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H I G H L I G H T S  

• Buildings with similar water-energy usage and intensity were identified and clustered. 
• Analysis revealed heterogeneity in water and energy consumption patterns of buildings. 
• Benchmarking buildings provided a measure of comparison for multi-utility management. 
• Data-driven modeling revealed meaningful insights into urban water-energy nexus.  
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A B S T R A C T   

As the threat of climate change grows alongside a continual increase in urban population, the need to ensure 
access to water and energy resources becomes more crucial. In the context of the water-energy nexus in urban 
environments, this work addresses current gaps in understanding of coupled water and energy demand patterns 
and reveals apparent dissimilarities between utilization of water and energy resources for heterogeneous 
buildings. This study proposes a data-driven approach to identify fundamental water and energy demand pro
files, cluster buildings into groups exhibiting similar water and energy use, and predict their demand. The 
clustering problem was cast as a two-stage cluster ensemble problem, in which several clustering methods with 
different settings were employed, and then the results obtained from partial view of the data were combined to 
achieve consensus among the partitionings. The influential drivers for water and energy consumption were 
identified, parametric and non-parametric prediction models were developed and compared, utilizing high and 
low temporal data resolution. The clustering analysis performed in this work revealed that water and energy 
consumption patterns of heterogeneous buildings are not exclusively characterized by general building char
acteristics. Analysis of the predictive models showed that an overall non-parametric model provides better 
predictions for water and energy compared with parametric models and that models with high and low data 
resolution provide comparable demand predictions. The results of this study highlight the value of data-driven 
modeling for revealing meaningful insights into usage patterns and benchmarking buildings’ performance to 
provide a meaningful measure of comparison to facilitate multi-utility management. Overall, the methods out
lined in this study provide another step towards building greater resiliency within urban areas in preparation for 
future changes in population and climate.   

1. Introduction 

Information about consumers’ demand for water and energy is 
becoming increasingly available, detailed, and accurate due to the 
widespread utilization of high-resolution water and energy meters [1]. 
Meters collecting and transmitting consumption measurements on a 

daily, hourly or sub-hourly resolution, generate data, which have 
extensive uses for management of water and energy resources, including 
understanding patterns of consumer behavior, detecting abnormal 
events, and creating demand prediction models [2,3]. Insights into 
trends in consumer behavior derived from high-resolution water and 
electricity consumption data are used to inform planning, pricing 

* Corresponding author. 
E-mail address: linasela@utexas.edu (L. Sela).  

Contents lists available at ScienceDirect 

Applied Energy 

journal homepage: www.elsevier.com/locate/apenergy 

https://doi.org/10.1016/j.apenergy.2020.116074 
Received 25 April 2020; Received in revised form 8 October 2020; Accepted 16 October 2020   

mailto:linasela@utexas.edu
www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2020.116074
https://doi.org/10.1016/j.apenergy.2020.116074
https://doi.org/10.1016/j.apenergy.2020.116074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2020.116074&domain=pdf


Applied Energy 281 (2021) 116074

2

mechanisms, and conservation strategies [4,5,6,7]. With growing pop
ulations in urban areas, and arid conditions that are being exacerbated 
by climate change, water and energy demands must be sustained at a 
level that can be satisfied by the projected level of production. 

In order to achieve the goal of decreased consumer water and energy 
demands, high-resolution consumption data is instrumental in the 
design and implementation of demand-side management policies 
(DSM), which allows policymakers to understand consumer behavior 
and design policies for incentivizing efficient resource consumption [8]. 
Policies could take the form of increasing technological efficiencies as 
well as promoting behavioral shifts in building occupants [9]. In addi
tion, continuous monitoring of water demand has been applied to the 
detection of irregular usage patterns and leaks along with the modeling 
of consumer demand [10,11,12,13]. Similarly, electricity meter data is 
used for demand disaggregation, event detection as well as privacy 
hedging [14,15,16,17]. Furthermore, weekly and daily consumption 
patterns can be used for infrastructure planning and expansion. For 
water systems, timeseries data of consumer consumption are used to 
obtain accurate information about peak and average demands, which 
are key for infrastructure sizing (e.g., storage and conveyance capacity) 
[18,11]. 

Although typically addressed separately, the majority of previous 
works related to water and energy consumption data have primarily 
focused on: (1) extracting characteristic and common usage patterns 
across end-users using various timeseries clustering techniques (e.g., 
[19,20,14]); (2) identifying explanatory and influential variables char
acterizing end-uses and end-users behavior (e.g., [21,22,23,24,25]); and 
(3) creating demand prediction and event detection models using 
various parametric and non-parametric techniques (e.g., [26,27]). The 
explosion of previous works utilizing the available information from 
advanced meters is also evident from the several recently published 
review papers in the water and energy sectors [28,29,30,31,32,33]. 

There is an abundance of different clustering approaches that can be 
applied to analyze timeseries data of building water and energy con
sumption, e.g., k-means [34], k-medoids [35], agglomerative hierar
chical [36], self-organizing map [37], spectral clustering [38], and 
various density-based methods [39,40,41]. The challenge in selecting 
the most appropriate clustering approach is mainly due to the fact that 
there are no ground-truth labels for the appropriate clusters. As such, 
only internal performance evaluation criteria, which are based on the 
information intrinsic to the data alone, can be used [42]. Often times, 
this leads to the application of multiple clustering approaches, requiring 
meticulous and non-trivial parameter tuning, often resulting with no 
clear advantage of one approach over the other. Ultimately, despite the 
large body of works, there are no standards for application of cluster 
analysis for pattern extraction from consumption data in terms of al
gorithm selection, parameter tuning, number of clusters, and data size 
[19,43,44]. 

For demand prediction, parametric and non-parametric models are 
commonly used [45,46]. Parametric models involve model selection and 
parameterization, such as a linear, exponential, or polynomial regres
sion. Common non-parametric models include classification and 
regression trees, artificial neural networks, and random forest 
[47,48,49,50,51]. Parametric models are advantageous because of 
model simplicity and interpretability compared with non-parametric 
models [49]. In non-parametric models, the fundamental structure of 
the model is determined by the underlying data, which might not be 
captured by the parametric models. Not only are there many different 
types of non-parametric models available, but even among the same 
class of models, the choices made during model implementation, such as 
the model structure, hyper parameters, loss function, and cross- 
validation metric affect model performance and prediction accuracy. 
In addition, model selection depends on the specific application as well 
as the quality, resolution, type of data available, and the selected fea
tures. Similar to clustering, due to the high variability in drivers 
affecting model performance, there is no consensus on the most 

appropriate modeling approach for water and energy timeseries pre
diction. While some works demonstrated that neural networks out
performed multiple linear regression for predicting peak weekly water 
demand [52], others showed that multiple linear regression, decision 
trees, and neural network models were comparable for predicting 
weekly energy consumption [49]. Thus, suggesting that case-specific 
conditions dictate modeling choice and there is no “one size fits all” 
model. 

The significance of the water-energy nexus has long been recognized 
and has been studied through multiple lenses, addressing considerations 
related to policy and water-energy production at regional and national 
scales [53,54,55,56]. Coupled analysis of water and energy consump
tion is advantageous, as it provides additional insights to support con
servation strategies, design targeted pricing mechanisms, improve 
performance, or incentivize users to conserve resources [57,1,58]. Un
like previous examples, in the context of the water-energy nexus in 
urban environments, joint water and energy consumption profiles and 
demand patterns has not been fully explored. 

Among the reasons for disjoint analysis of water and energy trends is 
the scarcity of spatiotemporally-resolved synchronous water and energy 
data, as multiple utility service providers are responsible for data 
collection, management, and ownership [1]. Noticeable exceptions 
include recent works by [59,57,60]. The authors in [59] investigated 
water and energy consumption usage patterns and explanatory variables 
for over 1000 residential users, where 18 unique water and energy usage 
patterns were identified, with factors including swimming pool or/and a 
hot tub explaining high water and energy use. The main determinants of 
water and electricity demand profiles were identified in order to enable 
targeted demand management recommendations for each user profile. 
In [60], a classification approach was proposed for identifying water 
usages of residential users by disaggregating coincident water and 
electricity data. Results showed improvement in water use classification 
of clothes washer, dishwasher, and shower events when both water and 
energy data were included in the analysis [60]. In [57,1], the authors 
propose an integrated data collection infrastructure, in which utilities 
collect and analyze building water, electricity, and gas consumption 
contemporaneously. The proposed benefits of the integrated system 
include the ability to segment end-users by consumption patterns, and 
enable real-time and customized conservation targets for individual 
utility customers. 

In urban environments, with the exception of hot-water consumption 
[61], the drivers for water and energy consumption are fundamentally 
different, and therefore, efficiency in water consumption does not imply 
efficiency in energy consumption, and vice versa. Intuitively, building 
features such as effective insulation, strategically-placed windows, 
efficient heating, ventilation, and air conditioning systems would make 
a building more energy efficient, yet would have no effect on water 
consumption. Conversely, buildings, which exhibit low-flow plumbing 
fixtures, automatic water shut-offs at sinks, and leak detection capabil
ities would have no effect on energy consumption. Similar to the intui
tion on building features, occupant decisions, which have been shown to 
have an important impact on building energy efficiency, do not neces
sarily translate to water efficiency [62]. Therefore, given the global 
stresses in the availability of water and energy resources, and the need to 
decrease consumption, data-driven management strategies focusing on 
water and energy consumption are a necessary and effective tool to 
achieve efficiencies in both resources [57,58]. 

In light of the scarce prior research, gaps remain in the analysis and 
understanding of coupled water and energy demand patterns in the 
urban environment. First, much of the literature on characterizing, 
clustering, and predicting water consumption patterns revolves around 
residential users, which do not account for a large portion of water users. 
In Texas, for example, non-residential users (e.g., commercial, hospitals) 
account for over half of all water consumed [30,63]. Because of the high 
degree of heterogeneity among non-residential users, insights that apply 
specifically to single-family residences do not necessarily apply to non- 
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residential buildings and multi-family buildings. Second, only a few 
works have been proposed to characterize the joint water-energy con
sumption patterns [59,60]. However, the effectiveness of demand 
management strategies aiming at reducing resource consumption of the 
end-users strongly depends on the understanding of the drivers affecting 
water and energy consumption patterns. In this context, this study ex
plores the following questions: (1) are there apparent dissimilarities 
between utilization of water and energy resources for heterogeneous 
buildings? (2) if there are dissimilarities in water and energy utilization, 
can these dissimilarities be captured by general building characteristics? 
(3) to what extent low-resolution consumption data can provide com
parable prediction performance to utilizing high-resolution, continuous 
data? and (4) to what extent buildings studied in this work are repre
sentative of the national consumption benchmarks for water and energy 
[64–65]? 

To address the research questions, this study proposes a data-driven 
approach to identify fundamental water and energy demand profiles, 
cluster buildings into groups exhibiting similar water and energy use, 
and predict their demand. To overcome the abundance of clustering 
methods and improve robustness, instead of choosing a single clustering 
method, several methods were employed, and their results were inte
grated to maximize the average mutual information [66]. Similarly, for 
prediction, parametric and non-parametric models were developed and 
their performance was compared and benchmarked against common 
performance standards. The proposed approach includes three main 
steps: (1) creating characteristic weekly water and energy consumption 
profiles, (2) identifying characteristic consumption patterns and cluster 
buildings exhibiting similar water- and energy-use shape and intensity, 
and (3) identifying influential drivers for water and energy consumption 
and compare prediction accuracy of parametric and non-parametric 
prediction models targeting different building categories and different 
resolutions of available consumption data. The applications of the pro
posed approach can be useful for building managers to assess efficiency 
of building operations, and for demand planners at water and energy 
utilities to predict future demand requirements. 

2. Methods 

The proposed approach consists of three main phases. First, char
acteristic weekly usage patterns for water and energy were identified. 
Second, the different buildings were clustered into building groups with 
similar water and energy consumption and intensity patterns. The 
clustering problem was cast as a two-stage cluster ensemble problem, in 
which several cluster methods with different hyper-parameters were 
employed, and the results from the partitions obtained from partial view 
of the individual metrics were combined to achieve consensus among 
the partitionings. Third, linear regression and regression tree models 
were fit to predict daily water and energy consumption and identify 
influential parameters in model predictions. Finally, clustering and 
prediction results were analyzed and discussed. Fig. 1 illustrates the 
main steps of the proposed approach and the details of each step are 

described next. 

2.1. Data description 

Daily water and energy usage data measured by continuously- 
recording meters installed at 70 buildings at the University of Texas at 
Austin (UT Austin) were utilized for this study. UT Austin is one of the 
largest universities in the U.S., serving approximately 51,000 students in 
Fall, 2018 [67]. The data used in this work were collected by the UT 
utilities to track building water and energy consumption and determine 
the degree to which buildings are achieving UT Austin’s sustainability 
goal of reducing overall water and energy consumption by 20% in 2020, 
using 2009 as the basis for comparison [68]. Data available for buildings 
sporadically spans between 2009 and 2017, with all buildings reporting 
consumption levels from April 2014 to June 2017. The buildings studied 
herein, range in size from 20,372 to 69,275 m2, have between 2 and 38 
floors, and were originally built between 1926 and 2012. Based on the 
UT Austin designation, there are five general categories of building 
types: classroom and academic (CA), housing (H), office and adminis
tration (OA), public assembly and multipurpose (PA), and research 
laboratory (RL). A summary of the building attributes (e.g., number of 
buildings, area, year built, mean and standard deviation (s.d.) of the 
water and energy consumption) is presented in Table 1. Prior to the 
analysis, datasets were processed to remove erroneous and missing data, 
by removing any specific datapoints that were zero or negative. In 
addition, a moving filter was applied to remove datapoints that were 
more than two standard deviations away from the mean of the previous 
25 days. Overall, the amount of data deemed unsuitable, and therefore 
removed, was negligible. 

2.2. Characteristic pattern extraction 

The first stage in the analysis entails extracting the characteristic 
consumption pattern for each building, which will subsequently be used 
to cluster the buildings. Several metrics can be used to characterize 
building efficiency, such as average annual consumption, annual water 
use intensity and energy use intensity [69,70,71]. The resolution at 
which a particular metric is assessed depends upon the desired outcomes 
of the analysis. In cases of long-range planning, monthly timescales are 
sufficient [26]. However, given that, the objective in this paper is to 
identify buildings that function similarly in terms of water and energy 
consumption, a more granular timescale is necessary. Hence, daily 
consumption data are used, and weekly patterns are selected as the 
characteristic feature of each building, where each weekly pattern was 
characterized using its intensity and variability. Water and energy in
tensity (i.e., WI and EI, respectively), defined as the daily water or en
ergy consumption per building area, were used to obtain information 
regarding the magnitude of resource consumption. In order to obtain 
information regarding the variation of daily consumption over the 
course of a week, the normalized water and energy data (i.e., WN and 
EN, respectively) were used. For each building, the original 

Fig. 1. Overview of the proposed approach.  
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consumption was scaled such that the normalized demand for water and 
energy ranged between 0 and 1, such that 1 represents the maximum 
daily consumption and 0 the minimum daily consumption of a building 
during the observation period. In summary, the normalized consump
tion constitutes an internal index, which is based on the information 
intrinsic to the building alone and indicates the temporary consumption 
level of a building compared to the entire observation period. Comple
mentary, consumption intensity constitutes an external index, which 
indicates the consumption level of a specific building compared to the 
other buildings relevant to the specific case study. Consumption in
tensity additionally allows to benchmark building performance relative 
to national averages of different building types [64–65]. It follows that 
four metrics (WI, WN, EI, EN) were used to benchmark resource use of a 
building and to compare with other buildings. 

Having established the metrics, each building can be represented 
using four characteristic patterns of intensity and shape (variability) of 
weekly water and energy consumption. The shape of a pattern was 
determined by comparing the weekday (Monday-Friday) consumption 
levels to the weekend (Saturday-Sunday) consumption levels. Pattern 
shape was classified into two categories, i.e., FLAT and CURVED, 
depending on the amount of variability between weekday and weekend 
consumption. One-sided Wilcoxon rank-sum statistical test was utilized 
to determine whether the difference between weekend and weekday 
consumption was statistically significant [72]. In this setting, the null 
hypothesis states that the difference between weekday and weekend 
consumption is statistically insignificant, i.e., FLAT pattern, and the 
alternative hypothesis states that the weekend consumption is signifi
cantly lower than the weekday consumption, i.e., CURVED pattern. The 
null hypothesis was rejected at small p (<0.05) values. 

The method for classifying the magnitude of the normalized water 
and energy patterns differed slightly. Normalized water and energy 
patterns were classified as HIGH, MEDIUM, or LOW, based on if the 
median of the normalized weekly pattern was in the lower, middle, or 
upper tercile of the data, respectively. A similar process was used to 
classify weekly patterns of water and energy intensity; however, instead 
of the HIGH, MEDIUM, or LOW classification based on normalized ter
ciles, the thresholds were based on the terciles of all water and energy 
intensity values across all buildings. The outcome of this process is a 
reduced representation of the raw timeseries water and energy data for 
each building. 

After each weekly pattern of a building has been designated into one 
of six categories based on its classification of intensity and shape, a 
single, unique characteristic pattern of each building that will be used 
for further analysis was determined using the following steps. First, 
weekly patterns were selected from the category that contained the most 
patterns. For example, if 60% of the patterns of a particular building and 
metric were classified as HIGH-FLAT, then all the high-flat patterns 
would be considered to create the characteristic weekly pattern for that 
metric. Then, the characteristic weekly pattern of a building was 
determined as the median of all the selected patterns belonging to the 
same category. Continuing the previous example, for a particular 

building, the Monday value of the characteristic pattern would be the 
median of the Monday values of the HIGH-FLAT patterns. An example of 
the weekly pattern extraction process is demonstrated in the results 
section. 

2.3. Water-energy clustering 

The process of water-energy clustering was completed in two steps. 
First, buildings were intra-clustered based on similar usage patterns for 
each individual metric, resulting in four different sub-clusterings ob
tained from partial view of the data (i.e., individual metrics). In this step, 
instead of choosing and fine-tuning a single cluster method, several 
cluster methods with different hyper-parameters were employed, and 
then their results were integrated to achieve robustness [66]. Second, in 
order to integrate the intra-clustering partitions and identify common 
water and energy consumption patterns, inter-clustering (i.e., meta- 
clustering) was performed to group buildings exhibiting similar con
sumption patterns across all four metrics. Inter-clustering was cast as a 
cluster ensemble problem of combining the partitions obtained from 
partial view of the individual metrics. The following sections present the 
details of the proposed clustering procedure. 

2.3.1. Robust intra-clustering 
The goal of intra-clustering is to divide buildings into partitions 

based on their similarities in terms of a single individual metric, i.e., WI, 
EI, WN, or EN, such that buildings in the same cluster/partition exhibit a 
similar characteristic weekly pattern. For this task, many clustering al
gorithms can be applied, such as k-means [34], k-medoids [35], 
agglomerative hierarchical [36], self-organizing map [37], spectral 
clustering [38], and various density-based methods [39,40,41]. How
ever, as mentioned previously, selecting the right clustering approach is 
challenging due to the variety of algorithms, hyper-parameter tuning, 
similarity/dissimilarly distance measures, as well as the intrinsic 
randomness in many of the clustering techniques making the results 
sensitive to the initialization of the algorithms. The process of algorithm 
selection and parameter tuning for evaluating the quality of clustering is 
not-trivial given that ground-truth labels, or even the number of clusters, 
are unknown. Additionally, the performance of clustering algorithms 
depends tremendously on the structure of the input data. Hence, clus
tering results can vary significantly with different algorithms and 
parameter settings, thus weakening the robustness and accuracy of the 
clustering results. 

To improve the robustness of the results and avoid the task of algo
rithm selection and parameter fitting, the proposed approach relies on 
employing several clustering methods with different parameter settings 
and combines the results such that a consensus among the different 
methods is achieved [66]. Specifically, consider a clusterer as a single 
clustering algorithm with specific parameter settings, and a partitioning 
as clusterer output, i.e., a set of labels indicating the partitioning of 
objects to clusters. In this work, we applied seven different clusterers 
employing different algorithms, parameters, and number of clusters, as 

Table 1 
Summary of building characteristics and water/energy consumption by building designation.  

Building Type Classroom and 
Academic (CA) 

Housing (H) Office and Administration 
(OA) 

Public Assembly and 
Multipurpose (PA) 

Research Laboratory 
(RL) 

Number of buildings 28 8 3 18 13 
Area (m2) [min; mean; max] 2419; 12526; 26,213 3683; 16029; 

69275 
5583; 7723; 9580 1893; 16783; 46789 4883; 18192; 39823 

Year Built [min; mean; max] 1926; 1966; 2012 1933; 1953; 
2000 

1986; 1999; 2008 1930; 1975; 2010 1930; 1975; 2008 

Number of Floors [min; mean; max] 2; 6; 9 4; 8; 28 3; 5; 7 2; 6; 11 5; 8; 15 
Water Consumption (l/day) [mean; 

s.d.] 
8873; 6088 73520; 47997 10233; 7100 16824; 10994 22901; 10404 

Energy Consumption (kWh/day) 
[mean; s.d.] 

3420; 465 4183; 679 1933; 269 5305; 776 11889; 861  
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will be described in detail in Section 3.2. Cluster ensemble is then defined 
as the problem of combining the multiple partitionings of objects ob
tained by different clusterers, without accessing the underlying data 
used to create the original partitions [66]. The main motivation behind 
cluster ensemble is that the combined partition exhibits improved ac
curacy and robustness by integrating the information exploited by 
different clusterers. 

The cluster ensemble problem for partitioning buildings based on 
their similarities in terms of a single individual metric is applied as 
follows. Given r clusterers and n objects (i.e., buildings), let the partition 
matrix P = (p1, p2, ⋯, pr)

T denote the partitionings obtained from the r 
different clusterers, where pi = (pi1, pi2, ⋯, pin) is a vector representing 
the partitioning results of the ith clusterer. Thus, P is a r × n matrix, 
where pij represents the cluster label for the jth object obtained from the 
ith clusterer. A consensus function then maps the partition matrix (P) to an 
integrated consensus partition vector (c), i.e., Pr×n→c1×n, which is a 
combined partitioning that achieves the most consensus among all 
clusterers. Without the presence of a priori information about the 
ground-truth labels, the objective of the cluster ensemble problem is to 
identify the optimal consensus function, such that the consensus parti
tioning (c) shares the most information with the individual partition
ings, as presented in the partition matrix (P). 

To evaluate the quality of the consensus, it is necessary to define a 
metric that quantifies the amount of information shared between two 
different partitionings. In this study, average normalized mutual infor
mation (ANMI) is adopted to quantify the statistical information shared 
between the original parititioning matrix, P, and the consensus parti
tioning, c, [66]. Normalized mutual information is a symmetric 
information-theoretic metric, conveniently ranging from 0 to 1. Intui
tively, when the amount of information shared between two clusterers is 
low, the normalized mutual information approaches 0, and, contrary 
approaches 1, when the amount of information shared between two 
clusterers is high. The ANMI then averages the amount of mutual in
formation between each individual partitioning, pi, and the consensus 
paritioning, c. The ANMI can be computed as follows: 

ANMI(P, c) =
1
r

∑r

i=1

I(pi, c)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
H(pi)H(c)

√

where I(pi, c) denotes the mutual information between the partition 
obtained from the ith clusterer and the integrated partition [73], and 
H(pi), H(c) denote the entropy of the individual and consensus parti
tionings, respectively [74]. ANMI is bounded by 0, which indicates no 
mutual information between the individual and consensus partitionings, 
and 1, representing a perfect agreement between the individual and 
consensus partitionings. ANMI can be estimated by the sampled quan
tities provided by the partitionings. The estimation is elaborated in text 
S1 in the Supporting Information (SI). 

Illustrative example: To illustrate the problem of cluster ensemble, 
consider a simple example where four clusterers (r = 4) are applied on a 
set of six objects (n = 6), i.e., buildings in the context of this paper. The 
following partitioning vectors (p1, p2, p3, p4) specify the partitionings 
obtained from four clusterers for six buildings: 

p1 = (1, 1, 2, 2, 3, 3);
p2=(2,2,3,3,1,1);

p3=(1,1,1,2,2,2);

p4=(1,1,2,2,2,2);

The label vectors indicate that the first and second clusterers yield 
three clusters, while the third and fourth clusterers produce two clusters. 
Further inspection reveals that the partitions p1 and p2 are logically 
identical since the partition structure is invariant to the numbering of 
the labels. Additionally, p3 and p4 introduce some dispute regarding the 
third and the fourth buildings. Intuitively, the objective of the cluster 
ensemble problem is to find an integrated partitioning vector (c), which 
shares as much information as possible with the individual partitionings 

(pi), as indicated by a high ANMI score. However, even in this simple 
example the solution of the best combined partition is not trivial due to 
the fact that the number of clusters and each cluster’s interpretation 
vary significantly among the different clusterers. 

In this study, the cluster-based similarity partitioning approach 
(CSPA) [66] is adopted to solve the cluster ensemble problem. CSPA 
involves a two-step approach, in which: (1) a combined similarity matrix 
is constructed that summarizes all partitionings, and (2) the objects are 
re-clustered using the combined similarity matrix. First, the original 
partitioning of each clusterer (pi) can be represented as a binary simi
larity matrix where two buildings have a similarity of 1 if they belong to 
the same cluster and 0 otherwise. Subsequently, the combined similarity 
matrix Sn×n can be obtained by adding all the binary similarity matrices 
obtained from the r clusterers. The sij element of the combined similarity 
matrix represents the number of partitions in which buildings i and j 
belong to the same cluster. Fig. 2(a) illustrates the combined similarity 
matrix for the illustrative example. The elements sij in the combined 
similarity matrix can range between 0 and the number of clusterers (r =

4), where 0 (white) indicates that the corresponding buildings i and j are 
not clustered together in any of the partitionings, and 4 (black) indicates 
that buildings i and j are assigned to the same cluster based on all the 4 
partitionings. For example, buildings 1 and 2 are assigned to the same 
cluster based on all four partitionings p1, p2, p3, p4 , i.e., s12 = s21 = 4. 
On the other hand, buildings 2 and 3, belong to the same cluster based 
only one clusterer, hence, s23 = s32 = 1. 

After the combined similarity matrix S is obtained, the next step is to 
re-cluster the buildings based on S, without revisiting the data used to 
create the original partitions. Spectral clustering [38] is applied to re- 
cluster the buildings, where the optimal number of clusters was deter
mined by varying the number of clusters and selecting the number that 
yields the highest ANMI score. Spectral clustering is a well-known par
titioning method that relies on a similarity matrix between data points. 
The objective of the spectral clustering is to partition the data into k 
clusters, such that the cost of the weights in the similarity matrix be
tween the clusters is minimized. The spectral clustering approach is very 
efficient for small number of clusters, which is the case in this setting. 
Fig. 2 (b) shows the values of ANMI as a function of the number of 
clusters, where k = 3 results in the higher ANMI. The corresponding 
consensus partitioning of the six buildings for the illustrative example is 
c = (1, 1, 2, 2, 3, 3). 

In summary, the intra-clustering procedure described above involves 
applying an ensemble of different clustering algorithms to each building 
and each metric, and finding a partitioning that achieves the best 
consensus among the different clustering algorithms. The intra- 

clustering procedure results in four integrated partitioning vectors, cj =
(

cj
1, cj

2, ⋯, cj
n

)
, where j ∈ (WI, EI, WN, EN), and cj

i represents the label of 

the partitioning of building i based on metric j. The next step in the 
proposed approach is to group the buildings based on all four metrics. 

2.3.2. Metric-integrated inter-clustering 
Although individual intra-clustering is advantageous, the overall 

goal is to determine which buildings exhibit similar resource utilization 
patterns across water and energy intensity, and normalized water and 
energy consumption. Therefore, in the next step, buildings that behave 
similarly based on the all metrics are grouped into same meta-cluster. 
The main idea for grouping buildings into meta-clusters is based on 
consolidating and integrating the four partitioning vectors, cWI,cEI,cWN, 
and cEN, into a single partitioning, cM =

(
cM

1 , cM
2 , ⋯, cM

n
)
. 

As previously described, the integration of the partitions based on 
individual metrics and the determination of the meta-clusters can be cast 
as a cluster ensemble problem, in which the objective is to combine the 
multiple partitionings to achieve consensus among the different metrics, 
without accessing the underlying data used to create the original par
titions [66]. This problem can again be solved using the CSPA for cluster 
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ensemble. In the context of inter-clustering, the partition matrix can be 
formulated that summarizes the four different partitions according to 
each metric, i.e., P =

(
cWI, cEI, cWN, cEN)T. The corresponding combined 

similarity matrix Sn×n can be obtained from the four paritionings, where 
the sij element represents the number of metrics based on which build
ings i and j belong to the same cluster. Thus, the elements in the simi
larity matrix are bounded by 0, indicating that the two buildings do not 
belong to the same cluster in any metric, and the number of metrics (4), 
which suggests that the building pair belongs to the same cluster in all 
four metrics. 

Subsequently, with the similarity matrix as input, any clustering al
gorithm, such as the spectral clustering introduced in the previous sec
tion, can be applied to solve the inter-clustering problem. However, in 
this section, agglomerative hierarchical clustering (AHC) with complete 
linkage is chosen to perform inter-clustering on the buildings due to its 
capability of summarizing the entire hierarchical structure of the data
set. AHC starts by treating each building as a singleton cluster and then 
builds nested clusters by successively merging pairs of clusters until all 
buildings have been merged into a single cluster containing all buildings 
[75]. The outcome of AHC can be visualized using a dendrogram, i.e., a 
tree-like representation, which summarizes the nested clusters and the 
corresponding similarity levels. The advantage of using the AHC 
approach for finding meta-clusters is that it allows control of the gran
ularity of the meta-clusters based on the decision maker’s tolerance to 
the number of different intra-cluster labels. Furthermore, this approach 
avoids the need to use external evaluation indices, which are often not 
indicative of the decision-makers notion of good clustering [75]. The 
application of AHC for meta-clustering is illustrated as follows. 

Consider four different partitionings of the buildings resulted from 
the inter-clustering process based on the four metrics, i.e., cWI, cEI, cWN,

cEN, described in the previous section. For illustration purposes consider 
that cWI = (1, 1, 2, 2, 3, 3); cEI = (2, 2, 3, 3, 1, 1); cWN = (1, 1, 1, 2, 2, 2);

cEN = (1, 1, 2, 2, 2, 2). Fig. 3 shows the corresponding dendrogram for 
this example, where the y-axis demonstrates the number of different 
intra-cluster labels, and the x-axis lists building labels (note that the 
buildings are ordered by similarity). Fig. 3 illustrates that that buildings 
1 and 2, as well as buildings 5 and 6, belong to the same intra-cluster in 
all four partitions, i.e., the number of different intra-cluster labels equals 
zero, and thus are the first to be grouped into meta-clusters. Building 3 
and 4 have mixed labels based on the four metrics, hence their grouping 
will depend on the level of tolerance of the decision maker. Three po
tential cuts are also shown in Fig. 3: Cut 1 implies zero tolerance for 
different intra-cluster labels, thus resulting in four meta-clusters, 

{(1, 2), (5, 6), (3), (4) }; Cut 2 implies that at most one different intra- 
cluster label can be tolerated for buildings to be grouped into the 
same meta-cluster, thus yielding three meta-clusters, 
{(1, 2), (5, 6), (3, 4) }; and Cut 3 increases the tolerance to three labels, 
which then decreases the number of meta-clusters to two, 
{(1, 2), (3, 4, 5, 6) }. This approach generates an explicit tradeoff be
tween the number of meta-clusters and the level discord that the deci
sion maker is willing to tolerate. 

2.4. Prediction models 

After the buildings have been clustered based on their characteristic 
consumption patterns, the clustering was leveraged to predict daily 
building water and energy consumption using varying prediction tech
niques. The following three questions were explored in regards to the 
creation and evaluation of prediction models: (1) whether meta-cluster- 
specific models will provide a better prediction than a single overall 
model; (2) if low-resolution consumption data (e.g., from monthly 
billing) can provide comparable prediction performance to utilizing 
high resolution, continuous data; and, (3) if a linear parametric model 
will provide comparable performance to a non-parametric model. 

Fig. 2. CSPA for the illustrative example problem: (a) combined similarity matrix; (b) ANMI scores as a function of the number of clusters.  

Fig. 3. Inter-cluster dendrogram for the illustrative example with 
different cuts. 
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In order to determine whether an overall prediction model 
adequately describes usage patterns (i.e. one prediction model for all), 
or if multiple prediction models, segmented by clustered-buildings (i.e., 
distinct prediction model for each cluster), would increase the predic
tion accuracy, a linear regression model was created for each of the 
meta-clusters, as well as for all of the data. The prediction accuracy was 
then estimated and compared. An assessment of models based on low- 
resolution data verses high-resolution data, as raised in the second 
question, is important due to the two potential applications of prediction 
models, e.g., to detect anomalous behavior when measured water and 
energy consumption varies significantly from the predicted values [18], 
and to be used for planning and demand management [46]. In the first 
case, the specific building being monitored would require a meter to 
monitor day-to-day usage levels. In the second case, the buildings in 
question may not be equipped with a continuously-recording meter, and 
perhaps not yet built. Therefore, in all model formulations, two cases 
were considered, one assuming that the building had a meter continu
ously monitoring usage, in which the previous day’s and week’s usage 
data were used as inputs to the prediction models, and another, in which 
only monthly median consumption was considered, simulating the in
formation of a monthly consumption bill. To address the third question, 
least absolute shrinkage and selection operator (LASSO) regression [76] 
and bootstrap-aggregated decision trees (TBAG) were used to predict 
water and energy usage, providing a comparison between a linear 
parametric model and a non-parametric model [77,78]. 

For all models, the response variable (yi) is the daily water or energy 
demand at day t for a given building i, which is considered a function of a 
set of M predictors xi = (xi,1, ⋯, xi,M) that represent the characteristics of 
the building and the environmental conditions, such as building size and 
age, outdoor temperature and academic season. The considered features 
are summarized in Table 2. LASSO regression optimizes for model ac
curacy and sparsity [76] by minimizing the sum of the squared errors 
between the predicted and observed daily consumption and by mini
mizing the number of the estimation coefficients to prevent overfitting 
[79]. The objective function used by the LASSO algorithm is: 

minβ0β

(

1
2N

∑N
i=1(yi − β0 − xT

i β)
2

+λ
∑M

j=1
⃒
⃒βj

⃒
⃒

)

, where N is the number of 

observations, β0 and β are regression coefficients, scalar and a vector of 
length M, respectively, and the parameter λ controls the tradeoff be
tween model accuracy and sparsity. To tune λ, a range of values was 
generated by enumeration, and the value of λ that resulted in the min
imum mean squared error was selected. 

TBAG is an ensemble of R decision trees using bootstrap samples of 
the data, i.e., T1(X1),T2(X2),⋯,TR(XR), where Xi is a matrix containing 
the bootstrap sampling features. The results from all trees are then 
aggregated into a single model, i.e., TBAG(X) = 1

R
∑R

i=1Ti(Xi), which 
provides the final output as the unweighted average output of all trees. 

The advantage of regression trees compared to linear models is that 
instead of fitting the entire data set with a single model, closely related 
associated data are modeled separately. In addition, based on the suc
cessive partitioning of input data, regression tree models illuminate 
explanatory variables which have high importance on model outcomes 
[80]. TBAG has also been shown to reduce model over-fitting to the 
training data [81], resulting in better performance when tested on out- 
of-sample data. Non-parametric models typically comprise many hyper- 
parameters (e.g., number of trees and maximum tree depth), which 
makes tuning complicated. Herein, given the performance of the models, 
hyper-parameters remained constant. 

In summary, for water and energy, two LASSO models were devel
oped for individual building meta-clusters, and two for the entire data, 
with and without previous day and week consumption; and two TBAG 
models were developed for all the buildings with and without previous 
day and week consumption, the rest of the input parameters for all 
models were the same (i.e., six different models predicting the daily 
consumption (yi) of each building). 

2.4.1. Model evaluation 
In order to assess the performance of each model and select the best- 

performing model, three different error metrics were employed: coeffi
cient of variation of the root-mean-square error (CVRMSE), median 
normalized absolute residual (MNAR), and normalized mean bias error 
(NMBE). CVRMSE and NMBE are standard metrics used to assess pre
diction accuracy of building energy usage by the American Society of 
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and 
have been employed in many previous works for assessing model per
formance [82,83]. The MNAR is an error metric, which was crafted for 
this specific context, as a more robust version of the NMBE, as described 
below. 

The CVRMSE is a measure of the overall variation between measured 
and modeled timeseries data. The CVRMSE is calculated by taking the 
square root of the mean squared error (RMSE) between daily observed 
consumption (yi) and model prediction (ŷi), and divided by the mean of 
the measured data (y) and multiplied by 100 to be expressed as a non- 
dimensional quantity in (%). The CVRMSE is defined as (where n de
notes the number of observations) [82]: 

CVRMSE =
1
y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
(

yi − ŷi

)2

n

√
√
√
√
√

× 100(%)

Values of the CVRMSE can only be positive, where a lower value in
dicates a better model fit. 

The NMBE is a measure of the mean of the error associated with each 
predicted daily value, calculated as the sum of the difference between 
error between daily observed consumption and model prediction devi
ded by the sum of the daily observed consumption, and multiplied by 
100 to be expressed as a percentage (%). The NMBE is defined as [82]: 

NMBE =

∑
(yi − ŷi)∑

yi
× 100(%)

The values of the NMBE can be negative or positive. A positive value 
of NMBE indicates that overall the model overpredicts the observed 
values, and a negative value of NMBE indicates that overall the model 
underpredicts the observed values. As noted in previous literature, the 
value of the NMBE is subject to the cancelation effect, whereby the sum 
of positive and negative model errors reduce the overall value of the 
NMBE [83]. Therefore, in this study, NMBE metric is used to ensure 
adherence to the ASHRAE guidelines for energy prediction, but not to 
evaluate or compare model performance. 

The MNAR is introduced to provide a robust alternative to NMBE and 
compliment CVRMSE. The MNAR quantifies the median absolute residual 
of each data measured and predicted daily value, defined as: 

Table 2 
Input variables used for prediction models.  

Model Input Variable 
Type 

Description 

Previous day Continuous Daily consumption in the previous day 
Previous week Continuous Daily consumption in the previous week 
Monthly median Continuous Monthly median of consumption 
Average 

temperature 
Continuous Daily average temperature [85] 

Building area Continuous Total building area in square meters 
Class session Categorical Whether class is in session or not 
Day type Categorical Weekday or weekend 
Season Categorical Season of the year 
Use designation Categorical Building use designation (as originally 

assigned by UT facilities) 
Building name Categorical Building label 
Year built Discrete Year building originally built 
Number of floors Discrete Number of floors in building  
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MNAR = median

⎛

⎝|yi − ŷi|

yi

⎞

⎠ × 100(%)

Values of the MNAR can only be positive, where a lower value in
dicates a better model fit. Unlike the NMBE, the MNAR is not subject to 
the cancelation effect because the absolute value is applied to the dif
ference between observed and predicted value. In addition, both the 
NMBE and CVRMSE rely on taking the mean of model errors, which may 
be sensitive to outliers. The MNAR is more robust to outliers by quan
tifying the median model error instead of the mean. 

To ensure compliance with industry and research standards, the 
energy predictions from selected models were compared to ASHRAE 
guidelines. For monthly predictions, ASHRAE considers a model cali
brated if the CVRMSE is less than 15%, and the NMBE is within ± 5%. For 
hourly predictions, ASHRAE considers a model calibrated if the CVRMSE 
is less than 30%, and the NMBE is within ± 10%. Following the example 
of [84], the guidelines for hourly data were applied to the daily pre
diction values in this paper, since there is no ASHRAE guideline for daily 
predictions. The results will demonstrate that the developed prediction 
models outperform the hourly AHSRAE standards. Because of the noted 
cancelation effect which plagues the NMBE, the NMBE was utilized to 
check model accuracy against ASHRAE guidelines, but not to select the 
best prediction model. In summary, the CVRMSE and MNAR were used to 
assess and compare the accuracy of all models for predicting daily water 
and energy usage, and ASHRAE standards were used to benchmark 
performance of energy prediction models. 

3. Application 

The proposed clustering and demand prediction approaches were 
tested using the available water and energy consumption data of 70 
buildings on UT Austin campus. For the clustering analysis, data was 
used for all buildings during the year of 2015. The year of 2015 was used 
for the clustering analysis because one year is generally representative of 

the building’s behavior. For the prediction analysis, all of the available 
water usage was utilized, for which the availability varies between 2009 
and 2017, where 70% of the data was randomly selected for model 
training and 30% for testing. Overall, data from 70 buildings were 
analyzed, with a total of 183,976 datapoints for energy and 187,064 
datapoints for water usage. 

3.1. Characteristic pattern extraction 

Following the methods section, weekly patterns of daily consump
tions were first analyzed for four metrics, WI, EI, WN, and EN. Then, 
each weekly pattern was classified into six categories, based on the 
shape and magnitude of the weekly pattern, i.e. FLAT or CURVED, and 
HIGH, MEDIUM, or LOW, respectively. Fig. 4 shows a one-year times
eries of water (top) and electricity (bottom) use intensity for Brack
enridge Hall, a dormitory building, with each week color-coded based 
on the classification of the shape and magnitude of the pattern. Fig. 4 
shows that for the majority of the year, daily water intensity was 
measured between 4 and 8 l/m2, categorized as HIGH-FLAT, and HIGH- 
CURVED with the exception of mid-May to mid-August. Energy intensity 
remained relatively constant, with values between approximately 0.17 
and 0.20 kWh/m2, except for a decrease from about mid-May to mid- 
June, and an increase from August to September. It is hypothesized 
that the reduction in water intensity occurred due to the reduction in 
building occupancy, as many of the students vacate the dormitories for 
the summer. Similarly, large fluctuations in water intensity also 
occurred in mid-March and the end of November during the Spring and 
Thanksgiving breaks. Both water and energy intensity show a decrease 
during mid-March (which corresponds to the week of spring break and 
lower building occupancy). However, the major deviations in water 
consumption do not align with similar changes in energy consumption, 
an observation which will be further quantified and explored in the 
discussion of results. 

The weekly classifications of water and energy use intensity are 

Fig. 4. Timeseries of water and energy intensity for Brackenridge Hall dormitory. Weeks are color-coded based on the classification of shape and magnitude: LOW- 
FLAT (blue), LOW-CURVED (gray), MEDIUM-FLAT (green), MEDIUM-CURVED (aqua), HIGH-FLAT (orange), HIGH-CURVED (yellow). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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shown in Fig. 5. In the presented example, a contrast between water 
intensity and energy intensity is observed. While water intensity shows 
greater variability over the course of a year, energy intensity is classified 
as LOW-FLAT for all but six weeks during 2015. The variation in usage 
classifications between water and intensity implies the differences be
tween water and energy use drivers. In the case of the dormitory 
building examined in this example, both water and energy exhibit flat 
patterns, signifying that there is no significant variation between 
weekend and weekday consumption patterns. However, dormitory 
buildings were found to be higher users of water, but lower users of 
energy compared with other buildings on campus. 

In order to extract the characteristic weekly patterns that will be used 
for clustering, the median daily values among all of the weeks with the 
most frequent pattern in each building were computed. For example, 
HIGH-FLAT patterns were used to compute the characteristic weekly WI 
pattern for the Brackenridge Hall, as shown in Fig. 6. Similarly, median 
daily values among all of the weeks with the LOW-FLAT patterns were 
computed and used as the characteristic weekly EI pattern. 

3.2. Water-energy clustering 

After the characteristic weekly patterns were extracted for each 
metric and building, the buildings were intra-clustered based on each 
individual metric (i.e., WI, EI, WN, EN), using the robust ensemble 
clustering method, as described in Section 2.3.1. For each metric, seven 
clusterers were first constructed: k-means with k = 2 and k = 3, k- 
medoids with k = 2 and k = 3, and agglomerative hierarchical clus
tering with ward, average, and complete linkage with k = 3. Euclidian 
distance was used to compute the similarity between weekly patterns in 
all clustering algorithms. An example demonstrating the partitionings 
for EN from these seven individual clusterers, i.e., the partition matrix 
P7×70, are summarized in Fig. 7. Each row represents the partitioning 
from one clusterer, and each column characterizes the cluster labels for 
one building obtained from different clusterers. Buildings belonging to 
the same cluster are shaded with the same color. Fig. 7 demonstrates 
that some buildings are consistently clustered into the same cluster by 
the different clusterers, while others are grouped differently among the 
clusterers. Similar results were obtained for all metrics. The next step is 
to integrate the results of the individual clusterers into a single partition 
that agrees the most between all of the clusterers and achieves the 
highest ANMI score. 

Subsequently, spectral clustering was applied to integrate the indi
vidual partitionings into an ensemble partitioning. The ANMI score was 
evaluated for different number of clusters, as shown in Fig. 8, where (a) 
indicates that for WI and EI, the optimal number of clusters is 3, and (b) 
shows that the optimal ANMI is achieved with 2 clusters for NW and NE. 
It is observed that the optimal consensus for NW and NE are achieved 
with only 2 clusters, although five out of the seven clusterers were 
defined with k = 3. The reduction in number of clusters in consensus 
partitionings indicates that the weekly patterns of NW and NE cannot be 
meaningfully partitioned into three clusters, and ensemble cluster 

combined with ANMI score can automatically reveal the most appro
priate number of clusters and the corresponding partitionings. 

Finally, the results of intra-clustering of buildings and the charac
teristic patterns are shown in Fig. 9. Thick lines represent the medoid of 
a particular cluster, demonstrating the typical pattern of a cluster, and 
thin lines of similar color represent individual buildings that belong to 
the same cluster. 

For the purpose of discussion for the remainder of this paper, the 
clusters in each metric are referred to in ascending order. For example, 
for WN, buildings in cluster WN1 (shown in orange in Fig. 9) maintain a 
low consumption throughout the week, buildings in cluster WN2 (shown 
in blue in Fig. 9) exhibit high consumption during the weekdays and 
lower consumption during the weekends, and metrics with 3 clusters, 
EI3 and WI3, are shown in green in Fig. 9. 

Having clustered the buildings based on the individual metrics, i.e., 
WN, WI, EN, and EI, the next step entails grouping the buildings across 
all performance metrics into meta-clusters, cM =

(
cM

1 , cM
2 , ⋯, cM

n
)

using 
AHC, as described in Section 2.3.2. The resulting dendrogram is shown 
in Fig. 10, where the x-axis represents the buildings and the y-axis 
represents the number of different intra-cluster labels. Four possible 
paritionings, visualized by the corresponding cuts of the dendrogram, 
are attained: Cut 1 indicates that all intra-cluster labels achieve com
plete consensus, thus resulting in 21 meta-clusters; Cut 2 indicates that 
at most one different intra-cluster label can be tolerated for buildings 
grouped into the same meta-cluster, thus identifying 10 meta-clusters; 
Cut 3 increases the tolerance to two different intra-cluster labels, 
which then decreases the number of meta-clusters to 6; and Cut 4 further 
raises the tolerance to three different intra-cluster labels, yielding 3 
meta-clusters. Either of these meta-clusters may be preferred by the 
decision maker depending on the specific task. Cut 2 with 10 meta- 
clusters, as denoted by different colors, is selected to perform the 
following analysis. 

Selected results of the meta-clustering are illustrated in Fig. 11, 
demonstrating how buildings belonging to MC2 (highlighted in yellow) 
behave across all four metrics. Fig. 11 displays similar information as 
Fig. 9, except that the buildings in MC2 are highlighted to show their 
behavior among all four metrics. In this example, the majority of 
buildings in MC2 belong to the lowest cluster of metrics, i.e., WN1, WI1, 
EN1, and EI1. Similar figures depicting all other meta-clusters are found 
in Figures S1-S9 in the SI. 

The results of the inter-clustering and the distribution of energy and 
water consumption patterns exhibited by buildings in each meta-cluster 
are summarized in Table 3. The values in Table 3 show the size of each 
meta-cluster and the fraction of buildings in a specific inter-cluster 
relative to the size of the meta-cluster, i.e., individual cluster purities 
[42]. For example, all 14 buildings in MC2 were originally classified into 
clusters WN1, EN1, and WI1. For EI, 9 of 14 buildings were classified to 
cluster EI1 and 5 of 14 buildings were classified to cluster EI2. The in
dividual cluster purities can then be used to evaluate the overall purity 
of the meta-clustering by computing the weighted average of the indi
vidual purities [42]. The overall purity of the resulting 10 meta-clusters 

Fig. 5. Classification of weekly water (left) and energy (right) intensity patterns for Brackenridge Hall dormitory. Weeks are color-coded based on the classification 
of shape and magnitude: LOW-FLAT (blue), LOW-CURVED (gray), MEDIUM-FLAT (green), MEDIUM-CURVED (aqua), HIGH-FLAT (orange), HIGH-CURVED (yellow). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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is 0.91, compared with 0.84 and 1.00, with 6 and 21 meta-clusters, 
respectively. 

The distribution of energy and water consumption intensity and 
patterns exhibited by buildings in each meta-cluster are visualized in 
Fig. 12 (a) and (b). In Fig. 12 (a), the x- and y-axis are divided into three 
regions, each of which represents an intra-cluster of WI and EI, respec
tively. Similarly, the axes in Fig. 12 (b) are divided into two regions 
corresponding to the two intra-clusters of WN and EN. The colored 
markers represent the meta-clusters (with the number representing the 
meta-cluster label), the locations of the markers represent the corre
sponding intra-cluster partitioning, and the size of the markers reflect 
the size of the meta-clusters, i.e., the number of buildings in the meta- 
cluster. For example, meta-cluster 1, containing 22 buildings, is repre
sented by one orange circle located in the lower-left phase in Fig. 12 (a), 
revealing that all buildings in meta-cluster 1 are classified into WI1 and 
EI1. Fig. 12 (b), on the other hand, shows that 6 out of the 22 buildings 

are located in the WN2 -EN1 quadrant, while the other 16 buildings 
belong to the WN2-EN2 quadrant, which indicates heterogeneity in EN 
in meta-cluster 1. Fig. 12 demonstrates that water and energy con
sumption trends, in terms of shape and intensity, vary significantly 
across buildings and have mixed correlation in terms of water and en
ergy usage. For example, some buildings are high water and energy 
users, while others are high water users but low energy users. These 
mixed trends reveal apparent dissimilarities between utilization of water 
and energy resources in heterogeneous buildings. 

3.3. Water-energy demand prediction 

Next, LASSO, and TBAG were utilized in order to determine the most 
appropriate model for predicting daily consumption. As described in 
Section 2.4, LASSO models were developed for each meta-cluster as well 
as a single overall model including all the buildings; TBAG models that 

Fig. 6. Frequent (thin lines) and characteristic (thick line) weekly patterns for water intensity (left) and energy intensity (right) of Brackenridge Hall dormitory. 
Weeks are color-coded based on the classification of shape and magnitude (shown in Fig. 5): HIGH-FLAT (orange) and LOW-FLAT (blue). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Clustering results from seven clusterers for normalized energy. Buildings belonging to the same cluster are shaded with the same color. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. ANMI score of robust intra-clustering at different number of ensemble clusters.  
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included all the buildings were developed. For each model, two sce
narios were created, with and without the inclusion of the water or 
energy usage from the previous day and previous week. The two sce
narios enable the evaluation of the compromise in prediction accuracy 
as a function of data availability. As noted previously, the motivation 
behind creating models with and without the information about recent 
water and energy usage is that this daily and weekly usage may not be 
readily available for many of the existing buildings that employ me
chanical meters, which typically provide only a monthly reading having 
to be read manually by utility personnel. 

Model errors were calculated for each building, and the median 
model error among buildings in the same meta-cluster was calculated. A 

summary of the results of the prediction models is shown in Tables 4 and 
5. Table 4 shows the median cross-validated root mean squared error 
(CVRMSE) and median normalized absolute residual (MNAR) between 
the observed and predicted energy usage for each model for meta-cluster 
2 for training and testing data. As seen in Table 4, the TBAG models 
outperformed the LASSO models for energy prediction in meta-cluster 2 
with and without including energy usage in previous day and week. 
TBAG, with the inclusion of previous data, performs similarly for energy 
prediction across all other meta-clusters, with values of CVRMSE and 
MNAR ranging between 3.9% and 10.8%, and 1.8% to 4.4%, respec
tively. The TBAG models also outperformed LASSO models for water 
prediction, however with higher modeling error compared with 
modeling error for energy prediction. Error values for water prediction, 
as seen in Table S2, of CVRMSE and MNAR ranged between 23.3% and 
40.0%, and 11.9% to 23.3%, respectively, among test datasets, for the 
TBAG model with the inclusion of previous data. A plausible explanation 
for the decreased model performance for water consumption compared 
to energy consumption is that there is more variability in daily water 
than energy consumption, leading to decreased model performance. 

Table 5 summarizes the performance of all six models among all 
meta-clusters, by showing the rank of model performance for each meta- 
cluster, based on the number of times a model underperformed 
compared to all other models based on CVRMSE and MNAR. Low rankings 
represent better performing models and high rankings represent worse 
performing models. 

Based on Table 5 and Tables S1 and S2 in the SI, it is observed that 
the TBAG model with the inclusion lags is the most accurate model, with 
the lowest values of CVRMSE and MNAR across all meta-clusters for both 
water and energy prediction. TBAG model also outperforms LASSO 
models even when previous day’s and week’s usage is not included as 

Fig. 9. Results of inter-clustering for all buildings and each metric. Thick lines represent the centroid of a particular cluster and thin lines of similar color represent 
individual building that were classified into the same cluster. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 10. Inter-clustering dendrogram with potential cuts.  
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input variables. When comparing the prediction accuracy of energy 
across all buildings, the median value of CVRMSE for the TBAG model 
with previous information was 5.7% (for the test dataset) and increased 
to 7.4% when previous usage was not included. For water prediction, the 
median value of CVRMSE for the TBAG model with previous information 
was 28.7%, and increased to 34.1% when previous usage was not 
included. Therefore, depending on the intended use of prediction 
models, models without an input from continuous-recording meters may 
be suitable. As seen from Table S2 in the SI, all energy prediction models 
meet the ASHRAE guidelines of CVRMSE less than 30%. For TBAG 
models, NMBE values for each building range between −0.59% and 
0.09% for models with previous data, and −0.72% and 0.36% without, 
thus, meeting the NMBE standards of ± 10% for energy prediction 

models. 

4. Discussion 

Next, the composition of building use designations within each meta- 
cluster is analyzed. Fig. 13 shows the distribution of building types (as 
assigned by UT utilities, i.e., CA, H, OA, PA, RL) among each meta- 
cluster. 

Information presented in Figs. 12, 13 and S1-S9 in the SI are useful 
tools to identify buildings for which efficiencies could be realized. Meta- 
clusters 5 and 6, which contain all of the university housing buildings, 
exhibit normalized usage patterns with little variability between 
weekdays and weekends consumption and high water use intensity (as 

Fig. 11. Characteristic patterns of buildings belonging to MC2 are highlighted in yellow. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 3 
Summary of meta-clusters  

Metacluster Number of Buildings Proportion of Buildings Within Each Cluster 

Normalized Water Consumption Normalized Energy Consumption Water Intensity Energy Intensity 

WN1 WN2 EN1 EN2 WI1 WI2 WI3 EI1 EI2 EI3 

MC1 22 0.0 1.0 0.3 0.7 1.0 0.0 0.0 1.0 0.0 0.0 
MC2 14 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.6 0.4 0.0 
MC3 6 0.0 1.0 0.5 0.5 1.0 0.0 0.0 0.0 1.0 0.0 
MC4 5 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.2 0.4 0.4 
MC5 5 0.0 1.0 0.0 1.0 0.0 0.2 0.8 1.0 0.0 0.0 
MC6 4 0.5 0.5 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 
MC7 4 0.0 1.0 0.0 1.0 0.0 0.8+ 0.3+ 0.0 0.0 1.0 
MC8 4 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.8+ 0.0 0.3+

MC9 3 0.7 0.3 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 
MC10 3 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.7 0.3 0.0  

+ Sum of fractions equals one, but not apparent with 2 significant digits. 
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shown in Figures S4 and S5 in the SI). In this case, it can be inferred that 
that the main drivers in a residential setting (e.g., showers, toilets, 
faucets), differentiate multi-family residential buildings from the non- 
residential buildings, which is evident from the results as dormitory 
buildings do not appear in any of the other meta-clusters. Moreover, 
because buildings in the housing category exhibit high water use in
tensity, housing buildings would make ideal candidates for water effi
ciency upgrades and DSM policies. In terms of energy, dormitory 
buildings are among the lowest energy users, suggesting that dormitory 
buildings are not at high priority for energy efficiency upgrades. 

Except for meta-cluster 6, all meta-clusters shown contain more than 
one building use designation, signifying that building use designation 
alone is not appropriate to characterize water and energy consumption 
patterns. To demonstrate this point, the usage patterns of four different 
buildings, each of which have the same building use designation, but 
different water and energy consumption patterns, were examined. 

Fig. 14 highlights the consumption patterns of four different classroom 
and academic (CA) buildings that were clustered into different meta- 
clusters. All buildings exhibit demand variability between weekday 
and weekend consumption. However, differences exist among the 
buildings in each metric. For example, when comparing the College of 
Nursing (blue in Fig. 14), to Sid Richardson Hall (green in Fig. 14), it is 
observed that the buildings exhibit comparable water use intensity, but 
the College of Nursing exhibits considerably higher energy intensity 
than Sid Richardson Hall. Additionally, it is observed that a reverse 
trend exists in the water and energy normalized consumption patterns, 
indicating that water consumption in Sid Richardson Hall is typically 
low throughout the year (compared to its overall annual consumption 
range), while the energy demand is typically high. The opposite is 
observed for the College of Nursing with characteristically high water 
consumption and low energy consumption throughout the year. Jester 
Hall, which contains many offices for university programs, as well as a 
large dining hall that serves as a major hub for student meals, is the 
highest consumer across all performance metrics (orange in Fig. 14). It is 
inferred that due to the water and energy demands for large amounts of 
food preparation, as well as the seasonal variation that mimics the water 
demand patterns observed in housing buildings (i.e., decreases in 
resource consumption during academic breaks), Jester Hall behaves 
differently from other CA buildings. Although this case is specific to a 

Fig. 12. Distribution of energy and water consumption intensity (a) and patterns (b). The size and the number of each marker represent the size and the label of each 
meta-cluster (Table 3), respectively. 

Table 4 
Summary of model performance for energy prediction in meta-cluster 2.  

Data Used Model 
Type 

Training Testing 

CVRMSE 

% 
MNAR 
% 

CVRMSE 

% 
MNAR 
% 

Cluster- 
Specific 

LASSO+ 7.5 4.2 7.2 4.3 
LASSO− 12.7 6.2 10.0 6.6 

Overall LASSO+ 12.0 5.4 8.6 5.6 
TBAG+ 5.0 2.4 5.3 2.6 

Overall LASSO− 15.0 6.9 11.7 7.3 
TBAG− 6.4 3.1 6.8 3.8 

+with and − without including usage of previous day and week. 

Table 5 
Aggregated ranking of each model, from best (rank = 1) to worst (rank = 6).  

Data Used Model 
Type 

Water Energy 

CVRMSE 

% 
MNAR 
% 

CVRMSE 

% 
MNAR 
% 

Cluster- 
Specific 

LASSO+ 3 3 2 3 
LASSO− 5 4 5 5 

Overall LASSO+ 4 5 4 4 
TBAG+ 1 1 1 1 

Overall LASSO− 6 6 6 6 
TBAG− 2 2 3 2 

+ with and − without including usage of previous day and week. 

Fig. 13. Composition of each meta-cluster by building use designation.  
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university setting, the observation of Jester Hall exhibiting high water 
and energy consumption is indicative of how a commercial office 
building with foodservice may behave. 

While insights into building behavior are drawn from the clustering 
analysis, modeling of building performance yields insights into the effect 
of model inputs, and the importance of including a continuously- 
recording meter for demand prediction. Based on model performance, 
the relative effect of each independent variable on water and energy 
consumption prediction is analyzed. Because the TBAG model was the 
most accurate in predicting water and energy consumption, the dis
cussion of important model variables is limited to TBAG models. The 
variable importance is quantified using the out-of-bag predictor 
importance, which is computed by permutating the observations of each 
independent variable, and determining the effect on the model results 
[78]. In essence, the out-of-bag predictor importance functions as a 
sensitivity test to determine how sensitive the overall model is to each 
variable. If a variable is important, then permutating that variable 
should have a relatively large effect on model performance, whereas 
permuting variables with little importance would have a small impact 
on model performance. 

Fig. 15 shows the relative importance input variables, including 
building features (use designation, year built, number of floors, area) 
and temporal features (previous day and week consumption, tempera
ture, monthly median consumption, class session, and day type) used in 
TBAG models for water and energy. Specifically, Fig. 15 displays the out- 
of-bag predictor index for each independent variable used as a model 
input for four cases: predicting water and energy, with and without the 
inclusion of previous consumption data. Overall, building features were 
less important compared to the temporal features for predicting con
sumption levels. It is observed that the type of day (i.e., weekday or 
weekend) is the most important explanatory variable for predicting 

water demand regardless of the model. Class session, season, average 
daily temperature, and monthly median consumption are the consecu
tive important explanatory variables in the models that do not rely on 
previous observations from continuously-recording meters. These re
sults are expected as these variables imply water consumption, e.g., 
higher water consumption is expected on a weekday during a semester 

Fig. 14. Weekly patterns of four different CA buildings: College of Nursing (blue), Jester Hall (orange), Sid Richardson Hall (green), William Hearst Building 
(yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 15. Variable importance for predicting water and energy demand using 
the TBAG models. + with and − without including usage of previous day 
and week. 
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compared with a weekend during summer break. Previous day con
sumption, daily temperature, previous week and month consumption as 
well as class session and season were the consecutive explanatory var
iables in models that considered data available from continuously- 
recording meters. In general, observations made regarding the impor
tant variables for water consumption can be made for energy con
sumption. Noteworthy is that the importance of day type, monthly 
consumption, daily temperature, and season increase for energy con
sumption when previous data are not included. 

For both water and energy predictions, results suggest that general 
building information, e.g., use designation, year built, number of floors, 
and area, are all among the least important variables when predicting 
consumption, which is consistent with the results shown previously in 
Fig. 13. The lower importance of variables related to general building 
information supports the assertion that this information should not be 
the sole basis of benchmarking, and other characteristics should be 
considered for categorizing buildings. Notably, the building features 
used in this study represent lumped building characteristics and not 
detailed information (e.g., number and type of water fixtures, efficiency 
of boilers, thermal transmission and resistance of buildings, etc.). In
clusion of such detailed information will improve prediction accuracy, 
but is significantly more intensive in terms of data collection, especially 
for large and multiple number of buildings. The variables that have a 
high influence on prediction models, such as day, class session, season, 
average daily temperature, and monthly consumption, provide infor
mation on the main drivers of consumption for a specific group of 
buildings. Characterizing how these variables affect demand and how 
specific building characteristics relate to these connections is crucial to 
understanding water and energy demand in urban setting. When specific 
building characteristics can be found, a better means for characteriza
tion and benchmarking can be developed without the use of daily or 
monthly water and energy data. Furthermore, planned buildings can be 
characterized into clusters and accounted for in DSM policies. 

Finally, typical building water and energy consumption values 
published by the United States Energy Information Administration 
(USEIA) were reviewed to compare national consumption benchmarks 
to the building consumption values observed in this study [64–65]. 
Based on the USEIA surveys, mean daily water intensities among US 
buildings in different sectors range from 0.38 to 5.52 l/m2. In this study, 
the mean daily water intensities of the different buildings range from 
0.52 to 4.35 l/m2, thus the buildings included in this study are repre
sentative of the large buildings surveyed by USEIA, in terms of water 
intensities. Among the different buildings, housing are the buildings 
with the highest water intensities, which are concentrated in meta- 
clusters 5 and 6, with water intensities comparable with the lodging 
sector, as reported by the USEIA. The rest of the buildings exhibit lower 
and mixed trends in terms of water intensity. Similar conclusions can be 
made regarding the applicability of buildings analyzed in this paper for 
energy intensity. The range of mean daily energy use intensities 
observed in this study is 0.22 to 0.87 kWh/m2, compared to 0.19 to 0.91 
kWh/m2 reported by USEIA. Unlike with water intensity, housing have 
the lowest energy intensity (see Fig. 12), and the highest energy in
tensity buildings belong to meta-cluster 7 with a mix of research labs, 
classrooms and academics buildings. The energy intensity of the rest of 
buildings studied here was below 0.54 kWh/m2. 

5. Conclusions 

Water and energy utilities are increasingly collecting vast amounts of 
data regarding user consumption, however the data must be analyzed in 
order to deliver insights and actionable information to the utility’s 
managers. In the context of the water-energy nexus in urban environ
ments, this work addressed current gaps in the literature revealing 
apparent dissimilarities between utilization of water and energy re
sources for heterogeneous buildings. The results of this study highlight 
the value of data-driven modeling for revealing meaningful insights and 

identifying emerging and/or unusual trends to facilitate multi-utility 
management. 

Specifically, the clustering analysis performed in this work revealed 
that water and energy consumption patterns of heterogeneous buildings 
are not uniquely characterized by general building characteristics and 
that other specific building characteristics need to be explored. Analysis 
of the predictive models showed that an overall non-parametric model 
provides better predictions for water and energy compared with para
metric models. Furthermore, while the non-parametric model performs 
best with high resolution, continuous data, the model also produces 
acceptable results with low-resolution consumption data, typically 
received from monthly billing data. The insights from this study have 
multiple implications. First, this study provides a new method to group 
buildings across water and energy consumption patterns. This infor
mation is valuable to benchmark buildings’ performance and provide a 
meaningful measure of comparison as well as a measure for achieving 
targeted performance and identifying buildings that are candidates for 
water and/or energy efficiency upgrades. Furthermore, the data-driven 
prediction model could be used to forecast daily consumption levels for 
buildings that do not have continuous consumption data available and 
could facilitate water and energy utilities to update their demand fore
casting models and detect abnormal technical (e.g., meters malfunc
tioning) and physical (e.g., leaks) events. 

This paper provides a foundation upon which additional inquiries 
should be conducted. Although it was found that the buildings included 
in this study classify into one of 10 meta-clusters, exploring the drivers, 
which determine the classification of each building, was beyond the 
scope of this paper. Future work should further explore additional non- 
building features (e.g., occupancy, activity, gender) that would differ
entiate buildings from each other, following similar approaches applied 
to residential buildings [59,23,25]. Investigations into this aspect could 
provide means for classifying buildings without water and energy data 
and help predict changes in overall water and energy demand with 
future development. Another direction for future work should explore 
the effects of seasonality on meta-cluster composition. By stratifying the 
times for which buildings are classified (e.g., monthly instead of yearly), 
time-specific meta-clusters could inform resource consumption based on 
more granular timescales, thus generating dynamic clusters of buildings. 
Then by continuously analyzing buildings’ classifications, temporal 
changes in building’s water and energy behaviors can be detected and 
further investigated. 

As the threat of climate change grows alongside a continual increase 
in urban population, the need to ensure access to water and energy re
sources becomes more crucial. Overall, the methods outlined in this 
study provide another step towards better water and energy manage
ment techniques, which can then be used to build greater resiliency 
within urban areas in preparation for future changes in population and 
climate. 
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