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HIGHLIGHTS

o Buildings with similar water-energy usage and intensity were identified and clustered.

e Analysis revealed heterogeneity in water and energy consumption patterns of buildings.
e Benchmarking buildings provided a measure of comparison for multi-utility management.
e Data-driven modeling revealed meaningful insights into urban water-energy nexus.
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As the threat of climate change grows alongside a continual increase in urban population, the need to ensure
access to water and energy resources becomes more crucial. In the context of the water-energy nexus in urban
environments, this work addresses current gaps in understanding of coupled water and energy demand patterns
and reveals apparent dissimilarities between utilization of water and energy resources for heterogeneous
buildings. This study proposes a data-driven approach to identify fundamental water and energy demand pro-
files, cluster buildings into groups exhibiting similar water and energy use, and predict their demand. The
clustering problem was cast as a two-stage cluster ensemble problem, in which several clustering methods with
different settings were employed, and then the results obtained from partial view of the data were combined to
achieve consensus among the partitionings. The influential drivers for water and energy consumption were
identified, parametric and non-parametric prediction models were developed and compared, utilizing high and
low temporal data resolution. The clustering analysis performed in this work revealed that water and energy
consumption patterns of heterogeneous buildings are not exclusively characterized by general building char-
acteristics. Analysis of the predictive models showed that an overall non-parametric model provides better
predictions for water and energy compared with parametric models and that models with high and low data
resolution provide comparable demand predictions. The results of this study highlight the value of data-driven
modeling for revealing meaningful insights into usage patterns and benchmarking buildings’ performance to
provide a meaningful measure of comparison to facilitate multi-utility management. Overall, the methods out-
lined in this study provide another step towards building greater resiliency within urban areas in preparation for
future changes in population and climate.

1. Introduction

Information about consumers’ demand for water and energy is
becoming increasingly available, detailed, and accurate due to the
widespread utilization of high-resolution water and energy meters [1].
Meters collecting and transmitting consumption measurements on a
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daily, hourly or sub-hourly resolution, generate data, which have
extensive uses for management of water and energy resources, including
understanding patterns of consumer behavior, detecting abnormal
events, and creating demand prediction models [2,3]. Insights into
trends in consumer behavior derived from high-resolution water and
electricity consumption data are used to inform planning, pricing
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mechanisms, and conservation strategies [4,5,6,7]. With growing pop-
ulations in urban areas, and arid conditions that are being exacerbated
by climate change, water and energy demands must be sustained at a
level that can be satisfied by the projected level of production.

In order to achieve the goal of decreased consumer water and energy
demands, high-resolution consumption data is instrumental in the
design and implementation of demand-side management policies
(DSM), which allows policymakers to understand consumer behavior
and design policies for incentivizing efficient resource consumption [8].
Policies could take the form of increasing technological efficiencies as
well as promoting behavioral shifts in building occupants [9]. In addi-
tion, continuous monitoring of water demand has been applied to the
detection of irregular usage patterns and leaks along with the modeling
of consumer demand [10,11,12,13]. Similarly, electricity meter data is
used for demand disaggregation, event detection as well as privacy
hedging [14,15,16,17]. Furthermore, weekly and daily consumption
patterns can be used for infrastructure planning and expansion. For
water systems, timeseries data of consumer consumption are used to
obtain accurate information about peak and average demands, which
are key for infrastructure sizing (e.g., storage and conveyance capacity)
[18,11].

Although typically addressed separately, the majority of previous
works related to water and energy consumption data have primarily
focused on: (1) extracting characteristic and common usage patterns
across end-users using various timeseries clustering techniques (e.g.,
[19,20,14]); (2) identifying explanatory and influential variables char-
acterizing end-uses and end-users behavior (e.g., [21,22,23,24,25]); and
(3) creating demand prediction and event detection models using
various parametric and non-parametric techniques (e.g., [26,27]). The
explosion of previous works utilizing the available information from
advanced meters is also evident from the several recently published
review papers in the water and energy sectors [28,29,30,31,32,33].

There is an abundance of different clustering approaches that can be
applied to analyze timeseries data of building water and energy con-
sumption, e.g., k-means [34], k-medoids [35], agglomerative hierar-
chical [36], self-organizing map [37], spectral clustering [38], and
various density-based methods [39,40,41]. The challenge in selecting
the most appropriate clustering approach is mainly due to the fact that
there are no ground-truth labels for the appropriate clusters. As such,
only internal performance evaluation criteria, which are based on the
information intrinsic to the data alone, can be used [42]. Often times,
this leads to the application of multiple clustering approaches, requiring
meticulous and non-trivial parameter tuning, often resulting with no
clear advantage of one approach over the other. Ultimately, despite the
large body of works, there are no standards for application of cluster
analysis for pattern extraction from consumption data in terms of al-
gorithm selection, parameter tuning, number of clusters, and data size
[19,43,44].

For demand prediction, parametric and non-parametric models are
commonly used [45,46]. Parametric models involve model selection and
parameterization, such as a linear, exponential, or polynomial regres-
sion. Common non-parametric models include classification and
regression trees, artificial neural networks, and random forest
[47,48,49,50,51]. Parametric models are advantageous because of
model simplicity and interpretability compared with non-parametric
models [49]. In non-parametric models, the fundamental structure of
the model is determined by the underlying data, which might not be
captured by the parametric models. Not only are there many different
types of non-parametric models available, but even among the same
class of models, the choices made during model implementation, such as
the model structure, hyper parameters, loss function, and cross-
validation metric affect model performance and prediction accuracy.
In addition, model selection depends on the specific application as well
as the quality, resolution, type of data available, and the selected fea-
tures. Similar to clustering, due to the high variability in drivers
affecting model performance, there is no consensus on the most
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appropriate modeling approach for water and energy timeseries pre-
diction. While some works demonstrated that neural networks out-
performed multiple linear regression for predicting peak weekly water
demand [52], others showed that multiple linear regression, decision
trees, and neural network models were comparable for predicting
weekly energy consumption [49]. Thus, suggesting that case-specific
conditions dictate modeling choice and there is no “one size fits all”
model.

The significance of the water-energy nexus has long been recognized
and has been studied through multiple lenses, addressing considerations
related to policy and water-energy production at regional and national
scales [53,54,55,56]. Coupled analysis of water and energy consump-
tion is advantageous, as it provides additional insights to support con-
servation strategies, design targeted pricing mechanisms, improve
performance, or incentivize users to conserve resources [57,1,58]. Un-
like previous examples, in the context of the water-energy nexus in
urban environments, joint water and energy consumption profiles and
demand patterns has not been fully explored.

Among the reasons for disjoint analysis of water and energy trends is
the scarcity of spatiotemporally-resolved synchronous water and energy
data, as multiple utility service providers are responsible for data
collection, management, and ownership [1]. Noticeable exceptions
include recent works by [59,57,60]. The authors in [59] investigated
water and energy consumption usage patterns and explanatory variables
for over 1000 residential users, where 18 unique water and energy usage
patterns were identified, with factors including swimming pool or/and a
hot tub explaining high water and energy use. The main determinants of
water and electricity demand profiles were identified in order to enable
targeted demand management recommendations for each user profile.
In [60], a classification approach was proposed for identifying water
usages of residential users by disaggregating coincident water and
electricity data. Results showed improvement in water use classification
of clothes washer, dishwasher, and shower events when both water and
energy data were included in the analysis [60]. In [57,1], the authors
propose an integrated data collection infrastructure, in which utilities
collect and analyze building water, electricity, and gas consumption
contemporaneously. The proposed benefits of the integrated system
include the ability to segment end-users by consumption patterns, and
enable real-time and customized conservation targets for individual
utility customers.

In urban environments, with the exception of hot-water consumption
[61], the drivers for water and energy consumption are fundamentally
different, and therefore, efficiency in water consumption does not imply
efficiency in energy consumption, and vice versa. Intuitively, building
features such as effective insulation, strategically-placed windows,
efficient heating, ventilation, and air conditioning systems would make
a building more energy efficient, yet would have no effect on water
consumption. Conversely, buildings, which exhibit low-flow plumbing
fixtures, automatic water shut-offs at sinks, and leak detection capabil-
ities would have no effect on energy consumption. Similar to the intui-
tion on building features, occupant decisions, which have been shown to
have an important impact on building energy efficiency, do not neces-
sarily translate to water efficiency [62]. Therefore, given the global
stresses in the availability of water and energy resources, and the need to
decrease consumption, data-driven management strategies focusing on
water and energy consumption are a necessary and effective tool to
achieve efficiencies in both resources [57,58].

In light of the scarce prior research, gaps remain in the analysis and
understanding of coupled water and energy demand patterns in the
urban environment. First, much of the literature on characterizing,
clustering, and predicting water consumption patterns revolves around
residential users, which do not account for a large portion of water users.
In Texas, for example, non-residential users (e.g., commercial, hospitals)
account for over half of all water consumed [30,63]. Because of the high
degree of heterogeneity among non-residential users, insights that apply
specifically to single-family residences do not necessarily apply to non-
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residential buildings and multi-family buildings. Second, only a few
works have been proposed to characterize the joint water-energy con-
sumption patterns [59,60]. However, the effectiveness of demand
management strategies aiming at reducing resource consumption of the
end-users strongly depends on the understanding of the drivers affecting
water and energy consumption patterns. In this context, this study ex-
plores the following questions: (1) are there apparent dissimilarities
between utilization of water and energy resources for heterogeneous
buildings? (2) if there are dissimilarities in water and energy utilization,
can these dissimilarities be captured by general building characteristics?
(3) to what extent low-resolution consumption data can provide com-
parable prediction performance to utilizing high-resolution, continuous
data? and (4) to what extent buildings studied in this work are repre-
sentative of the national consumption benchmarks for water and energy
[64-65]?

To address the research questions, this study proposes a data-driven
approach to identify fundamental water and energy demand profiles,
cluster buildings into groups exhibiting similar water and energy use,
and predict their demand. To overcome the abundance of clustering
methods and improve robustness, instead of choosing a single clustering
method, several methods were employed, and their results were inte-
grated to maximize the average mutual information [66]. Similarly, for
prediction, parametric and non-parametric models were developed and
their performance was compared and benchmarked against common
performance standards. The proposed approach includes three main
steps: (1) creating characteristic weekly water and energy consumption
profiles, (2) identifying characteristic consumption patterns and cluster
buildings exhibiting similar water- and energy-use shape and intensity,
and (3) identifying influential drivers for water and energy consumption
and compare prediction accuracy of parametric and non-parametric
prediction models targeting different building categories and different
resolutions of available consumption data. The applications of the pro-
posed approach can be useful for building managers to assess efficiency
of building operations, and for demand planners at water and energy
utilities to predict future demand requirements.

2. Methods

The proposed approach consists of three main phases. First, char-
acteristic weekly usage patterns for water and energy were identified.
Second, the different buildings were clustered into building groups with
similar water and energy consumption and intensity patterns. The
clustering problem was cast as a two-stage cluster ensemble problem, in
which several cluster methods with different hyper-parameters were
employed, and the results from the partitions obtained from partial view
of the individual metrics were combined to achieve consensus among
the partitionings. Third, linear regression and regression tree models
were fit to predict daily water and energy consumption and identify
influential parameters in model predictions. Finally, clustering and
prediction results were analyzed and discussed. Fig. 1 illustrates the
main steps of the proposed approach and the details of each step are
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described next.
2.1. Data description

Daily water and energy usage data measured by continuously-
recording meters installed at 70 buildings at the University of Texas at
Austin (UT Austin) were utilized for this study. UT Austin is one of the
largest universities in the U.S., serving approximately 51,000 students in
Fall, 2018 [67]. The data used in this work were collected by the UT
utilities to track building water and energy consumption and determine
the degree to which buildings are achieving UT Austin’s sustainability
goal of reducing overall water and energy consumption by 20% in 2020,
using 2009 as the basis for comparison [68]. Data available for buildings
sporadically spans between 2009 and 2017, with all buildings reporting
consumption levels from April 2014 to June 2017. The buildings studied
herein, range in size from 20,372 to 69,275 m?2, have between 2 and 38
floors, and were originally built between 1926 and 2012. Based on the
UT Austin designation, there are five general categories of building
types: classroom and academic (CA), housing (H), office and adminis-
tration (OA), public assembly and multipurpose (PA), and research
laboratory (RL). A summary of the building attributes (e.g., number of
buildings, area, year built, mean and standard deviation (s.d.) of the
water and energy consumption) is presented in Table 1. Prior to the
analysis, datasets were processed to remove erroneous and missing data,
by removing any specific datapoints that were zero or negative. In
addition, a moving filter was applied to remove datapoints that were
more than two standard deviations away from the mean of the previous
25 days. Overall, the amount of data deemed unsuitable, and therefore
removed, was negligible.

2.2. Characteristic pattern extraction

The first stage in the analysis entails extracting the characteristic
consumption pattern for each building, which will subsequently be used
to cluster the buildings. Several metrics can be used to characterize
building efficiency, such as average annual consumption, annual water
use intensity and energy use intensity [69,70,71]. The resolution at
which a particular metric is assessed depends upon the desired outcomes
of the analysis. In cases of long-range planning, monthly timescales are
sufficient [26]. However, given that, the objective in this paper is to
identify buildings that function similarly in terms of water and energy
consumption, a more granular timescale is necessary. Hence, daily
consumption data are used, and weekly patterns are selected as the
characteristic feature of each building, where each weekly pattern was
characterized using its intensity and variability. Water and energy in-
tensity (i.e., WI and EI, respectively), defined as the daily water or en-
ergy consumption per building area, were used to obtain information
regarding the magnitude of resource consumption. In order to obtain
information regarding the variation of daily consumption over the
course of a week, the normalized water and energy data (i.e., WN and
EN, respectively) were used. For each building, the original
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Fig. 1. Overview of the proposed approach.



M. Frankel et al.

Table 1

Summary of building characteristics and water/energy consumption by building designation.
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Building Type Classroom and Housing (H) Office and Administration Public Assembly and Research Laboratory
Academic (CA) (OA) Multipurpose (PA) (RL)
Number of buildings 28 8 3 18 13
Area (m?) [min; mean; max] 2419; 12526; 26,213 3683; 16029; 5583; 7723; 9580 1893; 16783; 46789 4883; 18192; 39823
69275
Year Built [min; mean; max] 1926; 1966; 2012 1933; 1953; 1986; 1999; 2008 1930; 1975; 2010 1930; 1975; 2008
2000
Number of Floors [min; mean; max] 2;6;9 4; 8; 28 3,57 2;6; 11 5; 8; 15
Water Consumption (I/day) [mean; 8873; 6088 73520; 47997 10233; 7100 16824; 10994 22901; 10404
s.d.]
Energy Consumption (kWh/day) 3420; 465 4183; 679 1933; 269 5305; 776 11889; 861
[mean; s.d.]

consumption was scaled such that the normalized demand for water and
energy ranged between 0 and 1, such that 1 represents the maximum
daily consumption and 0 the minimum daily consumption of a building
during the observation period. In summary, the normalized consump-
tion constitutes an internal index, which is based on the information
intrinsic to the building alone and indicates the temporary consumption
level of a building compared to the entire observation period. Comple-
mentary, consumption intensity constitutes an external index, which
indicates the consumption level of a specific building compared to the
other buildings relevant to the specific case study. Consumption in-
tensity additionally allows to benchmark building performance relative
to national averages of different building types [64-65]. It follows that
four metrics (WI, WN, EI, EN) were used to benchmark resource use of a
building and to compare with other buildings.

Having established the metrics, each building can be represented
using four characteristic patterns of intensity and shape (variability) of
weekly water and energy consumption. The shape of a pattern was
determined by comparing the weekday (Monday-Friday) consumption
levels to the weekend (Saturday-Sunday) consumption levels. Pattern
shape was classified into two categories, i.e., FLAT and CURVED,
depending on the amount of variability between weekday and weekend
consumption. One-sided Wilcoxon rank-sum statistical test was utilized
to determine whether the difference between weekend and weekday
consumption was statistically significant [72]. In this setting, the null
hypothesis states that the difference between weekday and weekend
consumption is statistically insignificant, i.e., FLAT pattern, and the
alternative hypothesis states that the weekend consumption is signifi-
cantly lower than the weekday consumption, i.e., CURVED pattern. The
null hypothesis was rejected at small p (<0.05) values.

The method for classifying the magnitude of the normalized water
and energy patterns differed slightly. Normalized water and energy
patterns were classified as HIGH, MEDIUM, or LOW, based on if the
median of the normalized weekly pattern was in the lower, middle, or
upper tercile of the data, respectively. A similar process was used to
classify weekly patterns of water and energy intensity; however, instead
of the HIGH, MEDIUM, or LOW classification based on normalized ter-
ciles, the thresholds were based on the terciles of all water and energy
intensity values across all buildings. The outcome of this process is a
reduced representation of the raw timeseries water and energy data for
each building.

After each weekly pattern of a building has been designated into one
of six categories based on its classification of intensity and shape, a
single, unique characteristic pattern of each building that will be used
for further analysis was determined using the following steps. First,
weekly patterns were selected from the category that contained the most
patterns. For example, if 60% of the patterns of a particular building and
metric were classified as HIGH-FLAT, then all the high-flat patterns
would be considered to create the characteristic weekly pattern for that
metric. Then, the characteristic weekly pattern of a building was
determined as the median of all the selected patterns belonging to the
same category. Continuing the previous example, for a particular

building, the Monday value of the characteristic pattern would be the
median of the Monday values of the HIGH-FLAT patterns. An example of
the weekly pattern extraction process is demonstrated in the results
section.

2.3. Water-energy clustering

The process of water-energy clustering was completed in two steps.
First, buildings were intra-clustered based on similar usage patterns for
each individual metric, resulting in four different sub-clusterings ob-
tained from partial view of the data (i.e., individual metrics). In this step,
instead of choosing and fine-tuning a single cluster method, several
cluster methods with different hyper-parameters were employed, and
then their results were integrated to achieve robustness [66]. Second, in
order to integrate the intra-clustering partitions and identify common
water and energy consumption patterns, inter-clustering (i.e., meta-
clustering) was performed to group buildings exhibiting similar con-
sumption patterns across all four metrics. Inter-clustering was cast as a
cluster ensemble problem of combining the partitions obtained from
partial view of the individual metrics. The following sections present the
details of the proposed clustering procedure.

2.3.1. Robust intra-clustering

The goal of intra-clustering is to divide buildings into partitions
based on their similarities in terms of a single individual metric, i.e., WI,
EL WN, or EN, such that buildings in the same cluster/partition exhibit a
similar characteristic weekly pattern. For this task, many clustering al-
gorithms can be applied, such as k-means [34], k-medoids [35],
agglomerative hierarchical [36], self-organizing map [37], spectral
clustering [38], and various density-based methods [39,40,41]. How-
ever, as mentioned previously, selecting the right clustering approach is
challenging due to the variety of algorithms, hyper-parameter tuning,
similarity/dissimilarly distance measures, as well as the intrinsic
randomness in many of the clustering techniques making the results
sensitive to the initialization of the algorithms. The process of algorithm
selection and parameter tuning for evaluating the quality of clustering is
not-trivial given that ground-truth labels, or even the number of clusters,
are unknown. Additionally, the performance of clustering algorithms
depends tremendously on the structure of the input data. Hence, clus-
tering results can vary significantly with different algorithms and
parameter settings, thus weakening the robustness and accuracy of the
clustering results.

To improve the robustness of the results and avoid the task of algo-
rithm selection and parameter fitting, the proposed approach relies on
employing several clustering methods with different parameter settings
and combines the results such that a consensus among the different
methods is achieved [66]. Specifically, consider a clusterer as a single
clustering algorithm with specific parameter settings, and a partitioning
as clusterer output, i.e., a set of labels indicating the partitioning of
objects to clusters. In this work, we applied seven different clusterers
employing different algorithms, parameters, and number of clusters, as
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will be described in detail in Section 3.2. Cluster ensemble is then defined
as the problem of combining the multiple partitionings of objects ob-
tained by different clusterers, without accessing the underlying data
used to create the original partitions [66]. The main motivation behind
cluster ensemble is that the combined partition exhibits improved ac-
curacy and robustness by integrating the information exploited by
different clusterers.

The cluster ensemble problem for partitioning buildings based on
their similarities in terms of a single individual metric is applied as
follows. Given r clusterers and n objects (i.e., buildings), let the partition
matrix P = (py,p,,-,p,)" denote the partitionings obtained from the r
different clusterers, where p; = (pi1,pi2, -, Pin) i @ vector representing
the partitioning results of the i clusterer. Thus, P is a r x n matrix,
where p;; represents the cluster label for the j* object obtained from the
™ clusterer. A consensus function then maps the partition matrix (P) to an
integrated consensus partition vector (c), i.e., P”"—c!*", which is a
combined partitioning that achieves the most consensus among all
clusterers. Without the presence of a priori information about the
ground-truth labels, the objective of the cluster ensemble problem is to
identify the optimal consensus function, such that the consensus parti-
tioning (c¢) shares the most information with the individual partition-
ings, as presented in the partition matrix (P).

To evaluate the quality of the consensus, it is necessary to define a
metric that quantifies the amount of information shared between two
different partitionings. In this study, average normalized mutual infor-
mation (ANMI) is adopted to quantify the statistical information shared
between the original parititioning matrix, P, and the consensus parti-
tioning, ¢, [66]. Normalized mutual information is a symmetric
information-theoretic metric, conveniently ranging from 0 to 1. Intui-
tively, when the amount of information shared between two clusterers is
low, the normalized mutual information approaches 0, and, contrary
approaches 1, when the amount of information shared between two
clusterers is high. The ANMI then averages the amount of mutual in-
formation between each individual partitioning, p;, and the consensus
paritioning, ¢. The ANMI can be computed as follows:

ANMI(P,c)

-2 Vit

where I(p;,c) denotes the mutual information between the partition
obtained from the i* clusterer and the integrated partition [73], and
H(p;),H(c) denote the entropy of the individual and consensus parti-
tionings, respectively [74]. ANMI is bounded by 0, which indicates no
mutual information between the individual and consensus partitionings,
and 1, representing a perfect agreement between the individual and
consensus partitionings. ANMI can be estimated by the sampled quan-
tities provided by the partitionings. The estimation is elaborated in text
S1 in the Supporting Information (SI).

Illustrative example: To illustrate the problem of cluster ensemble,
consider a simple example where four clusterers (r = 4) are applied on a
set of six objects (n = 6), i.e., buildings in the context of this paper. The
following partitioning vectors (p;, p,, p3, p4) specify the partitionings
obtained from four clusterers for six buildings:

(112233)

Pr=(22
) ;
Ppa=(1.12222);

The label vectors indicate that the first and second clusterers yield
three clusters, while the third and fourth clusterers produce two clusters.
Further inspection reveals that the partitions p; and p, are logically
identical since the partition structure is invariant to the numbering of
the labels. Additionally, p; and p, introduce some dispute regarding the
third and the fourth buildings. Intuitively, the objective of the cluster
ensemble problem is to find an integrated partitioning vector (¢), which
shares as much information as possible with the individual partitionings
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(p,), as indicated by a high ANMI score. However, even in this simple
example the solution of the best combined partition is not trivial due to
the fact that the number of clusters and each cluster’s interpretation
vary significantly among the different clusterers.

In this study, the cluster-based similarity partitioning approach
(CSPA) [66] is adopted to solve the cluster ensemble problem. CSPA
involves a two-step approach, in which: (1) a combined similarity matrix
is constructed that summarizes all partitionings, and (2) the objects are
re-clustered using the combined similarity matrix. First, the original
partitioning of each clusterer (p;) can be represented as a binary simi-
larity matrix where two buildings have a similarity of 1 if they belong to
the same cluster and 0 otherwise. Subsequently, the combined similarity
matrix ™" can be obtained by adding all the binary similarity matrices
obtained from the r clusterers. The s;; element of the combined similarity
matrix represents the number of partitions in which buildings i and j
belong to the same cluster. Fig. 2(a) illustrates the combined similarity
matrix for the illustrative example. The elements s; in the combined
similarity matrix can range between 0 and the number of clusterers (r =
4), where 0 (white) indicates that the corresponding buildings i and j are
not clustered together in any of the partitionings, and 4 (black) indicates
that buildings i and j are assigned to the same cluster based on all the 4
partitionings. For example, buildings 1 and 2 are assigned to the same
cluster based on all four partitionings p,,ps,ps,p4 , i-€., s12 = s21 = 4.
On the other hand, buildings 2 and 3, belong to the same cluster based
only one clusterer, hence, sp3 = s32 = 1.

After the combined similarity matrix S is obtained, the next step is to
re-cluster the buildings based on S, without revisiting the data used to
create the original partitions. Spectral clustering [38] is applied to re-
cluster the buildings, where the optimal number of clusters was deter-
mined by varying the number of clusters and selecting the number that
yields the highest ANMI score. Spectral clustering is a well-known par-
titioning method that relies on a similarity matrix between data points.
The objective of the spectral clustering is to partition the data into k
clusters, such that the cost of the weights in the similarity matrix be-
tween the clusters is minimized. The spectral clustering approach is very
efficient for small number of clusters, which is the case in this setting.
Fig. 2 (b) shows the values of ANMI as a function of the number of
clusters, where k = 3 results in the higher ANMI. The corresponding
consensus partitioning of the six buildings for the illustrative example is

=(1,1,2,2,3,3).

In summary, the intra-clustering procedure described above involves
applying an ensemble of different clustering algorithms to each building
and each metric, and finding a partitioning that achieves the best
consensus among the different clustering algorithms. The intra-

clustering procedure results in four integrated partitioning vectors, ¢/ =
(el

the partitioning of building i based on metric j. The next step in the
proposed approach is to group the buildings based on all four metrics.

) where j € (WL, EI, WN, EN), and c’ represents the label of

2.3.2. Metric-integrated inter-clustering

Although individual intra-clustering is advantageous, the overall
goal is to determine which buildings exhibit similar resource utilization
patterns across water and energy intensity, and normalized water and
energy consumption. Therefore, in the next step, buildings that behave
similarly based on the all metrics are grouped into same meta-cluster.
The main idea for grouping buildings into meta-clusters is based on
consolidating and integrating the four partitioning vectors, ¢!, ¢ ¢V,
and ¢V, into a single partitioning, ¢¥ = (c},c}, -, cM).

As previously described, the integration of the partitions based on
individual metrics and the determination of the meta-clusters can be cast
as a cluster ensemble problem, in which the objective is to combine the
multiple partitionings to achieve consensus among the different metrics,
without accessing the underlying data used to create the original par-
titions [66]. This problem can again be solved using the CSPA for cluster
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Fig. 2. CSPA for the illustrative example problem: (a) combined similarity matrix; (b) ANMI scores as a function of the number of clusters.

ensemble. In the context of inter-clustering, the partition matrix can be
formulated that summarizes the four different partitions according to
each metric, i.e., P = (¢", ¢, "N, cEV) T. The corresponding combined
similarity matrix §™*" can be obtained from the four paritionings, where
the s; element represents the number of metrics based on which build-
ings i and j belong to the same cluster. Thus, the elements in the simi-
larity matrix are bounded by 0, indicating that the two buildings do not
belong to the same cluster in any metric, and the number of metrics (4),
which suggests that the building pair belongs to the same cluster in all
four metrics.

Subsequently, with the similarity matrix as input, any clustering al-
gorithm, such as the spectral clustering introduced in the previous sec-
tion, can be applied to solve the inter-clustering problem. However, in
this section, agglomerative hierarchical clustering (AHC) with complete
linkage is chosen to perform inter-clustering on the buildings due to its
capability of summarizing the entire hierarchical structure of the data-
set. AHC starts by treating each building as a singleton cluster and then
builds nested clusters by successively merging pairs of clusters until all
buildings have been merged into a single cluster containing all buildings
[75]. The outcome of AHC can be visualized using a dendrogram, i.e., a
tree-like representation, which summarizes the nested clusters and the
corresponding similarity levels. The advantage of using the AHC
approach for finding meta-clusters is that it allows control of the gran-
ularity of the meta-clusters based on the decision maker’s tolerance to
the number of different intra-cluster labels. Furthermore, this approach
avoids the need to use external evaluation indices, which are often not
indicative of the decision-makers notion of good clustering [75]. The
application of AHC for meta-clustering is illustrated as follows.

Consider four different partitionings of the buildings resulted from
the inter-clustering process based on the four metrics, i.e., ¢"!,c®, ¢
¢V, described in the previous section. For illustration purposes consider
that " = (1,1,2,2,3,3); ¢! =(2,2,3,3,1,1); "N = (1,1,1,2,2,2);
N = (1,1,2,2,2,2). Fig. 3 shows the corresponding dendrogram for
this example, where the y-axis demonstrates the number of different
intra-cluster labels, and the x-axis lists building labels (note that the
buildings are ordered by similarity). Fig. 3 illustrates that that buildings
1 and 2, as well as buildings 5 and 6, belong to the same intra-cluster in
all four partitions, i.e., the number of different intra-cluster labels equals
zero, and thus are the first to be grouped into meta-clusters. Building 3
and 4 have mixed labels based on the four metrics, hence their grouping
will depend on the level of tolerance of the decision maker. Three po-
tential cuts are also shown in Fig. 3: Cut 1 implies zero tolerance for
different intra-cluster labels, thus resulting in four meta-clusters,
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Fig. 3. Inter-cluster dendrogram for the illustrative example with

different cuts.

{(1,2),(5,6),(3),(4) }; Cut 2 implies that at most one different intra-
cluster label can be tolerated for buildings to be grouped into the
same meta-cluster, thus yielding three meta-clusters,
{(1,2),(5,6),(3,4) }; and Cut 3 increases the tolerance to three labels,
which then decreases the number of meta-clusters to two,
{(1,2),(3,4,5,6) }. This approach generates an explicit tradeoff be-
tween the number of meta-clusters and the level discord that the deci-
sion maker is willing to tolerate.

2.4. Prediction models

After the buildings have been clustered based on their characteristic
consumption patterns, the clustering was leveraged to predict daily
building water and energy consumption using varying prediction tech-
niques. The following three questions were explored in regards to the
creation and evaluation of prediction models: (1) whether meta-cluster-
specific models will provide a better prediction than a single overall
model; (2) if low-resolution consumption data (e.g., from monthly
billing) can provide comparable prediction performance to utilizing
high resolution, continuous data; and, (3) if a linear parametric model
will provide comparable performance to a non-parametric model.



M. Frankel et al.

In order to determine whether an overall prediction model
adequately describes usage patterns (i.e. one prediction model for all),
or if multiple prediction models, segmented by clustered-buildings (i.e.,
distinct prediction model for each cluster), would increase the predic-
tion accuracy, a linear regression model was created for each of the
meta-clusters, as well as for all of the data. The prediction accuracy was
then estimated and compared. An assessment of models based on low-
resolution data verses high-resolution data, as raised in the second
question, is important due to the two potential applications of prediction
models, e.g., to detect anomalous behavior when measured water and
energy consumption varies significantly from the predicted values [18],
and to be used for planning and demand management [46]. In the first
case, the specific building being monitored would require a meter to
monitor day-to-day usage levels. In the second case, the buildings in
question may not be equipped with a continuously-recording meter, and
perhaps not yet built. Therefore, in all model formulations, two cases
were considered, one assuming that the building had a meter continu-
ously monitoring usage, in which the previous day’s and week’s usage
data were used as inputs to the prediction models, and another, in which
only monthly median consumption was considered, simulating the in-
formation of a monthly consumption bill. To address the third question,
least absolute shrinkage and selection operator (LASSO) regression [76]
and bootstrap-aggregated decision trees (TBAG) were used to predict
water and energy usage, providing a comparison between a linear
parametric model and a non-parametric model [77,78].

For all models, the response variable (y;) is the daily water or energy
demand at day t for a given building i, which is considered a function of a
set of M predictors x; = (X1, ---, X;m) that represent the characteristics of
the building and the environmental conditions, such as building size and
age, outdoor temperature and academic season. The considered features
are summarized in Table 2. LASSO regression optimizes for model ac-
curacy and sparsity [76] by minimizing the sum of the squared errors
between the predicted and observed daily consumption and by mini-
mizing the number of the estimation coefficients to prevent overfitting
[79]. The objective function used by the LASSO algorithm is:

ming, 4 (;NZf’l i — o —xTB)° -+ 18] >, where N is the number of

observations, f, and f are regression coefficients, scalar and a vector of
length M, respectively, and the parameter 1 controls the tradeoff be-
tween model accuracy and sparsity. To tune A, a range of values was
generated by enumeration, and the value of 1 that resulted in the min-
imum mean squared error was selected.

TBAG is an ensemble of R decision trees using bootstrap samples of
the data, i.e., T1(X1),T2(X2), -, Tr(Xr), where X; is a matrix containing
the bootstrap sampling features. The results from all trees are then
aggregated into a single model, i.e., Tpag(X) = %Z}f: , Ti(X;), which
provides the final output as the unweighted average output of all trees.

Table 2
Input variables used for prediction models.
Model Input Variable Description
Type
Previous day Continuous Daily consumption in the previous day
Previous week Continuous Daily consumption in the previous week
Monthly median Continuous Monthly median of consumption
Average Continuous Daily average temperature [85]
temperature
Building area Continuous Total building area in square meters
Class session Categorical Whether class is in session or not
Day type Categorical Weekday or weekend
Season Categorical Season of the year
Use designation Categorical Building use designation (as originally
assigned by UT facilities)
Building name Categorical Building label
Year built Discrete Year building originally built
Number of floors Discrete Number of floors in building
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The advantage of regression trees compared to linear models is that
instead of fitting the entire data set with a single model, closely related
associated data are modeled separately. In addition, based on the suc-
cessive partitioning of input data, regression tree models illuminate
explanatory variables which have high importance on model outcomes
[80]. TBAG has also been shown to reduce model over-fitting to the
training data [81], resulting in better performance when tested on out-
of-sample data. Non-parametric models typically comprise many hyper-
parameters (e.g., number of trees and maximum tree depth), which
makes tuning complicated. Herein, given the performance of the models,
hyper-parameters remained constant.

In summary, for water and energy, two LASSO models were devel-
oped for individual building meta-clusters, and two for the entire data,
with and without previous day and week consumption; and two TBAG
models were developed for all the buildings with and without previous
day and week consumption, the rest of the input parameters for all
models were the same (i.e., six different models predicting the daily
consumption (y;) of each building).

2.4.1. Model evaluation

In order to assess the performance of each model and select the best-
performing model, three different error metrics were employed: coeffi-
cient of variation of the root-mean-square error (CVgysg), median
normalized absolute residual (MNAR), and normalized mean bias error
(NMBE). CVgrysg and NMBE are standard metrics used to assess pre-
diction accuracy of building energy usage by the American Society of
Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and
have been employed in many previous works for assessing model per-
formance [82,83]. The MNAR is an error metric, which was crafted for
this specific context, as a more robust version of the NMBE, as described
below.

The CVgruysk is @ measure of the overall variation between measured
and modeled timeseries data. The CVgysg is calculated by taking the
square root of the mean squared error (RMSE) between daily observed
consumption (y;) and model prediction (¥;), and divided by the mean of
the measured data (y) and multiplied by 100 to be expressed as a non-
dimensional quantity in (%). The CVpumsg is defined as (where n de-
notes the number of observations) [82]:

—

CVrumse = =
y

Values of the CVgysg can only be positive, where a lower value in-
dicates a better model fit.

The NMBE is a measure of the mean of the error associated with each
predicted daily value, calculated as the sum of the difference between
error between daily observed consumption and model prediction devi-
ded by the sum of the daily observed consumption, and multiplied by
100 to be expressed as a percentage (%). The NMBE is defined as [82]:

NMBE = 2= 01 =%) 100(%)

The values of the NMBE can be negative or positive. A positive value
of NMBE indicates that overall the model overpredicts the observed
values, and a negative value of NMBE indicates that overall the model
underpredicts the observed values. As noted in previous literature, the
value of the NMBE is subject to the cancelation effect, whereby the sum
of positive and negative model errors reduce the overall value of the
NMBE [83]. Therefore, in this study, NMBE metric is used to ensure
adherence to the ASHRAE guidelines for energy prediction, but not to
evaluate or compare model performance.

The MNAR is introduced to provide a robust alternative to NMBE and
compliment CVgysg. The MNAR quantifies the median absolute residual
of each data measured and predicted daily value, defined as:
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MNAR = median x 100(%)
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Values of the MNAR can only be positive, where a lower value in-
dicates a better model fit. Unlike the NMBE, the MNAR is not subject to
the cancelation effect because the absolute value is applied to the dif-
ference between observed and predicted value. In addition, both the
NMBE and CVgysk rely on taking the mean of model errors, which may
be sensitive to outliers. The MNAR is more robust to outliers by quan-
tifying the median model error instead of the mean.

To ensure compliance with industry and research standards, the
energy predictions from selected models were compared to ASHRAE
guidelines. For monthly predictions, ASHRAE considers a model cali-
brated if the CVyysk is less than 15%, and the NMBE is within + 5%. For
hourly predictions, ASHRAE considers a model calibrated if the CVrysg
is less than 30%, and the NMBE is within + 10%. Following the example
of [84], the guidelines for hourly data were applied to the daily pre-
diction values in this paper, since there is no ASHRAE guideline for daily
predictions. The results will demonstrate that the developed prediction
models outperform the hourly AHSRAE standards. Because of the noted
cancelation effect which plagues the NMBE, the NMBE was utilized to
check model accuracy against ASHRAE guidelines, but not to select the
best prediction model. In summary, the CVgysg and MNAR were used to
assess and compare the accuracy of all models for predicting daily water
and energy usage, and ASHRAE standards were used to benchmark
performance of energy prediction models.

3. Application

The proposed clustering and demand prediction approaches were
tested using the available water and energy consumption data of 70
buildings on UT Austin campus. For the clustering analysis, data was
used for all buildings during the year of 2015. The year of 2015 was used
for the clustering analysis because one year is generally representative of

wi
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the building’s behavior. For the prediction analysis, all of the available
water usage was utilized, for which the availability varies between 2009
and 2017, where 70% of the data was randomly selected for model
training and 30% for testing. Overall, data from 70 buildings were
analyzed, with a total of 183,976 datapoints for energy and 187,064
datapoints for water usage.

3.1. Characteristic pattern extraction

Following the methods section, weekly patterns of daily consump-
tions were first analyzed for four metrics, WI, EI, WN, and EN. Then,
each weekly pattern was classified into six categories, based on the
shape and magnitude of the weekly pattern, i.e. FLAT or CURVED, and
HIGH, MEDIUM, or LOW, respectively. Fig. 4 shows a one-year times-
eries of water (top) and electricity (bottom) use intensity for Brack-
enridge Hall, a dormitory building, with each week color-coded based
on the classification of the shape and magnitude of the pattern. Fig. 4
shows that for the majority of the year, daily water intensity was
measured between 4 and 8 I/m?, categorized as HIGH-FLAT, and HIGH-
CURVED with the exception of mid-May to mid-August. Energy intensity
remained relatively constant, with values between approximately 0.17
and 0.20 kWh/m?, except for a decrease from about mid-May to mid-
June, and an increase from August to September. It is hypothesized
that the reduction in water intensity occurred due to the reduction in
building occupancy, as many of the students vacate the dormitories for
the summer. Similarly, large fluctuations in water intensity also
occurred in mid-March and the end of November during the Spring and
Thanksgiving breaks. Both water and energy intensity show a decrease
during mid-March (which corresponds to the week of spring break and
lower building occupancy). However, the major deviations in water
consumption do not align with similar changes in energy consumption,
an observation which will be further quantified and explored in the
discussion of results.

The weekly classifications of water and energy use intensity are
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Fig. 4. Timeseries of water and energy intensity for Brackenridge Hall dormitory. Weeks are color-coded based on the classification of shape and magnitude: LOW-
FLAT (blue), LOW-CURVED (gray), MEDIUM-FLAT (green), MEDIUM-CURVED (aqua), HIGH-FLAT (orange), HIGH-CURVED (yellow). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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shown in Fig. 5. In the presented example, a contrast between water
intensity and energy intensity is observed. While water intensity shows
greater variability over the course of a year, energy intensity is classified
as LOW-FLAT for all but six weeks during 2015. The variation in usage
classifications between water and intensity implies the differences be-
tween water and energy use drivers. In the case of the dormitory
building examined in this example, both water and energy exhibit flat
patterns, signifying that there is no significant variation between
weekend and weekday consumption patterns. However, dormitory
buildings were found to be higher users of water, but lower users of
energy compared with other buildings on campus.

In order to extract the characteristic weekly patterns that will be used
for clustering, the median daily values among all of the weeks with the
most frequent pattern in each building were computed. For example,
HIGH-FLAT patterns were used to compute the characteristic weekly WI
pattern for the Brackenridge Hall, as shown in Fig. 6. Similarly, median
daily values among all of the weeks with the LOW-FLAT patterns were
computed and used as the characteristic weekly EI pattern.

3.2. Water-energy clustering

After the characteristic weekly patterns were extracted for each
metric and building, the buildings were intra-clustered based on each
individual metric (i.e., WI, EI, WN, EN), using the robust ensemble
clustering method, as described in Section 2.3.1. For each metric, seven
clusterers were first constructed: k-means with k=2 and k = 3, k-
medoids with k =2 and k = 3, and agglomerative hierarchical clus-
tering with ward, average, and complete linkage with k = 3. Euclidian
distance was used to compute the similarity between weekly patterns in
all clustering algorithms. An example demonstrating the partitionings
for EN from these seven individual clusterers, i.e., the partition matrix
P7*7° are summarized in Fig. 7. Each row represents the partitioning
from one clusterer, and each column characterizes the cluster labels for
one building obtained from different clusterers. Buildings belonging to
the same cluster are shaded with the same color. Fig. 7 demonstrates
that some buildings are consistently clustered into the same cluster by
the different clusterers, while others are grouped differently among the
clusterers. Similar results were obtained for all metrics. The next step is
to integrate the results of the individual clusterers into a single partition
that agrees the most between all of the clusterers and achieves the
highest ANMI score.

Subsequently, spectral clustering was applied to integrate the indi-
vidual partitionings into an ensemble partitioning. The ANMI score was
evaluated for different number of clusters, as shown in Fig. 8, where (a)
indicates that for WI and EI, the optimal number of clusters is 3, and (b)
shows that the optimal ANMI is achieved with 2 clusters for NW and NE.
It is observed that the optimal consensus for NW and NE are achieved
with only 2 clusters, although five out of the seven clusterers were
defined with k = 3. The reduction in number of clusters in consensus
partitionings indicates that the weekly patterns of NW and NE cannot be
meaningfully partitioned into three clusters, and ensemble cluster
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combined with ANMI score can automatically reveal the most appro-
priate number of clusters and the corresponding partitionings.

Finally, the results of intra-clustering of buildings and the charac-
teristic patterns are shown in Fig. 9. Thick lines represent the medoid of
a particular cluster, demonstrating the typical pattern of a cluster, and
thin lines of similar color represent individual buildings that belong to
the same cluster.

For the purpose of discussion for the remainder of this paper, the
clusters in each metric are referred to in ascending order. For example,
for WN, buildings in cluster WN1 (shown in orange in Fig. 9) maintain a
low consumption throughout the week, buildings in cluster WN2 (shown
in blue in Fig. 9) exhibit high consumption during the weekdays and
lower consumption during the weekends, and metrics with 3 clusters,
EI3 and WI3, are shown in green in Fig. 9.

Having clustered the buildings based on the individual metrics, i.e.,
WN, WI, EN, and EI, the next step entails grouping the buildings across
all performance metrics into meta-clusters, ¢ = (c}f,c¥, .-, cM) using
AHGC, as described in Section 2.3.2. The resulting dendrogram is shown
in Fig. 10, where the x-axis represents the buildings and the y-axis
represents the number of different intra-cluster labels. Four possible
paritionings, visualized by the corresponding cuts of the dendrogram,
are attained: Cut 1 indicates that all intra-cluster labels achieve com-
plete consensus, thus resulting in 21 meta-clusters; Cut 2 indicates that
at most one different intra-cluster label can be tolerated for buildings
grouped into the same meta-cluster, thus identifying 10 meta-clusters;
Cut 3 increases the tolerance to two different intra-cluster labels,
which then decreases the number of meta-clusters to 6; and Cut 4 further
raises the tolerance to three different intra-cluster labels, yielding 3
meta-clusters. Either of these meta-clusters may be preferred by the
decision maker depending on the specific task. Cut 2 with 10 meta-
clusters, as denoted by different colors, is selected to perform the
following analysis.

Selected results of the meta-clustering are illustrated in Fig. 11,
demonstrating how buildings belonging to MC2 (highlighted in yellow)
behave across all four metrics. Fig. 11 displays similar information as
Fig. 9, except that the buildings in MC2 are highlighted to show their
behavior among all four metrics. In this example, the majority of
buildings in MC2 belong to the lowest cluster of metrics, i.e., WN1, WI1,
EN1, and EI1. Similar figures depicting all other meta-clusters are found
in Figures S1-S9 in the SI.

The results of the inter-clustering and the distribution of energy and
water consumption patterns exhibited by buildings in each meta-cluster
are summarized in Table 3. The values in Table 3 show the size of each
meta-cluster and the fraction of buildings in a specific inter-cluster
relative to the size of the meta-cluster, i.e., individual cluster purities
[42]. For example, all 14 buildings in MC2 were originally classified into
clusters WN1, EN1, and WIL. For EL 9 of 14 buildings were classified to
cluster EIl1 and 5 of 14 buildings were classified to cluster EI2. The in-
dividual cluster purities can then be used to evaluate the overall purity
of the meta-clustering by computing the weighted average of the indi-
vidual purities [42]. The overall purity of the resulting 10 meta-clusters
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Fig. 5. Classification of weekly water (left) and energy (right) intensity patterns for Brackenridge Hall dormitory. Weeks are color-coded based on the classification
of shape and magnitude: LOW-FLAT (blue), LOW-CURVED (gray), MEDIUM-FLAT (green), MEDIUM-CURVED (aqua), HIGH-FLAT (orange), HIGH-CURVED (yellow).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



M. Frankel et al.

wi
10 T T T T T
‘:\Jg 8- 4
z 6 -
(2]
C
9]
£ 4 ]
8
O " " n L n
M T w Th F S Su
Day of Week

Energy Intensity (KwH/mz)

Applied Energy 281 (2021) 116074

0.25 T T " . :

o
N

o
N
[&)]

©
N

Th F
Day of Week

<

Fig. 6. Frequent (thin lines) and characteristic (thick line) weekly patterns for water intensity (left) and energy intensity (right) of Brackenridge Hall dormitory.
Weeks are color-coded based on the classification of shape and magnitude (shown in Fig. 5): HIGH-FLAT (orange) and LOW-FLAT (blue). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Clustering results from seven clusterers for normalized energy. Buildings belonging to the same cluster are shaded with the same color.
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is 0.91, compared with 0.84 and 1.00, with 6 and 21 meta-clusters,
respectively.

The distribution of energy and water consumption intensity and
patterns exhibited by buildings in each meta-cluster are visualized in
Fig. 12 (a) and (b). In Fig. 12 (a), the x- and y-axis are divided into three
regions, each of which represents an intra-cluster of WI and EI, respec-
tively. Similarly, the axes in Fig. 12 (b) are divided into two regions
corresponding to the two intra-clusters of WN and EN. The colored
markers represent the meta-clusters (with the number representing the
meta-cluster label), the locations of the markers represent the corre-
sponding intra-cluster partitioning, and the size of the markers reflect
the size of the meta-clusters, i.e., the number of buildings in the meta-
cluster. For example, meta-cluster 1, containing 22 buildings, is repre-
sented by one orange circle located in the lower-left phase in Fig. 12 (a),
revealing that all buildings in meta-cluster 1 are classified into WI1 and
EIl. Fig. 12 (b), on the other hand, shows that 6 out of the 22 buildings
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at different number of ensemble clusters.

are located in the WN2 -EN1 quadrant, while the other 16 buildings
belong to the WN2-EN2 quadrant, which indicates heterogeneity in EN
in meta-cluster 1. Fig. 12 demonstrates that water and energy con-
sumption trends, in terms of shape and intensity, vary significantly
across buildings and have mixed correlation in terms of water and en-
ergy usage. For example, some buildings are high water and energy
users, while others are high water users but low energy users. These
mixed trends reveal apparent dissimilarities between utilization of water
and energy resources in heterogeneous buildings.

3.3. Water-energy demand prediction

Next, LASSO, and TBAG were utilized in order to determine the most
appropriate model for predicting daily consumption. As described in
Section 2.4, LASSO models were developed for each meta-cluster as well
as a single overall model including all the buildings; TBAG models that
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Fig. 10. Inter-clustering dendrogram with potential cuts.

included all the buildings were developed. For each model, two sce-
narios were created, with and without the inclusion of the water or
energy usage from the previous day and previous week. The two sce-
narios enable the evaluation of the compromise in prediction accuracy
as a function of data availability. As noted previously, the motivation
behind creating models with and without the information about recent
water and energy usage is that this daily and weekly usage may not be
readily available for many of the existing buildings that employ me-
chanical meters, which typically provide only a monthly reading having
to be read manually by utility personnel.

Model errors were calculated for each building, and the median
model error among buildings in the same meta-cluster was calculated. A

11

summary of the results of the prediction models is shown in Tables 4 and
5. Table 4 shows the median cross-validated root mean squared error
(CVrMmse) and median normalized absolute residual (MNAR) between
the observed and predicted energy usage for each model for meta-cluster
2 for training and testing data. As seen in Table 4, the TBAG models
outperformed the LASSO models for energy prediction in meta-cluster 2
with and without including energy usage in previous day and week.
TBAG, with the inclusion of previous data, performs similarly for energy
prediction across all other meta-clusters, with values of CVgysg and
MNAR ranging between 3.9% and 10.8%, and 1.8% to 4.4%, respec-
tively. The TBAG models also outperformed LASSO models for water
prediction, however with higher modeling error compared with
modeling error for energy prediction. Error values for water prediction,
as seen in Table S2, of CVgysg and MNAR ranged between 23.3% and
40.0%, and 11.9% to 23.3%, respectively, among test datasets, for the
TBAG model with the inclusion of previous data. A plausible explanation
for the decreased model performance for water consumption compared
to energy consumption is that there is more variability in daily water
than energy consumption, leading to decreased model performance.

Table 5 summarizes the performance of all six models among all
meta-clusters, by showing the rank of model performance for each meta-
cluster, based on the number of times a model underperformed
compared to all other models based on CVrysg and MNAR. Low rankings
represent better performing models and high rankings represent worse
performing models.

Based on Table 5 and Tables S1 and S2 in the SI, it is observed that
the TBAG model with the inclusion lags is the most accurate model, with
the lowest values of CVgysg and MNAR across all meta-clusters for both
water and energy prediction. TBAG model also outperforms LASSO
models even when previous day’s and week’s usage is not included as
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Fig. 11. Characteristic patterns of buildings belonging to MC2 are highlighted in yellow. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Table 3
Summary of meta-clusters

Metacluster Number of Buildings Proportion of Buildings Within Each Cluster

Normalized Water Consumption Normalized Energy Consumption Water Intensity Energy Intensity

WN1 WN2 EN1 EN2 Wil \iv WI3 EIl EI2 EI3
MC1 22 0.0 1.0 0.3 0.7 1.0 0.0 0.0 1.0 0.0 0.0
MC2 14 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.6 0.4 0.0
MC3 6 0.0 1.0 0.5 0.5 1.0 0.0 0.0 0.0 1.0 0.0
MC4 5 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.2 0.4 0.4
MC5 5 0.0 1.0 0.0 1.0 0.0 0.2 0.8 1.0 0.0 0.0
MC6 4 0.5 0.5 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0
MC7 4 0.0 1.0 0.0 1.0 0.0 0.8' 0.3 0.0 0.0 1.0
MC8 4 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.8 0.0 0.3
MC9 3 0.7 0.3 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0
MC10 3 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.7 0.3 0.0
* Sum of fractions equals one, but not apparent with 2 significant digits.

input variables. When comparing the prediction accuracy of energy models.

across all buildings, the median value of CVgysg for the TBAG model
with previous information was 5.7% (for the test dataset) and increased
to 7.4% when previous usage was not included. For water prediction, the
median value of CVgysg for the TBAG model with previous information
was 28.7%, and increased to 34.1% when previous usage was not
included. Therefore, depending on the intended use of prediction
models, models without an input from continuous-recording meters may
be suitable. As seen from Table S2 in the SI, all energy prediction models
meet the ASHRAE guidelines of CVgrygg less than 30%. For TBAG
models, NMBE values for each building range between —0.59% and
0.09% for models with previous data, and —0.72% and 0.36% without,
thus, meeting the NMBE standards of + 10% for energy prediction

12

4. Discussion

Next, the composition of building use designations within each meta-
cluster is analyzed. Fig. 13 shows the distribution of building types (as
assigned by UT utilities, i.e., CA, H, OA, PA, RL) among each meta-
cluster.

Information presented in Figs. 12, 13 and S1-S9 in the SI are useful
tools to identify buildings for which efficiencies could be realized. Meta-
clusters 5 and 6, which contain all of the university housing buildings,
exhibit normalized usage patterns with little variability between
weekdays and weekends consumption and high water use intensity (as
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Fig. 12. Distribution of energy and water consumption intensity (a) and patterns (b). The size and the number of each marker represent the size and the label of each

meta-cluster (Table 3), respectively.

Table 4
Summary of model performance for energy prediction in meta-cluster 2.
Data Used Model Training Testing
Type
CVRruisE MNAR CVRuise MNAR
% % % %
Cluster- LASSO™ 7.5 4.2 7.2 4.3
Specific LASSO 12.7 6.2 10.0 6.6
Overall LASSO* 12.0 5.4 8.6 5.6
TBAG* 5.0 2.4 5.3 2.6
Overall LASSO™ 15.0 6.9 11.7 7.3
TBAG™ 6.4 3.1 6.8 3.8

+with and — without including usage of previous day and week.

Table 5
Aggregated ranking of each model, from best (rank = 1) to worst (rank = 6).
Data Used Model Water Energy
Type
CVrmse MNAR CVRrmsE MNAR
% % % %
Cluster- LASSO* 3 3 2 3
Specific LASSO™ 5 4 5 5
Overall LASSO™ 4 5 4 4
TBAG" 1 1 1 1
Overall LASSO™ 6 6 6 6
TBAG™ 2 2 3 2

+ with and — without including usage of previous day and week.

shown in Figures S4 and S5 in the SI). In this case, it can be inferred that
that the main drivers in a residential setting (e.g., showers, toilets,
faucets), differentiate multi-family residential buildings from the non-
residential buildings, which is evident from the results as dormitory
buildings do not appear in any of the other meta-clusters. Moreover,
because buildings in the housing category exhibit high water use in-
tensity, housing buildings would make ideal candidates for water effi-
ciency upgrades and DSM policies. In terms of energy, dormitory
buildings are among the lowest energy users, suggesting that dormitory
buildings are not at high priority for energy efficiency upgrades.
Except for meta-cluster 6, all meta-clusters shown contain more than
one building use designation, signifying that building use designation
alone is not appropriate to characterize water and energy consumption
patterns. To demonstrate this point, the usage patterns of four different
buildings, each of which have the same building use designation, but
different water and energy consumption patterns, were examined.

13
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Fig. 13. Composition of each meta-cluster by building use designation.

Fig. 14 highlights the consumption patterns of four different classroom
and academic (CA) buildings that were clustered into different meta-
clusters. All buildings exhibit demand variability between weekday
and weekend consumption. However, differences exist among the
buildings in each metric. For example, when comparing the College of
Nursing (blue in Fig. 14), to Sid Richardson Hall (green in Fig. 14), it is
observed that the buildings exhibit comparable water use intensity, but
the College of Nursing exhibits considerably higher energy intensity
than Sid Richardson Hall. Additionally, it is observed that a reverse
trend exists in the water and energy normalized consumption patterns,
indicating that water consumption in Sid Richardson Hall is typically
low throughout the year (compared to its overall annual consumption
range), while the energy demand is typically high. The opposite is
observed for the College of Nursing with characteristically high water
consumption and low energy consumption throughout the year. Jester
Hall, which contains many offices for university programs, as well as a
large dining hall that serves as a major hub for student meals, is the
highest consumer across all performance metrics (orange in Fig. 14). It is
inferred that due to the water and energy demands for large amounts of
food preparation, as well as the seasonal variation that mimics the water
demand patterns observed in housing buildings (i.e., decreases in
resource consumption during academic breaks), Jester Hall behaves
differently from other CA buildings. Although this case is specific to a
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Fig. 14. Weekly patterns of four different CA buildings: College of Nursing (blue), Jester Hall (orange), Sid Richardson Hall (green), William Hearst Building
(yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

university setting, the observation of Jester Hall exhibiting high water
and energy consumption is indicative of how a commercial office
building with foodservice may behave.

While insights into building behavior are drawn from the clustering
analysis, modeling of building performance yields insights into the effect
of model inputs, and the importance of including a continuously-
recording meter for demand prediction. Based on model performance,
the relative effect of each independent variable on water and energy
consumption prediction is analyzed. Because the TBAG model was the
most accurate in predicting water and energy consumption, the dis-
cussion of important model variables is limited to TBAG models. The
variable importance is quantified using the out-of-bag predictor
importance, which is computed by permutating the observations of each
independent variable, and determining the effect on the model results
[78]. In essence, the out-of-bag predictor importance functions as a
sensitivity test to determine how sensitive the overall model is to each
variable. If a variable is important, then permutating that variable
should have a relatively large effect on model performance, whereas
permuting variables with little importance would have a small impact
on model performance.

Fig. 15 shows the relative importance input variables, including
building features (use designation, year built, number of floors, area)
and temporal features (previous day and week consumption, tempera-
ture, monthly median consumption, class session, and day type) used in
TBAG models for water and energy. Specifically, Fig. 15 displays the out-
of-bag predictor index for each independent variable used as a model
input for four cases: predicting water and energy, with and without the
inclusion of previous consumption data. Overall, building features were
less important compared to the temporal features for predicting con-
sumption levels. It is observed that the type of day (i.e., weekday or
weekend) is the most important explanatory variable for predicting
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Fig. 15. Variable importance for predicting water and energy demand using
the TBAG models. + with and — without including usage of previous day
and week.

water demand regardless of the model. Class session, season, average
daily temperature, and monthly median consumption are the consecu-
tive important explanatory variables in the models that do not rely on
previous observations from continuously-recording meters. These re-
sults are expected as these variables imply water consumption, e.g.,
higher water consumption is expected on a weekday during a semester
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compared with a weekend during summer break. Previous day con-
sumption, daily temperature, previous week and month consumption as
well as class session and season were the consecutive explanatory var-
iables in models that considered data available from continuously-
recording meters. In general, observations made regarding the impor-
tant variables for water consumption can be made for energy con-
sumption. Noteworthy is that the importance of day type, monthly
consumption, daily temperature, and season increase for energy con-
sumption when previous data are not included.

For both water and energy predictions, results suggest that general
building information, e.g., use designation, year built, number of floors,
and area, are all among the least important variables when predicting
consumption, which is consistent with the results shown previously in
Fig. 13. The lower importance of variables related to general building
information supports the assertion that this information should not be
the sole basis of benchmarking, and other characteristics should be
considered for categorizing buildings. Notably, the building features
used in this study represent lumped building characteristics and not
detailed information (e.g., number and type of water fixtures, efficiency
of boilers, thermal transmission and resistance of buildings, etc.). In-
clusion of such detailed information will improve prediction accuracy,
but is significantly more intensive in terms of data collection, especially
for large and multiple number of buildings. The variables that have a
high influence on prediction models, such as day, class session, season,
average daily temperature, and monthly consumption, provide infor-
mation on the main drivers of consumption for a specific group of
buildings. Characterizing how these variables affect demand and how
specific building characteristics relate to these connections is crucial to
understanding water and energy demand in urban setting. When specific
building characteristics can be found, a better means for characteriza-
tion and benchmarking can be developed without the use of daily or
monthly water and energy data. Furthermore, planned buildings can be
characterized into clusters and accounted for in DSM policies.

Finally, typical building water and energy consumption values
published by the United States Energy Information Administration
(USEIA) were reviewed to compare national consumption benchmarks
to the building consumption values observed in this study [64-65].
Based on the USEIA surveys, mean daily water intensities among US
buildings in different sectors range from 0.38 to 5.52 1/m?. In this study,
the mean daily water intensities of the different buildings range from
0.52 to 4.35 1/m?, thus the buildings included in this study are repre-
sentative of the large buildings surveyed by USEIA, in terms of water
intensities. Among the different buildings, housing are the buildings
with the highest water intensities, which are concentrated in meta-
clusters 5 and 6, with water intensities comparable with the lodging
sector, as reported by the USEIA. The rest of the buildings exhibit lower
and mixed trends in terms of water intensity. Similar conclusions can be
made regarding the applicability of buildings analyzed in this paper for
energy intensity. The range of mean daily energy use intensities
observed in this study is 0.22 to 0.87 kWh/m?, compared to 0.19 to 0.91
kWh/m? reported by USEIA. Unlike with water intensity, housing have
the lowest energy intensity (see Fig. 12), and the highest energy in-
tensity buildings belong to meta-cluster 7 with a mix of research labs,
classrooms and academics buildings. The energy intensity of the rest of
buildings studied here was below 0.54 kWh/m?.

5. Conclusions

Water and energy utilities are increasingly collecting vast amounts of
data regarding user consumption, however the data must be analyzed in
order to deliver insights and actionable information to the utility’s
managers. In the context of the water-energy nexus in urban environ-
ments, this work addressed current gaps in the literature revealing
apparent dissimilarities between utilization of water and energy re-
sources for heterogeneous buildings. The results of this study highlight
the value of data-driven modeling for revealing meaningful insights and
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identifying emerging and/or unusual trends to facilitate multi-utility
management.

Specifically, the clustering analysis performed in this work revealed
that water and energy consumption patterns of heterogeneous buildings
are not uniquely characterized by general building characteristics and
that other specific building characteristics need to be explored. Analysis
of the predictive models showed that an overall non-parametric model
provides better predictions for water and energy compared with para-
metric models. Furthermore, while the non-parametric model performs
best with high resolution, continuous data, the model also produces
acceptable results with low-resolution consumption data, typically
received from monthly billing data. The insights from this study have
multiple implications. First, this study provides a new method to group
buildings across water and energy consumption patterns. This infor-
mation is valuable to benchmark buildings’ performance and provide a
meaningful measure of comparison as well as a measure for achieving
targeted performance and identifying buildings that are candidates for
water and/or energy efficiency upgrades. Furthermore, the data-driven
prediction model could be used to forecast daily consumption levels for
buildings that do not have continuous consumption data available and
could facilitate water and energy utilities to update their demand fore-
casting models and detect abnormal technical (e.g., meters malfunc-
tioning) and physical (e.g., leaks) events.

This paper provides a foundation upon which additional inquiries
should be conducted. Although it was found that the buildings included
in this study classify into one of 10 meta-clusters, exploring the drivers,
which determine the classification of each building, was beyond the
scope of this paper. Future work should further explore additional non-
building features (e.g., occupancy, activity, gender) that would differ-
entiate buildings from each other, following similar approaches applied
to residential buildings [59,23,25]. Investigations into this aspect could
provide means for classifying buildings without water and energy data
and help predict changes in overall water and energy demand with
future development. Another direction for future work should explore
the effects of seasonality on meta-cluster composition. By stratifying the
times for which buildings are classified (e.g., monthly instead of yearly),
time-specific meta-clusters could inform resource consumption based on
more granular timescales, thus generating dynamic clusters of buildings.
Then by continuously analyzing buildings’ classifications, temporal
changes in building’s water and energy behaviors can be detected and
further investigated.

As the threat of climate change grows alongside a continual increase
in urban population, the need to ensure access to water and energy re-
sources becomes more crucial. Overall, the methods outlined in this
study provide another step towards better water and energy manage-
ment techniques, which can then be used to build greater resiliency
within urban areas in preparation for future changes in population and
climate.
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