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Abstract

The UK Biobank is a very large, prospective population-based cohort study across the

United Kingdom. It provides unprecedented opportunities for researchers to investigate the

relationship between genotypic information and phenotypes of interest. Multiple regression

methods, compared with genome-wide association studies (GWAS), have already been

showed to greatly improve the prediction performance for a variety of phenotypes. In the

high-dimensional settings, the lasso, since its first proposal in statistics, has been proved to

be an effective method for simultaneous variable selection and estimation. However, the

large-scale and ultrahigh dimension seen in the UK Biobank pose new challenges for apply-

ing the lasso method, as many existing algorithms and their implementations are not scal-

able to large applications. In this paper, we propose a computational framework called batch

screening iterative lasso (BASIL) that can take advantage of any existing lasso solver and

easily build a scalable solution for very large data, including those that are larger than the

memory size. We introduce snpnet, an R package that implements the proposed algorithm

on top of glmnet and optimizes for single nucleotide polymorphism (SNP) datasets. It cur-

rently supports ℓ1-penalized linear model, logistic regression, Cox model, and also extends

to the elastic net with ℓ1/ℓ2 penalty. We demonstrate results on the UK Biobank dataset,

where we achieve competitive predictive performance for all four phenotypes considered

(height, body mass index, asthma, high cholesterol) using only a small fraction of the vari-

ants compared with other established polygenic risk score methods.

Author summary

With the advent and evolution of large-scale and comprehensive biobanks, there come up

unprecedented opportunities for researchers to further uncover the complex landscape of

human genetics. One major direction that attracts long-standing interest is the investiga-

tion of the relationships between genotypes and phenotypes. This includes but doesn’t

limit to the identification of genotypes that are significantly associated with the
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phenotypes, and the prediction of phenotypic values based on the genotypic information.

Genome-wide association studies (GWAS) is a very powerful and widely used framework

for the former task, having produced a number of very impactful discoveries. However,

when it comes to the latter, its performance is fairly limited by the univariate nature. To

address this, multiple regression methods have been suggested to fill in the gap. That said,

challenges emerge as the dimension and the size of datasets both become large nowadays.

In this paper, we present a novel computational framework that enables us to solve effi-

ciently the entire lasso or elastic-net solution path on large-scale and ultrahigh-dimen-

sional data, and therefore make simultaneous variable selection and prediction. Our

approach can build on any existing lasso solver for small or moderate-sized problems,

scale it up to a big-data solution, and incorporate other extensions easily. We provide a

package snpnet that extends the glmnet package in R and optimizes for large phenotype-

genotype data. On the UK Biobank, we observe competitive prediction performance of

the lasso and the elastic-net for all four phenotypes considered from the UK Biobank.

That said, the scope of our approach goes beyond genetic studies. It can be applied to gen-

eral sparse regression problems and build scalable solution for a variety of distribution

families based on existing solvers.

Introduction

The past two decades have witnessed rapid growth in the amount of data available to us. Many

areas such as genomics, neuroscience, economics and Internet services are producing big data-

sets that have high dimension, large sample size, or both. A variety of statistical methods and

computing tools have been developed to accommodate this change. See, for example, [1–5]

and the references therein for more details.

In high-dimensional regression problems, we have a large number of predictors, and it is

likely that only a subset of them have a relationship with the response and will be useful for

prediction. Identifying such a subset is desirable for both scientific interests and the ability to

predict outcomes in the future. The lasso [6] is a widely used and effective method for simulta-

neous estimation and variable selection. Given a continuous response y 2 Rn
and a model

matrix X 2 Rn�p, it solves the following regularized regression problem.

b̂ðlÞ ¼ argmin
b2Rp

1

2n
ky � Xbk

2

2
þ lkbk1; ð1Þ

where kxkq ¼ ð
Xn

i¼1
jxij

q
Þ

1=q
is the vector ℓq norm of x 2 Rn and λ � 0 is the tuning parame-

ter. The ℓ1 penalty on β allows for selection as well as estimation. Normally there is an unpena-

lized intercept in the model, but for ease of presentation we leave it out, or we may assume that

both X and y have been centered with mean 0. One typically solves the entire lasso solution

path over a grid of λ values λ1 � λ2 � � � �λL and chooses the best λ by cross-validation or by

predictive performance on an independent validation set. In R [7], several packages, such as

glmnet [8] and ncvreg [9], provide efficient procedures to obtain the solution path for the

Gaussian model (1), and for other generalized linear models with the residual sum of squared

replaced by the negative log-likelihood of the corresponding model. Among them, glmnet,

equipped with highly optimized Fortran subroutines, is widely considered the fastest off-the-

shelf lasso solver. It can, for example, fit a sequence of 100 logistic regression models on a

sparse dataset with 54 million samples and 7 million predictors within only 2 hours [10].
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However, as the data become increasingly large, many existing methods and tools may

not be able to serve the need, especially if the size exceeds the memory size. Most packages,

including the ones mentioned above, assume that the data or at least its sparse representa-

tion can be fully loaded in memory and that the remaining memory is sufficient to hold

other intermediate results. This becomes a real bottleneck for big datasets. For example, in

our motivating application, the UK Biobank genotypes and phenotypes dataset [11] con-

tains about 500,000 individuals and more than 800,000 genotyped single nucleotide poly-

morphisms (SNPs) and small indel measurements per person. This provides unprecedented

opportunities to explore more comprehensive genotypic relationships with phenotypes of

interest. For polygenic traits such as height and body mass index (BMI), specific variants

discovered by genome-wide association studies (GWAS) used to explain only a small pro-

portion of the estimated heritability [12], an upper bound of the proportion of phenotypic

variance explained by the genetic components. While GWAS with larger sample size on the

UK Biobank can be used to detect more SNPs and rare variants, their prediction perfor-

mance is fairly limited by univariate models. It is very interesting to see if full-scale multiple

regression methods such as the lasso or elastic-net can improve the prediction performance

and simultaneously select relevant variants for the phenotypes. That being said, the compu-

tational challenges are two fold. First is the memory bound. Even though each bi-allelic SNP

value can be represented by only two bits and the PLINK software and its bed/pgen format

[13, 14] stores such SNP datasets in a binary compressed format, statistical packages such as

glmnet and ncvreg require that the data be loaded in memory in a normal double-precision

format. Given its sample size and dimension, the genotype matrix itself will take up around

one terabyte of space, which may well exceed the size of the memory available and is infeasi-

ble for the packages. Second is the efficiency bound. For a larger-than-RAM dataset, it has

to sit on the disk and we may only read part of it into the memory. In such scenario, the

overall efficiency of the algorithm is not only determined by the number of basic arithmetic

operations but also the disk I/O—data transfer between the memory and the disk—an oper-

ation several magnitudes slower than in-memory operations.

In this paper, we propose an efficient and scalable meta algorithm for the lasso called

Batch Screening Iterative Lasso (BASIL) that is applicable to larger-than-RAM datasets and

designed to tackle the memory and efficiency bound. It computes the entire lasso path and

can easily build on any existing package to make it a scalable solution. As the name suggests,

it is done in an iterative fashion on an adaptively screened subset of variables. At each itera-

tion, we exploit an efficient, parallelizable screening operation to significantly reduce the

problem to one of manageable size, solve the resulting smaller lasso problem, and then

reconstruct and validate a full solution through another efficient, parallelizable step. In

other words, the iterations have a screen-solve-check substructure. That being said, it is the

goal and also the guarantee of the BASIL algorithm that the final solution exactly solves the

full lasso problem (1) rather than any approximation, even if the intermediate steps work

repeatedly on subsets of variables.

The screen-solve-check substructure is inspired by [15] and especially the proposed strong

rules. The strong rules state: assume b̂ðlk�1Þ is the lasso solution in (1) at λk−1, then the jth pre-

dictor is discarded at λk if

jx>
j ðy � Xb̂ðlk�1ÞÞj < lk � ðlk�1 � lkÞ: ð2Þ

The key idea is that the inner product above is almost “non-expansive” in λ and that the lasso

solution is characterized equivalently by the Karush-Kuhn-Tucker (KKT) condition [16]. For

PLOS GENETICS A fast framework for high-dimensional sparse regression with application to the UK Biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009141 October 23, 2020 3 / 30

https://doi.org/10.1371/journal.pgen.1009141


the lasso, the KKT condition states that b̂ 2 Rp
is a solution to (1) if for all 1 � j � p,

1

n
� x>

j ðy � Xb̂Þ

¼ l � signðb̂jÞ; if b̂ j 6¼ 0;

� l; if b̂ j ¼ 0:

8
<

:
ð3Þ

The KKT condition suggests that the variables discarded based on the strong rules would

have coefficient 0 at the next λk. The checking step comes into play because this is not a

guarantee. The strong rules can fail, though failures occur rarely when p > n. In any case,

the KKT condition will be checked to see if the coefficients of the left-out variables are

indeed 0 at λk. If the check fails, we add in the violated variables and repeat the process. Oth-

erwise, we successfully reconstruct a full solution and move to the next λ. This is the iterative

algorithm proposed by these authors and has been implemented efficienly into the glmnet

package.

The BASIL algorithm proceeds in a similar way but is designed to optimize for datasets that

are too big to fit into the memory. Considering the fact that screening and KKT check need to

scan through the entire data and are thus costly in the disk Input/Output (I/O) operations, we

attempt to do batch screening and solve a series of models (at different λ values) in each itera-

tion, where a single sweep over the full data would suffice. Followed by a checking step, we can

obtain the lasso solution for multiple λ’s in one iteration. This can effectively reduce the total

number of iterations needed to compute the full solution path and thus reduce the expensive

disk read operations that often cause significant delay in the computation. The process is illus-

trated in Fig 1 and will be detailed in the next section.

Results

Overview of the BASIL algorithm

For convenience, we first introduce some notation. Let O = {1, 2, . . ., p} be the universe of vari-

able indices. For 1 � ℓ � L, let b̂ðl‘Þ be the lasso solution at λ = λℓ, and Aðl‘Þ ¼

f1 � j � p : b̂ jðl‘Þ 6¼ 0g be the active set. When X is a matrix, we use XS to represent the sub-

matrix including only columns indexed by S. Similarly when β is a vector, bS represents the

subvector including only elements indexed by S. Given any two vectors a; b 2 Rn, the dot

product or inner product can be written as a>b ¼ ha; bi ¼
Pn

i¼1
aibi. Throughout the paper,

we use predictors, features, variables and variants interchangeably. We use the strong set to

refer to the screened subset of variables on which the lasso fit is computed at each iteration,

and the active set to refer to the subset of variables with nonzero lasso coefficients.

Remember that our goal is to compute the exact lasso solution (1) for larger-than-RAM

datasets over a grid of regularization parameters λ1 > λ2 > � � � > λL � 0. We describe the

procedure for the Gaussian family in this section and discuss extension to general problems

in the next. A common choice is L = 100 and l1 ¼ max 1�j�p jx>
j r

ð0Þj=n, the largest λ at

which the estimated coefficients start to deviate from zero. Here r(0) = y if we do not include

an intercept term and rð0Þ ¼ y � �y if we do. In general, r(0) is the residual of regressing y on

the unpenalized variables, if any. The other λ’s can be determined, for example, by an

equally spaced array on the log scale. The solution path is found iteratively with a screen-

ing-solving-checking substructure similar to the one proposed in [15]. Designed for large-

scale and ultrahigh-dimensional data, the BASIL algorithm can be viewed as a batch version

of the strong rules. At each iteration we attempt to find valid lasso solution for multiple λ
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values on the path and thus reduce the burden of disk reads of the big dataset. Specifically,

as summarized in Algorithm 1, we start with an empty strong set Sð0Þ
¼ � and active set

Að0Þ
¼ �. Each of the following iterations consists of three steps: screening, fitting and

checking.

Fig 1. The lasso coefficient profile that shows the progression of the BASIL algorithm. The horizontal axis represents the index of lambda values, 1

� ℓ � L, which correspond to the sequence of the regularization parameters, λ1 > λ2 > � � � > λL. The previously finished part of the path is colored

grey, the newly completed and verified is in sky blue, and the part that is newly computed but failed the verification is colored orange. The largest

lambda index with the verified model is highlighted with vertical dotted gray line.

https://doi.org/10.1371/journal.pgen.1009141.g001
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Algorithm 1 BASIL for the Gaussian Model

1: Initialization: active set Að0Þ
¼ �, initial residual r(0) (with

respect to the intercept or other unpenalized variables) at λ1 =
λmax, a short list of initial parameters Λ(0) = {λ1, . . ., λL(0)}.

2: for k = 0 to K do
3: Screening: for each 1 � j � p, compute inner product with current

residual cðkÞ

j ¼ hxj; rðkÞi. Construct the strong set

SðkÞ
¼ AðkÞ

[ EðkÞ

M ;

where EðkÞ

M is the set of M variables in OnAðkÞ with largest |c(k)|.

4: Fitting: for all λ 2 Λ(k), solve the lasso only on the strong set

SðkÞ, and find the coefficients b̂ðkÞðlÞ and the residuals r(k)(λ).
5: Checking: search for the smallest λ such that the KKT conditions

are satisfied, i.e.,

�lðkÞ ¼ min fl 2 L
ðkÞ

: max
j2OnSðkÞ

ð1=nÞjx>

j r
ðkÞðlÞj < lg:

For empty set, we define �lðkÞ to be the immediate previous λ to Λ(k)

butincrement M by ΔM. Let the current active set Aðkþ1Þ and residu-
als r(k+1) defined by the solution at �lðkÞ. Define the next parameter
list L

ðkþ1Þ
¼ fl 2 L

ðkÞ
: l < �lðkÞg. Extend this list if it consists of too

few elements. For λ 2 Λ(k) \ Λ(k+1), we obtain exact lasso solutions
for the full problem:

b̂SðkÞ ðlÞ ¼ b̂ðkÞðlÞ; b̂OnSðkÞ ðlÞ ¼ 0:

6: end for

In the screening step, an updated strong set is found as the candidate for the subsequent fit-

ting. Suppose that so far (valid) lasso solutions have been found for λ1, . . ., λℓ but not for λℓ+1.

The new set will be based on the lasso solution at λℓ. In particular, we will select the top M vari-

ables with largest absolute inner products jhxj; y � Xb̂ðl‘Þj. They are the variables that are

most likely to be active in the lasso model for the next λ values. In addition, we include the

ever-active variables at λ1, . . ., λℓ because they have been “important” variables and might con-

tinue to be important at a later stage.

In the fitting step, the lasso is fit on the updated strong set for the next λ values λℓ+1, . . ., λℓ0.

Here ℓ0 is often smaller than L because we do not have to solve for all of the remaining λ values

on this strong set. The full lasso solutions at much smaller λ’s are very likely to have active vari-

ables outside of the current strong set. In other words even if we were to compute solutions for

those very small λ values on the current strong set, they would probably fail the KKT test.

These λ’s are left to later iterations when the strong set is expanded.

In the checking step, we check if the newly obtained solutions on the strong set can be valid

part of the full solutions by evaluating the KKT condition. Given a solution b̂S 2 RjSj
to the

sub-problem at λ, if we can verify for every left-out variable j that ð1=nÞjhxj; y � XSb̂Sij < l,

we can then safely set their coefficients to 0. The full lasso solution b̂ðlÞ 2 Rp
is then assembled

by letting b̂SðlÞ ¼ b̂S and b̂OnSðlÞ ¼ 0. We look for the λ value prior to the one that causes the
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first failure down the λ sequence and use its residual as the basis for the next screening. Never-

theless, there is still chance that none of the solutions on the current strong set passes the KKT

check for the λ subsequence considered in this iterations. That suggests the number of previ-

ously added variables in the current iteration was not sufficient. In this case, we are unable to

move forward along the λ sequence, but will fall back to the λ value where the strong set was

last updated and include ΔM more variables based on the sorted absolute inner product.

The three steps above can be applied repeatedly to roll out the complete lasso solution path

for the original problem. However, if our goal is choosing the best model along the path, we

can stop fitting once an optimal model is found evidenced by the performance on a validation

set. At a high level, we run the iterative procedure on the training data, monitor the error on

the validation set, and stop when the model starts to overfit, or in other words, when the vali-

dation error shows a clear upward trend.

Extension to general problems

It is straightforward to extend the algorithm from the Gaussian case to more general problems.

In fact, the only changes we need to make are the screening step and the strong set update step.

Wherever the strong rules can be applied, we have a corresponding version of the iterative

algorithm. In [15], the general problem is

b̂ðlÞ ¼ argmin
b2Rp

f ðbÞ þ l
Xr

j¼1

cjkbjkpj
; ð4Þ

where f is a convex differentiable function, and for all 1 � j � r, a separate penalty factor cj �

0, pj � 1, and βj can be a scalar or vector whose ‘pj-norm is represented by kbjkpj
. If all cj’s are

positive, we can derive that the starting value of the λ sequence (i.e. the minimum value of λ
such that all coefficients are 0) is lmax ¼ max

1�j�r
krjf ð0Þkqj

=cj. The general strong rule discards

predictor j if

krjf ðb̂ðlk�1ÞÞkqj
< cjð2lk � lk�1Þ; ð5Þ

where 1/pj + 1/qj = 1. Hence, our algorithm can adapt and screen by choosing variables with

large values of krjf ðb̂ðlk�1ÞÞkqj
that are not in the current active set. We expand in more detail

two important applications of the general rule: logistic regression and Cox’s proportional haz-

ards model in survival analysis.

Logistic regression

In the lasso penalized logistic regression [17] where the observed outcome y 2 {0, 1}n, the con-

vex differential function in (4) is

f ðbÞ ¼ �
1

n

Xn

i¼1

yi log pi þ ð1 � yiÞ log ð1 � piÞð Þ:

where pi ¼ 1=ð1 þ exp ð�x>
i bÞÞ for all 1 � i � n. The rule in (5) is reduced to

jx>

j ðy � p̂ðlk�1ÞÞj < lk � ðlk�1 � lkÞ;

where p̂ðlk�1Þ is the predicted probabilities at λ = λk−1. Similar to the Gaussian case, we can

still fit relaxed lasso [24] and allow adjustment covariates in the model to adjust for confound-

ing effect.
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Cox’s proportional hazards model

In the usual survival analysis framework, for each sample, in addition to the predictors xi 2 Rp

and the observed time yi, there is an associated right-censoring indicator δi 2 {0, 1} such that δi
= 0 if failure and δi = 1 if right-censored. Let t1 < t2 < . . . < tm be the increasing list of unique

failure times, and j(i) denote the index of the observation failing at time ti. The Cox’s propor-

tional hazards model [18] assumes the hazard for the ith individual as hiðtÞ ¼ h0ðtÞ exp ðx>
i bÞ

where h0(t) is a shared baseline hazard at time t. We can let f(β) be the negative log partial like-

lihood in (4) and screen based on its gradient at the most recent lasso solution as suggested in

(5). In particular,

f ðbÞ ¼ �
1

m

Xm

i¼1

x>

jðiÞb � log
X

j2Ri

exp ðx>

j bÞ

 ! !

;

where Ri is the set of indices j with yj � ti (those at risk at time ti). We can derive the associated

rule based on (5) and thus the survival BASIL algorithm. Further discussion and comprehen-

sive experiments are included in a follow-up paper [19].

Extension to the elastic net

Our discussion so far focuses solely on the lasso penalty, which aims to achieve a rather sparse

set of linear coefficients. In spite of good performance in many high-dimensional settings, it

has limitations. For example, when there is a group of highly correlated variables, the lasso will

often pick out one of them and ignore the others. This poses some hardness in interpretation.

Also, under high-correlation structure like that, it has been empirically observed that when the

predictors are highly correlated, the ridge can often outperform the lasso [6].

The elastic net, proposed in [20], extends the lasso and tries to find a sweet spot between

the lasso and the ridge penalty. It can capture the grouping effect of highly correlated variables

and sometimes perform better than both methods especially when the number of variables is

much larger than the number of samples. In particular, instead of imposing the ℓ1 penalty, the

elastic net solves the following regularized regression problem.

b̂ðlÞ ¼ argmin
b2Rp

f ðbÞ þ lðakbk
1

þ ð1 � aÞkbk
2

2
=2Þ; ð6Þ

where the mixing parameter α 2 [0, 1] determines the proportion of lasso and ridge in the pen-

alty term.

It is straightforward to adapt the BASIL procedure to the elastic net. It follows from the gra-

dient motivation of the strong rules and KKT condition of convex optimization. We take the

Gaussian family as an example. The others are similar. In the screening step, it is easy to derive

that we can still rank among the currently inactive variables on their absolute inner product

with the residual jx>
j ðy � Xb̂ðlk�1ÞÞj to determine the next candidate set. In the checking step,

to verify that all the left-out variables indeed have zero coefficients, we need to make sure that

ð1=nÞjx>
j ðy � Xb̂ðlk�1ÞÞj � la holds for all such variables. It turns out that in our UK Biobank

applications, the elastic-net results (after selection of α and λ on the validation set) do not differ

significantly from the lasso results, which will be immediately seen in the next section.

UK Biobank analysis

We describe a real-data application on the UK Biobank that in fact motivates our development

of the BASIL algorithm.
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The UK Biobank [11] is a very large, prospective population-based cohort study with indi-

viduals collected from multiple sites across the United Kingdom. It contains extensive genotypic

and phenotypic detail such as genomewide genotyping, questionnaires and physical measures

for a wide range of health-related outcomes for over 500,000 participants, who were aged 40-69

years when recruited in 2006-2010. In this study, we are interested in the relationship between

an individual’s genotype and his/her phenotypic outcome. While GWAS focus on identifying

SNPs that may be marginally associated with the outcome using univariate tests, we would like

to find relevant SNPs in a multivariate prediction model using the lasso. A recent study [21] fits

the lasso on a subset of the variables after one-shot univariate p-value screening and suggests

improvement in explaining the variation in the phenotypes. However, the left-out variants with

relatively weak marginal association may still provide additional predictive power in a multiple

regression environment. The BASIL algorithm enables us to fit the lasso model at full scale and

gives further improvement in the explained variance over the alternative models considered.

We focused on 337,199 White British unrelated individuals out of the full set of over

500,000 from the UK Biobank dataset [11] that satisfy the same set of population stratification

criteria as in [22]. The dataset is partitioned randomly into training (60%), validation (20%)

and test (20%) subsets (Methods). Each individual has up to 805,426 measured variants, and

each variant is encoded by one of the four levels where 0 corresponds to homozygous major

alleles, 1 to heterozygous alleles, 2 to homozygous minor alleles and NA to a missing genotype.

In addition, we have available covariates such as age, sex, and fortypre-computed principal

components of the SNP matrix.

To evaluate the predictive performance for quantitative response, we use a common mea-

sure R-squared (R2). Given a linear estimator b̂ and data (y, X), it is defined as

R2 ¼ 1 �
ky � Xb̂k

2

2

ky � �yk
2

2

:

We evaluate this criteria for all the training, validation and test sets. For a dichotomous

response, misclassification error could be used but it would depend on the calibration. Instead

the receiver operating characteristic (ROC) curve provides more information and illustrates the

tradeoff between true positive and false positive rates under different thresholds. The AUC com-

putes the area under the ROC curve—a larger value indicates a generally better classifier. There-

fore, we will evaluate AUCs on the training, validation and test sets for dichotomous responses.

We compare the performance of the lasso with related methods to have a sense of the con-

tribution of different components. Starting from the baseline, we fit a linear model that

includes only age and sex (Model 1 in the tables below), and then one that includes addition-

ally the top 10 principal components (Model 2). These are the adjustment covariates used in

our main lasso fitting and we use these two models to highlight the contribution of the SNP

information over and above that of age, sex and the top 10 PCs. In addition, the strongest uni-

variate model is also evaluated (Model 3). This includes the 12 adjustment covariates together

with the single SNP that is most correlated with the outcome after adjustment. Toward multi-

variate models, we first compare with a univariate method with some multivariate flavor

(Models 4 and 5). We select a subset of the K most marginally significant variants (after adjust-

ing for the covariates), construct a new variable by linearly combining these variants using

their univariate coefficients, and fit an ordinary least squares (OLS) on the new variable

together with the adjustment variables. It is similar to a one-step partial least squares [23] with

p-value based truncation. We take K = 10, 000 and 100, 000 in the experiments. We further

compare with a hierarchical sequence of multivariate models where each is fit on a subset of

the most significant SNPs. In particular, the ℓ-th model selects ℓ × 1000 SNPs with the smallest
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univariate p-values, and a multivariate linear or logistic regression is fit on those variants

jointly. The sequence of models are evaluated on the validation set, and the one with the small-

est validation error is chosen. We call this method Sequential LR or SeqLR (Model 6) for con-

venience in the rest of the paper. As a byproduct of the lasso, the relaxed lasso [24] fits a

debiased model by refitting an OLS on the variables selected by the lasso. This can potentially

recover some of the bias introduced by lasso shrinkage. For the elastic-net, we fit separate solu-

tion paths with varying λ’s at α = 0.1, 0.5, 0.9, and evaluate their performance (R2 or AUC) on

the validation set. The best pair of hyperparameters (α, λ) is selected and the corresponding

test performance is reported.

There are thousands of measured phenotypes in the dataset. For demonstration purpose,

we analyze four phenotypes that are known to be highly or moderately heritable and polygenic.

For these complex traits, univariate studies may not find SNPs with smaller effects, but the

lasso model may include them and predict the phenotype better. We look at two quantitative

traits: standing height and body mass index (BMI), which are defined as a non-NA median of

up to 3 measurements [25], and two qualitative traits: asthma and high cholesterol (HC) [22].

We first summarize the test performance of the methods above in Fig 2. The lasso and elas-

tic net show significant improvement in test R2 and AUC over the others. Details of the model

for height are given in the next section and for the other phenotypes (BMI, asthma and high

cholesterol) in Supporting Information. A comparison of the univariate p-values and the lasso

coefficients for all these traits is shown in the form of Manhattan plots and coefficient plots in

the Supporting Information.

There are many other well-established methods for constructing the polygenic risk scores

from large-scale cohorts. Among them, we compare with ridge regression, pruning and

thresholding (P + T), clumping, and summary statistics-based Bayesian regression methods

such as PRS-CS [26] and SBayesR [27]. Ridge regression, also known as BLUP in the quantita-

tive genetics field, fits a multiple linear regression model with ℓ2-penalty. It is a special case of

the elastic-net with α = 0 in (6). While it is simple and has been widely used in a variety of pre-

diction tasks, the fact that the resulting model always includes all the variables can pose great

computational challenge (for example, memory) in large-scale problems. In our experiments,

the size of the data prevents us from doing exact, full-scale ridge regression. Instead, we

approximate its performance by fitting the elastic-net with very small α = 10−3, which can be

easily handled by our snpnet package. For P + T, we first identified LD independent set of var-

iants using --indep-pairwise 50 5.5 subcommand in PLINK2.0. We subsequently

applied univariate genome-wide association analysis (--glm firth-fallback), focused

on the LD independent variants, imposed the different p-value thresholds (1 × 10−3, 1 × 10−4,

and 1 × 10−5), and extracted the univariate BETAs for the remaining variants to construct PRS

[13]. For clumping, we applied --clump subcommand to the GWAS summary statistics

with a varying (1 × 10−3, 1 × 10−4, and 1 × 10−5) p-value threshold (--clump-p1), and

extracted the univariate BETAs for the identified lead SNPs [13]. For each of those two meth-

ods, we computed the PRS for each individual and fit an additional model consisting of covari-

ates and the genotype PRS to report the predictive performance of the model consisting of

both the genetic features and covariates. For PRS-CS, we first characterized the GWAS sum-

mary statistics using the combined set of training and validation set (n = 269, 927) with age,

sex, and the top 10 PCs as covariates using PLINK v2.00a3LM (9 Apr 2020) [13, 28]. Using the

LD reference dataset precomputed for the European Ancestry using the 1000 genome samples

(https://github.com/getian107/PRScs), we applied PRS-CS with the default option. We took

the posterior effect size estimates and computed the polygenic risk scores using PLINK2’s

--score subcommand [13]. For SBayesR, we computed the sparse LD matrix using the

combined set of training and validation set individuals (n = 269, 927) using the -- make-
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sparse-ldm subcommand implemented in GCTB version 2.0.1 [29]. Using the GWAS

summary statistics computed on the set of individuals and following the GCTB’s recommen-

dations, we applied SBayesR with the following options: gctb --sbayes R --ldm
[the LD matrix] --pi 0.95,0.02,0.02,0.01 --gamma 0.0,0.01,0.1,1
--chain-length 10000 --burn-in 4000 --gwas-summary [the GWAS
summary statistics]. We report the model performance on the test set.

Fig 2. Comparison of the predictive performance of the different polygenic prediction methods evaluated on the test set. R2 are evaluated for

continuous phenotypes height and BMI, and AUC evaluated for binary phenotypes asthma and high cholesterol. The error bar uses 2 standard errors to

show the statistical significance.

https://doi.org/10.1371/journal.pgen.1009141.g002
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We train PRS-CS and SBayesR on the combined training and validation dataset with rec-

ommended settings. To make it a fair comparison, for the other methods with tuning parame-

ter(s), we follow a refitting mechanism:

1. fit models on the training set under different parameters;

2. choose the optimal parameter based on the metric (R2/AUC) on the validation set;

3. refit the model with the chosen parameter on a combined training and validation set.

This is often recommended for methods with tuning parameters to make the most of the

validation set, and for the lasso/elastic-net, we demonstrate those steps with a code example in

the vignette of our snpnet package. The predictive performance is compared in Fig 3. SBayesR

seems fairly competitive on binary phenotypes, achieving higher test AUC on asthma and high

cholesterol. For continuous phenotypes, the lasso and the elastic-net seem to have some advan-

tage, with the lasso doing the best for height and the elastic-net doing the best for BMI. Aside

from the predictive performance, SBayesR would always include all the variables in the model,

while the lasso/elastic-net class often ends up using only a small fraction of the variables.

While prediction is key to the relevance of PRS methods, the sparsity of the solution achieved

by the lasso/elastic-net class is also very important for scientific understanding of the genetics

behind.

Height is a polygenic and heritable trait that has been studied for a long time. It has been

used as a model for other quantitative traits, since it is easy to measure reliably. From twin

and sibling studies, the narrow sense heritability is estimated to be 70-80% [30–32]. Recent

estimates controlling for shared environmental factors present in twin studies calculate her-

itability at 0.69 [33, 34]. A linear based model with common SNPs explains 45% of the vari-

ance [35] and a model including imputed variants explains 56% of the variance, almost

matching the estimated heritability [36]. So far, GWAS studies have discovered 697 associ-

ated variants that explain one fifth of the heritability [37, 38]. Recently, a large sample study

was able to identify more variants with low frequencies that are associated with height [39].

Using the lasso with the larger UK Biobank dataset allows both a better estimate of the pro-

portion of variance that can be explained by genomic predictors and simultaneous selection

of SNPs that may be associated. The results are summarized in Table 1, where for each

model class (row), the reported numbers are based on the fitted model on the training set

that achieves the best validation performance (if any hyper-parameter). The associated R2

curves for the lasso and the relaxed lasso are shown in Fig 4. The residuals of the optimal

lasso prediction are plotted in Fig 5.

A large number (47,673) of SNPs need to be selected in order to achieve the optimal R2
test ¼

0:6999 for the lasso and similarly for the elastic-net, though it is only a small fraction consider-

ing the entire variant set. Comparatively, the relaxed lasso sacrifices some predictive perfor-

mance by including a much smaller subset of variables (13,395). Past the optimal point, the

additional variance introduced by refitting such large models may be larger than the reduction

in bias. The large models confirm the extreme polygenicity of standing height.

In comparison to the other models, the lasso performs significantly better in terms of R2
test

than all univariate methods, and outperforms multivariate methods based on univariate p-

value ordering. That demonstrates the value of simultaneous variable selection and estimation

from a multivariate perspective, and enables us to predict height to within 10 cm about 95% of

the time based only on SNP information (together with age and sex). We also notice that the

sequential linear regression approach does a good job, whose performance gets close to that of

the relaxed lasso. It is straightforward and easy to implement using existing softwares such as

PLINK [13].

PLOS GENETICS A fast framework for high-dimensional sparse regression with application to the UK Biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009141 October 23, 2020 12 / 30

https://doi.org/10.1371/journal.pgen.1009141


Recently [21] apply a lasso based method to predict height and other phenotypes on the UK

Biobank. Instead of fitting on all QC-satisfied SNPs (as stated in the experiment details para-

graph of Materials and methods), they pre-screen 50K or 100K most significant SNPs in terms

of the univariate p-value and apply lasso on that set only. In addition, although both datasets

come from the same UK Biobank, the subset of individuals they used is larger than ours.

While we restrict the analysis to the unrelated individuals who have self-reported white British

Fig 3. Comparison of the test set predictive performance of the different polygenic risk score (PRS) methods with refitting on the training and the

validation set. R2 are evaluated for continuous phenotypes height and BMI, and AUC evaluated for binary phenotypes asthma and high cholesterol. The

error bar uses 2 standard errors to show the statistical significance.

https://doi.org/10.1371/journal.pgen.1009141.g003
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ancestry, they look at Europeans including British, Irish and Any Other White. For a fair com-

parison, we follow their procedure (pre-screening 100K SNPs) but run on our subset of the

dataset. The results are shown in Table 2. We see that the improvement of the full lasso over

the prescreened lasso is almost 0.5% in test R2, and 1% relative to the proportion of residual

variance explained after covariate adjustment.

Table 1. R2 values for height (without refitting). For sequential LR, lasso and relaxed lasso, the chosen model is based on maximum R2 on the validation set. Model (3) to

(9) each includes Model (2) plus their own specification as stated in the Form column. The elastic-net picks α = 0.9 based on the validation performance.

Model Form R2
train R2

val R2
test Size

(1) Age + Sex 0.5300 0.5260 0.5288 2

(2) Age + Sex + 10 PCs 0.5344 0.5304 0.5336 12

(3) Strong Single SNP 0.5364 0.5323 0.5355 13

(4) 10K Combined 0.5482 0.5408 0.5444 10,012

(5) 100K Combined 0.5833 0.5515 0.5551 100,012

(6) Sequential LR 0.7416 0.6596 0.6601 17,012

(7) Lasso 0.8304 0.6992 0.6999 47,673

(8) Relaxed Lasso 0.7789 0.6718 0.6727 13,395

(9) Elastic Net 0.8282 0.6991 0.6998 48,268

https://doi.org/10.1371/journal.pgen.1009141.t001

Fig 4. R2 plot for height. The primary horizontal axis on the bottom represents the index of lambda values, 1 � ℓ � L,

which correspond to the sequence of the regularization parameters, λ1 > λ2 > � � � > λL. The top axis shows the number

of active variables in the model. ReLasso: relaxed lasso.

https://doi.org/10.1371/journal.pgen.1009141.g004
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In addition, we compare the full lasso coefficients and the univariate p-values from GWAS

in Fig 6. The vertical grey dotted line indicates the top 100K cutoff in terms of p-value. We see

although a general decreasing trend appears in the magnitude of the lasso coefficients with

respect to increasing p-values (decreasing − log10(p)), there are a number of spikes even in the

large p-value region which is considered marginally insignificant. This shows that variants

beyond the strongest univariate ones contribute to prediction.

We conduct the lasso and elastic-net with the refitting mechanism and compare them with

the other well-established PRS methods. From Table 3, we see that the lasso and the elastic-net

do the best job and also uses only a small fraction of the variables.

Discussion

In this paper, we propose a novel batch screening iterative lasso (BASIL) algorithm to fit the

full lasso solution path for very large and high-dimensional datasets. It can be used, among the

Fig 5. Left: actual height versus predicted height on 5000 random samples from the test set. A regression line with its 95% confidence band is also added on

top of the dots. The correlation between actual height and predicted height is 0.9416. Right: histogram of the lasso residuals for height. Standard deviation

of the residual is 5.05 (cm).

https://doi.org/10.1371/journal.pgen.1009141.g005

Table 2. Comparison of prediction results on height with the model trained following the same procedure as ours except for an additional prescreening step as done

in [21]. In addition to R2, proportion of residual variance explained (denoted by h2
test) and correlation between the fitted values and actual values are computed. We also

compute an adjusted correlation between the residual after regressing age and sex out from the prediction and the residual after regressing age and sex out from the true

response, both on the test set.

Method R2
val R2

test h2
test Cortest Cortest−{age, sex}

Lasso 69.92% 69.99% 35.66% 0.8366 0.4079

Prescreened lasso 69.40% 69.56% 34.73% 0.8340 0.4025

https://doi.org/10.1371/journal.pgen.1009141.t002
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others, for Gaussian linear model, logistic regression and Cox regression, and can be easily

extended to fit the elastic-net with mixed ℓ1/ℓ2 penalty. It enjoys the advantages of high effi-

ciency, flexibility and easy implementation. For SNP data as in our applications, we develop an

R package snpnet that incorporates SNP-specific optimizations and are able to process datasets

of wide interest from the UK Biobank.

In our algorithm, the choice of M is important for the practical performance. It trades off

between the number of iterations and the computation per iteration. With a small M or small

update of the strong set, it is very likely that we are unable to proceed fast along the λ sequence

Fig 6. Comparison of the lasso coefficients and univariate p-values for height. The index on the horizontal axis

represents the SNPs sorted by their univariate p-values. The red curve associated with the left vertical axis shows the

−log10 of the univariate p-values. The blue bars associated with the right vertical axis show the corresponding lasso

coefficients for each (sorted) SNP. The horizontal dotted lines in gray identifies lasso coefficients of ±0.05. The vertical

one represents the 100K cutoff used in [21].

https://doi.org/10.1371/journal.pgen.1009141.g006

Table 3. R2 values for height by different PRS methods with refitting.

Model Form R2
test Size

(1) Lasso 0.7127 45,653

(2) Elastic Net 0.7128 45,549

(3) Ridge 0.6986 175,012

(4) PRS-CS 0.5615 148,064

(5) SBayesR 0.7019 667,057

(6) P + T 0.5912 15,544

(7) Clumping 0.6181 17,433

https://doi.org/10.1371/journal.pgen.1009141.t003
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in each iteration. Although the design of the BASIL algorithm guarantees that for any M,

ΔM > 0, we are able to obtain the full solution path after sufficient iterations, many iterations

will be needed if M is chosen too small, and the disk I/O cost will be dominant. In contrast, a

large M will incur more memory burden and more expensive lasso computation, but with the

hope to find more valid lasso solutions in one iteration, save the number of iterations and the

disk I/O. It is hard to identify the optimal M a priori. It depends on the computing architec-

ture, the size of the problem, the nature of the phenotype, etc. For this reason, we tend to leave

it as a subjective parameter to the user’s choice. However in the meantime, we do plan to pro-

vide a more systematic option to determine M, which leverages the strong rules again. Recall

that in the simple setting with no intercept and no covariates, the initial strong set is con-

structed by jx>
j yj � 2l � lmax. Since the strong rules rarely make mistakes and are fairly effec-

tive in discarding inactive variables, we can guide the choice of batch size M by the number of

λ values we want to cover in the first iteration. For example, one may want the strong set to be

large enough to solve for the first 10 λ’s in the first iteration. We can then let

M ¼ jf1 � j � p : jx>
j yj > 2l10 � lmaxgj. Despite being adaptive to the data in some sense,

this approach is by no means computationally optimal. It is more based on heuristics that the

iteration should make reasonable progress along the path.

Our numerical studies demonstrate that the iterative procedure effectively reduces a big-n-

big-p lasso problem into one that is manageable by in-memory computation. In each iteration,

we are able to use parallel computing when applying screening rules to filter out a large num-

ber of variables. After screening, we are left with only a small subset of data on which we are

able to conduct intensive computation like cyclical coordinate descent all in memory. For the

subproblem, we can use existing fast procedures for small or moderate-size lasso problems.

Thus, our method allows easy reuse of previous software with lightweight development effort.

When a large number of variables is needed in the optimal predictive model, it may still

require either large memory or long computation time to solve the smaller subproblem. In

that case, we may consider more scalable and parallelizable methods like proximal gradient

descent [40] or dual averaging [41, 42]. One may think why don’t we directly use these meth-

ods for the original full problem? First, the ultra high dimension makes the evaluation of gradi-

ents, even on mini-batch very expensive. Second, it can take a lot more steps for such first-

order methods to converge to a good objective value. Moreover, the speed of convergence

depends on the choice of other parameters such as step size and additional constants in dual

averaging. For those reasons, we still prefer the tuning-free and fast coordinate descent meth-

ods when the subproblem is manageable.

The lasso has nice variable selection and prediction properties if the linear model assumption

together with some additional assumptions such as the restricted eigenvalue condition [43] or

the irrepresentable condition [44] holds. In practice, such assumptions do not always hold and

are often hard to verify. In our UK Biobank application, we don’t attempt to verify the exact

conditions, and the selected model can be subject to false positives. However, we demonstrate

relevance of the selection via empirical consistency with the GWAS results. We have seen supe-

rior prediction performance by the lasso as a regularized regression method compared to other

methods. More importantly, by leveraging the sparsity property of the lasso, we are able to man-

age the ultrahigh-dimensional problem and obtain a computationally efficient solution.

When comparing with other methods in the UK Biobank experiments, due to the large

number of test samples (60,000+), we are confident that the lasso and the elastic-net methods

are able to do significantly better than all other methods on height and BMI, and are as com-

petitive as SBayesR on asthma and high cholesterol. In fact, the standard error of R2 can be eas-

ily derived by the delta method, and the standard error of the AUC can be estimated and
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upper bounded by 1/(4 min(m, n)) [45, 46], where m, n represents the number of positive and

negative samples. For height and BMI, it turns out that the standard errors are roughly 0.001,

or 0.1%. For asthma and high cholesterol, considering the case rate around 12%, the standard

errors can be upper bounded by 0.005, or 0.5%. The estimated standard errors are reflected in

the error bars in Figs 2 and 3. Therefore, speaking of the predictive performance, on height

and BMI, the lasso/elastic-net class performs significantly better than the other methods, while

on asthma and high cholesterol, the lasso/elastic-net and the SBayesR are both fairly competi-

tive—their difference is not statistically significant. Moreover, the lasso/elastic-net method

builds parsimonious models using only a small fraction of the variants. It is more interpretable

and can have meaningful implications on the genetics behind.

Materials and methods

Variants in the BASIL framework

Some other very useful components can be easily incorporated into the BASIL framework. We

will discuss debiasing using the relaxed lasso and the inclusion of adjustment covariates.

The lasso is known to shrink coefficients to exclude noise variables, but sometimes such

shrinkage can degrade the predictive performance due to its effect on actual signal variables.

[24] introduces the relaxed lasso to correct for the potential over-shrinkage of the original

lasso estimator. They propose a refitting step on the active set of the lasso solution with less

regularization, while a common way of using it is to fit a standard OLS on the active set. The

active set coefficients are then set to

b̂A;RelaxðlÞ ¼ argmin
bA2RjAj

ky � XAbAk
2

2
;

whereas the coefficients for the inactive set remain at 0. This refitting step can revert some of

the shrinkage bias introduced by the vanilla lasso. It doesn’t always reduce prediction error

due to the accompanied increase in variance when there are many variables in the model or

when the signals are weak. That being said, we can still insert a relaxed lasso step with little

effort in our iterative procedure: once a valid lasso solution is found for a new λ, we may refit

with OLS. As we iterate, we can monitor validation error for the lasso and the relaxed lasso.

The relaxed lasso will generally end up choosing a smaller set of variables than the lasso solu-

tion in the optimal model.

In some applications such as GWAS, there may be confounding variables Z 2 Rn�q that we

want to adjust for in the model. Population stratification, defined as the existence of a system-

atic ancestry difference in the sample data, is one of the common factors in GWAS that can

lead to spurious discoveries. This can be controlled for by including some leading principal

components of the SNP matrix as variables in the regression [47]. In the presence of such vari-

ables, we instead solve

ðâðlÞ; b̂ðlÞÞ ¼ argmin
a2Rq;b2Rp

1

2n
ky � Za � Xbk

2

2
þ lkbk

1
: ð7Þ

This variation can be easily handled with small changes in the algorithm. Instead of initializing

the residual with the response y, we set r(0) equal to the residual from the regression of y on the

covariates. In the fitting step, in addition to the variables in the strong set, we include the

covariates but leave their coefficients unpenalized as in (7). Notice that if we want to find

relaxed lasso fit with the presence of adjustment covariates, we need to include those covariates
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in the OLS as well, i.e.,

ðâRelaxðlÞ; b̂A;RelaxðlÞÞ ¼ argmin
a2Rq ;bA2RjAj

ky � Za � XAbAk
2

2
: ð8Þ

UK Biobank experiment details

We focused on 337,199 White British unrelated individuals out of the full set of over 500,000

from the UK Biobank dataset [11] that satisfy the same set of population stratification criteria

as in [22]: (1) self-reported White British ancestry, (2) used to compute principal components,

(3) not marked as outliers for heterozygosity and missing rates, (4) do not show putative sex

chromosome aneuploidy, and (5) have at most 10 putative third-degree relatives. These criteria

are meant to reduce the effect of confoundedness and unreliable observations.

The number of samples is large in the UK Biobank dataset, so we can afford to set aside an

independent validation set without resorting to the costly cross-validation to find an optimal

regularization parameter. We also leave out a subset of observations as test set to evaluate the

final model. In particular, we randomly partition the original dataset so that 60% is used for

training, 20% for validation and 20% for test. The lasso solution path is fit on the training set,

whereas the desired regularization is selected on the validation set, and the resulting model is

evaluated on the test set.

We are going to further discuss some details in our application that one might also encoun-

ter in practice. They include adjustment for confounders, missing value imputation and vari-

able standardization in the algorithm.

In genetic studies, spurious associations are often found due to confounding factors.

Among the others, one major source is the so-called population stratification [48]. To adjust

for that effect, it is common is to introduce the top principal components and include them in

the regression model. Therefore in the lasso method, we are going to solve (7) where in addi-

tion to the SNP matrix X, we let Z include covariates such as age, sex and the top 10 PCs of the

SNP matrix.

Missing values are present in the dataset. As quality control normally done in genetics, we

first discard observations whose phenotypic value of interest is not available. We further

exclude variants whose missing rate is greater than 10% or the minor allele frequency (MAF)

is less than 0.1%, which results in around 685,000 SNPs for height. In particulr, 685,362 for

height, 685,371 for BMI, 685,357 for asthma and 685,357 for HC. The number varies because

the criteria are evaluated on the subset of individuals whose phenotypic value is observed

(after excluding the missing ones), which can be different across different phenotypes. For

those remaining variants, mean imputation is conducted to fill the missing SNP values; that is,

the missing values in every SNP are imputed with the mean observed level of that SNP in the

population under study.

When it comes to the lasso fitting, there are some subtleties that can affect its variable selec-

tion and prediction performance. One of them is variable standardization. It is often a step

done without much thought to deal with heterogeneity in variables so that they are treated

fairly in the objective. However in our studies, standardization may create some undesired

effect. To see this, notice that all the SNPs can only take values in 0, 1, 2 and NA—they are

already on the same scale by nature. As we know, standardization would use the current stan-

dard deviation of each predictor as the divisor to equalize the variance across all predictors in

the lasso fitting that follows. In this case, standardization would unintentionally inflate the

magnitude of rare variants and give them an advantage in the selection process since their

coefficients effectively receive less penalty after standardization. In Fig 7, we can see the

PLOS GENETICS A fast framework for high-dimensional sparse regression with application to the UK Biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009141 October 23, 2020 19 / 30

https://doi.org/10.1371/journal.pgen.1009141


distribution of standard deviation across all variants in our dataset. Hence, to avoid potential

spurious findings, we choose not to standardize the variants in the experiments.

Computational optimization in software implementation

Among the iterative steps in BASIL, screening and checking are where we need to deal with

the full dataset. To deal with the memory bound, we can use memory-mapped I/O. In R, big-

memory [49] provides a convenient implementation for that purpose. That being said, we do

not want to rely on that for intensive computation modules such as cyclic coordinate descent,

because frequent visits to the on-disk data would still be slow. Instead, since the subset of

strong variables would be small, we can afford to bring them to memory and do fast lasso fit-

ting there. We only use the full memory-mapped dataset in KKT checking and screening.

Moreover since checking in the current iteration can be done together with the screening in

the next iteration, effectively only one expensive pass over the full dataset is needed every

iteration.

In addition, we use a set of techniques to speed up the computation. First, the KKT check

can be easily parallelized by splitting on the features when multi-core machines are available.

The speedup of this part is immediate and (slightly less than) proportional to the number of

Fig 7. Histogram of the standard deviations of the SNPs. They are computed after mean imputation of the missing

values because they would be the exact standardization factors to be used if the lasso were applied with variable

standardization on the mean-imputed SNP matrix.

https://doi.org/10.1371/journal.pgen.1009141.g007
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cores available. Second, specific to the application, we exploit the fact that there are only 4 lev-

els for each SNP value and design a faster inner product routine to replace normal float num-

ber multiplication in the KKT check step. In fact, given any SNP vector x 2 {0, 1, 2, μ}n where

μ is the imputed value for the missing ones, we can write the dot product with a vector r 2 Rn

as

x>r ¼
Xn

i¼1

xiri ¼ 1 �
X

i:xi¼1

ri þ 2 �
X

i:xi¼2

ri þ m �
X

i:xi¼m

ri: ð9Þ

We see that the terms corresponding to 0 SNP value can be ignored because they don’t con-

tribute to the final result. This will significantly reduce the number of arithmetic operations

needed to compute the inner product with rare variants. Further, we only need to set up 3 reg-

isters, each for one SNP value accumulating the corresponding terms in r. A series of multipli-

cations is then converted to summations. In our UK Biobank studies, although the SNP matrix

is not sparse enough to exploit sparse matrix representation, it still has around 70% 0’s. We

conduct a small experiment to compare the time needed to compute X>R, where

X 2 f0; 1; 2; 3g
n�p

;R 2 Rp�k. The proportions for the levels in X are about 70%, 10%, 10%,

10%, similar to the distribution of SNP levels in our study, and R resembles the residual matrix

when checking the KKT condition. The number of residual vectors is k = 20. The mean time

over 100 repetitions is shown in Table 4.

We implement the procedure with all the optimizations above in an R package called

snpnet, which is currently available at https://github.com/junyangq/snpnet and will be sub-

mitted to the CRAN repository of R packages. While most of the numerical experiments

throughout the paper are based on an earlier version of the package (available in the V1.0

branch of the repository) assuming bed file format provided by PLINK 1.9, we highly recom-

mend one to use the current version that works with the pgen file format provided by PLINK

2.0 [13, 28]. It takes advantage of PLINK 2.0’s new R interface as well as its efficient

--variant-score module for matrix multiplication. The module exploits combined tech-

niques of multithreading, a good linear algebra library, and an alternate code path for very-

low-MAF SNPs (similar to the one proposed in (9)) to make the computation even faster. In

order to achieve better efficiency in each lasso fitting, we suggest using snpnet together with

glmnetPlus, a warm-started version of glmnet, which is currently available at https://github.

com/junyangq/glmnetPlus. It allows one to provide a good initialization of the coefficients to

fit part of the solution path instead of always starting from the all-zero solution by glmnet.

Related methods and packages

There are a number of existing screening rules for solving big lasso problems. [50] use a

screened set to scale down the logistic lasso problem and check the KKT condition to validate

the solution. Their focus, however, is on selecting a lasso model of particular size and only the

initial screened set is expanded if the KKT condition is violated. In contrast, we are interested

in finding the whole solution path (before overfitting). We adopt a sequential approach and

Table 4. Timing performance (milliseconds) on multiplication of SNP matrix and residual matrix. The methods

are all implemented in C++ and run on a Macbook with 2.9 GHz Intel Core i7 and 8 GB 1600 MHz DDR3.

Multiplication Method n = 200, p = 800 n = 2000, p = 8000

Standard 3.20 306.01

SNP-Optimized 1.32 130.21

https://doi.org/10.1371/journal.pgen.1009141.t004
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keep updating the screened set at each iteration. This allows us to potentially keep the screened

set small as we move along the solution path. Other rules include the SAFE rule [51], Sure

Independence Screening [52], and the DPP and EDPP rules [53].

We expand the discussion on these screening rules a bit. [52] exploits marginal information

of correlation to conduct screening but the focus there is not optimization algorithm. Most of

the screening rules mentioned above (except for EDPP) use inner product with the current

residual vector to measure the importance of each predictor at the next λ—those under a

threshold can be ignored. The key difference across those rules is the threshold defined and

whether the resulting discard is safe. If it is safe, one can guarantee that only one iteration is

needed for each λ value, compared with others that would need more rounds if an active vari-

able was falsely discarded. Though the strong rules rarely make this mistake, safe screening is

still a nice feature to have in single-λ solutions. However, under the batch mode we consider

due to the desire of reducing the number of full passes over the dataset, the advantage of safe

threshold may not be as much. In fact, one way we might be able to leverage the safe rules in

the batch mode is to first find out the set of candidate predictors for the several λ values up to

λk we wish to solve in the next iteration based on the current inner products and the rules’ safe

threshold, and then solve the lasso for these parameters. Since these rules can often be conser-

vative, we would then have strong incentive to solve for, say, one further λ value λk+1 because if

the current screening turns out to be a valid one as well, we will find one more lasso solution

and move one step forward along the λ sequence we want to solve for. This can potentially

save one iteration of the procedure and thus one expensive pass over the dataset. The only cost

there is computing the lasso solution for one more λk+1 and computing inner products with

one more residual vector at λk+1 (to check the KKT condition). The latter can be done in the

same pass as we compute inner products at λk for preparing the screening in the next iteration,

and so no additional pass is needed. Thus under the batch mode, the property of safe screening

may not be as important due to the incentive of aggressive model fitting. Nevertheless it would

be interesting to see in the future EDPP-type batch screening. It uses inner products with a

modification of the residual vector. Our algorithm still focuses of inner products with the

vanilla residual vector.

To address the large-scale lasso problems, several packages have been developed such as

biglasso [54], bigstatsr [55], oem [56] and the lasso routine from PLINK 1.9 [13, 14].

Among them, oem specializes in tall data (big n) and can be slow when p > n. In many real

data applications including ours, the data are both large-sample and high-dimensional. How-

ever, we might still be able to use oem for the small lasso subroutine since a large number of

variables have already been excluded. The other packages, biglasso, bigstatsr, PLINK 1.9, all

provide efficient implementations of the pathwise coordinate descent with warm start. PLINK

1.9 is specifically developed for genetic datasets and is widely used in GWAS and research in

population genetics. In bigstatsr, the big_spLinReg function adapts from the biglasso
function in biglasso and incorporates a Cross-Model Selection and Averaging (CMSA) proce-

dure, which is a variant of cross-validation that saves computation by directly averaging the

results from different folds instead of retraining the model at the chosen optimal parameter.

They both use memory-mapping to process larger-than-RAM, on-disk datasets as if they were

in memory, and based on that implement coordinate descent with strong rules and warm

start.

The main difference between BASIL and the algorithm these packages use is that BASIL

tries to solve a series of models every full scan of the dataset (at checking and screening) and

thus effectively reduce the number of passes over the dataset. This difference may not be signif-

icant in small or moderate-sized problems, but can be critical in big data applications espe-

cially when the dataset cannot be fully loaded into the memory. A full scan of a larger-than-
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RAM dataset can incur a lot of swap-in/out between the memory and the disk, and thus a lot

of disk I/O operations, which is known to be orders of magnitude slower than in-memory

operations. Thus reducing the number of full scans can greatly improve the overall perfor-

mance of the algorithm.

Aside from potential efficiency consideration, all of those packages aforementioned have to

re-implement a variety of features existent in many small-data solutions but for big-data con-

text. Nevertheless, currently they don’t provide as much functionality as needed in our real-

data application. First, in the current implementations, PLINK 1.9 only supports the Gaussian

family, biglasso and bigstatsr only supports the Gaussian and binomial families, whereas

snpnet can easily extend to other regression families and already built in Gaussian, binomial

and Cox families. Also, biglasso, bigstatsr and PLINK 1.9 all standardize the predictors

beforehand, but in many applications such as our UK Biobank studies, it is more reasonable to

leave the predictors unstandardized. In addition, it can take some effort to convert the data to

the desired format by these packages. This would be a headache if the raw data is in some spe-

cial format and one cannot afford to first convert the full dataset into an intermediate format

for which a tool is provided to convert to the desired one by biglasso or bigstatsr. This can

happen, for example, if the raw data is highly compressed in a special format. For the BED

binary format we work with in our application, readRAW_big.matrix function from

BGData can convert a raw file to a big.matrix object desired by biglasso, and

snp_readBed function from bigsnpr [55] allows one to convert it to FBM object desired by

bigstatsr. However, bigsnpr doesn’t take input data that has any missing values, which can

prevalent in an SNP matrix (as in our application). Although PLINK 1.9 works directly with

the BED binary file, its lasso solver currently only supports the Gaussian family, and it doesn’t

return the full solution path. Instead it returns the solution at the smallest λ value computed

and needs a good heritability estimate as input from the user, which may not be immediately

available.

We summarize the main advantages of the BASIL algorithm:

• Input data flexibility. Our algorithm allows one to deal directly with any data type as long

as the screening and checking steps are implemented, which is often very lightweight devel-

opment work like matrix multiplication. This can be important in large-scale applications

especially when the data is stored in a compressed format or a distributed way since then we

would not need to unpack the full data and can conduct KKT check and screening on its

original format. Instead only a small screened subset of the data needs to be converted to the

desired format by the lasso solver in the fitting step.

• Model flexibility. We can easily transfer the modeling flexibility provided by existing pack-

ages to the big data context, such as the options of standardization, sample weights, lower/

upper coefficient limits and other families in generalized linear models provided by existing

packages such as glmnet. This can be useful, for example, when we may not want to stan-

dardize predictors already in the same unit to avoid unintentionally different penalization of

the predictors due to difference in their variance.

• Effortless development. The BASIL algorithm allows one to maximally reuse the existing

lasso solutions for small or moderate-sized problems. The main extra work would be an

implementation of batch screening and KKT check with respect to a particular data type.

For example, in the snpnet package, we are able to quickly extend the in-memory glmnet

solution to large-scale, ultrahigh-dimentional SNP data. Moreover, the existing convenient

data interface provided by the BEDMatrix package further facilitates our implementation.
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• Computational efficiency. Our design reduces the number of visits to the original data that

sits on the disk, which is crucial to the overall efficiency as disk read can be orders of magni-

tude slower than reading from the RAM. The key to achieving this is to bring batches of

promising variables into the main memory, hoping to find the lasso solutions for more than

one λ value each iteration and check the KKT condition for those λ values in one pass of the

entire dataset.

Lastly, we are going to provide some timing comparison with existing packages. As men-

tioned in previous sections, those packages provide different functionalities and have different

restrictions on the dataset. For example, most of them (biglasso, bigstatsr) assume that there

are no missing values, or the missing ones have already been imputed. In bigsnpr, for example,

we shouldn’t have SNPs with 0 MAF either. Some packages always standardize the variants

before fitting the lasso. To provide a common playground, we create a synthetic dataset with

no missing values, and follow a standardized lasso procedure in the fitting stage, simply to test

the computation. The dataset has 50,000 samples and 100,000 variables, and each takes value

in the SNP range, i.e., in 0, 1, or 2. We fit the first 50 lasso solutions along a prefix λ sequence

that contains 100 initial λ values (like early stopping for most phenotypes). The total time

spent is displayed in Table 5. For bigstatsr, we include two versions since it does cross-valida-

tion by default. In one version, we make it comply with our single train/val/test split, while in

the other version, we use its default 10-fold cross-validation version—Cross-Model Selection

and Averaging (CMSA). Notice that the final solution of iCMSA is different from the exact

lasso solution on the full data because the returned coefficient vector is a linear combination of

the coefficient vectors from the 10 folds rather than from a retrained model on the full data.

We uses 128GB memory and 16 cores for the computation.

From the table, we see that snpnet is at about 20% faster than other packages concerned.

The numbers before the “+” sign are the time spent on converting the raw data to the required

data format by those packages. The second numbers are time spent on actual computation.

It is important to note though that the performance relies not only on the algorithm, but

also heavily on the implementations. The other packages in comparison all have their major

computation done with C++ or Fortran. Ours, for the purpose of meta algorithm where

users can easily integrate with any lasso solver in R, still has a significant portion (the itera-

tions) in R and multiple rounds of cross-language communication. That can degrade the tim-

ing performance to some degree. If there is further pursuit of speed performance, there is still

space for improvement by more designated implementation.

Supporting information

S1 Appendix. Results for body mass index (BMI).

(PDF)

Table 5. Timing comparison on a synthetic dataset of size n = 50, 000 and p = 100, 000. The time for bigstatsr and

biglasso has two components: one for the conversion to the desired data type and the other for the actual computation.

The experiments are all run with 16 cores and 64 GB memory.

R Package Elapsed Time (minutes)

bigstatsr [55] 2.93 + 56.80

bigstatsr + CMSA [55] 2.93 + 101.75

biglasso [54] 4.55 + 54.27

PLINK [13, 14] 53.52

snpnet 44.79

https://doi.org/10.1371/journal.pgen.1009141.t005
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S2 Appendix. Results for asthma.

(PDF)

S3 Appendix. Results for high cholesterol.

(PDF)

S4 Appendix. Manhattan plots.

(PDF)

S1 Table. R2 values for BMI (without refitting). R2 values for BMI (without refitting). For

lasso and relaxed lasso, the chosen model is based on maximum R2 on the validation set.

Model (3) to (9) each includes Model (2) plus their own specification as stated in the Form col-

umn. The elastic-net picks α = 0.1 based on the validation performance.

(PDF)

S2 Table. R2 values for body mass index by different PRS methods with refitting.

(PDF)

S3 Table. AUC values for asthma (without refitting). For lasso and relaxed lasso, the chosen

model is based on maximum AUC on the validation set. Model (3) to (9) each includes Model

(2) plus their own specification as stated in the Form column. The elastic-net picks α = 0.1

based on the validation performance.

(PDF)

S4 Table. AUC values for asthma by different PRS methods with refitting.

(PDF)

S5 Table. AUC values for high cholesterol (without refitting). For lasso and relaxed lasso,

the chosen model is based on maximum AUC on the validation set. Model (3) to (9) each

includes Model (2) plus their own specification as stated in the Form column. The elastic-net

picks α = 0.9 based on the validation performance.

(PDF)

S6 Table. AUC values for high cholesterol by different PRS methods with refitting.

(PDF)

S1 Fig. R2 plot for body mass index. The primary horizontal axis on the bottom represents

the index of lambda values, 1 � ℓ � L, which correspond to the sequence of the regularization

parameters, λ1 > λ2 > � � � > λL. The top axis shows the number of active variables in the

model. ReLasso: relaxed lasso.

(TIF)

S2 Fig. Actual body mass index (BMI) versus predicted BMI on 5000 random samples

from the test set. A regression line with its 95% confidence band is also added on top of the

dots. The correlation between actual BMI and predicted BMI is 0.3256.

(TIF)

S3 Fig. Residuals of lasso prediction for body mass index. Standard deviation of the residual

is 4.51 kg/m2.

(TIF)

S4 Fig. AUC plot for asthma. The primary horizontal axis on the bottom represents the index

of lambda values, 1 � ℓ � L, which correspond to the sequence of the regularization parame-

ters, λ1 > λ2 > � � � > λL. The top axis shows the number of active variables in the model.
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ReLasso: relaxed lasso.

(TIF)

S5 Fig. Box plot of the percentile of the linear prediction score among cases versus controls

for asthma. This is based on the optimal lasso model.

(TIF)

S6 Fig. Stratified prevalence across different percentile bins based on the predicted scores

for asthma. This is based on the optimal lasso model.

(TIF)

S7 Fig. AUC plot for high cholesterol. The primary horizontal axis on the bottom represents

the index of lambda values, 1 � ℓ � L, which correspond to the sequence of the regularization

parameters, λ1 > λ2 > � � � > λL. The top axis shows the number of active variables in the

model. ReLasso: relaxed lasso.

(TIF)

S8 Fig. Box plot of the percentile of the linear prediction score among cases versus controls

for high cholesterol. This is based on the optimal lasso model.

(TIF)

S9 Fig. Stratified prevalence across different percentile bins based on the predicted scores

for high cholesterol. This is based on the optimal lasso model.

(TIF)

S10 Fig. ROC curve for asthma. This is based on the optimal lasso model.

(TIF)

S11 Fig. ROC curve for high cholesterol. This is based on the optimal lasso model.

(TIF)

S12 Fig. Manhattan plot of the univariate p-values for height. This is based on the optimal

lasso model. The vertical axis shows −log10(p) for each SNP. The red horizontal line represents

a reference level of p = 5 × 10−8.

(TIF)

S13 Fig. Manhattan plot of the univariate p-values for body mass index. This is based on

the optimal lasso model. The vertical axis shows −log10(p) for each SNP. The red horizontal

line represents a reference level of p = 5 × 10−8.

(TIF)

S14 Fig. The lasso coefficients for height. This is based on the optimal lasso model. The verti-

cal axis shows the magnitude of the coefficients from snpnet. The SNPs with relatively large

lasso coefficients are highlighted in green.

(TIF)

S15 Fig. The lasso coefficients for body mass index. This is based on the optimal lasso

model. The vertical axis shows the magnitude of the coefficients from snpnet. The SNPs with

relatively large lasso coefficients are highlighted in green.

(TIF)

S16 Fig. Manhattan plot of the univariate p-values for asthma. This is based on the optimal

lasso model. The vertical axis shows −log10(p) for each SNP. The red horizontal line represents

a reference level of p = 5 × 10−8.

(TIF)
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S17 Fig. Manhattan plot of the univariate p-values for high cholesterol. This is based on the

optimal lasso model. The vertical axis shows −log10(p) for each SNP. The red horizontal line

represents a reference level of p = 5 × 10−8.

(TIF)

S18 Fig. The lasso coefficients for asthma. This is based on the optimal lasso model. The ver-

tical axis shows the magnitude of the coefficients from snpnet. The SNPs with relatively large

lasso coefficients are highlighted in green.

(TIF)

S19 Fig. The lasso coefficients for high cholesterol. This is based on the optimal lasso model.

The vertical axis shows the magnitude of the coefficients from snpnet. The SNPs with rela-

tively large lasso coefficients are highlighted in green.

(TIF)
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