
the test data (Figure 6), the Pearson correlation of the prediction errors (i.e., absolute difference between pre-
dicted DLMO and true DLMO) of two models was 0.596 with p = 4.0 × 10−4, which suggests a strong correlation
between the errors. Visual inspection shows that the model tends to predict later DLMO if the experimental
DLMO is prior to midnight and predicts earlier DLMO if the experimental DLMO is after midnight.
To understand how to improve the EMA model, we studied whether missing patterns in sleep parameters

and sleep regularity of a participant influence the performance of the model. We first split the data into two
categories based on whether the absolute error is less than 1 hour or not. Then, we used the Mann-Whitney U
test to compare the missingness/sleep regularity in these two categories. There were no statistically significant
relationships in (1) the relationship between the number of missing values in the sleep parameters and DLMO
prediction errors of EMA and (2) the relationship between standard deviations of sleep parameters across days
(i.e., sleep regularity) and DLMO prediction errors of EMA.

6 DISCUSSION

6.1 Choice of Moving Average Models

Previous work that analyzed the relationship between sleep data and DLMO value [5, 11, 27] used only SMA
models. In this article, we compared SMA with the other two moving average models.

SMA vs. EMA. In Section 3.2, we hypothesized that the EMA model is more sensitive to noise but its perfor-
mance is better when the noise is limited. Our experiment supported this (Figure 4): EMA performs better than
SMA when the noise is small (σ < 2), but it is worse when the noise is large (σ > 2). With the development of
technologies that reduce noise, an EMA model could be more useful in the future.

SMA/EMA vs. MA. In this work, we used 223 DLMO samples. According to the analysis in Section 3.2, the
sample size was large enough, but the prediction performance of MA was similar to that of SMA/EMA. As a
result, MA was not preferred for predicting DLMO using sleep midpoints.

6.2 Performance of the Proposed Two-Step Models

In this article, we propose a two-step framework using two time-scale features for estimating DLMO. Our ex-
periment showed that the performance of the two-step models was significantly better than the models using
only daily sampled or frequently sampled data. We also compare our model with other work [4, 35] using a
subset of the data in this dataset (Table 4). Our model performed better on the <1h metric (65% vs. 43%) than
a limit cycle oscillator-based method with light input [35]. The performance of our model was also better than
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Fig. 6. The relationship between the predicted DLMO values from two methods and the experimental DLMO.

Table 4. Comparison Between RNNEMA and Previous Work Using
a Subset of the Data in This Dataset

Model RMSEval RMSEtest <1h
RNNEMA 1.21 1.38 64.5%

Neural Network [4] 1.45 1.49 /
Limit Cycle Oscillator [35] / / 43%

For the values that are not reported, we use the slash (/) symbol.

that of a neural network method [4] that used sleep timing, frequently sampled sensor data (LE and AC), and
demographic information (gender, personality types, and sleep quality index) as input features (RMSEval: 1.21
vs. 1.45, RMSEtest: 1.38 vs. 1.49). Neither of those publications included the other metrics.
The error analysis showed that the error of our RNNEMA model was strongly correlated with the error of EMA.

Therefore, one approach to improve RNNEMA is to improve the accuracy of the moving average model.
This novel framework is the generalization of current models that leverage both daily sampled data and fre-

quently sampled data. The model proposed in this article may eventually be useful for estimating DLMO as a
marker of the human circadian phase. Every feature we used in our model is derived from wearable sensors that
are low cost, are easy to use, and can provide data in close to real time. As noted earlier, some existing meth-
ods [17, 24, 25, 43] were designed for estimating melatonin instead of predicting DLMO directly. These existing
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methods therefore require a complete melatonin profile (e.g., the shortest length of data was 22-hours long in
these reports [17]) for scaling the melatonin amount when training the model, which is expensive and inconve-
nient. The model proposed in the work directly estimates DLMO and requires much less melatonin collection
for training the model.
The ideas of this work can be applied to other regression or classification tasks with sensor data with different

sample rates. In this work, we have two different time scales of data: the daily sampled data capture behavioral
or physiological parameters from each day, and the frequently sampled data are stored minute by minute. Other
times scales of data can be also investigated.

6.3 Limitation and Future Work

There are some limitations in our work. First, we did not compare this model with previous work [17, 24, 25,
43] because those works developed models to estimate the amount of melatonin first and then derived DLMO
based on the estimated melatonin profile, which required normalizing the melatonin data by fitting the curve
using sufficient melatonin data. Since our melatonin was sampled from 13-hour-long laboratory studies, it was
not sufficient for fitting the curve. We leave this comparison to future work, and we will also explore whether
we can train a better model using all melatonin data, not just DLMO.
Second, the data we used were collected from students at a single college. The relationship of the parameters

may be different in other groups of people. The models need to be tested in other populations for confirming
the generalizability. We will further evaluate the performance of our models on other populations such as shift
workers, people with jet lag, and people with psychiatric disorders to explore clinical application of our model.
Third, we explored the best feature combination for estimating DLMO. Our current result (Table 3) was not

conclusive, as different metrics in our experiment produced different results for different feature combinations.
The comparison of feature combination has to be further investigated with a larger dataset.
As additional future work, we will explore whether the model can be improved by utilizing other features

including phone screen time and caffeine intake, which also affect the human circadian phase [7, 8], as well
as specifics of physical/mental condition. Non-linear models will be examined for sleep parameters, and we
will compare this framework with other existing approaches. Potential applications using sensor-based DLMO
estimation include adjusting the timing of drug administration and designing better work schedules for each
individual based on his or her circadian phase; these and other applications requiring knowledge of the circadian
phase will be more feasible once non-invasive inexpensive long-term monitoring methods are available.

7 CONCLUSION

In this article, we proposed and evaluated a two-step framework that leverages features of two time scales for
predicting DLMO. This framework is the extension of previously used models with input of either frequently
sampled data (i.e., LE, ST, AC) or daily sampled data (i.e., sleep onset/offset timing). The experiment showed that
the proposed model performed better than the model only using one-time-scale feature.
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[29] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent neural network based language
model. In Proceedings of the 11th Annual Conference of the International Speech Communication Association.

[30] Ralph E. Mistlberger. 2005. Circadian regulation of sleep in mammals: Role of the suprachiasmatic nucleus. Brain Research Reviews 49,
3 (2005), 429–454.

[31] Christopher J. Morris, Taylor E. Purvis, Kun Hu, and Frank A. J. L. Scheer. 2016. Circadian misalignment increases cardiovascular
disease risk factors in humans. Proceedings of the National Academy of Sciences 113, 10 (2016), e1402–e1411.

[32] Noboru Murata, Shuji Yoshizawa, and Shun-Ichi Amari. 1994. Network information criterion-determining the number of hidden units
for an artificial neural network model. IEEE Transactions on Neural Networks 5, 6 (1994), 865–872.

[33] Seithikurippu R. Pandi-Perumal, Marcel Smits, Warren Spence, Venkataramanujan Srinivasan, Daniel P. Cardinali, Alan D. Lowe, and
Leonid Kayumov. 2007. Dim light melatonin onset (DLMO): A tool for the analysis of circadian phase in human sleep and chronobio-
logical disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry 31, 1 (2007), 1–11.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, et al. 2019. PyTorch: An
imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates., 8024–8035. http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[35] Andrew J. K. Phillips, William M. Clerx, Conor S. O’Brien, Akane Sano, Laura K. Barger, Rosalind W. Picard, Steven W. Lockley,
Elizabeth B. Klerman, and Charles A. Czeisler. 2017. Irregular sleep/wake patterns are associated with poorer academic performance
and delayed circadian and sleep/wake timing. Scientific Reports 7, 1 (2017), 3216.

[36] Payam Refaeilzadeh, Lei Tang, and Huan Liu. 2007. On comparison of feature selection algorithms. In Proceedings of the AAAIWorkshop

on Evaluation Methods for Machine Learning II, Vol. 3. 5.
[37] Benjamin Rusak and Irving Zucker. 1979. Neural regulation of circadian rhythms. Physiological Reviews 59, 3 (1979), 449–526.
[38] Robert L. Sack, Dennis Auckley, R. Robert Auger, Mary A. Carskadon, Kenneth P. Wright Jr., Michael V. Vitiello, and Irina V. Zhdanova.

2007. Circadian rhythm sleep disorders: Part I, basic principles, shift work and jet lag disorders. Sleep 30, 11 (2007), 1460–1483.
[39] Akane Sano. 2016. Measuring College Students’ Sleep, Stress, Mental Health and Wellbeing with Wearable Sensors and Mobile Phones.

Ph.D. Dissertation. Massachusetts Institute of Technology.
[40] Akane Sano, Weixuan Chen, Daniel Lopez-Martinez, Sara Taylor, and RosalindW. Picard. 2019. Multimodal ambulatory sleep detection

using LSTM recurrent neural networks. IEEE Journal of Biomedical and Health Informatics 23, 4 (2019), 1607–1617.
[41] Akane Sano, Sara Taylor, Andrew W. McHill, Andrew J. K. Phillips, Laura K. Barger, Elizabeth B. Klerman, and Rosalind Picard. 2018.

Identifying objective physiological markers and modifiable behaviors for self-reported stress and mental health status using wearable
sensors and mobile phones: Observational study. Journal of Medical Internet Research 20, 6 (2018), e210.

[42] Pawel Smialowski, Dmitrij Frishman, and Stefan Kramer. 2009. Pitfalls of supervised feature selection. Bioinformatics 26, 3 (2009),
440–443.

[43] Julia E. Stone, Andrew J. K. Phillips, Suzanne Ftouni, Michelle Magee, Mark Howard, Steven W. Lockley, Tracey L. Sletten, Clare
Anderson, Shantha M. W. Rajaratnam, and Svetlana Postnova. 2019. Generalizability of a neural network model for circadian phase
prediction in real-world conditions. Scientific Reports 9, 1 (2019), 1–17.

[44] Sara Ann Taylor, Natasha Jaques, Ehimwenma Nosakhare, Akane Sano, and Rosalind W. Picard. 2020. Personalized multitask learning
for predicting tomorrow’s mood, stress, and health. IEEE Transactions on Affective Computing 11, 2 (2020), 200–213.

Received January 2020; revised October 2020; accepted January 2021

ACM Transactions on Computing for Healthcare, Vol. 2, No. 3, Article 20. Publication date: July 2021.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

