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Doubly-intractable posterior distributions arise in many applications of statistics concerned 
with discrete and dependent data, including physics, spatial statistics, machine learning, 
the social sciences, and other fields. A specific example is psychometrics, which has 
adapted high-dimensional Ising models from machine learning, with a view to studying 
the interactions among binary item responses in educational assessments. To estimate 
high-dimensional Ising models from educational assessment data, �1-penalized nodewise 
logistic regressions have been used. Theoretical results in high-dimensional statistics show 
that �1-penalized nodewise logistic regressions can recover the true interaction structure 
with high probability, provided that certain assumptions are satisfied. Those assumptions 
are hard to verify in practice and may be violated, and quantifying the uncertainty 
about the estimated interaction structure and parameter estimators is challenging. We 
propose a Bayesian approach that helps quantify the uncertainty about the interaction 
structure and parameters without requiring strong assumptions, and can be applied to Ising 
models with thousands of parameters. We demonstrate the advantages of the proposed 
Bayesian approach compared with �1-penalized nodewise logistic regressions by simulation 
studies and applications to small and large educational data sets with up to 2,485 
parameters. Among other things, the simulation studies suggest that the Bayesian approach 
is more robust against model misspecification due to omitted covariates than �1-penalized 
nodewise logistic regressions.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Models with intractable normalizing functions arise in many applications of statistics concerned with discrete and de-
pendent data, including physics (Ising, 1925; Chatterjee, 2007; Ghosal and Mukherjee, 2020), spatial statistics (Besag, 1974; 
Strauss, 1975; Goldstein, 2015), machine learning (Ravikumar et al., 2010; Anandkumar et al., 2012; Xue et al., 2012; Bresler 
and Karzand, 2020), and statistical network analysis (Robins et al., 2007; Hunter and Handcock, 2006; Caimo and Friel, 
2013), among others. Models with intractable normalizing constants give rise to doubly intractable posterior distributions 
(Møller et al., 2006; Murray et al., 2006; Lyne et al., 2015; Park and Haran, 2018). As a consequence, likelihood-based 
inference—whether Bayesian or non-Bayesian inference—is challenging when the likelihood function is intractable.
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A specific example is the branch of psychometrics concerned with network-based approaches to learning from educa-
tional assessment data (Borsboom, 2008; van Borkulo et al., 2014; Epskamp et al., 2018; Marsman et al., 2018; Jin and 
Jeon, 2019; Jeon et al., 2021). For example, van Borkulo et al. (2014) adapted high-dimensional Ising models from machine 
learning (Ravikumar et al., 2010; Anandkumar et al., 2012; Xue et al., 2012; Bresler and Karzand, 2020), with a view to 
studying interactions among binary item responses in educational assessments. To estimate high-dimensional Ising models 
from educational assessment data, van Borkulo et al. (2014) followed the approach of Ravikumar et al. (2010) based �1-
penalized nodewise logistic regressions. Theoretical results in high-dimensional statistics show that �1-penalized nodewise 
logistic regressions can recover the true interaction structure with high probability, provided that certain assumptions are 
satisfied (see, e.g., Ravikumar et al., 2010, Theorem 1, p. 1295). Those assumptions include restricted eigenvalue and irrep-
resentability assumptions (see assumptions (A1) and (A2) of Ravikumar et al., 2010, p. 1294), which restrict the amount 
of dependence among relevant predictors and the amount of dependence between relevant and irrelevant predictors (see 
also Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Bühlmann and van de Geer, 2011; Wainwright, 2019; Lederer, 
2021). In practice, such assumptions are hard, if not impossible to verify and may be violated. In addition, quantifying the 
uncertainty about the estimated interaction structure and parameter estimators is challenging.

We propose an alternative approach to estimating Ising models based on Bayesian variable selection methods, which 
does not have such drawbacks although it does come with additional computational costs. We combine two approaches 
from the Bayesian literature on doubly-intractable posterior distributions: (1) the double Metropolis-Hastings algorithm 
(Liang, 2010) and (2) the stochastic search variable selection method (George and McCulloch, 1993) using spike and slab 
priors (Ishwaran and Rao, 2005). We demonstrate the advantages of the proposed Bayesian approach compared with �1 -
penalized nodewise logistic regressions by simulation studies and applications to small and large educational data sets with 
up to 2,485 parameters. Among other things, the simulation studies suggest that the Bayesian approach is more robust 
against model misspecification due to omitted covariates than �1-penalized nodewise logistic regressions.

The remainder of our paper is organized as follows. In Section 2, we describe Ising models along with computational 
and statistical challenges arising from Ising models, and existing approaches for addressing them. In Section 3, we propose 
a Bayesian algorithm for estimating Ising models. In Section 4, we assess the performance of the method by using simulated 
data. In Section 5, we apply the Bayesian approach to three educational data sets.

2. Statistical framework

We introduce the statistical framework used throughout the remainder of our paper. We first review Ising models along 
with generalizations (Section 2.1). We then discuss computational and statistical challenges arising from Ising models (Sec-
tion 2.2), along with non-Bayesian and Bayesian approaches for addressing them (Sections 2.3 and 2.4).

2.1. Ising models and generalizations

We introduce Ising models along with generalizations, with a view to studying interactions among binary item responses.
We consider binary item response data X ∈ {0, 1}n×p consisting of item responses Xi, j ∈ {0, 1}, where Xi, j = 1 indicates 

that the response of the i-th respondent to the j-th item is correct and Xi, j = 0 otherwise (i = 1, . . . , n, j = 1, . . . , p). 
A natural approach to studying interactions among binary responses is based on Ising models (van Borkulo et al., 2014). Ising 
models—as used in psychometrics, statistics, and machine learning—are undirected graphical models for binary responses 
(Lauritzen, 1996; Maathuis et al., 2019), represented in exponential-family form (Sundberg, 2019). The probability mass 
function of Ising models is of the form

Pθ (X = x) =
n∏

i=1

1

κ(θ)
exp

⎛
⎝ p∑

j=1

β j xi, j +
p∑

j<k

γ j,k xi, j xi,k

⎞
⎠ , θ = (β, γ ) ∈ Rp+(p

2). (1)

Here, β j ∈ R can be interpreted as the easiness of item j and γ j,k ∈ R can be interpreted as the weight of a pairwise 
interaction of two distinct items j and k. If γ j,k = 0, responses to items j and k are independent conditional on all other item 
responses. The conditional independences implied by the Ising model can be represented by a conditional independence 
graph, as in other undirected graphical models (Maathuis et al., 2019). In other words, each item j is represented by a node 
in an undirected graph, and two distinct items j and k are not connected by an edge when γ j,k = 0, that is, when responses 
to items j and k are independent conditional on all other item responses. Otherwise items j and k are connected by an 
edge. Examples of conditional independence graphs can be found in Sections 4 and 5. Generalizations of Ising models from 
second-order interactions of the form xi, j xi,k to third-order interactions of the form xi, j xi,k xi,l and higher-order interactions 
are possible: see, e.g., the seminal works of Besag (1974) and Frank and Strauss (1986) on related models in spatial statistics 
and statistical network analysis, respectively. Those generalizations share the same exponential-family platform as Ising 
models and therefore pose similar computational and statistical challenges, although computing statistics involving third-
and higher-order interactions can increase the computational burden. For the sake of concreteness, we focus here on Ising 
models with pairwise interactions.
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It is worth noting that there is a useful relationship between the Ising model on the one hand and logistic regression 
on the other hand, because the log odds of the conditional probability of Xi, j = 1, given all other item responses, is of the 
form

log
Pθ (Xi, j = 1 | Xi,k, k �= j)

1 − Pθ (Xi, j = 1 | Xi,k, k �= j)
= β j +

p∑
k=1:k �= j

γ j,k xi,k. (2)

The relationship between the Ising model and logistic regression has at least two advantages. First, it shows that the pa-
rameters β j and γ j,k can be interpreted in terms of conditional log odds and log odds ratios (e.g., Agresti, 2002; Stewart 
et al., 2019). Second, it suggests that the conditional independence graph of the Ising model along with its parameters can 
be estimated by using �1-penalized nodewise logistic regressions (Ravikumar et al., 2010; van Borkulo et al., 2014). We 
describe the �1-penalized nodewise logistic regression approach of Ravikumar et al. (2010) and van Borkulo et al. (2014) in 
Section 2.3. Having said that, it is important to keep in mind that the Ising model is more than logistic regression. While 
conventional logistic regression models assume that item responses are independent, the Ising model induces dependence 
among item responses. Indeed, according to (2), γ j,k �= 0 implies that the log odds of the conditional probability of Xi, j = 1
depends on the value xi,k of Xi,k , while the log odds of the conditional probability of Xi,k = 1 depends on the value xi, j of 
Xi, j , and so forth ( j �= k = 1, . . . , p, i = 1, . . . , n).

2.2. Computational and statistical challenges

While useful for studying interactions among binary responses, Ising models give rise to formidable computational and 
statistical challenges. Chief among them is the fact that the normalizing function κ(θ ) is a sum over all 2p = exp(p log 2)

possible combinations of item responses, which cannot be computed by complete enumeration of all exp(p log 2) possible 
combinations of item responses unless p is small (e.g., p � 20).

There are two scenarios in which the normalizing function simplifies and can be computed in reasonable time (polyno-
mial in p). First, if the interaction weights γ j,k of all distinct pairs of items j and k are zero, the conditional independence 
graph is empty in the sense that it contains no edges, the item responses are independent Bernoulli random variables, and 
the normalizing function simplifies. Second, if the item responses are dependent but the conditional independence graph of 
the Ising model is decomposable in the graph-theoretic sense of the word and all cliques and separators of the conditional 
independence graph are small, the normalizing function likewise simplifies (Lauritzen, 1996; Whittaker, 2009).

Having said that, the assumptions that the conditional independence graph is empty (first scenario) or decomposable 
(second scenario) are restrictive, because both assumptions limit the interactions among item responses that can be captured 
by Ising models. Aside from these two scenarios of limited interest, it is challenging to compute the likelihood function in 
reasonable time unless p is small (e.g., p � 20).

2.3. Non-Bayesian approaches

A well-known non-Bayesian approach to estimating Ising models is the eLasso approach of van Borkulo et al. (2014), 
which sidesteps computations of the normalizing function κ(θ ) and serves as a benchmark throughout the remainder of 
our paper.

The eLasso approach of van Borkulo et al. (2014) is based on the �1-penalized nodewise logistic regression approach 
of Ravikumar et al. (2010). The main idea is that, while the joint probability distribution (1) of all item responses may be 
intractable, the full conditional probability distributions of item responses are Bernoulli distributions and are hence tractable. 
In fact, the log odds of the conditional probability of Xi, j = 1, given all other item responses, is of the form (2), which 
resembles a logistic regression of Xi, j on all other item responses. Ravikumar et al. (2010) therefore suggested to learn the 
conditional independence graph of the Ising model along with its parameters by learning the neighborhoods of the items 
in the conditional independence graph through logistic regressions of item responses Xi, j on all other item responses. To 
encourage the neighborhoods of items in the conditional independence graph to be sparse, the nodewise logistic regressions 
are subject to �1-penalties. The regularization parameter of the �1-penalties is based on the Extended Bayesian Information 
Criterion (EBIC) of Chen and Chen (2008). The conditional independence graph is estimated by combining the estimates 
of the neighborhoods obtained from the �1-penalized nodewise logistic regressions by using the so-called AND rule of 
Meinshausen and Bühlmann (2006), that is, the estimated conditional independence graph contains an edge between two 
distinct items i and j if and only if the estimated neighborhoods of i and j both contain an edge between i and j. More 
details can be found in van Borkulo et al. (2014).

A computational advantage of eLasso is that �1-penalized nodewise logistic regressions do not involve intractable nor-
malizing functions and can be computed separately. The fact that the �1-penalized nodewise logistic regressions can be 
computed separately opens the door to parallel computing on multicore computers or computing clusters, facilitating large-
scale computing. The theoretical properties of the �1-penalized nodewise logistic regression approach have been studied by 
Ravikumar et al. (2010). Other theoretical work on Ising models along with generalizations can be found in Anandkumar et 
al. (2012), Xue et al. (2012), and Bresler and Karzand (2020).
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While attractive on computational grounds, there is no such thing as a free lunch: The approach of Ravikumar et al. 
(2010) and van Borkulo et al. (2014) can recover the true conditional independence graph with high probability, provided 
that strong assumptions are satisfied. Those assumptions are hard, if not impossible to verify and may be violated in practice, 
as discussed in Section 1. Worse, quantifying the uncertainty about the conditional independence graph and parameter 
estimators is challenging. We therefore adopt a Bayesian approach, which comes at additional computational costs but helps 
capture the uncertainty about the interactions among items and incorporate prior information (provided prior information 
is available).

2.4. Bayesian approaches

We review Bayesian alternatives to eLasso. Bayesian approaches to Ising models face the same obstacles as non-Bayesian 
approaches (Ravikumar et al., 2010; van Borkulo et al., 2014): the normalizing function κ(θ ), which is infeasible to compute 
in reasonable time except in special cases of limited interest (described in Section 2.2); and the fact that the number of 
parameters p + (p

2

)
is large even when p is not large: e.g., in the application to the Korean middle school data in Section 5.4, 

we have p = 70 items and p + (p
2

) = 2,485 parameters. As a result, in many scenarios the likelihood function is intractable 
and the posterior distribution is doubly intractable.

In the Bayesian literature, a popular approach to sidestepping computations of intractable likelihood functions is Ap-
proximate Bayesian Computation (ABC) (Pritchard et al., 1999; Beaumont et al., 2002; Marjoram et al., 2003; Sisson et al., 
2007; Toni et al., 2009; Marin et al., 2012; Yin and Butts, 2020). A simple form of ABC samples a candidate parameter 
vector from a proposal distribution (e.g., a multivariate Normal distribution) and, given the candidate parameter vector, 
simulates a synthetic sample from probability mass function (1) using the candidate parameter vector. If the observed and 
simulated data are close in a well-defined sense, the candidate parameter vector is accepted, otherwise it is rejected. To 
assess whether the observed and simulated data are close, some summary statistics are chosen to compare the observed 
and simulated data (e.g., sufficient statistics), along with a distance function that compares the summary statistics of the 
observed and simulated data (e.g., the Euclidean distance between the summary statistics of the observed and simulated 
data). The accepted parameter vectors are then regarded as a sample from an approximation to the posterior distribution. 
More sophisticated versions of ABC exist (e.g., Marjoram et al., 2003; Sisson et al., 2007; Toni et al., 2009; Marin et al., 
2012; Yin and Butts, 2020). That said, questions have been raised about the usefulness of ABC in Bayesian model selection 
problems for Gibbs random fields (Robert et al., 2011). Since Gibbs random fields are closely related to Ising models by 
virtue of being undirected graphical models in exponential-family form (Sundberg, 2019), it is not clear whether ABC would 
be useful for learning the conditional independence graph of Ising models.

Other Bayesian approaches have been developed for models with intractable normalizing functions. Many of them fall 
into one of two broad categories: (1) likelihood approximation approaches, which approximate the normalizing function 
κ(θ) by Markov chain Monte Carlo and plug the approximation of κ(θ) into the acceptance probability of Metropolis-
Hastings algorithms (Koskinen, 2004; Atchadé, 2006; Liang and Jin, 2013; Lyne et al., 2015; Alquier et al., 2016; Park and 
Haran, 2020); and (2) auxiliary variable approaches, which augment the posterior distributions by auxiliary variables so 
that the normalizing function κ(θ) in the acceptance probability of Metropolis-Hastings algorithms cancels (Møller et al., 
2006; Murray et al., 2006; Liang, 2010; Liang et al., 2016). A full-fledged discussion of these approaches is beyond the 
scope of our paper, but we highlight some of them and refer to Park and Haran (2018) for a review of other approaches. For 
example, the auxiliary-variable methods of Møller et al. (2006) and Murray et al. (2006) rely on perfect sampling of auxiliary 
variables (e.g., Propp and Wilson, 1996; Butts, 2018). However, perfect sampling can be expensive in terms of computing 
time. To address these computational issues, Liang (2010) developed a double Metropolis-Hastings algorithm by generating 
an auxiliary variable with a finite number of Metropolis-Hastings updates. Despite sampling from an approximation of 
the target distribution rather than the target distribution itself (Park and Haran, 2018), the double Metropolis-Hastings 
algorithm is the most practical approach on computational grounds. Many of the aforementioned approaches have been 
explored in the popular class of exponential-family random graph models (ERGMs, Lusher et al., 2013; Hunter et al., 2012; 
Schweinberger et al., 2020), which share the exponential-family platform with Ising models and Gibbs random fields and 
therefore give rise to similar computational issues: see, e.g., Koskinen et al. (2010), Caimo and Friel (2011), Atchade et al. 
(2013), Caimo and Friel (2014), Caimo and Friel (2013), Jin et al. (2013), and Caimo and Gollini (2020) for ERGMs and 
Everitt (2012), Schweinberger and Handcock (2015), and Thiemichen et al. (2016) for ERGMs with latent structure. Scalable 
approaches were developed by Bouranis et al. (2017) and Bouranis et al. (2018), based on pseudolikelihood functions. While 
promising, these approaches have been applied in low-dimensional settings with fewer than 10 parameters, not in high-
dimensional settings with thousands of parameters. As a consequence, we focus here on a Bayesian approach based on a 
double Metropolis-Hastings algorithm, motivated by its feasibility in high-dimensional settings.

3. Bayesian algorithm

We propose a Bayesian algorithm based on the stochastic search variable selection approach (George and McCulloch, 
1993), and incorporate a spike and slab prior (Ishwaran and Rao, 2005) into a double Metropolis-Hastings algorithm (Liang, 
2010). We introduce spike and slab priors in Section 3.1, and then introduce a spike and slab double Metropolis-Hastings 
algorithm in Section 3.2.
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3.1. Spike and slab priors

To estimate the conditional independence graph of the Ising model, we assume that the coordinates θi of the parameter 
vector θ ∈Rp+(p

2) are generated from a spike and slab prior of the form

θi | λi, σ 2, ω
ind∼ λi N(0, ω2 σ 2) + (1 − λi) N(0, σ 2)

λi
iid∼ Bernoulli(1/2)

1

σ 2
∼ Uniform(4, 100)

ω ∼ 1 + Y , Y ∼ Gamma(1, 1/100).

(3)

The indicator λi ∈ {0, 1} determines whether the parameter θi ∈ R is generated from the Normal distribution N(0, ω2 σ 2)

with mean 0 and variance ω2 σ 2 > 0 (λi = 1) or from the Normal distribution N(0, σ 2) with mean 0 and variance σ 2 > 0
(λi = 0). We assume that the prior of λi is Bernoulli(1/2), that is, the prior probabilities of the events {λi = 1} and {λi = 0}
are both 1/2. The parameter σ 2 > 0 controls the variance of the distribution N(0, σ 2). The Uniform(4, 100) prior of the 
inverse variance 1/σ 2 ensures that the prior of the variance σ 2 is a right-skewed distribution taking values in the range 
(1/100, 1/4), with a mean of approximately 1/30 and a long upper tail stretching from 1/30 to 1/4. The distribution 
N(0, σ 2) is called a spike distribution, because the small variance σ 2 implies that the bulk of the probability mass of 
N(0, σ 2) is concentrated in a small neighborhood of 0 and therefore the distribution resembles a spike at 0. The parameter 
ω > 1 ensures that the variance ω2 σ 2 of the distribution N(0, ω2 σ 2) exceeds the variance σ 2 of the spike distribution 
N(0, σ 2). The expectation of Y ∼ Gamma(1, 1/100) is 100, which implies that the expectation of ω = 1 + Y is 101. In other 
words, the standard deviation ωσ of the distribution N(0, ω2 σ 2) is expected to be approximately 100 times larger than 
the standard deviation σ of the spike distribution N(0, σ 2). As a consequence, the distribution N(0, ω2 σ 2) is much flatter 
than the spike distribution N(0, σ 2) and is called a slab distribution.

To introduce the posterior distribution, write q = p + (p
2

)
, θ = (θ1, . . . , θq), and λ = (λ1, . . . , λq). According to (3), the prior 

probability density function of θ , λ, σ 2, and ω is of the form

π(θ , λ, σ 2, ω) = π(θ | λ, σ 2, ω) π(λ) π(σ 2) π(ω),

where the conditional and marginal prior probability density functions π(θ | λ, σ 2, ω), π(λ), π(σ 2), and π(ω) follow from 
(3); note that π(λ) is a probability density function with respect to counting measure, whereas the others are probability 
density functions with respect to Lebesgue measure. We refer to all of them as probability density functions, with the tacit 
understanding that these probability density functions are taken with respect to a dominating measure with suitable support 
(Shao, 2003). The posterior probability density function of θ , λ, σ 2, and ω, given observed data x, is then proportional to

π(θ , λ, σ 2, ω | x) ∝ Pθ (X = x) π(θ | λ, σ 2, ω) π(λ) π(σ 2) π(ω), (4)

where the probability mass function Pθ (X = x) is of the form (1).

3.2. Spike and slab double Metropolis-Hastings algorithm

The posterior distribution (4) involves the normalizing function of Pθ (X = x), which is intractable except in special cases 
of limited interest (described in Section 2.2). We therefore propose a spike and slab double Metropolis-Hastings algorithm 
for approximating the posterior distribution.

A description of a spike and slab double Metropolis-Hastings algorithm can be found in Algorithm 1 on page 7. Consider 
the parameters at the t-th iteration, denoted by

(θ (t), λ(t), σ 2(t), ω(t)) = (θ
(t)
1 , . . . , θ

(t)
q , λ

(t)
1 , . . . , λ

(t)
q , σ 2(t), ω(t)).

At iteration t = 0, we initialize the parameters by setting λ(0) = (1, . . . , 1) and sampling θ (0) ∼ Uniform(−5, 5), 1 / σ 2(0) ∼
Uniform(4, 100), and ω(0) = 1 + Y , where Y ∼ Gamma(1, 1/100). At iteration t + 1, the parameters are updated by cycling 
through the parameters as follows.

Parameters θ(t)
i (i = 1, . . . , q). The parameters θ(t)

i can be updated by sampling from the conditional distributions

θ
(t+1)
i | x, θ

(t)
−i, λ

(t)
i , σ 2(t), ω(t), (5)

where θ
(t)
−i = (θ

(t+1)
1 , . . . , θ(t+1)

i−1 , θ(t)
i+1, . . . , θ

(t)
q ). In principle, we could update the parameters θ

(t)
i by using Metropolis-

Hastings algorithms. However, the acceptance probability of conventional Metropolis-Hastings algorithms involves ratios 
of Pθ (X = x), whose normalizing functions cannot be computed (leaving aside special cases of limited interest, described in 
Section 2.2). As a consequence, computing the acceptance probability of conventional Metropolis-Hastings algorithms is not 
5
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feasible when the normalizing function cannot be computed. We therefore take advantage of a double Metropolis-Hastings 
algorithm (Liang, 2010), which sidesteps computations of the normalizing functions by cleverly augmenting the poste-
rior distribution with auxiliary variables. The basic idea is to augment the posterior distribution by an auxiliary variable 
Y ∈ {0, 1}n×p with probability mass function (1). A double Metropolis-Hastings algorithm then samples from the augmented 
posterior distribution as follows. First, it generates a candidate parameter θ ′

i from a Normal distribution centered at the 
current value θ(t)

i of parameter θi , where the standard deviation of the Normal distribution is chosen so that the acceptance 
rate of the Metropolis-Hastings algorithm is between 2/10 and 3/10. Given the candidate parameter θ ′

i , it then gener-

ates an auxiliary variable Y ∈ {0, 1}n×p with probability mass function (1) and parameter vector (θ ′
i , θ

(t)
−i) using m = 10 n

Metropolis-Hastings steps. The double Metropolis-Hastings algorithm then accepts the candidate parameter θ ′
i with prob-

ability ϕ1 = min{1, ρ1}, where ρ1 is given by (7). The resulting acceptance probability of the double Metropolis-Hastings 
algorithm does not involve normalizing functions, because all normalizing functions cancel.

Indicators λ(t)
i (i = 1, . . . , q). The indicators λ(t)

i can be updated by sampling from the conditional distributions

λ
(t+1)
i | x, θ

(t+1)
i , λ

(t)
−i, σ 2(t), ω(t), (6)

where λ(t)
−i = (λ

(t+1)
1 , · · · , λ(t+1)

i−1 , λ(t)
i+1, · · · , λ(t)

q ). The conditional distribution in (6) is a Bernoulli distribution. The parameter 
of the Bernoulli distribution is stated in the description of Algorithm 1 on page 7.

Parameters σ 2(t) and ω(t). The parameters σ 2(t) and ω(t) can be updated by Metropolis-Hastings algorithms that sample 
from the conditional distributions

σ 2(t+1) | x, θ (t+1), λ(t+1), ω(t)

and

ω(t+1) | x, θ (t+1), λ(t+1), σ 2(t+1),

respectively. More details can be found in the description of Algorithm 1 on page 7.
Posterior estimates of edges and parameters. The edges in the conditional independence graph of the Ising model and 

its parameters can be estimated based on a Markov chain Monte Carlo sample as follows. Consider two distinct items j and 
k. We first estimate the posterior interaction probability of the event that the indicator λi corresponding to the interaction 
weight γ j,k equals 1 by the corresponding Markov chain Monte Carlo sample proportion. If the posterior interaction prob-
ability is at least 1/2, we connect items j and k by an edge in the conditional independence graph, otherwise we do not 
connect them. If items j and k are connected by an edge, the interaction weight γ j,k is estimated by its posterior mean, 
otherwise γ j,k is estimated as 0. The intercepts β j are estimated by an analogous procedure, by first determining whether 
β j is non-zero and then estimating β j by its posterior mean, provided it is non-zero.

3.3. Implementation details

The Bayesian approach is implemented in C++ and R using packages Rcpp and RcppArmadillo (Eddelbuettel et 
al., 2011), while eLasso is implemented in R package IsingFit (van Borkulo et al., 2016). We used R version 3.6.1,
RcppArmadillo version 0.9.600.4.0, and IsingFit version 0.3.1. Implementation details on eLasso can be found in 
Section 2.3 and van Borkulo et al. (2014). We use the same settings as van Borkulo et al. (2014), which are the default 
settings in R package IsingFit version 0.3.1 (van Borkulo et al., 2016). Implementation details on the Bayesian algorithm 
can be found in Section 3.2. We check the convergence of the Bayesian algorithm by computing the Monte Carlo standard 
errors (MCSE) calculated by batch means (Jones et al., 2006; Flegal et al., 2008). The Bayesian algorithm is run until the 
MCSE is at most 3/100. All algorithms were run on dual 32 core AMD Ryzen Threadripper 2990WX processors. The source 
code can be downloaded from https://github .com /jwpark88 /itemBayes.

4. Simulation studies

We compare the Bayesian approach with eLasso by conducting two simulation studies. In both simulation studies, we are 
interested in comparing how well the Bayesian approach can recover the conditional independence graph of the Ising model 
compared with eLasso. The first of the two simulation studies estimates the conditional independence graph under a correct 
model specification, whereas the second simulation study estimates the conditional independence graph under an incorrect 
model specification. To conduct simulation studies under correct as well as incorrect model specifications, we introduce a 
generalized Ising model with covariates. The probability mass function of a generalized Ising model with covariate vector 
c ∈ {0, 1}n is of the form
6
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Algorithm 1 Spike and slab double Metropolis-Hastings algorithm. As proposal distributions w(. | .), we use independent 
Normal distributions centered at the current values of the parameters, with standard deviations set to achieve an acceptance 
rate between 2/10 and 3/10.

At iteration t + 1:

Part I: Given θ (t), λ(t), σ 2(t), and ω(t) , update θ(t)
i and λ(t)

i as follows (i = 1, . . . , q).

Step 1. Propose θ ′
i ∼ w(· | θ(t)

i ).

Step 2. Generate an auxiliary variable Y ∈ {0, 1}n×p from probability mass function (1) with parameter vector (θ ′
i , θ

(t)
−i) by 

using m = 10 n Metropolis-Hastings steps.

Step 3. Set θ(t+1)
i = θ ′

i with probability ϕ1 = min{1, ρ1}, where

ρ1 =
P

θ ′
i , θ

(t)
−i

(X = x) P
θ

(t)
i , θ

(t)
−i

(Y = y) π(θ ′
i | λ(t)

i , σ 2(t), ω(t)) w(θ
(t)
i | θ ′

i )

P
θ

(t)
i , θ

(t)
−i

(X = x) P
θ ′

i , θ
(t)
−i

(Y = y) π(θ
(t)
i | λ(t)

i , σ 2(t), ω(t)) w(θ ′
i | θ(t)

i )
, (7)

otherwise set θ(t+1)
i = θ

(t)
i .

Step 4. Set λ(t+1)
i = 1 with probability a/(a + b) and otherwise set λ(t+1)

i = 0, where

a = π(θ
(t+1)
i | λ(t+1)

i = 1, λ
(t)
−i, σ 2(t), ω(t)) π(λ

(t)
−i, λ

(t+1)
i = 1)

b = π(θ
(t+1)
i | λ(t+1)

i = 0, λ
(t)
−i, σ 2(t), ω(t)) π(λ

(t)
−i, λ

(t+1)
i = 0).

Part II: Given θ (t+1), λ(t+1), σ 2(t), and ω(t) , update σ 2(t) and ω(t) .

Step 5. Propose σ 2′ ∼ w(· | σ 2(t)) and accept it with probability ϕ2 = min{1, ρ2}, where

ρ2 = π(θ (t+1) | λ(t+1), σ 2′, ω(t)) π(σ 2′) w(σ 2(t) | σ 2′)
π(θ (t+1) | λ(t+1), σ 2(t), ω(t)) π(σ 2(t)) w(σ 2′ | σ 2(t))

,

otherwise set σ 2(t+1) = σ 2(t) .

Step 6. Propose ω′ ∼ w(· | ω(t)) and accept it with probability ϕ3 = min{1, ρ3}, where

ρ3 = π(θ (t+1) | λ(t+1), σ 2(t+1), ω′) π(ω′) w(ω(t) | ω′)
π(θ (t+1) | λ(t+1), σ 2(t+1), ω(t)) π(ω(t)) w(ω′ | ω(t))

,

otherwise set ω(t+1) = ω(t) .

Pθ (X = x) =
n∏

i=1

1

κ(θ)
exp

⎛
⎝ p∑

j=1

α ci xi, j +
p∑

j=1

β j xi, j +
p∑

j<k

γ j,k xi, j xi,k

⎞
⎠

=
n∏

i=1

1

κ(θ)
exp

⎛
⎝ p∑

j=1

(α ci + β j) xi, j +
p∑

j<k

γ j,k xi, j xi,k

⎞
⎠ ,

(8)

where the covariate vector c is assumed to be non-constant, that is, the covariates of respondents are neither all 0 nor all 
1. Here, α ∈ R is the weight of the covariate term and θ = (α, β, γ ) ∈ Rp+(p

2)+1. If α = 0, the generalized Ising model 
(8) reduces to the Ising model (1), otherwise the generalized Ising model (8) can be viewed as a generalization of the 
Ising model (1) with a covariate term. The covariate term is a weighted sum of indicators ci ∈ {0, 1}, e.g., in applications to 
7
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Table 1
500 data sets were simulated from probability mass function (8) with α = 0. The conditional 
independence graph was estimated under the correct assumption that α = 0. The perfor-
mance of eLasso and the Bayesian approach is assessed in terms of the true-positive rate 
(TPR), the true-negative rate (TNR), and the Rand index, as defined in Equations (10), (11), 
and (12), respectively. These criteria are averaged over the 500 simulated data sets.

eLasso Bayes

True-positive rate (TPR) .227 .752
True-negative rate (TNR) .997 .804
Rand index .804 .791

educational data the indicators might be indicators of whether respondents i are female. To gain insight into the effect of 
the covariate term on the item responses, it is instructive to inspect the log odds of the conditional probability of Xi, j = 1, 
given all other item responses:

log
Pθ (Xi, j = 1 | Xi,k, k �= j)

1 − Pθ (Xi, j = 1 | Xi,k, k �= j)
= α ci + β j +

p∑
k=1:k �= j

γ j,k xi,k. (9)

Thus, among all respondents i with ci = 1, the log odds of the conditional probability of Xi, j = 1 is decreased by α when 
α < 0 and increased by α when α > 0, ceteris paribus.

We simulate 500 data sets. Each of the 500 data sets consists of n = 300 responses to p = 24 binary items. These 500 
data sets are simulated from probability mass function (8) with p + (p

2

) + 1 = 301 parameters α, β j , and γ j,k . The values of 
the parameters α, β j , and γ j,k are chosen as follows. First, we consider two possible values of α: α = 0 and α = 1/2. In the 
second scenario (α = 1/2), we generate the covariates ci of respondents i by sampling 150 out of the n = 300 respondents 
at random and assigning them ci = 0, while assigning all other respondents ci = 1. Second, the p = 24 intercepts β j are 
sampled independently from Uniform[−2, −1/2]. Last, but not least, the interaction weights γ j,k are generated as follows: 
We sample 69 out of the 

(p
2

) = 276 interaction weights γ j,k at random and assign 41 of them positive values (generated 
from Uniform[1/2, 2]) and 28 of them negative values (generated from Uniform[−1, −1/2]). All other interaction weights 
γ j,k are set to 0. Given the parameters α, β j , and γ j,k , we simulate 500 data sets from probability mass function (8), using 
α = 0 in Section 4.1 and α = 1/2 in Section 4.2. In each of the two scenarios (α = 0 and α = 1/2), we use eLasso and the 
Bayesian approach to estimate the conditional independence graph under the assumption that α = 0. In the first scenario 
(α = 0), the model is estimated under the correct model specification, whereas in the second scenario (α = 1/2), the model 
is estimated under an incorrect model specification. The simulation results based on these two scenarios are reviewed in 
Sections 4.1 and 4.2.

4.1. Simulation study with correct model specification

In the first simulation study, we generate 500 data sets from probability mass function (8) with α = 0 and estimate the 
conditional independence graph of the generalized Ising model by eLasso and the Bayesian approach under the assumption 
that α = 0 (as described above). In other words, we estimate the conditional independence graph under the correct model 
specification.

First, we assess how well the Bayesian approach can recover the conditional independence graph compared with eLasso, 
using the same criteria as van Borkulo et al. (2014): the true-positive rate (TPR) and the true-negative rate (TNR), and the 
Rand index (Rand, 1971). The TPR, TNR, and Rand index are defined by

TPR = T P

T P + F N
, (10)

TNR = T N

T N + F P
, (11)

and

Rand index = T P + T N

T P + T N + F P + F N
, (12)

respectively. Here, TP denotes the number of true-positive edges; FP denotes the number of false-positive edges; TN denotes 
the number of true-negative edges; and FN denotes the number of false-negative edges. Table 1 reports the mean of these 
criteria over the 500 simulated data sets. Both approaches have a high Rand index, which measures the overall accuracy 
of the two approaches. That said, there are noticable differences in the recovery of the conditional independence graph 
by the two approaches: While both approaches have a high true-negative rate, the true-positive rate of eLasso (.227) is 
substantially lower than the true-positive rate of the Bayesian approach (.752), suggesting that eLasso’s selection of the 
regularization parameter (based on the EBIC of Chen and Chen, 2008) in combination with the so-called AND rule (based 
8
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Fig. 1. A single example data was simulated from probability mass function (8) with α = 0. The conditional independence graph was estimated under the 
correct assumption that α = 0. An edge between two distinct items j and k indicates that items j and k interact, that is, γ j,k �= 0. Green-colored edges 
represent positive interactions (γ j,k > 0), whereas red-colored edges represent negative interactions (γ j,k < 0). The width of an edge between two distinct 
items j and k is proportional to the strength of the interaction in terms of |γ j,k|.

Table 2
500 data sets were simulated from probability mass function (8) with α = 1/2. The condi-
tional independence graph was estimated under the incorrect assumption that α = 0. The 
performance of eLasso and the Bayesian approach is assessed in terms of the true-positive 
rate (TPR), the true-negative rate (TNR), and the Rand index, as defined in Equations (10), 
(11), and (12), respectively. These criteria are averaged over the 500 simulated data sets.

eLasso Bayes

True-positive rate (TPR) .206 .738
True-negative rate (TNR) .997 .786
Rand index .799 .774

on Meinshausen and Bühlmann, 2006) may result in too sparse conditional independence graphs. It is worth repeating that 
we have used here the same settings as van Borkulo et al. (2014), which are the default settings in R package IsingFit
version 0.3.1 (van Borkulo et al., 2016).

Second, to gain more insight into how the Bayesian approach compares with eLasso in terms of graph recovery, we 
simulate a single example data set from probability mass function (8) with α = 0 and compare the true and estimated 
conditional independence graphs obtained by eLasso and the Bayesian approach in more detail. Fig. 1 shows the true and 
estimated conditional independence graphs by eLasso and the Bayesian approach and underscores the conservative nature 
of eLasso (with default options): eLasso recovers 30 of the 69 edges in the true conditional independence graph, whereas 
the Bayesian approach recovers 60 of the 69 edges.

4.2. Simulation study with incorrect model specification: omitted covariate

In the second simulation study, we generate 500 data sets from probability mass function (8) with α = 1/2 and estimate 
the conditional independence graph of the generalized Ising model by eLasso and the Bayesian approach under the incorrect 
assumption that α = 0 (as described above). In other words, we estimate the conditional independence graph under an 
incorrect model specification.

To assess how well the Bayesian approach can recover the conditional independence graph compared with eLasso when 
the model is misspecified, we report the true-positive rate (TPR), the true-negative rate (TNR), and the Rand index in 
Table 2, averaged over the 500 simulated data sets. According to Table 2, the Bayesian approach is more robust against 
model misspecification due to omitted covariates than eLasso: The true-positive rate of eLasso drops from .227 (correct 
model specification, see Table 1) to .206 (incorrect model specification, see Table 2), which is a reduction of more than 9%. 
By contrast, the true-positive rate of the Bayesian approach drops from .752 (correct model specification, see Table 1) to .738 
(incorrect model specification, see Table 2), which is a reduction of less than 2%. In other words, not only does the Bayesian 
approach appear to have a substantially higher true-positive rate than eLasso, but the true-positive rate of the Bayesian 
approach also appears to be less affected by model misspecification due to omitted covariates than the true-positive rate of 
eLasso.

Last, but not least, we simulate a single example data set from probability mass function (8) with α = 1/2 to gain more 
insight into how the Bayesian approach compares to eLasso in terms of graph recovery. Fig. 2 compares the true conditional 
independence graph to the conditional independence graphs estimated by eLasso and the Bayesian approach and highlights 
the advantage of the Bayesian approach over eLasso when the model is misspecified: eLasso recovers 16 of the 69 edges in 
the true conditional independence graph, whereas the Bayesian approach recovers 52 of the 69 edges. Fig. 3 compares the 
true interaction weights γ j,k and the estimated interaction weights γ̂ j,k , with the Bayesian approach outperforming eLasso. 
9
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Fig. 2. A single example data was simulated from probability mass function (8) with α = 1/2. The conditional independence graph was estimated under the 
incorrect assumption that α = 0. An edge between two distinct items j and k indicates that items j and k interact, that is, γ j,k �= 0. Green-colored edges 
represent positive interactions (γ j,k > 0), whereas red-colored edges represent negative interactions (γ j,k < 0). The width of an edge between two distinct 
items j and k is proportional to the strength of the interaction in terms of |γ j,k|.

Fig. 3. 500 data sets were simulated from probability mass function (8) with α = 1/2. The conditional independence graph was estimated under the 
incorrect assumption that α = 0. The estimated interaction weights γ̂ j,k are plotted against the true interaction weights γ j,k . The red-colored line is the 
identity line.

To quantify the advantage of the Bayesian approach over eLasso, we compute the root mean-squared error of the estimators 
of the true interaction weights γ j,k:

RMSE =
√√√√ p∑

j<k

(γ̂ j,k − γ j,k)
2.

Here, γ̂ j,k is the estimate of the data-generating interaction weight γ j,k , which is either the �1-penalized logistic regression 
estimate (eLasso) or the posterior mean provided γ j,k is estimated to be non-zero (Bayesian approach). It is worth noting 
that eLasso computes two estimates of γ j,k: one estimate based on the �1-penalized logistic regression of item response 
Xi, j on Xi,k and all other item responses, and one estimate based on the �1-penalized logistic regression of item response 
Xi,k on Xi, j and all other item responses (i = 1, . . . , n). These two estimates of γ j,k can differ. To report a single estimate 
of γ j,k , eLasso averages over these two estimates, and we follow eLasso here. The RMSE of eLasso turns out to be 23.73, 
whereas the RMSE of the Bayesian approach is 13.64. By comparison, if the model specification is correct, the RMSE of 
eLasso and the Bayesian approach are 15.58 and 18.57, respectively. In other words, when the model specification is correct, 
eLasso may have a small advantage over the Bayesian approach, but when the model specification is incorrect, the Bayesian 
approach appears to outperform eLasso in terms of RMSE.

5. Applications to educational data

We compare the Bayesian approach to eLasso by using three educational data sets. In each application, we compare 
the conditional independence graphs estimated by eLasso and the Bayesian approach, and assess the goodness-of-fit of the 
estimated models. We first provide some background on how to assess goodness-of-fit in Section 5.1 and then present the 
three applications in Sections 5.2—5.4.
10
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Fig. 4. Abortion data: Conditional independence graphs estimated by eLasso and the Bayesian approach based on a Markov chain Monte Carlo sample of 
size 10,000. An edge between two distinct items j and k indicates that items j and k interact, that is, γ j,k �= 0. Green-colored edges represent positive 
interactions (γ j,k > 0), whereas red-colored edges represent negative interactions (γ j,k < 0). The width of an edge between two distinct items j and k is 
proportional to the strength of the interaction in terms of |γ j,k|. The graph labeled PIP shows the posterior interaction probabilities of pairs of distinct 
items j and k, that is, the posterior probability of the event that the indicator λi corresponding to the interaction weight γ j,k equals 1.

5.1. Goodness-of-fit statistics

To assess the goodness-of-fit (GOF) of the estimated models, we simulate 1,000 data sets from the estimated models.
In the case of eLasso, we simulate model-based predictions of item responses based on the estimates of the intercepts 

β j and the interaction weights γ j,k reported by eLasso. It is worth repeating that eLasso computes two estimates of γ j,k : 
one estimate based on the �1-penalized logistic regression of item response Xi, j on Xi,k and all other item responses, 
and one estimate based on the �1-penalized logistic regression of item response Xi,k on Xi, j and all other item responses 
(i = 1, . . . , n). To report a single estimate of γ j,k , eLasso averages over these two estimates, and we follow eLasso here. In 
the case of the Bayesian approach, we generate posterior predictions.

We compare the simulated and observed data in terms of two statistics: (1) 
∑n

i=1 xi, j , which measures the easiness 
of item j (intercept); and (2) 

∑n
i=1 xi, j xi,k , which measures the strength of the interaction of two distinct items j and k

(interactions). These two statistics are sufficient statistics for the intercepts β j and interaction weights γ j,k . In addition, we 
assess the GOF of the estimated models in terms of higher-order statistics. To do so, we first compute, for each respondent 
i, an item-item graph where two distinct items j and k are connected by an edge if and only if respondent i gave correct 
responses to both items j and k. The item-item graphs of respondents should not be confused with the conditional indepen-
dence graph of the Ising model: Item-item graphs represent data structure (the responses of respondents to pairs of items), 
whereas the conditional independence graph of the Ising model represents model structure (the conditional independence 
structure of the Ising model). We then compute the number of cliques of size l in the item-item graph of each of the n
respondents, and average the number of cliques of size l over the n respondents. A clique of size l is a maximal complete 
subset of nodes, that is, a subset of l nodes such that all 

( l
2

)
pairs of nodes are connected by edges and it is impossible to 

add nodes without losing the property of completeness (Lauritzen, 1996). These goodness-of-fit statistics are used in the 
three applications in Sections 5.2—5.4.

5.2. Abortion data

We first use a classic data set consisting of data on attitudes towards abortion, collected by the British Social Attitudes 
Survey Panel between 1983 and 1986 (Social and Community Planning Research, 1987). Respondents were asked whether 
abortion should be allowed by law under the following circumstances:

1. The woman decides on her own whether she does not wish to have the child.
2. The couple agrees that they do not wish to have the child.
3. The woman is not married and does not wish to marry the man.
4. The couple cannot afford any more children.
5. There is a strong chance of a defect in the baby.
6. The woman’s health is seriously endangered by the pregnancy.
7. The woman became pregnant as a result of rape.

The data correspond to binary responses (either 1=“yes” or 0=“no”) by n = 642 individuals to the p = 7 items described 
above. The resulting Ising model has p + (p

2

) = 28 parameters.
When applied to the abortion data, eLasso takes about 3/10 seconds, whereas the Bayesian approach takes about 5.4 

minutes. Implementation details are provided in Sections 3.2 and 3.3. We first assess the performance of the Bayesian 
11
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Fig. 5. Abortion data. Left: posterior means of all θi ’s based on m = 10 n and m = 20 n Metropolis-Hastings (M-H) steps in Step 2 of Algorithm 1. Right: 
posterior density of γ1,2. The solid and dotted lines indicate posterior densities obtained based on m = 10 n and m = 20 n Metropolis-Hastings (M-H) steps, 
respectively.

Fig. 6. Abortion data: GOF assessment in terms of sufficient statistics for the intercepts β j and the interaction weights γ j,k based on 1,000 simulated data 
sets. The sufficient statistics are stated in Section 5.1. The red lines indicate the observed values of the sufficient statistics.

algorithm as a function of m by running it with m = 10 n and m = 20 n in Step 2 of Algorithm 1. Fig. 5 indicates that 
posterior means and posterior distributions do not change much as m is increased.

The conditional independence graphs estimated by eLasso and the Bayesian approach are represented in Fig. 4. To com-
pare them, note that Jeon et al. (2021) detected two groups of items in the abortion data set by using latent space item 
response models: The first group of items (items 1–4) measures whether women may abort for personal reasons, whereas 
the second group of items (items 5–7) measures whether women may abort for medical or other reasons. According to 
Fig. 4, both eLasso and the Bayesian approach agree with the observation of Jeon et al. (2021) that there are two groups 
of items with more connections within groups than between groups, but the Bayesian approach shows a more clear-cut 
12
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Fig. 7. Abortion data: GOF assessment in terms of cliques based on 1,000 simulated data sets. For each simulated data set and each respondent, the number 
of cliques of size l in the simulated item-item graph is computed, and then summed over all n respondents. The red lines indicate the number of cliques 
of size l in the observed item-item graphs, summed over the n respondents.

separation of the two groups of items compared with eLasso. To shed light onto the difference between eLasso and the 
Bayesian approach, we inspect the posterior interaction probabilities of pairs of distinct items j and k, that is, the posterior 
probability of the event that the indicator λi corresponding to the interaction weight γ j,k equals 1. Comparing the eLasso 
estimate of the conditional independence graph to the posterior interaction probabilities reveals that eLasso seems to con-
nect all pairs of items with a posterior interaction probability of at least .42. By contrast, the Bayesian approach connects 
pairs of items with a posterior interaction probability of at least 1/2. In other words, it seems that eLasso is liberal compared 
with the Bayesian approach, at least if the two-group structure found by Jeon et al. (2021) is accepted as a reference point. 
It is worth pointing out that the true conditional independence graph is unknown, but the two-group structure found by 
Jeon et al. (2021) makes sense, because the first group of items is concerned with abortion for personal reasons, whereas 
the second group of items is concerned with abortion for medical and other reasons.

Last, but not least, we assess the GOF of the estimated models. Fig. 6 suggests that the Bayesian approach outperforms 
eLasso in terms of sufficient statistics for the interaction weights γ j,k . Fig. 7 reveals that both the Bayesian approach and 
eLasso match the observed number of cliques rather well, although the Bayesian approach may have a small advantage over 
eLasso with respect to cliques of sizes 1 and 7. Here, as in Sections 5.3 and 5.4, there appears to be more variation in the 
model-based predictions of the Bayesian approach compared with eLasso. The reason is that the Bayesian approach takes 
into account the uncertainty about the parameters and averages over all parameters, whereas eLasso does not.

5.3. Deductive reasoning verbal (DRV) data

The Competence Profile Test of Deductive Reasoning Verbal (DRV: Spiel et al., 2001; Spiel and Gluck, 2008) was developed 
based on Piaget’s cognitive developmental theory (Piaget, 1971), with a view to evaluating the cognitive development stages 
of children and adolescents. The data set consists of n = 418 respondents and p = 24 items. Some information about the 
items of the DRV data set can be found in the supplement and more information can be found in Spiel et al. (2001) and Jin 
and Jeon (2019). The resulting Ising model has p + (p

2

) = 300 parameters.
Applied to the DRV data set, eLasso approach takes about .94 seconds, whereas the Bayesian approach takes about 3.5 

hours. To assess whether the number m of Metropolis-Hastings steps in Step 2 of the Bayesian algorithm was large enough, 
we increase m = 10 n to m = 20 n. Fig. 9 suggests that the results do not change too much when m is increased from 
m = 10 n to m = 20 n. The estimated conditional independence graphs obtained by eLasso and the Bayesian approach are 
shown in Fig. 8. eLasso and the Bayesian approach agree on the signs of 244 of the 276 interaction weights γ j,k . The eLasso 
approach reports 209 edges, whereas the Bayesian approach reports 203 edges. The Bayesian approach reports more edges 
with negative interaction weights (22) than eLasso (8). Although the true conditional independence graph is unknown, it is 
known that some the items in the DRV test have a negative logical relationship by construction: e.g., items 7 and 8 have 
a negative logical relationship by construction, and both eLasso and the Bayesian approach report an edge with a negative 
interaction weight γ7,8, but eLasso reports fewer other negative relationships than the Bayesian approach.

As in the previous example, we assess the GOF of the estimated model. Since we have 300 sufficient statistics for 24 
intercepts and 276 interactions, we show sufficient statistics for the intercept and first 30 interaction weights. Figs. 10 and 
11 suggest that the Bayesian approach compares favorably to eLasso in terms of GOF with respect to sufficient statistics for 
the intercepts β j and the interaction weights γ j,k , and cliques.
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Fig. 8. DRV data: estimated conditional independence graphs based on eLasso and the Bayesian approach with a Markov chain Monte Carlo sample of 
size 20,000. An edge between two distinct items j and k indicates that items j and k interact, that is, γ j,k �= 0. Green-colored edges represent positive 
interactions (γ j,k > 0), whereas red-colored edges represent negative interactions (γ j,k < 0). The width of an edge between two distinct items j and k is 
proportional to the strength of the interaction in terms of |γ j,k|. The graph labeled PIP shows the posterior interaction probabilities of pairs of distinct 
items j and k, that is, the posterior probability of the event that the indicator λi corresponding to the interaction weight γ j,k equals 1.

Fig. 9. DRV data: Left: posterior means of all θi ’s based on m = 10 n and m = 20 n Metropolis-Hastings (M-H) steps in Step 2 of Algorithm 1. Right: 
posterior density of γ1,2. The solid and dotted lines indicate posterior densities obtained based on m = 10 n and m = 20 n Metropolis-Hastings (M-H) steps, 
respectively.

5.4. Korean middle school data

For decades, the Korean public K-12 system has been criticized for creating a competitive environment that may have 
a negative impact on the intellectual, mental, and behavioral development of students. To understand the developmental 
status of students and evaluate the effect of the competitive environment, the Office of Education in Gyeongi Province 
(the Seoul Metropolitan area) conducted surveys to assess the mental and physical health, creativity, ethics, autonomy, and 
democratic conciseness of students (Gyeonggi Provincial Office of Education, 2012). The data was collected in 2014 and 
concern 9th grade students (3rd grade students in the Korean middle school). All responses were transformed into binary 
responses: 1 (“strongly disagree”), 2 (“disagree”), and 3 (“do not disagree or agree”) were transformed to 0; and 4 (“agree”) 
and 5 (“strongly agree”) were transformed to 1. We analyze the middle school data set consisting of n = 3,784 respondents 
and p = 70 items. A list of all items can be found in the supplement. The resulting Ising model has p + (p

2

) = 2,485 
parameters.

The Bayesian approach takes about 430 hours, whereas the eLasso approach takes about 24.33 seconds. The eLasso ap-
proach sets 2,101 of the 2,415 interaction weights γ j,k to 0. By contrast, the Bayesian approach sets 1,992 of the interaction 
weights to 0. The eLasso approach and the Bayesian approach agree on the sign of 1,980 of the 2,415 interaction weights 
γ j,k . The estimated conditional independence graphs are shown in Fig. 12.

We provide some descriptive explanations based on the top 5 strongest positive and negative interactions in terms of 
the posterior mean of the parameters γ j,k shown in Table 3. To interpret the results, we present unofficial translations of 
the Korean items within quotation marks. The strongest positive interaction occurs between items 29 (“I have a favorable 
face”) and 30 (“My appearance is attractive”), which may be unsurprising. The second strongest positive interaction occurs 
between items 4 (“Sometimes I experience loneliness for no reason”) and 5 (“At times I am sad and depressed for no 
reason”), suggesting that loneliness is related to sadness. The third strongest positive interaction occurs between items 42 
J. Park, I.H. Jin and M. Schweinberger Computational Statistics and Data Analysis 165 (2022) 107325
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Fig. 10. DRV data: GOF assessment in terms of sufficient statistics for the intercepts β j and the interaction weights γ j,k based on 1,000 simulated data sets. 
The sufficient statistics are stated in Section 5.1. The red lines indicate the observed values of the sufficient statistics.

Fig. 11. DRV data: GOF assessment in terms of cliques based on 1,000 simulated data sets. For each simulated data set and each respondent, the number of 
cliques of size l in the simulated item-item graph is computed, and then summed over all n respondents. The red lines indicate the number of cliques of 
size l in the observed item-item graphs, summed over the n respondents.
15



Fig. 12. Korean middle school data: Conditional independence graphs estimated by eLasso and the Bayesian approach, based on a Markov chain Monte Carlo 
sample of size 20,000. An edge between two distinct items j and k indicates that items j and k interact, that is, γ j,k �= 0. Green-colored edges represent 
positive interactions (γ j,k > 0), whereas red-colored edges represent negative interactions (γ j,k < 0). The width of an edge between two distinct items j
and k is proportional to the strength of the interaction in terms of |γ j,k|. The graph labeled PIP shows the posterior interaction probabilities of pairs of 
distinct items j and k, that is, the posterior probability of the event that the indicator λi corresponding to the interaction weight γ j,k equals 1.

(“I am nervous when I try to take the exam”) and 43 (“I am more nervous before the exam”). Both items measure test 
anxiety.

The strongest negative interaction occurs between items 6 (“I sometimes want to die for no reason”) and 70 (“I have a 
positive attitude towards myself”), which makes sense, because the two questions measure opposite attitudes. The second 
strongest negative interaction occurs between items 49 (“I feel comfortable when I am with my school friends”) and 62 
(“I feel uneasy when I play with my friends”), which likewise measure opposite attitudes. The third strongest negative 
interaction occurs between items 12 (“Foreigners living in Korea should be treated in the same way as Koreans”) and 64 
(“I can ignore friendship to get better grades in grade or entrance exams”), suggesting a negative association between 
compassion for foreigners and selfish pursuit of academic interests.
J. Park, I.H. Jin and M. Schweinberger Computational Statistics and Data Analysis 165 (2022) 107325
16



J. Park, I.H. Jin and M. Schweinberger Computational Statistics and Data Analysis 165 (2022) 107325

Table 3
Korean middle school data: the five strongest positive and negative interactions in terms of the posterior mean of the interaction weights γ j,k . The estimates 
mentioned above are posterior means. The intervals are 95% posterior credible intervals.

Positive Item name Estimate

γ29,30 “appearance satisfaction” (29), “appearance esteem” (30) 3.90
(2.16, 5.58)

γ4,5 “feel lonely” (4), “feel sad/depressed” (5) 3.68
(1.81, 5.69)

γ42,43 “nervous when take the exam” (42), “nervous before the exam” (43) 3.45
(1.76, 5.05)

γ23,26 “like to hang out with others” (23), “happy to be with someone else” (26) 3.20
(1.10, 5.28)

γ32,33 “ability does not change” (32), “even if I try, ability does not change” (33) 2.98
(.50, 5.27)

Negative Item name Estimate

γ6,70 “mental ill-being” (6), “self-esteem” (70) -.55
(-2.72, 1.13)

γ49,62 “relationship with friends” (49), “academic stress” (62) -.50
(-2.65, 1.15)

γ12,64 “sense of citizenship” (12), “academic stress” (64) -.50
(-2.57, 1.31)

γ12,61 “sense of citizenship” (12), “academic stress” (61) -.486
(-2.61, 1.25)

γ37,50 “self-driven learning” (37), “relationship with friends” (50) -.46
(-2.46, 1.50)

Fig. 13. Korean middle school data. GOF assessment in terms of sufficient statistics for the intercepts β j and the interaction weights γ j,k based on 1,000 
simulated data sets. The red lines indicate the observed values of the sufficient statistics.
17
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Fig. 14. Korean middle school data: GOF assessment in terms of cliques, averaged over the n item-item repondent networks of the n respondents. The red 
lines indicate the observed numbers of cliques, summed over the n item-item repondent networks of the n respondents.

Last, but not least, we assess the GOF of the estimated models. The figure shows the GOF of the estimated models in 
terms of the sufficient statistics for the first 30 intercepts and interaction weights—note that there are 2,480 parameters and 
hence 2,480 sufficient statistics, and displaying the GOF of the estimated models in terms of all 2,480 sufficient statistics is 
too space-consuming. Figs. 13 and 14 indicate that the Bayesian approach performs well in terms of GOF compared with 
eLasso. As before, there appears to be more variation in the model-based predictions of the Bayesian approach compared 
with eLasso, arising from the fact that the posterior predictions take into account the uncertainty about the parameters, 
whereas the model-based predictions of eLasso do not.

6. Discussion

We have developed a Bayesian approach for Ising models with doubly-intractable posterior distributions, with applica-
tions to educational data. The proposed approach helps quantify the uncertainty about the estimated conditional indepen-
dence graph along with the parameters of the model, and appears to be more robust against model misspecification due to 
omitted covariates than the �1-penalized nodewise logistic regression approach.

To address the statistical and computational challenges arising from doubly-intractable posterior distributions, we have 
combined two approaches: (1) a double Metropolis-Hastings algorithm (Liang, 2010) and (2) stochastic search variable 
selection methods (George and McCulloch, 1993; Ishwaran and Rao, 2005). We note that the proposed Bayesian approach is 
inexact, in the sense that the stationary distribution of the Markov chains constructed by the proposed Bayesian algorithm is 
not the desired target posterior. The reason is that the double Metropolis-Hastings algorithm generates an auxiliary variable 
from an approximate distribution in Step 2 of Algorithm 1 on page 7. However, the double Metropolis-Hastings algorithm is 
feasible in high-dimensional settings with thousands of parameters, whereas many alternatives are not. Several approaches 
have been developed to reduce variance, but are inexact. For example, Alquier et al. (2016) and Stoehr et al. (2017) provide 
Hamiltonian variants of double Metropolis-Hastings algorithm, and Friel et al. (2016) develops control variates for intractable 
likelihood functions. Developing an exact algorithm for such models is still an open question (leaving aside perfect sampling, 
which can be expensive in terms of computing time)

It is worth noting that there variations on the approach proposed here, depending on the choice of the variable selection 
method (see, e.g., O’Hara et al., 2009). For instance, instead of using the vector of indicators λ in the model, Bayesian lasso 
methods (Park and Casella, 2008; Yi and Xu, 2008) directly approximate the spike and slab shape of the prior on the model 
parameters θ . The horseshoe prior (Carvalho et al., 2010) is a promising alternative.

An open issue is the scalability of the Bayesian algorithm, that is, the ability of the Bayesian algorithm to scale up to 
larger data sets with more respondents n or more items p. While we were able to apply the Bayesian algorithm to Ising 
models with p + (p

2

) = 2,485 parameters based on item responses from n = 3,784 respondents (Section 5.4), the computing 
time required to obtain samples from an approximation to the posterior distribution (430 hours, that is, almost 18 days) 
suggests that more work is needed to scale up the Bayesian algorithm to larger n and larger p. One of the main computa-
tional bottlenecks is the generation of auxiliary variables. There are a number of ideas for addressing these computational 
challenges. For instance, Park and Haran (2020) propose a function emulation approach that replaces expensive importance 
sampling schemes with fast Gaussian process approximations. Bouranis et al. (2017) provides a practical Bayesian approach 
for large networks by correcting Markov chain Monte Carlo samples from pseudo-posterior distribution. These and other 
ideas—and combinations of them—constitute interesting avenues for future research.
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