Il Seiencen 530 (00 1) 801417

A BT A Conterts hsts available at Scinnceliireo

Information Sciences W

ElL SEVIFR journal homepage: weww. elsevier.comflacatefins

On the relationship between PageRank and automorphisms ofa
graph e

Muodjtaba Ghorbani **, Matthias Dehmer ", Abdullah Lotfi °, Najaf Amraei *, Abbe Mowshowitz “,
Frank Emmert-Streib ™'

* Deparimend of Mashemarns, Fooafry of Science, Shahid Bsfoee Teoohor Tralnfg Lsiversing, Tefiran PEFA5- 136 shimic Repadille of ran
P Gywiny (Hmtmre Universine of Aoplisd Sciences, Deperiment of Compurer Soence, Brig. Susrrering

" Deprirtimend of Rismedical Computer Sormoe angd Meckarmoercs, LT, ol e Ty, Apstrn

# ElparTit af Compunes Sehtoce, Thae City Calbege af Mew Vark [CLTY Bewe Forl, WY, 0554

* Predicrive Sockary end Dava Anabyncs Lab, Facuky af mformation Techaslogy and Comommioanon Sohweces, Tampere Lnnsersing, Fsdond
! nstitnie of Foedences and Medinl Teoinsfoge, Tempere 2300, Pmind

ARTICLE INFOD ABSTRACT

Articie fistone: PageRank is an algonthm used in bnternet search o score the impoiance of welb pages. The
Hecrved 22 September MU0 alen of this paper = demaonsicate some pes results concerning the relabicaship Berwesn
Rapiiwadd i rivined faem. 1 by 2021 the concepit af PageRani and automorphisms of a graph, In particular, we shew thar if ver-
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abte . i tices wand @are similar ina graph & (e, there 15 an aatomorphism mapping o be el then o

a1 have the same PageBank soore. More genecally, we prove that if the PageRanks of all
verLiceEs in G are Sisfincy, then ez guromorphizm groap of G consiss of the identiny abojee,
e Fimally, the FageRank enrrogy measure of several kinds of real-world newarks ard all trees
i of orders 10-13 and X2 is inveshigated.
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1. Introduction

The eigenvalues and cigenvectors of the adjacency matrix of a graph offer necessary conditions fos a graph fo possess cev-
tdin properties, In particular, they have been found vielod in studies ol graphs associates) with wel searches The world saide
wich can be modeled as a directed graph ina natural way by interpreting web pages as vertices and links betwieen web pages
as directed edges in the graph.This maodel provides a basis for ranking web pages by means of the PageRank (PR} algorithm,
The algarithim was developed by Brom amd Page in 1098 [2),

The FageRank (PR algorithm provides a mechanism for scoring the importance of web pages. PR has applications in such
diverse ficlds such as newroscience |31 ], boinformatscs [ 16,29], sports | 3.24], traffic modeling [5.28], chemistoy [ 271 and
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social network analysis |[12.22], as well as others [21.25], Alse, PR has been used extensively for improving the guality of

search engines such as google and so forth, see (5],

The research reported here is especially relevant for chemdical database applications. Searching for compounds with spe-
cial propertics can b aided by making wse of page rank, and the automorphism group is useful for computing page rank. For
ather possible applications of the results in this paper (see |4]].

In this paper, we establish compections between the PageRank concepd and automorphisms of a graph. The moetivation o
do sois to get decper insights inte graph-theeretical propertics of graphs (here symmietry) in conjunction with PR First. we
define the PageRank (PR] vector and show how it can be computed, In Section 1, we establish new results concerning the
concept of Pagelank and automorphisms of a graphe In Section 4, the FageRank entropy measure is defined In other words,
analyzing the reporied data shows that the PR-entropy measure is not highly correlated with the size of automorphism
group and hence it can be regarded as a news measure 1o study the algebraic properties of the autemorphism grougp.

Finally, in Section 5, we define the notion of a Co-FageRank graph and offer a conjecture concerming PageRank scores of
wertices in non-Co-PageRank graphs. The notation used in this paper mainly follows [23],

2. FapeRank wvector

The follewing discussion makes use of the model of the web as a directed graph. Let i be the number of all web pages, and
suppose Py, is the Markoy transitions matnx asseciated with the web graph defined as folkows:

. i inaﬁrl'arldpaztjarclinkl:dl
! 0 atherwise

wohere d; is the degree of vertex i, In other words, Py is the probahility of navigating from verfex i to vertex j, For a dangling
vertex (one with outdegree 0L a z2ero row appears in the martrix Pwhich vielares the condition of a transitbon matrix. To over-
come this violation and obtain a transition matrix, we define P+ " where v is the probability distribution vector,
g1 0 U], and §is an n-dimensiosal vector as Tollows:

i _{ I i iis a dangling mode
Tl otherwise '
A PR vector [23], is an r-dimensional vector @ satisfving the following:
=T
f 1 (n
aj=1
where G - :[F +IuT} S0 e j= 1,0, 1] and & e (0, 1) (typically = - 0851 In the present paper, we focus on
graphs without dangling wertices, Henoe, the vecnor 1 can be derived from the Tollowing equarion:
R T B T T (2]
ar equivalently,
{I :fPT}:r_ (1 - &}, (3]
in which ¢ = [1/n,1/n,... 10"
The PageRank (PR) score of wertex @ is the ith entry of the vector 2 [G), An example waill help o Bx adeas,

The Googhe matrix G of a directed network is a stochastic souare matrix with non-negative matrix elements and the sum
of elements in each column being egual to unity. By above notation, the elements of the Google matrix are defined as

ﬁ.,.:mP..+[1 —-1]%.

Proposition 2.1 [23]. & {1, i1y, ..., j2, } are all eigenvalues of transitions motrix P, then {1, ap,. .., op, ) are oll eigenvatues of C.
Lt G e a graph with adjacency eigenvalues i, 24 o 4. The graph energy of G is defined as

£6) =S Jai,
=1

see [17-20]. Following Gutman definition, If {1, 0, ..., ) are all elgenvalues of transitions matrix P, then the transition
energy can be defined as



M. Choerheme M Defomer, A Ldfi et ol

APy =y |l
=1

Corollary 2.1, Suppose {0 is o graph with tmmsitions marny & Then

.r{é;') — w[EP - 1]+ 1.,

Proof. By Proposition 2.1, the proof is straightforwand. O

Example 2.1. The following is the adjacency matrix of the graph &) in Fig 1.

n
n
1
o
oo

The wansition matrix of this graph is
[ i} o 152 172
L i} 1 0 i}
=0 12 0 12 0
13 0 13 0 1/3
| 1,2 0 o 12 o

= = o o 3
= O = o

e ™ ]

o =0 0O =

With & — 0.85 Eq [3) gives the following linear system

m - -

My — Itf': i1

~0.85m; + my — i,

- — (0E)my + - (YE)m.
— (M%), — (M), + s

(i TES
0ur3

003 .

LLIES
LLIE]

Splving Eq. (4) we abtain the PR wector of G,:
PR = 001918, 001204, 0.2126, 02834, 0.1918].

Fig 1. Craph & Im Example 3.1

Infarmarion Soemoes S99 (020 ) 400-417
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2.1, Pagefank score of a vertex

The concept of PegeRank score at a vertex is needed to determine the relationship between PageRank and automorphisms
of a graph.

Defindthon Z.1. Let A = [ay] be an n < n matriz Then the 1-Norm of matrix A s defined as [26]

Al = My lay |
1=l

Definition 2.2 The spectral radius @A) of an square reatrix A @5 the largest absolute value of eigenvalises of A, see |26],

Theorem 2.1 [1]. Let A be ar arbitrary square maimx, Then
PAY = (1AL

Theorem 2.2 [ 1], Geometric series. Let A be an square matric. [f gl A1 < 1, then ([ — A} " exists, and it can be expressed as a con-
VOTEETIE SCTES,

[f—.-'l]'=I—.-'|+H?+---+A"+---=Eﬂ". (5

Lemnama 2.1. Let & be @ graph of order nand m be e PR weator of G The PR of vertex oy can be determined fram the fotlowing
euaian:

|_[I ;W:‘i':l.ip:“ i)
S

witere 2 & (0, 1) @nd P is the mansiton mmris

Proof. Since 577 | Pl — 1. we see that ||P||, — 1, Consequently, we have ||2PT||, — 2. |IFT||, — & < 1. Thearerm 2.1 implies that
1
o [a!-"'] < 1, and Theorern 2.2 implies that the inverse matrix |{i ::F'T} exists and thus

{I ::F"'} o i[ﬂp"}l*. (7

e
From Eqs. (3} and {7 we conclude thart.

T =1 -a(i-ar) e --:]{i(:r”}*]p

[ =]

=1 —-:r|{I—a'PT +5¢’PT1+...]||:J.

1
Since #; i% the ith row of the matrix (1 _.1||::_.1.|=-’j r, it i% clear that @ is the ith row of column matrix

0= {4 mp’} 'e. This means that

e 2 LN »L R ®

1 &0

Hence

B I.I -} = in
= Eu‘“ﬁlﬂi. O ]

Aocording to the definition ol matrix F‘.F'; i% the transition probalsility rom verfex 0o vertex Fin & sheps,

Thearem 2.3. Let G be o graph and §j < VG If 527 PR = 507, P, [farallk © M), then 1, — .

M
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Proof. Suppose 57 PL =577 P and 2 (0, 1) Then

iw-{, - i&*ﬂ (forall k & M),
1=1 =1

amd consequently
=3 A = L]
Y H Yy
E= =l k=) =l
En. (9] implies that

B [1 _ lI:' = 1] B [1
AR P e

I ON B

In light of Theorem 3.3, conslder the tree T, showen in Flg. 2.

Infarmarion Soemoes S99 (020 ) 400-417

Example 2.2. The sums of the entries in each column of matrices PP, P, respectively, of graph Ty, are shown in the end
of each column Consider also the wertices 1.2 or 3,4 of T, and their corresponding columns in matrices P, =, 1 as

folbowes:
) . 0
0100 0
i
0 o1 o i )
12
I a0 00 1 0
A= P = 1]
i 1 00 1 0
i
011 01
i
00010
- : 1/2
by 0 0 0 12D
o b oo oo 12 0
00 Fy e 0 14
FP=]l 0 0 1/ 2/ 0 1/
e e 0o o a0
0 0 1/ 13 o 173
23 2/3 TM6 T/E OB/3 273

0

]

]
1/2

I T
@ 1 0
(TR I
0 012

/3 1/2 0
(TR I |

403 403 z

Flig X The tree T, bm Exampls 1.7

A5
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Fiz. 3. The graph & wath thres orbits and k = 2.

[0 0 3 s 0 16 |
) 0 6 2/3 il i /G
fa 1712 n {i 712 1]
P=| 112 1/3 0 D T2 O
Do 78 T8 0 2w
| ke 1 /i 1] ] /0 1]
T2 T/1Z 2218 22718 TR/36 50

The sums of columns 1.2 ar 3,4 of P (for all k § are the same, and thus the PR scores of correspanding vertices are the
same. This means that

B B
¥ Pa=3 Fin
Il i1

anmd thus m = m3. A similar argument shows that ©; = 74, Hence, the PR wector of this tree |5
- POV, O 050, 0. 18975, 0014975, 02821, 0.1044].

3. PageRank vector and graph automorphisms

A identity graph or asymmetnic graph is a graph whose autaomorphism group consists of the identity element alone, An
example of such a graph Is T3 shown in Fig. 4. Note that all entries of the PR vector m of this graph are distinct. The aim of this
sectiom is o prove that if the PageRank scores of all wertices are distinct. then the graph must be asymmetric,

Lemma 3.1, Every vertex & in a regufar graph G of order nt fuas PR score o = L

Proof. Let & be a regular graph of degree r, Then for every vertex oy & V0G0, we hawve
= 1

ZF;- —r.—=1,

i1 r

1 2 3 4
L @ @
5
6
7

Flg 4 The ires Ty im Exampls 3.1
a0
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ani
= 1
%‘Pf._ Lor=1
Hence, for each k& &,
YF =1 (0]
i=1

Using Eg. [10] and Lemima 2.1 implies that

This completes the proof. [
Let T he a tree on n vertices, and denote the degres of a vertes v by d, A non-pemdant vertex pol Tis adjacent tod, = 1
vertices In T.

Thearem 3.1, Le i be two verdices in o groph G IF there exists an aefomoerphism e Aut{G) such dhmt (i) = j then 7 = @5,

Proof. Suppose N, denotes the set of neighbors of vertex §, namely N; = {1 < V]ii ¢ E], see Fig. 5. For every vertex iy in My there
is a wertex j, £ Ny such that (i) = 4. Since iy and j, are similar, d, =, and 8, = ":. = f:. = Py Henoe,

EF&- = ZPI"
=1 (B}
Continuing the method illustrated in Fig. 6, for given vertex & © Ny, there exists a vertex f; < N, such that gii) = j;. since
 maps the cdge B to B, This implics that d, = d, and thus Py, = 1 = - = Py, Therefore, | lﬂ-i}lrr = {P‘]m and thus,

SR 3R (1)
In gemeral, we have,
YRV keN, (1)

From Eq. (12) and Theorem 2.3 it follows that 7 = m, and the assertion is proved. [0

Thearem 1.1 says that if an sutemorphism maps a veriex x to vertex ¥, they must have tee same PR score. Howeser, the
converse does not hobd. A counterexample ks the Frucht graph shown in Fig. 7. The Fruchs graph is regular of degree 3 with 12
vertices and 18 edges and is asymmetric, see [13], Since it is a regular graph, Lemma 31 shows the PR-vector is
1120, 112], while the automarphism group of this graph consists of the identity element alone,

Fig. 5. The neighbors of mveo adjacent vertices i1
alF
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In what followes, we prove that a graph whose vertices have distinet PageRank scores 15 asymmetnic. First. consider the
folbewing exampée,

Examiple 3.1. The following is the adjacency matnx of the tree Ty shown in Bz 4

0 100 ¢ 0 07
1010100
¢ 101000
A=10 0 1 0 0 0O 0Of.
o1 00010
L T T 1 I |
G000 o T 0
In the matrx 2 associated with A, the sums of 4th and 7th columms are equal, but in 2 and # these column sums are not
eual.
fl | {1 I i 1] i
(] il 153 1 I_."H [ 1
a0 1M o /2 0 il ii
il [T} 1 i il i i
=
il 1,2 1 n n i3 n
il [{] 13 I 142 1] B2
il (1] 13 I i | ]
| -, s I T 0 I
(13 0 18 o0 1m0 6 o |
ik /% T L i [ il
I/ i i I | 1 il il il
) L] 1,2 13 14% 11 iy il
P = J
1, 1 't Kl ET s i 174
[} {4 M M i 34 il
[1] 1] 0 il 112 il /2
ATA2 T 486 170120 11T 3
il 23 ih L il (T il
2/0 I mi [ 11,0 LI 1412
1] Tz 4] 1/d il I.."I_’ il
1/ 1 803 {1 [ i il
M= ;
il 11,24 1] (9 ] I 11,24 il
1/12 i /12 0 112 0 1R
il 1,4 ik {1 i LT | il
17/ %6 ]F.."! I ome/12 T/1z I'rT.."T';' aased 11724

Om the other hand, we have,

T 7
3P =3P,
In] 1=1



M. Choerheme M Defomer, A Ldfi et ol Infarmation Soemoes S99 (0201 ) 400-417

Fig. & The neighbors of verices §, L

wihile

i 7 ¥ 7
S P3P and Y FL 4 3P
I=1 =1 I=1 =1
The graph T; has no vertices for which cormesponding column sums are the zame, This means that their PR scores are not
equal and the entries of the PR vector are all distinct. Finally, the PR vector of this tree is
® = [DO8TE, 02343 01660, 00920, 01592 0.1680, 0.09258].

O the ather hand, the automorpliism group of T; consists of the identity element alone.
Corollary 3.1, Let & be o graph. If the PR scores of all the verfices are distinct. then © is esymmetnic,

Proof. For two arbitrany vertices u, ¢ & WG, iF 3y # m,, then by Theorem 201, there s no an automerphism that maps w to p
and the assertion follows, O

Corollary 3.2, Let The a tree in witich mo two pendant verfices hove the same PR scores. Then the airomorphism group of T oon-
sivds af the idemtity slemen! mlone.

Proof. For the non-identity automorphism ¢ of AT, there are at least teo pendant vertices | such that ¢dd) = § and thus
;= m;, But the pendant wertices have different PR scores from which the result follows, O

Definition 3,1, Let © be a graph with avtomorphism group Awt(G), and denote the arbit of a vertex o = V(&) by 0 or [w),
Mote that ™= |5 the set |2iw) - & ¢ Auc(Gh].

A mraph G s called wertex-transitive, i iE has exactly one orbit In other words, for any two vertboes u, ¢ ¢ WG, there is an
automorphism % = Aut() such that miu) = w

Flg 7. The Frucht graph
A
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The PR complexity, PR-(G), is the number of different values of PR vector,

Thearem 3.2, Let Wy, Wy, Vi, .oV e all the orbits of Aut[G), Then Jor bao vertices &, % € Vil <0 < k), 7Ty = T In particudar, i
G iy werlex=rronsitive, then PR-(G) = 1,

Proof. If two vertices are in the same orbit, there is an automorphism mapping one to the other, The assertion follows from
Thearam 3,1, O

Corollary 3.3, Let #0 Be the number of disdrct orbits of a gropl G Then

PRAG) = 30
Am illustration of this corollary is given by the tree T, shown in Fig, 2, This graph has four ocbdts J1, 2}, (3, 4], (5} and |G},
By Theorem 3.2, @) = m; amd m; = %4 This means that the PR vector o has at most four distinct entries.

Examiple 3.2. Suppase ¢ denates the number of orbits of graph G It should be noted here that there are graphs with & < . For
cxample consider the graph K in Fig. 3. This graphs has three orbits while k= 2, the vertices in an orbit are colored by the
same colors,

This example shows that determining graphs with & = [ is a hand task. We Solve this probdem for graphs with exactly twao
oriis.

Lemma 3.2, The comnected graph G is regufar i and only i @ = 4, where £ € &

Proof, If G is regular, then by Lemma 3.1, ® = Lj. Conversely, if @ = 4j for a scaler 2 € 1. then all entries of © are the same,
Since for teo vertices ¢ and w1 we have

7 W_g{;; :;}.

neceszarily d; = d; and thus the graph is regular. O

Theorem 3.3, Let G be @ graph with fwo distiecs orldis. Then either G & a regular graph or k= 2,

Proof. Since G has two orbits, [t fellows that k < 2 0f k= 2, then by Lermma 3.2, & is regular. This completes the proof. O
Corollary 34, Let G be an edge-transitive graph. Then either G s a reguliar graph or k = 2,

Example 3.3, Consider the complete graph K 0(m = r), 18 is a well-known fact that K, has two orbitse, Since, m = n, by
Thearem 3.3, we obtain k = 2, In addition, the matriz P associated to the adjaoency matrix of G s

o [ Do hn')
|J-'|j|-p.|-| l:l.lm-n

Hence,
Spec(Py = (-1,0,0,...,0,1}
amd thus for the Google matrix, we have

spef{cj - 11,0,0,...,0,-z}.

Example B4, Let 5, denotes (o the star graph with m vertices. The bistar graph 8 ¢ i5 a graph abtained from anion of 5, anel
%1 DY joining their central vertices. For the star graph, we obrain

: Oyt Lhn
Man) = (l.u 'I:l.u.-\.u).

This yields that PR — [, T, ... My, 05|, where m, = |{' a4 :e:| w b and M = M3 Aleo, for the bistar graph, it ylelds

n
n+l T+x mae el val”

410
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aF K
Pllins) = | ,ﬁ}.

where ¥ = O ..
LU athe G :]
o = ., and =
(mlll i ) ( ul"'l'l nI||JI.r.||
Lemmama 3.3, Ler O be o graph and § ) be tweo distincs vertices fawing the same neigfbors. Then 1, — 1.

Proof. Twao following cases hold:
a) Suppose wertices | and J are adjacent. Actording to the definition of PR score, we hawve,

m & 1-x
= —+ B+ —,
k;{”ﬂk il; n
ani
-
=2y ia "
ko |||a_ a-
Thus
o
nee§-3)
and therefare

e I
(r+a)=»l1+g)

Since | My [=| N |, owe have d, = d; which implies @ = m.

b} Now suppose i and j are not adjacent. Then =, = a5,y 3+ 152 and & = a0,y § + 152 Since N, = N, we conclude
m—m = 0and thus m =m0

Lemnaia Tl Let i j be two adjocent vertices af o graph G 05 m = &, ther N @ N,

Proof. Suppose to the cnmranr that Ny = M. Hence, we obiain
- L | ; - &,
E E;
a cantradiction. [
Lemima 3.5, Let O be o graph, [F1 15 @ pendiant vertex adiacert to vertex |, then m < &,
Proof. Clearly d; = 2 and thus — ] = — ] This implies
i i .
(-gn) = (-27) "
From the definltion of PR and Eq. 13, we have

5] ()5

Hence

an
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Fig. &. Twn Co-FR graphs.
- = m(m—;ljir,} +a-:23’:+ [JTi—JTi]
iy

= o(m - ) s ay
)
=l - m) + fam + oy
eh

= oM - ) 4 A,
and thus

1 .
(r:,-m}%}u. 0 (14)

4. Graph entropy measure
The gemneral Shannon entrapy | 5] is defimed by Kp) = - _'!l“_:' et logip) For fimite probability vector p and the symbol log is

the logarithm on the basis 2. Let A= 370 Aamd = AgA D= 1,2, ik Generally, the entropy of an n-tuple
(A, Az A of real numbers s glven by

I{ﬂ1.ﬁe.....ﬁ"]=|ﬂg(i-"ﬁ.) —iﬁlnﬁ-ﬁ.—. (15

There are many different ways to associate an p-tupbe (A Ay, -, A tooa graph G (see |16-11,14.21.2331]1 A graph
entropy measune dise to PageRank vector | 15] is defined as

1[G} = log (En} - :Eljﬁ log . (16)

This phrase reduces the complexity of the graph G into a single quantity: 100G hits of information, This means that the PR-
entropy I, forms a simple and graceful discriminant statistic Tar deterimnining the topalisgy of 4 graph. This metric is the sul-
Ject af the present section. The entropy function maximizes the freedom in choosing the py"s. The theory tell us that the

entropy function gives the best unbiased probability assipnment to the vanahles given the restriction.

Flg- 8. Tvén non-Co-PR graphs.

412
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Fig. V0, Faclarg's Karale graph o,

Example 4.1, Consider the Karate graph a0 [530] as depected in Fig. VL 06 bas 34 vertices and 78 edges and the PageRank
wector i a5 lollows:
& o= |.097, (0053, 0u0a 7, 0.036, (Ui, 0,029, 0,029, Do, 0,020, 00004, o2 0.009, 001 5, 0029, 0,004, 014,
O, 0004, 0014, 0079 0,004, 0015, 004, 0,037, 0021, 0021, 0,015, 0026, 0.019, 0026, 0025, 0,037,
0ug32.0.101]

The interpretation of o, — DOYT i that 9.7 percent of the tiree the random surfer visits page 1. Therefore, the pages in this
timy wreb can be anked by their importance, Hence, page 34 is the most impestant page and page 12 by 7 = 00009 i5 the
beast important page, soconding to the PageRank definition of importance, Alio its PR-entrogy is 1537 = 4.78,

Example 4.2, Consider the graph & as depicted in Fig 171, 1 presents a typical arrangement of symmetric subgraphs found in
many teal world networks, 1t has 33 vertices and 27 edges, The PageRank vector is as follows;

® =004, a1 D08 D031, 8, D064, G031 0T 0031, 00, 0030 000e, D E, 0035, 00T, 0075 0,017,
DOVF, 7, 00170045 004G, 037 0005 0037, 0.005, 004, 0046, 0,046, 0017, (7. 0.007, 00017,

The PR-entropy for graph # is {09} = 4 84,

In continuing, five classes of trees of orders 10-13, and 22, were chosen and the results adicated 5 weak correlation
between At G| and 1G], These values are given i Figs. 12-16. Inother words, analyzing the reported data shows that the
FR-entropy measere is not highly correlated with the size of sutomorphism group and hence it can be reganded as a new
mEure o study the algebraic properiies af the sutomanphism groap [see Fige 17 and 18},

L
- .-I-I--
" =
* | A o ®
O L} A
'\.-J '-
Py 3 ® e
o ®
»
)

Rz VL. The graph #.
1%
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It iis dlear that ifin the Shanron entropy definition, all p's are equal, then 1 achieves the maximum value which is login,
By Lemmma 32,0 G is regular, then [ = fegin). Graghs wath minimam value of P-entrogy are more difficult to characterize,
Whe conjecture thar for a given numbsr g, the star gragh %, has the minlmum PR-cotropy. To do this, three classes of graphs,
namely all graphs of orders 5-6 and all trees of order 12 were choosen and the results confirm our following conjectare,

G -] 15
The orvder of anfnmormiklsm zmrp

Fig. 15 Al irees of onder 13, The connelathon etween (AT and 15T s - 046
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Conjpecture 4.1, Aming all commected groples on n vertioes, e sdar graph 5, o the mintmion vafae of PR-encropy,

I | 141, it is proved that if Tis a tree with bwo orbifs and 1 = 3 vertices, then T is isomocphic wilh either the star gragh 5,
ar blstar graph - By Examiple 3.4, we conclude the follvwing resulr

Theorem 4.1, Lef T be o free with two orfsits and n = 3 vertices. Then one af che follivadng cases hold:

(T =% mnd 1T =055 logr + 091
(i} T == Brype amd [5(T) = 0.6logn + 093,

Many networks can be modeled as a star graph. For example. an inward by directed star graph may be wsed to represent
rebweel activity on Twitter and an ootwandly directed star graph can be used o represent & hub authoring. Qe may see That
the star graph is a specsal case of G + [o] inwhich G 5 3 vertex-transitive graph. Here, we explain how one can the PR-vector
af &+ [} by having the PR-vector of G

Leimana 4.1, Let G be arm r-reguiizr graph o vertices. Then the Pogefank vector of graph G+ Ju] BT = (=, ., Ba. Bayp |, wWhiere

Mas1 = {.hi' i r'?'l} = {EI:JrJ.'lj and oy = ... =My = 1—:*-‘-".

Proof. Suppose G is a regular graph with P} assoeciated fo its adjacency matrix, For an arbitrary vertex o, the matrix
P = P{G + Jir}) can be regarded as follows:

v (flogeiar) -+ 0.9

wumbier of vertices
Flg- 1E. The walue of 17T} for a histar graph wich @ most 857 weniies

1%
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where A is the adjacency matrix of G. By replacing # with P in Eqg. 7 the result follows. [

5. Co-PageRank graphs

There exist non-somorphic graphs with the same PR vectors; these graphs are said to be Co-PageRank {or Co-PR]. For
example, the two graphs G and H shown in Fig. 8 have the same PR-vector, namely,

[0.185065, 0185065 0.1 20870, 0185065, 0.1 85065, 0129870,

bur they are mot Isomorphic. In general, suppose & = @, -+, @ and # = ,,-- -, 8, the PR vectors of two graphs & and H,
respectively, where 2 = a2 -5 @y and B = 5 = -5 B IPx= 8, then G and H are Co-PR; if, on the other hand, =
a7 differ in at least ane entry, then G and H are non-Co-PR Two graphs G and 8 are completely mon-Co-PR il Tor each
E(1 = i r) e & . For example, the twe graphs L asd K shown in Fig. 9, are non-Co-PR, with

PEULY = (L 143736, 0.20095 30, 0.143736, 0200536, 0146727, 01467 27|,

PRIK) = 0161121, 0. 237500, 0.177757, 0100546, 0.161121, 0.161954).
We end this paper with the follvwing conjecture,

Conjecture 5.1, Suppose & and H are two non-Co-PR graphs., Then for ecach wvertex we VG and each vertex
o VM) m, # 1, More generally G and H are completely non-Co-PR

6. Conclusion

In this paper. we have investigated the relationship between the concept of PageRank and automorpisms of a graph. In
particular, we proved that if the pendant vertices of a tree T have distinet PRs, then T is asymmetric, Results regarding sym-
metry relations for trees as woell as graphs can be useful to design new graph measures, Moreover, we established conditsons
for which two distinct vertices of a graph have the same FageRank. The main result in this paper is that teo vertices in the
same orbit have the same PR score, &s future work, we hope to determine the stroctere of autemorphism groups of woell-
known graphs in terms of PR wectors.
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