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Abstract

We study low regularity behavior of the nonlinear wave equation in R? augmented by the
viscous dissipative effects described by the Dirichlet-Neumann operator. Problems of this type
arise in fluid-structure interaction where the Dirichlet-Neumann operator models the coupling
between a viscous, incompressible fluid and an elastic structure. We show that despite the
viscous regularization, the Cauchy problem with initial data (u,u;) in H*(R?) x H*~1(R?),
is ill-posed whenever 0 < s < s, where the critical exponent s.. depends on the degree of
nonlinearity. In particular, for the quintic nonlinearity u°, the critical exponent in R? is s, =
1/2, which is the same as the critical exponent for the associated nonlinear wave equation
without the viscous term. We then show that if the initial data is perturbed using a Wiener
randomization, which perturbs initial data in the frequency space, then the Cauchy problem
for the quintic nonlinear viscous wave equation is well-posed almost surely for the supercritical
exponents s such that —1/6 < s < s, = 1/2. To the best of our knowledge, this is the first result
showing ill-posedness and probabilistic well-posedness for the nonlinear viscous wave equation
arising in fluid-structure interaction.

1 Introduction

We study low regularity behavior of the nonlinear wave equation augmented by the viscous ef-
fects described by the Dirichlet-Neumann operator typically arising in fluid-structure interaction
problems:

O — Au+uP + 2u/ =N =0, (z,y) € R%t € R, (1)

where p > 0 is an odd integer, and p > 0. The model above can be thought of as a mathematical
prototype for the interaction between a prestressed, stretched membrane and a viscous, incom-
pressible fluid. The membrane (an infinitely large drum surface) is modeled by the linear wave
equation:

Opu—Au=f, (z,y) eR*teR,

where v = u(x,y) is a scalar function describing transverse membrane displacement. We assume
for simplicity that the structure experiences displacement only in the transverse, z direction and
hence experiences no tangential displacements from its reference configuration. The incompressible,
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viscous Newtonian fluid is located under the membrane in the half space z < 0, modeled by the
Stokes equations:
Vr = plo,
Vv = 0,
where 7 is the fluid pressure, v is the fluid velocity, and u is the kinematic viscosity coefficient.

The first equation in (2) describing the second Newton’s law of motion (balance of forces), can be
written as

} in Q={(z,y,2) € R®: 2 < 0}, (2)

V.o(m,v) =0,
where the Cauchy stress tensor o is given by
o =—7l+2uD(v) (3)

for Newtonian fluids, I is the identity matrix, and D(v) denotes the symmetrized gradient of
velocity.

The fluid and structure are coupled through two coupling conditions: the kinematic and dynamic
coupling conditions. For simplicity, we will be assuming that the coupling is at the fixed fluid-
structure interface, which we denote by I' = {(z,y, 2) € R : z = 0}. The fixed interface corresponds
to the reference configuration of the stretched (prestressed) membrane. The coupling conditions
read:

e The kinematic coupling condition (describing continuity of velocities):
’U’F = Ut€y, (‘Taya Z) € Pa (4)

where e, is the unit vector pointing in the positive z direction. Notice that the kinematic
coupling condition (4) states that on the boundary I, the tangential components of the trace
of the fluid velocity are equal to zero. Only the normal component of the fluid velocity is
assumed to be nonzero on I'.

e The dynamic coupling condition (describing balance of forces, i.e., the second Newton’s law
of motion):
Opu — Au = —oe, - e, + Fo(u). (5)

The right hand-side of (5) describes the jump in the normal stress (traction) across the fluid-
structure interface, where Fex(u) denotes external force, which in general may depend on u,
acting on the membrane in the normal direction —e,.

In our model we will be assuming that the external force is a nonlinear function of u, and that
it is given by
Fext(u) = _up’

where the nonlinear term w” models, for example, the nonlinear spring-type effects, distributed
across the membrane surface by, say, a surrounding medium (e.g., structure) sitting on top of
the membrane. These types of external source terms have been used in modeling blood flow in
compliant arteries, see [28], to describe the tissue surrounding pulsating arteries. In cylindrical
geometry, the nonlinear term in the cylindrical nonlinear membrane/shell equations appears due
to the contribution of the circumferential stress/strain, as was done in [39].

Next, we compute the contribution of the term arising from the Cauchy stress tensor, —oe,-e,,
on the right hand side of (5), which is evaluated on the fixed fluid-structure interface I'. Using (3),

Ov,
0z

—0e, e, =m—2U



Because we are evaluating this quantity on I', we note that

Ov,
0z

=0 on I (6)

by the divergence-free condition V-v = 0 and the fact that v, = v, = 0 on I', since we are assuming
that the structure experiences displacement only in the transverse z direction. Therefore,

—o0ey- e, =T, (7)

where 7 is the fluid pressure given as a solution to the Stokes equations (2).
So it remains to find an appropriate expression for 7 in terms of the structure displacement u
as follows. We will derive the formula

m=—=2uvV—Au; onT, (8)

under the assumption that v and u; are smooth functions, along with their spatial derivatives, that
are rapidly decreasing at infinity. We will also impose the boundary conditions on (2), stating that
the fluid velocity is bounded on the lower half space, and the pressure 7w has a limit equal to zero
as |x| — oo in the lower half space.

To derive the formula (8), we note that by taking the inner product of the first equation in (2)

with e, we obtain
or 0%v
2 pAg v + MW;’ 9)

where A, = aa—; + 88—52. Furthermore, by taking the divergence of the first equation in (2), and
by using the divergence-free condition, we get that the pressure 7 is harmonic. Thus, if we can
compute the right hand side of (9) on I', we can recover 7 as the solution to a Neumann boundary
value problem for Laplace’s equation in the lower half space, with the boundary condition requiring
that m goes to zero at infinity.

To compute the right hand side of (9), we need to compute v,. We use a Fourier analysis
argument. From (9) we see that v, satisfies

Av, = —.
v 0z

Taking the Laplacian on both sides, and using the fact that 7 is harmonic, we obtain
A%y, =0, on Q= {(z,y,2) € R?: z < 0}. (10)

Thus, v, satisfies the biharmonic equation with the following two boundary conditions: from the
kinematic coupling condition we get

v(x,y,0) = w(z,y,0), onI'={(z,y,2) € R3:z= 0}, (11)
and by (6), we have

Mo 0) =0, onP={(r.y,2) €B®:z=0} (12)

We remark that the biharmonic equation to analyze the Stokes problem has been previously used
in many works, see for example [35].



We solve (10) with boundary conditions (11) and (12) by taking a Fourier transform in the
variables x and y, but not in z. We will denote the Fourier variables associated with z and y by &
and &, and we will denote € = (&1,&2), |€]? = &2 + £€2. The Fourier transform equation then reads:

2 4
14526, 2) — 20P 2326, 2) + = 5(6,2) = 0. (13)

The general solution to (13) is
02(€,2) = C1(§)el®F + Ca(€)zelF 4 Cy(€)e 18 + Cy (€)ze 147,

Because e €% and ze 1€)* are unbounded in the lower half plane where z < 0, we exclude these
two terms and are left with

0:(&,2) = C1(&)el®l* + Ca(€)zelt. (14)
In Fourier variables, the two boundary conditions (11) and (12) translate to

. . v,

z 70 = ) . 70 = 07
REO =@, 2Z(e0)
which allow us to solve for the general functions C7(£) and Cs(&) in (14), giving the result

0:(€,2) = (€)ell — |¢|a(€)zell=. (15)

We can now compute the right hand side of (9). Taking the Fourier transform of (9) in the z
and y variables, and evaluating the equation on I" by using the kinematic coupling condition (4),

we get )
on . 0°v;,
S2(6.0) = —ul¢in(€) + 155 (€. 0).

From the explicit formula for v, (&, z) in (15), we conclude that

on .
52(6.0) = —2ulePa®). (16)

We have now obtained that the pressure m is a harmonic function in the lower half space,
satisfying a Neumann boundary condition, posed in Fourier space as (16). To obtain 7 on I and
recover formula (8), we can now employ the Neumann to Dirichlet operator.

It is well-known that the Dirichlet to Neumann operator for Laplace’s equation in the lower
half space (with the solution to Laplace’s equation having a limit of zero at infinity) is given by
V—=A, see for example [6]. Therefore, the Neumann to Dirichlet operator for Laplace’s equation in
the lower half space (with the solution to Laplace’s equation having a limit of zero at infinity) is a
Fourier multiplier of the form ‘?1‘ Since 7 is a harmonic function satisfying the Neumann boundary

condition (16), by applying the Neumann to Dirichlet operator we get

7(&) = —2ul¢lu(§)  onT,

which establishes the desired formula (8).
The result in (8), along with (7), implies the following form of the dynamic coupling condition:

Onu — Au+uP + 2u/—Auy = 0,



which accounts for the influence of the fluid viscosity within the fluid domain €2 and its trace on
the domain boundary I'. For simplicity, we will set 2 = 1, and study the equation

Opu — Au+uP + /—Auy = 0.

We will refer to equation (1) as the viscous nonlinear wave equation (VNLW).
We are interested in the Cauchy problem for equation (1), where p > 0 is an odd integer, and
© > 0, supplemented with initial data:

uw(0,-) = f and w(0,-) =g, (17)

where (f,g) € H*(R?) = H*(R?) x H*~1(R?). Here H* denotes the usual (inhomogeneous) Sobolev
space.

The analysis of fluid-structure interaction problems involving incompressible, viscous fluids and
elastic structures started in the early 2000’s with works in which the coupling between the fluid and
structure was assumed across a fixed fluid-structure interface (linear coupling) as in [1,2,14,22], and
was then extended to problems with nonlinear coupling in the works [3,8-10,12,13,15-19,21,23,24,
29-34]. In all these studies, a major underlying reason for the well-posedness is the regularization
by the fluid viscosity and the dispersive nature of the wave-like operators in more than one spatial
dimension. One of the main questions is “by how much” does the fluid viscosity regularize the
coupled problem? How does the viscous regularization “compete” with the nonlinearities in the
problem? In the present work, we study the influence of fluid viscosity and nonlinearity on the
well-posedness of the Cauchy problem for the nonlinear viscous wave equation by studying the
following two problems:

(P1) For a given exponent p > 0, which is an odd integer describing the nonlinearity in the problem,
is there a critical exponent s.. such that equation (1) with initial data (f,g) € H*(R?) =
H*(R?) x H*~Y(R?), with 0 < s < 8., is ill-posed in the sense that the solution mapping

(f,9) — u,

which takes the initial data (f,g) € #*(R?) and maps it to a solution u € C°([0, T, H*(R?))N
C*([0,T], H*1(R?)), fails to be continuous?

(P2) If well-posedness fails for some critical exponent s.., how “generic” is that behavior? Is
there a random perturbation of the initial data that would provide well-posedness, even for
“supercritical” initial data, namely for s < s, and how generic is that random perturbation?

As we shall see, the answer to problem (P1) is yes. Namely, despite the regularization by
fluid viscosity, there is a critical exponent s.. depending on the nonlinearity p, below which the
viscous nonlinear wave equation (1) is not well-posed for the initial data v € C°([0,T], H*(R?)) N
C([0,T], H*"1(R?)) such that 0 < s < ... Namely, as t — 0, the energy of the low frequency
Fourier modes gets transferred to the high frequencies so that the H®-norm of the solution becomes
arbitrarily large as t — 0, even though the H®-norm of the initial data is arbitrarily small.

The answer to problem (P2) is that the ill-posedness addressed in problem (P1) is not generic
in a certain sense. Namely, we show for the quintic nonlinearity p = 5, for example, that if we
randomize the initial data using a Wiener randomization, which perturbs initial data in frequency
space via independent random variables with bounded six moments (associated with p = 5), then
the Cauchy problem for the quintic nonlinear viscous wave equation (1) will be well-posed almost
surely.



To obtain answers to problems (P1) and (P2), we start by looking for symmetries of equation (1).
Symmetries can provide insight into the questions of if and when well-posedness may be expected.
As in the theory of nonlinear dispersive equations [7,11,25], we look for scaling symmetries. As we
will see later, the scaling symmetry

u(t,x) — )\P%lu()\t, Ax)

preserves solutions of equation (1). Furthermore, it preserves the H* norm of the solution when
§ = S¢r, Where
n 2 1 2

At Ry B §
and n is the dimension of R" (n = 2 in the present work). Here, H*(R") denotes the homogeneous
Sobolev space, equipped with the norm

1

Il ey = Ty [ T P

Note that this is the same critical exponent as for the defocusing nonlinear wave equation [11,25]:
Opu — Au+uf =0, (18)

where the defocusing case corresponds to the choice of the positive sign in front of the nonlinear
term uP. We will see that in terms of energy inequalities and ill-posedness behavior, the viscous
nonlinear wave equation (1) shares similar properties with the nonlinear wave equation (18), but
the viscous nonlinear wave equation also exhibits novel behavior that arises from dissipation of
energy due to viscosity.

The presence of a critical exponent is crucial for the analysis of nonlinear partial differential
equations, in particular for dispersive equations. Above the critical exponent, dispersive equations
usually exhibit well-posedness, which can be established from fixed point arguments in combi-
nation with dispersive estimates for the linear problem [7,25]. For example, such a result was
established first for the nonlinear Schrodinger equation above the critical exponent by Cazenave
and Weissler in [7], and a well-posedness result for the nonlinear wave equation above the critical
exponent was established by Lindblad and Sogge in [25].

In the case of the viscous nonlinear wave equation, we expect to have well-posedness for the
exponents s above the critical exponent s., using similar approaches as in [7,25], since the presence
of viscous regularization can only improve solution behavior. Well-posedness of the Cauchy problem
for equation (1) (in the Hadamard sense) is defined by requiring that there exists a unique solution
u € C°([0,T), H*(R?)) N C([0, T], H*~'(R?)) such that the solution mapping

(f,9) = u,

which takes the initial data
(f,9) € H'(R?) = H* x H*™

and maps it to a solution v € C°([0, T], H*(R?)) N C*([0, T], H*~'(R?)), is continuous.
In this manuscript, however, we are interested in the supercritical (s < s¢r) behavior of equation
(1). Below the critical exponent which preserves the H*" norm of the scaling symmetry u(t,z) —

)\P%l u(At, Az), we would heuristically expect ill-posedness.

Indeed, such ill-posedness behavior was most famously considered for certain ranges of s of
initial data in H® for the nonlinear wave equation and the nonlinear Schrédinger equation by
Christ, Colliander, and Tao in [11].



It is not clear a priori that the viscous nonlinear wave equation would embody the same property
because of the regularizing effects by the fluid viscosity. However, in Sec. 2, we show that a
similar ill-posedness result can be obtained using a similar procedure for the viscous nonlinear
wave equation with initial data in H® with 0 < s < s¢. In particular, we will show lack of
continuity of the solution map for the viscous nonlinear wave equation when 0 < s < S¢;.

As a remark, we note that for the nonlinear wave equation, because solutions can satisfy finite
speed of propagation, it is possible to construct initial data for which there is instantaneous blowup
[11]. In particular, it can be shown that for a certain choice of initial data, there exist no 7' > 0 for
which there is a weak solution to the nonlinear wave equation in C([0,7]; H®). For more details,
see the discussion in [11]. However, we would not expect instantaneous blowup for the viscous
nonlinear wave equation, since the solutions no longer obey finite speed of propagation due to the
viscous effects in (1). We will show, instead, that the solution map, which associates the solution
u to the initial data u(0), is not continuous in the sense that the H® norm of the solution can grow
without bound as ¢ — 0 even as the initial data «(0) has infinitesimally small H® norm. More
precisely, we will show that if 0 < s < s, then for every ¢ > 0, there exists a solution u of the
viscous nonlinear wave equation (19) and a positive time ¢ such that

uw(0)||ms <€, u(0)=0, 0<t<e |lu®)lgs >el,

for some u(0) € S(R?), where S(R?) denotes the Schwartz class. Thus, the solution map for the
equation (19) is not continuous at (0,0) € H*(R?)x H*~'(R?) for 0 < s < . The main mechanism
that allows this behavior is transfer of energy from low to high Fourier modes. The proof is based
on studying the visco-dispersive limit v — 0 in:

Opu — VEAU + vV —Adwu + uP = 0,

and understanding how the unbounded growth of the H® norm in time of the solution for the visco-
dispersive limit equation v = 0 translates into the solution behavior of the perturbed equation
with v > 0 small, as ¢ — 0. By utilizing the various symmetries of the solutions to the viscous
nonlinear wave equation, one can show that the unbounded growth of the H® norm in time for
the visco-dispersive limit v = 0, translates into similar growth of the H® norm of the solution to
the perturbed equation with v > 0 small. Using scaling symmetries of the viscous nonlinear wave
(VNLW) equation, we can then allow this unbounded H® norm growth to occur at arbitrarily small
times ¢ — 0, even when the initial data has infinitesimally small H® norm. The ill-posedness result
is presented in Sec. 2.

In Sec. 3, we start preparing for the probabilistic well-posedness result, by deriving Strichartz
estimates, which will be crucial in proving probabilistic well-posedness for the supercritical nonlinear
viscous wave equation with initial data belonging to H*(R?) x H*"!(R?), where s is below the
critical exponent (—1/6 < s < 1/2 = s..). The Strichartz estimates, which are linear estimates
derived for the linear homogeneous and linear inhomogeneous equations, will be used to prove
probabilistic well-posedness of the nonlinear viscous wave equation by considering the nonlinear
term as an inhomogeneous (source) term for the corresponding linear problem, and then using a
fixed point argument to show the existence of a unique solution, which we will then show also
depends continuously on the initial data.

Strichartz estimates, which are estimates that control the L{L" norms of solutions to linear
dispersive equations in terms of the initial data and source terms, are crucial for establishing well-
posedness results for dispersive equations. These estimates were first determined by Strichartz
in [37] in the context of a Fourier restriction problem, and were found to be equivalent to estimates
for the linear wave equation. They were extended to a more general abstract context by Keel and



Tao in [20]. In Sec. 3, we use the theorem by Keel and Tao in [20] for general Strichartz estimates
to derive the corresponding estimates for the linear viscous wave equation (homogeneous and in-
homogeneous). We show that the presence of viscous regularization influences Strichartz estimates
in two ways: the viscous Strichartz estimates hold for a larger range of admissible exponents ¢ and
r, and the homogeneous viscous Strichartz estimates hold even in 1D. This is interesting because
it is well-known that the linear wave equation in one dimension does not possess such Strichartz
estimates. See Sogge [36] for a detailed exposition of Strichartz estimates and generalized Strichartz
estimates.

In Sec. 5 we use the “global” L{L" Strichartz estimates and combine them with the “local”
C°([0,T], H*(R™)) estimates, presented in Sec. 4, to study probabilistic well-posedness for the
supercritical nonlinear viscous wave equation. We show that under Wiener randomization of initial
data, we can get a local probabilistic well-posedness result for the nonlinear viscous wave equation
in R? that brings the threshold exponent from s.. = 1/2 down to s > —1/6.

This result is in the spirit of Burq and Tzvetkov [5], who studied probabilistic well-posedness
for the supercritical cubic wave equation. Ever since Christ, Colliander, and Tao in [11] showed an
ill-posedness result below the critical exponent for the nonlinear wave equation, there has been con-
siderable interest in the behavior of such supercritical wave equations under randomization of the
initial data. Burq and Tzvetkov showed in [5] that under appropriate randomization, one has local
existence to the supercritical cubic wave equation almost surely for initial data in H*(M)x H5~1(M)
appropriately randomized, where s > 1/4, and M is a compact, three-dimensional manifold. The
probabilistic randomization decreases the threshold for such local existence from the critical expo-
nent s = 1/2 for the cubic nonlinear wave equation to s = 1/4.

The randomization used by Burq and Tzvetkov in [5] relies heavily on the fact that there is
a discrete spectrum for —A on a compact Riemannian manifold M. The randomization of initial
data is then performed by randomizing each of the eigenfunction components of the initial data,
using a sequence of independent random variables. See [5] for more details.

Our problem, however, is posed on R?, which means that we do not have a discrete spectrum
for —A, and so the randomization from Burq and Tzvetkov in [5] does not carry over to our case.
However, we use an analogue of this discrete randomization, known as the Wiener randomization.
Wiener randomization was developed by Bényi, Oh, and Pocovnicu in [4]. Such a randomization was
used in recent years to produce existence results for randomized initial data on Euclidean domains
for the nonlinear wave equation by Lithrmann and Mendelson in [26], and for the incompressible
Euler equations by Wang and Wang in [38], for example. We describe the Wiener randomization and
its properties in Sec. 5, and show how it can be used to produce a probabilistic local existence result
for the supercritical nonlinear viscous wave equation. We prove that for a random perturbation
of initial data in H®(R?) x H*"!(R?) based on Wiener randomization, the supercritical quintic
nonlinear viscous wave equation is well-posed almost surely, even for —1/6 < s < s, = 1/2. In
contrast with the cubic wave equation for which supercritical probabilistic well-posedness holds
for the exponents s > 1/4 in the case of three-dimensional compact manifolds without boundaries,
see [5], we show that the viscous dissipation allows us to bring the threshold exponent from s., = 1/2
all the way down to negative Sobolev space exponents s for which s > —1/6.

2 Ill-posedness for viscous nonlinear wave equation

We study the Cauchy problem for the viscous nonlinear wave equation

attu — Au + v —A@tu +uP = Oon Rn,
’LL(O,ZE) = f(ﬂi'), ut(()’x) = g(:E)y



where p > 1 is a positive odd integer. The case of n = 2 corresponds to our given fluid-structure
interaction model, but we will use general n, as all arguments here hold for general n. To study
ill-posedness as specified in (P1) of Sec. 1, we begin by investigating the scaling symmetries of this
equation and determine the critical exponent s, that preserves the homogeneous Sobolev H 5(R™)
norm of solutions of (19) under this scaling symmetry. We recall that the homogeneous Sobolev
space H*(R") is defined as a completion of C§°(R™) in the norm

£ 1l s := @m) 2 UIEP FE) N 2@y
We start by first noticing that for positive A, we have v —A [u(Az)] = A(vV—Au)(Ax). Indeed,

1 o
VIR ()] = g [ Ve Sl = MVBu e,
Therefore, the following scaling map:

ult, ) — Ar-Tu(At, Az) (20)

preserves solutions to the partial differential equation above. A calculation shows that the critical
exponent for equation (19) that preserves the homogeneous Sobolev H*(R™) norm of this scaling,

is given by:
n 2
Ser = § -

(21)

We note that this is exactly the critical exponent for the defocusing nonlinear wave equation [11]

p—1

Opu — Au+uP =0 on R". (22)

Christ, Colliander, and Tao have shown in [11] that this defocusing nonlinear wave equation for
odd integers p > 1 exhibits ill-posedness for initial data (f,g) € H* x H*~! where 0 < s < s... We
ask whether equation (19) exhibits similar behavior. Intuitively, one can show through an energy
estimate that even though both the nonlinear wave equation (18) and viscous nonlinear wave
equation (19) share the same critical exponent, the presence of the viscous term in (19) dissipates
energy, which might yield better estimates and a different ill-posedness result. We will show that
this is, in fact, not the case, although there are some differences. More precisely, we will show that
the viscous nonlinear wave equation (19) has the same ill-posedness property as the nonlinear wave
equation (18), indicating that nonlinear effects are dominant over viscous reqularization associated
with the fluid-structure coupling. However, as we will see below, the viscous contribution has the
potential to slow down the speed of how “fast” the H® norm of the solution grows.
A way to show this is to use a variation of the dispersive limit argument in [11]. More precisely,
we consider
O — V2 Au+ vV —Adu +uP =0 (23)

for v > 0, and study the solution in the visco-dispersive limit when v — 0. In the visco-dispersive
limit, one formally gets a limiting equation

8ttu +uP = 0, (24)

whose solution can be written out explicitly, and it can be shown that the solution exhibits rapid
growth of the H* norm in time. The goal is to then show that for small v’s, solutions to (23) with
v > 0 small are close to the solution with v = 0. Note that equation (23) can be considered as a
“perturbation” of the visco-dispersive limit equation (24).



To show that for small v’s, solutions of (23) are close to the solution with v = 0, let ¢y be any
smooth compactly supported function on R”. The initial value problem we consider is

O — V2AU + vV/—Adwu + uP = 0 on R”, (25)
u(0,z) = ¢p(x), Ou(0,x) =0,

and the visco-dispersive limit of this initial value problem is

attu +uP = 0, (26)
u(0,2) = ¢o(x),  Ou(0,x) =0.

The solution of (26) is given by

6 (t,2) = do(@)V (tloo(@)|" ) = go(@)V (¢ (d(2))T ), (27)
where V is the smooth periodic solution to
V'+vP=0, V(0)=1, V'(0)=0.

Note that V' is even, which is why we can remove the absolute values in (27).
Crucial for the proof is the following scaling property of the visco-dispersive limit equation (25):
if u(t, x) is a solution to (25), then the entire one-parameter family of functions

__2
Aty A T ve), A >0,

obtained via the scaling map (20), is a solution to the viscous nonlinear wave equation.

We want to argue that for small values of v, solutions to both initial value problems (25) and
(26) are close for a bounded set of times, which increases as v — 0. We make this statement precise
in the following proposition.

Note on notation. In what follows, we use k for the exponent in H* whenever we want to
emphasize that the Sobolev exponent is an integer, while we use s for the Sobolev exponent in H*®
when the Sobolev exponent can be a general real number, possibly fractional.

Proposition 2.1. Let p > 1 be a positive odd integer, and let k > n+ 1 be an integer. Suppose ¢q
is a compactly supported smooth function, and let qﬁ(o) be the solution to (26). Given any ¢ > 0,
there exist C, ¢ > 0 depending on p, k,d, and ¢g € C5°(R™), such that for all 0 < v < ¢, there exists
a solution ¢(t,x) of (25) such that

16(8) = O (0)l| ey + 118:(t) = ¢” Ol sy < CWI', - for all 0 < ¢ < cllogy|”.
Proof. The proof is based on energy methods. We begin by defining
w(t7 l‘) = qb(t’ l‘) - ¢(0) (t7 l‘),

where ¢(t,z) is the solution to (25) and ¢©)(¢,z) is the solution to (26). Then, w satisfies the
following initial value problem, where we use G to denote the nonlinearity G(z) = 2P:

Opw — V2 Aw + vV/=Adw = 12 A — G + w) + G(¢ V) — vvV/=A8,pV, (28)
w(0,z) =0,  Suw(0,z)=0.
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One can use energy estimates to show that this initial value problem has a solution in H*+1 x H¥,
as long as the H**! x H* norm of the solution is bounded. The main idea to prove this is to first
obtain the existence of a unique local solution, and then extend the solution locally whenever the
energy norm is bounded. The proof of this is by a Picard iteration argument. For a full proof of
the existence of a solution to (28) as long as the H**! x H* norm of the solution is bounded, we
refer the reader to the Appendix.

We will use the energy method to estimate the size of w. We note that we can derive an energy
estimate for the inhomogeneous linear problem

ug — V2 AU+ v/ —Adwu = F(t, ) (29)

as follows. Define the v-wave energy of a solution u (depending on v) by
1 9 v? 9
E,(u(t)) := §|ut(t,x)| + 7|Vu(t,x)| dx.
By multiplying the equation (29) by u; and integrating in space, we get
/attu - O — 1/2Au(8tu)d:17 = /F(t,x)@tu(x)dx — 1// vV —=Adwu - dyudr,

or equivalently (if u decays rapidly at infinity)

d

(B (u(1)) = / F(t, 2)0u(z)dz — v / VRO - Oyuda.

Using Plancherel’s theorem,

d

(B (u(t)) = / F(t, 2)0pu(x)dz — vl[ur] %y < / Pt 2)0hu(z)dz

< IE(, )22 - V2(Ey(u(t)? < 1|2 - 2(B, (u(1))) 2,

where we applied the Cauchy-Schwarz inequality. Therefore,

& (B wie)) < IFG) e,

which gives the desired energy inequality. Using the fact that derivatives commute with (9 —
v2A +vy/—A;) (since v/—A is a Fourier multiplier and hence commutes with ordinary derivatives
which are also Fourier multipliers), we can get an estimate on the derivatives too. In particular, if
we define

Eyp(w(t) =Y E,(05w(t)),

lal<k

we have the energy inequality

& (B w) < CINFE

for a constant C' depending only on k. Applying this energy inequality to (28) gives

& (BY2w)) < & (W86 e+ v/ B0 e + GG + w)(1) ~ GEO) D)
(30)
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In addition, we note that we can get estimates on spatial derivatives as follows:

w(6)]] e </ g ()] e’ <c/ EY2(u(t)dt < Cte(t), (31)

where s
e(t) == SUPogtfgtEy,/k (w(t").
Note that %e(t) < max (% <Ei/k2(w(t))) ,0), and so, since the right hand side of (30) is nonnega-

tive, we have

G e(t) < 0 (102860 + 1V =06 +1GO +w)(1) ~ GO D) - (32)

Recall the form of

6 (t,2) = do(@)V (t(60()'7 ),

and note that |¢g (m)\% is smooth since p > 1 is odd, so 7%1 is a positive integer. We can deduce
(recalling that ¢q is fixed) that

12 8¢ | < CVP(L+ E)*? < (1 + [t (33)
Using Holder and Sobolev inequalities as in [11] at the bottom of pg. 11, one obtains
1G(@ +w)(t) = G(6) ()| e < O+t [w ()] (1 + [w (Bl )P~ (34)
Estimate (31) now implies
1G(@ +w)(t) = G ) ()| < C(L+ [t (e(t) + e(t)?). (35)

Finally, we have to estimate ||vv/—Ad:¢”||yr. Note that

V=206 || i = v

(2m)? /Rz“ + 1€ 1lP0e0 ™ (1, €) [P dé

< v [ A+IE 00 0P

< V|00 i1 < Cu(1 4+ [¢))F < Cv(1 + |t (36)

and so by using (32), (33), (35), and (36), we get

%e(t) < C1+ [t W2 + v+ elt) + e(t)P).

Taking ¢ (and hence v, since 0 < v < ¢) sufficiently small, and using an a priori estimate e(t) < 1

(which we will recover later by bootstrap, and which is valid by continuity for small ¢ since e(t) = 0),

we get
d

yr e(t) < C(1+ |t (v + e(t)).

Gronwall’s inequality gives that

e(t) < Cv-exp(C(1 + [t])©).

12



Now we choose ¢ sufficiently small such that for all 0 < ¢ < ¢|logr|® and 0 < v < ¢, we have
Cv - exp(C(1 + |t))C) < CW179,

Cv - exp(C(1 + [t)Y) < 1/2.

To see that this is possible, note that we can choose ¢ sufficiently small so that cC << 1, ¢ << 1,
and Cc¢ << %. Then, for all 0 <t < c|logy|® and 0 < v < ¢,

Cv - exp(C(1+ t)°) < Cw - exp(C + CJHC) < Ce - exp(CeC [logw|C)
< CeCv - exp(CcClogr|) = CeCv - exp(—CcClogr) = CeCv - p(=0<)
< CeCrl—3 < CeCyl=0 = 019,

Note that C’ is independent of the sufficiently small ¢ we choose. Then, by making ¢ even smaller
if necessary, we can also get C'v'™% << 1/2 for all 0 < v < ¢ to get the second inequality
above. Then a bootstrap continuity argument (based on the second inequality above, which implies
e(t) < 1/2) can be used to justify the a priori assumption that e(t) < 1 for the ¢ we are considering
in 0 <t < cllogr|], 0 < v < c. Combining the definition of e(t) and estimate (31) gives the
desired result. (For estimate (31), we note that with the choices above, te(t) < C"v'~° still for all
0 <t < c|logr|¢, since |logr|® < |logy| < Cpv~" for any r > 0 and since we showed earlier that with
our choice of C, we actually had e(t) < C'v1=3. In particular, we can set r = 0/2.) O
Remark 2.1. Christ, Colliander, and Tao showed an analogous result for the nonlinear wave
equation (18), but the resulting exponent in the analogue of the lemma above is v2=9. This
shows that the dissipative effect of the vv/—Adyu term makes the solution of the perturbed viscous
nonlinear wave equation (25) “less close” than the solution of the analogously perturbed initial value
problem for the nonlinear wave equation (18) (which is just (25) without the vv/—Ad,u term) to
the dispersive limit solution. Thus, there is the potential for the solution of the perturbed initial
value problem (25) to have H® norm growing less fast than for the corresponding perturbed initial
value problem for the nonlinear wave equation.

The important feature of the above lemma is that for ¢ > 0 sufficiently small, 19 still goes to
0 as v goes to 0. Therefore, the proofs of ill-posedness in Christ, Colliander, and Tao [11] still apply
to this equation. In particular, we have the following result, which holds for general n, although
n = 2 will correspond to the specific case for our given fluid-structure interaction model.

Theorem 2.1. Let p > 1 be a positive odd integer. If 0 < s < s,,, where s, is given by (21), then
for every e > 0, there exists a solution u of the viscous nonlinear wave equation (19) and a positive
time ¢ such that

[u(0)||gs <€, u(0) =0, 0<t<e ||ul)lgs>e?,
for some u(0) € S(R™), where S(R") is the Schwartz class. Thus, the solution map for the equation
(19) is not continuous at (u(0),us(0)) = (0,0) € H¥(R") x H*~}(R") for 0 < 5 < 5.

For completeness, we present the main ideas of the proof here, and refer the reader to [11] for
more details. The main idea is to utilize the various symmetries of the vNLW equation (19) to
create a family of solutions depending on v, that “translates” H® growth of the solution to the
visco-dispersive limit equation (v = 0) into the unbounded growth of the H® norm of solutions to
the VNLW equation (19) at progressively smaller times ¢t — 0.

In particular, we have two symmetries:

13



e The visco-dispersive scaling symmetry: If u(t,x) solves Oyu — v2Au + vv/—Adu + uP = 0,
then u(t, vz) solves the original vNLW equation (19); and

o The uNLW scaling symmetry: If u(t, z) solves the original vNLW equation (19), then so does
2
AP—Tu(At, \x).

Using these symmetries, one can construct a family of solutions of the vNLW equation as follows.
Fix an arbitrary compactly supported function ¢y € C3°(R"), and let oW (t,z), v > 0, denote the
solution to the initial value problem:

8ttu — V2Au + vV —Aatu + uP = 0,

’LL(O,$) = ¢0($)’ atu(07$) = 07

with (¢g,0) as the initial data. Using the symmetries above, and the solution ¢)(t,z), we can
construct an entire family of solutions

U(V’A) (t’ x) = A_%(Zﬁ(y) ()\_lt, V)\_I.Z') (37)

to the original vINLW equation (19) corresponding to the following family of initial data for dis-
placement:

uN(0,z) = )\_P%lqﬁo(y)\_lm).
One can show, following the bounds in [11], that for 0 < s < s¢ 1= § — p%l, the H® norm of the
initial displacement ||u®*(0,.)|| He(rn) is bounded by

n

[N (0, )| prs mmy < CASr 51572,

whenever 0 < A < v, for a constant C' independent of 0 < A < v. So given € > 0, we can choose A
and v so that

" N\Ser—s
€= CONser 51572 = C?, where s — s > 0 and g —s>0, since 0 < s < s <m/2. (38)
v

This gives a whole family of possibilities for A and v, where 0 < A < v for all v > 0 sufficiently
small, since % > 1. In particular, for any choice of A\, v with v sufficiently small satisfying (38),
we will get that the norm of the initial displacement corresponding to the solution «*» in H* is
indeed less than e.

To show that the H® norm of the solution u*» (t,x) is greater than ¢! for some 0 < t < ¢,

recall that we had an explicit form for the solution of the visco-dispersive limit initial value problem:
Ut + uP = 0,
w(0,2) = ¢o(x),  Ju(0,z) =0,

which was given by ¢(0) (t, ) = ¢o(x)V (t(qﬁo(az))%)) for some smooth, even, periodic function V.
Analyzing this $(), one can see that ||¢© (¢, -)]| H*RR) ™ t¥ for all nonnegative integers k& > 0 and
sufficiently large ¢, and hence the result also holds for all H® for s > 0 not necessarily an integer,
by interpolation. By Proposition 2.1, we see that for all v > 0 sufficiently small, ||¢®)(¢,-)|| He (R7)
has the same behavior:

1% (8, s ey ~ 27, (39)
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for s > 0 and for times 1 << ¢ < c|logr|® (which can become increasingly large as v — 0). Thus,
the function ¢*) transfers its energy to increasingly higher frequencies as time progresses.

We now want to show that this translates into increasingly high H*® norm of u(?) (t,z), for
some time between 0 and e. Indeed, by recalling that ¢(*) appears in the definition of u(®*) (t,z)
in the following way, see (2):

u N (t, ) = )\_%qﬁ(”)()\_lt, vATlz),
and by using Fourier transform to examine the H® norm of u(**) for all v and X satisfying (38), one
obtains, following the steps in the proof of Theorem 2, pg. 17, Sec. 4 of [11], the following estimate

™V )| s > et?,

which holds for a constant ¢ > 0 independent of A\ and v. By choosing t large enough (depending
on €) and A small enough (depending on ¢ and €), one gets the desired estimate. Full details can
be found in [11].

While the proof in [11] uses times that can be both negative and positive (since the wave
equation is reversible in time), the argument from [11] carries over to the vNLW equation case,
where t > 0.

In conclusion, we have shown by Theorem 2.1, that the viscous nonlinear wave equation is
ill-posed for 0 < s < s = n/2 —2/(p —1). In the second half of the manuscript we will show
that this ill-posedness associated with the lack of continuity in the solution map, is in some sense
a non-generic phenomenon, and that using probabilistic arguments we can still get “probabilistic”
well-posedness even below the critical exponent.

Crucial for this argument will be Strichartz estimates, which we address next.

3 Strichartz estimates for the linear viscous wave equation

In this section we show that the linear viscous wave operator has strong decay properties that admit
a large collection of Strichartz estimates. Before beginning this analysis, following the abstract
Strichartz estimates for the linear wave equation and the Schrédinger equation of Keel and Tao [20],
we first consider the Fourier representation of the solution to the initial value problem for the
linear viscous wave equation. We emphasize that Strichartz estimates are estimates for the linear
equation, which we will later use to prove probabilistic well-posedness results for the nonlinear
problem studied in Sec. 5.

3.1 Fourier representation of solution to the homogeneous and the inhomoge-
neous linear viscous wave equation

The homogeneous linear viscous wave equation. Consider the Cauchy problem for the linear
homogeneous viscous wave equation with initial conditions, f,g € S(R"):

8ttu — Au + v —A@tu = 0,

u(0,z) = f(zx), Ow(0,2) = g(z).

Taking spatial Fourier transforms (assuming that u decays rapidly at infinity), we get

atta(tvé.) + |£|8ﬁa(t7£) + |£|2a(t7£) = 07
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W(0,6) = f(&),  8u(0,€) = G(€).

One can easily see that the solution is given by:

(V3
R sin | 52|t
it €) = Flee ( (?rw) + s <§mt>> +a<s>e—zt%. (a0

This formula makes sense when f,g € S(R™), but it can also be extended to the case when f,g €
L?(R™) by density arguments.
An important thing to notice is that, in contrast with the wave equation, solution (40) has a

. _lel . . .
damping term of the form e~ 2 ! associated with the viscous effects.

The inhomogeneous linear viscous wave equation. Consider the Cauchy problem for the
inhomogeneous linear viscous wave equation:

(att - A + v _Aat)u(th') = F(t,ﬂ?), (41)
To get the representation formula for the inhomogeneous viscous wave equation, we use Duhamel’s

principle. We follow the notation in Sogge [36]: for 7 > 0, let v(7;t,2) be the solution to the
Cauchy problem:

(81‘,15 — A+ —A@t)u =
u(r;0,2) =0, Owu(7;0,2) = F(T,2).

One can easily show that the solution to the inhomogeneous problem with source term F(¢,z) and
zero initial data is then given by

t
u(t,z) = / u(t;t — 7, x)dr.
0

Therefore, for the inhomogeneous Cauchy problem (41), we get the final formula for the Fourier
representation of its solution:

a(t,€) = Fle)e F (cos (Yelt) + Lysin (Lelt) ) + (e F Lfﬁ

C g, (Llele - )

+/ F(r,&)e 2 7 dr. (42)

0 5 [¢]

We will write this formula alternatively as:
_VA, V3 V3 _mtsin(g\/It)
u(t,) =e "2 <cos ( \/—At> s1n T\/—At>> f+e 2 —a= Y
=
V3 —A(t —

¢ _ sin V t—1)

—I-/ e~ 3ot < 7 )F(T, )dr. (43)
BV-A
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3.2 Statement of Strichartz estimates

Next, we present Strichartz estimates, which will be useful when studying the nonlinear viscous
wave equation using fixed point arguments. The estimates provide information about how the
LIL" norm of the solution to the linear problem is controlled in terms of data, for both the
homogeneous case, and the inhomogeneous case. While the homogeneous estimates follow using
techniques similar to those used in the case of the linear wave equation and the linear Schorédinger
equation, the inhomogeneous estimates will require different approaches because the associated
evolution operator is now self-adjoint due to the viscous contribution, as we explain below. In
both cases, the estimates will be given in terms of the L{L” norms of the solution, obtained via
an evolution operator U(t) associated with each problem separately. Crucial for the proof is the
following important abstract result about Strichartz estimates due to Keel and Tao [20], which uses
the following definition of o-admissible exponents (g, ) (see Sogge [36] or Keel and Tao [20]):

Definition 3.1. Let ¢ > 0. The exponent pair (g,r) is said to be o-admissible if ¢,r > 2,
(¢,7,0) # (2,00,1) and

2 20

-+ —<o.

q r
Theorem 3.1 (General Strichartz estimates, Keel and Tao [20]). Let U(t),t € R be a one-
parameter family of operators

U(t): L*(R™) — L*(R™),
such that the following two estimates hold:

1. The energy estimate holding uniformly in ¢:
U@ fllz < Clifllz,  f e LR, (44)
2. The truncated dispersive decay estimate holding for some ¢ > 0, uniformly in 7 and ¢:
UM U* () fllge < CA+ |t = 7)) fl L, (45)
where U*(t) is the adjoint operator.
Then, for all o-admissible pairs (¢, r) and (G, ), the following estimates hold:

10 gz < Cl Iz, (46)
[ varcad| <oy, (47)
—oo L2 t Hx
t
\[_vow e <oy, (15)
— 00 LgL; t tx

where ¢ and 7' are Holder conjugates of ¢ and 7, respectively.

We will use estimate (46) of this theorem to get appropriate estimates on the solution of the
homogeneous linear viscous wave equation, defined via certain evolutions operators U(t) that we
define below, applied to the given data. Estimates (47) and (48) are usually used to estimate the
Duhamel contribution of the inhomogeneous term for the linear wave equation and the Schrédinger
equation. In our case, however, since the contribution from the viscous regularization is self-
adjoint, we will have to resort to different approaches to estimate the Duhamel contribution in the
inhomogeneous case, as we explain below.

Our main results on Strichartz estimates are the following.
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Theorem 3.2 (Strichartz estimates for homogeneous linear viscous wave equation). Let
u be a solution to the Cauchy problem

(O — A+ V=A0)u =0, (49)

uw(0,) =f,  Ow(0,:) =g.

Then, for any ¢ > 0 and any o-admissible pair (g,7), r < oo, there exists a constant C, > 0
depending only on o, such that for every time 0 < T < oo, the following estimate holds:

"u"Lg([O,T];Lg(R7l)) + [|u(T, ')HHs(Rn) + [|Opu(T, ’)HHsfl(Rn) < CaHfHHs(Rn) + CaHgHHsfl(Rn)a (50)

provided that the gap condition
—s (51)

holds.

Theorem 3.3 (Strichartz estimates for inhomogeneous linear viscous wave equation).
Let n > 2 and let (¢,r) and (g,7) be any two pairs with ¢,7 > 2,1 < § <g<oo,1 <7 <r < oo,
where ¢’ and 7 are Holder conjugates of ¢ and 7, respectively. Let u be a solution to the Cauchy
problem

(81‘,15 — A+ —A@t)u =F,
u(0,-) =0,  Jwu(0,-) =0.

Then, there exists a constant Cy 5,7 > 0 depending on ¢, g, 7, 7, such that for every time 0 < T' < oo,
the following estimate holds:

HUHLZ([O,T];L;(R")) + HU(T, ')HHS(]Rn) + Hatu(Tv ')HHS*l(]Rn) < CQ@,T’,f"FHL;?'([O’T];LQ’(Rn)y (52)

provided that the gap condition
+ = -2 (53)

holds.

Remark 3.1 (Dimension n = 1). Note that the homogeneous Strichartz estimates in Theorem
3.2 hold for any dimension n, including n = 1. This is interesting because it is well-known that the
linear wave equation in one dimension does not possess such Strichartz estimates. However, the
viscous wave equation in one dimension has homogeneous Strichartz estimates due to the dissipating
effects of the viscosity.

Remark 3.2 (The gap condition). The gap condition is a natural condition to impose in both
cases, as it is the exact condition needed for the inequalities above to respect the scaling symmetry
of solutions in time and space. This makes the inequality scale invariant, and this property will
later play an important role, especially in the proof of Theorems 3.2 and 3.3.

Remark 3.3 (Admissible exponents (gq,r)). The Strichartz estimates for the viscous wave
equation are better than those of the wave equation in the sense that both the homogeneous and
inhomogeneous estimates hold for a larger class of admissible exponents. Again, this is due to the
dissipative effects of viscosity.
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Classical Strichartz estimates for the linear Schrodinger equation and the linear wave equation
usually follow immediately from the abstract Strichartz estimates by Keel and Tao [20] in Theorem
3.1 above. In the case of the viscous wave equation, this will indeed be true for the homogeneous
estimates, but it will not be true for the inhomogeneous estimates, because the dissipative portion
of the evolution operator is self-adjoint. This makes the proof of the inhomogeneous Strichartz
estimates considerably more subtle, and the proof will employ techniques from harmonic analysis
that are markedly different from the techniques used to prove the homogeneous estimates.

In the proof of Theorems 3.2 and 3.3, we will use the following well-known Littlewood-Paley
theorem, which will help us reduce the problem to proving the estimates for the components in the
Littlewood-Paley decomposition.

Lemma 3.1 (Littlewood-Paley lemma). Let § € C§°(R4), 0 < 8 < 1, with support in [1/2,2] give
the Littlewood-Paley decomposition

> B<%>:1forall§>0.

j=—00

Define the Littlewood-Paley operators:

Gj(t,) = (2;),1 /R B <‘2%’> G(t,€)d,

which send G to its Littlewood-Paley decomposition {G; };-";_Oo. Then, the following estimates
hold:

e I[f2<r<ooand?2<qg< o0,

o0
1G12p, <C 311G B, (54)
j=—00
elfl<r<2andl1<q<2,
o0
S G 2as, < CUIGIR,. (55)
j=—00

To prove Theorems 3.2 and 3.3 we introduce the Littlewood-Paley operators U (t) and V) (t)
that account for the contribution of the initial data f and g, separately, to the solution of (49).
We recall (40):

sin

V3
o ey V3 1. [V3 g sin (Belt)
u(t,§) =e <COS <7|£|t> + %sm <7|£|t>> fl&)+e T

and introduce:

OO0 1) = xon(t) [ eee S ( (?w) + i (?w)) Flos () de

and

/N

[

v

9(8),

S

: , sin £|£|t
VU(t)g(z) = x0,1(1) / e“"fe‘gt%g(g)ﬂ <‘2%’> d.
R 1€l
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As we shall see later, only the operators U (t) and VU)(t) with —2 < j < 2 will be relevant for
the proof. Operators UU)(t) and VW (t), —2 < j < 2, satisfy the following estimates, which follow
from Keel and Tao [20]:

Lemma 3.2 (Estimates on UU)(t)f(z) and VU (t)g(z)). Given o > 0, there exists a constant
C, independent of T" > 0 such that for all o-admissible pairs (¢,r), (¢,7) and for all integers
U @) £l 02, < Collfllz2,

H | ¥y oreae| <clr

]
Ly L
2 t x
L2

H [ 00wy mEe ]| <clF

LiLy

LdLi
||V(j)(t)g||LgL; < CU||9||L27

‘ ‘/—:(V(j))*(T)F(T, Sdr

12 S CUHFHL;/L;H
x

\[_vwewreres]| <ol

LiLr

5/
q e
Li Ly

Proof. We verify the necessary conditions in Theorem 3.1 to get the desired estimates. We start
with inequality (44). It is clear from Plancherel’s theorem that

TP @) fllzz < ClIfl 2,

where C'is independent of ¢ and j, since ‘e“?‘t (cos (@]f\t) + %sin <§]§\t>> 6] (‘%‘)‘ < 2.

Similarly, by Plancherel’s formula, we can deduce that
VO (B)gllz2 < Cllgllz

for some C that is independent of £ and j. To see this, we simply note that there exists a constant

C such that (f >
: 3
_%‘tsm M2LEt €]
g (5)]= “‘”

for all ¢ > 0 and for all £ € R™. This is due to the support properties of 3 (%) and the fact

that —2 < j < 2, so that the quantity on the left hand side of (56) is potentially nonzero only for
18 <l <8
To verify (45), we fix an arbitrary o > 0 and verify the estimate

0P OO (@) fllige < Colt+ [t =77l £l
for some constant C,. It suffices to prove this inequality for positive integers o. We calculate

€] -~

OO (7)1@) = xonOxon(r) [ L ate natenFo5* (£ ) de



where

V3 1 (V3
a(&,t) := cos (715\15) + %sm <7\§]t) .

Assume t and 7 are such that 0 < 7,¢t < T where T > 0 is arbitrary. Fix an integer k > n/2.
Then,

D)) (+ wHk:#/ (14 [P .

=4 ate ate o ()]

Note that for —2 < j < 2, B(|¢|/27) is supported in 1/8 < [¢| < 8 and 0 < B(£) < 1. Therefore,
since |a(€,t)] < 2,

) )y 2 1 Cark =L (thT) | ey 2
T OY)* (1) fllgn < @ /1/8<I£|<84 65Fe GRS

S -~ Ll T _Lpgr
= Cpes(7 >/ F©Pde < Cre s fl[Te < Cre s fIZ,,
/8<[€1<8
implying
. . 1 1
IUOOCD) () fllaz < Coe™ 5D fllgy < Coe™ =7

for 0 < 7,t <T,since |t — 7| < t+ 7. Because e~ 16117l decays exponentially, it decays faster than
(1+ |t — 7|)~ for any positive integer o. In particular,

WU UL () fllae < Co(L 4 [t =) ]2+

for 0 < ¢t,7 < T and for all —2 < j < 2. For all other ¢,7, the left hand side is zero by the
characteristic functions xo7]. Since k > n/2, H k(R™) embeds into L>(R™), and so we have:

UL @)UY () flleee < UL @)WY () fllgr < Co(t+ 1t —7) N f |12,

which shows that assumption (45) holds for the operator U @), —2 < 7 <2
To show that the operator V) with —2 < j < 2 satisfies assumption (45), we proceed in a
similar way. We calculate

. LS (F1el) sin (Glelr
V(J)(t)(V(J))*(T)g(ﬂf)ZX[o,T}(t)X[o,T](T)/ o= B (t+r) gineg gf; ) (\/; ) (5)52<|£|> de.
R" 7 [l "2 I¢l

Again, we only need to consider 0 < 7,¢ < T where T' > 0 is arbitrary. Fix an integer k > n/2, and
note that

2

/—\

(V3
lel g S <7\§]t) sin \5]7’) €|
e A NPT (§)B2< ) d¢

2 2

o= 5L t+T) 15(¢)82 <|§|>

VO (VO (r)gl2 < @/Rn(l + ¢

<c / (14 €2k
1/8<(€1<8

Sin<§'5|7>5<rs\> o

3¢| 2

dg,

where we used
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uniformly on the support of 3 (;) for —2 < j < 2. Since —2 < j < 2, we get

VOOV Mgl <€ [ gy g pag
‘ 1/8<[¢|<8
<o e stIge Pl < GGl < Gt gl
/8<€|<8

Therefore, recalling that k& > n/2, for all —2 < j < 2 we have

1)\ * -1 T
VISV (7)gllze < CIIVO VD) (T)gllgs < Cre™ 1] (g]| 2
< Cre™ 5 lgl|y < Co(1+ [t = 7)) Igl |12,

where |t — 7| < t 4 7 since we are considering 0 < 7,¢ < T. The estimates from the statement of
Lemma 3.2 now follow directly from Keel and Tao [20]. O

3.2.1 Proof of Theorem 3.2: Strichartz estimates for the homogeneous problem

To prove the Strichartz estimates for the homogeneous linear viscous wave equation stated in
Theorem 3.2 we define u;(t, x), f;(x), g;j(x) for j € Z by

wit) = o [ 4 () at.ode 67)

5@ = e [ () o s =g [ e (B aoe o

It is easy to see that u; solves the corresponding linear viscous wave equation with initial data f;,
gj. Notice that restricted on the time interval [0,T], u; can be written in terms of UU)(¢) and
V() as follows:

ZU z) + V) (t)g;(x), t €[0,T],

(59)
where the second equality follows from the fact that supp(5) C [1/2,2]. Obtaining estimates for
u; will be based on using the results from Lemma 3.2, and the Littlewood-Paley decomposition
estimates from Lemma 3.1. More precisely, we first show in Step 1 below that given a solution
for any initial data (f,g), it suffices to obtain the corresponding estimate for each w;, uniform in
J € Z, for the initial data f;, g; defined via (58). In Step 2, we then simplify this even further by
showing that, in fact, it suffices to simply consider initial data whose spatial Fourier transforms
are supported in the annulus 1/2 < |¢| < 2. Thus, what we show in Steps 1 and 2 below is that it
suffices to obtain the estimate (50) from Theorem 3.2 for initial data f, g that have spatial Fourier
transforms that are all supported in the annulus 1/2 < |£| < 2. The proof will then follow from
estimates presented in Lemma 3.2.

1 j j
4j(2) = oo (V01 @) + VO (09(a)) = ¢

Step 1. Since j is supported in [1/2,2], we claim that it suffices to show that u; satisfies the
estimate (50) from Theorem 3.2 for the data f;,g; defined by (58), where the constant C' in the
estimate (50) is independent of j. Since q,r > 2, we can use (54) to get the results for general f,g.
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In particular, given a general solution u to the linear viscous wave equation with initial data
f, g, we can construct u;, f;, g; as in (57) and (58). Suppose that for all such u, f, g, the functions
u; for j € Z satisfy the estimate

uillLa oy op@ny) + 1w (T ) s ey + 1106w (T )| o1 (memy
< Clfill sy + Cllgsl -1 (gn)» (60)

where the constant C' is independent of j € Z.
Estimate (60) implies that for a constant C’ independent of j € Z,

max {HUJH%Q ([0,T);L% (R™))> ||u] (T’ )||2 s(Rm)? ||atuj(T’ ')||§'1571(Rn)} (61)
< C" (51 gy + 195051 gy )
Because ¢, > 2 and r # oo, we can apply estimate (54) in Lemma 3.1 to get
2 2 2
HUHLQI([QT};L;(Rn)) <C Z HujHLg([QT};L;(Rn)) <cc Z <Hf]” s(R7) + Hg]HH.s 1 Rn))
j=—o0 j==—o0
where the last inequality follows from (61). Because Z;’i_w 32 (%) < 1, we have that
Z ||fj||2's(Rn) é ||f||2's(Rn) and Z ||g]‘||§'{371(Rn — ||g||H.s 1 Rn) (62)

j=—00 j=—00

Combining the last three estimates, we obtain that there exists a C' > 0 independent of f, g, such
that

2
lZs oz ey < € (1 1By + 1911y ) < C (1 liroqamy + Nl amy) - (63)

Similarly, using the fact that for some constant ¢ > 0, Z;’i_w B2 (%) > ¢, we conclude that

HU(T7.)H2'S(R7L — _1 Z Hu] H2 .s(Rn)? and Hatu(T7 ')Hz's(Rn — _1 Z HatU] H2 .s(Rn)?

j=—00 j=—00

where in the second inequality, we used the fact that 8/t\uj(t, €)= B¢l 2j)@(t, €). Then by using
(61) and the inequalities in (62), we can obtain the analogous inequalities

(T, )2 < C (1 llge + gl groms)? and [|8ea(T, )20y < C (1fllge + llgllgems)®. (64)

Taking square roots in (63), (64), and adding the resulting equations gives the result in Theorem
3.2.
In the next step, we make a further simplification as follows.

Step 2. We have shown in the previous step that it suffices to show the uniform estimate (60) for
all j € Z and for all initial data (f,g) with corresponding solution u. In this step, we show that
because of the gap condition (51), it suffices to show (60) for just j = 0. In particular, showing the
estimate (60) for j = 0 with a constant C' automatically gives the same estimate for all j € Z with
the same constant C', by the scaling symmetries of the viscous linear wave equation.
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To see this, recall that
h(Az) = AX""h(&/N).

So it suffices to show that an estimate for a given f, g, u also holds for the corresponding functions
fx), A\g(Az), u(At, A\x). To verify this, we calculate

n_ 1

l[u(At, )‘x)HL;I([O,T};L;(R")) =AT qHu(tax)HLf([O,AT];L;‘(R"))y
[[u(AT, )\ﬂi)Hgs(Rn) = )\_%+SHU()\T,:U)HHS(R7L), [|AOpu (AT, MJ)Hgsq(Rn) = )‘_%+SHatu()‘T7x)”]’{s%(}gn)a

1O g qny = A2 @) ey IAIOD) [ grems @ny = A2 Ng(@)]] e (-

From here we see that we get the desired result since, by the gap condition,

_l’_

| =
=13

Conclusion. From Steps 1 and 2 we conclude that we just need to show the estimate (60) for
j = 0, for any initial data (f,g) and corresponding solution u. Since fy, go have spatial Fourier
transforms supported in 1/2 < |£| < 2, estimate (60) for j = 0 would be established if we more
generally proved Theorem 3.2 for all initial data (f,g) that have .G supported in 1 /2 <[] < 2.
Thus, without loss of generality, we can assume that f, g have spatial Fourier transforms that are
all supported in the annulus 1/2 < [¢| < 2. Note that, in this case, all homogeneous Sobolev norms
H*(R") are equivalent to the L?(R") norm.

Step 3. The proof of Theorem 3.2 now follows by combining Steps 1 and 2, the expression (59)
for u; in terms of the operators U @) and VU, and the estimates from Lemma 3.2.
More precisely, recall that the homogeneous solution can be written as

sin (3 —At
M@9=6_4g¢<m6<%?¢?ﬁo-+j%an<%§¢?za>jqqrﬁFt <2 >%

and we want to prove
HUHLZ([O,T};L;(W)) + [Ju(T, ’)HHs(Rn) + [|Opu(T, ')HHsfl(Rn) < CHfHHs(Rn) + CHgHHsfl(Rn)'

This follows from the estimates on the operators U and V@), =2 < j < 2, in Lemma 3.2, and by
using Steps 1 and 2 above to work with f, g which have Fourier transform supported in 1/2 < [¢| < 2
so that:

2
— Z /n irte 5 <c0s (?!5#) + %sin (?\ﬂt)) flop <|2£—]|> dé.

j=—2

Notice that we need —2 < j < 2 to cover all the j’s for which the support of 5 (%) intersects

1/2 < |€| < 2. For g, we use the estimates on V@), —2 < j < 2, in Lemma 3.2, and the same sum
decomposition where we sum from j = —2 to j = 2.
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For the terms ||u(T,-)|| Frs(rny 80d [10vu(T, )| Fra—1(rn)» We note that these norms are equivalent

to L? norms since u and d;u have spatial Fourier transforms that are also supported in 1/2 < [£] < 2,
in which case the inequality follows from Plancherel’s theorem and the support properties of f and
g- Note again that Plancherel’s theorem works here since || f|| s gny and |[gl] o1 (gn) are equivalent
to || fll2rn) and ||g||p2(n) respectively, given the fact that the Fourier transforms of f and g are
supported in 1/2 < |£] < 2.

]

3.2.2 Proof of Strichartz estimates for the inhomogeneous problem

To prove Theorem 3.3 we first recall from (43) that for the inhomogeneous viscous wave equation
with zero initial data, the solution can be represented as

t sin (¥3,/= -
u(t, ) 3:/0 e_\/?(t—T) ( Qg\/—f_z ))

The goal is to estimate this inhomogeneous contribution. In particular, we must show that

F(r,-)dr. (65)

el oz eoyy + Ty + 10T Moy < Cor Il oz oy (60)

. .. . . . . . V=A ..
Unfortunately, since the dissipative portion of the evolution operator involving e™ 2 is self-adjoint,

the results from Keel and Tao’s theorem cannot be used here, since U(¢)U*(7) has e_@(“”)
instead of e_@(t_ﬂ. Instead, we adopt ideas from fractional heat equations, see Miao, Yuan, and
Zhang [27].
We start by first proving that
ell g origey) < CaartllFll g o 21,05 @y (67)

For this purpose, we introduce the following family of operators

J—x sin (@v—At)
St):=e "2 ! v , t>0.
VA

The operators S(t) define a family of convolution kernels K;(z) via

where
o) = L / e—%@gz-%_ £ / e—%Mem%dg (68)
=G e Biel @) Jar el |

Using these operators, the solution u in (65) can be written as:

ult, ) = /0 [Ky_r(2) % F(r,2)] dr,
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where the convolution * is with respect to x. To obtain the desired estimates on u, we investigate
the properties of the convolution kernels K;(x). In particular, we begin by defining the “unit-scale”

kernel by
Lo e () L
K= g [, ¢ g % (69)

and notice that it has the following important scaling property:
Ky(z) =t K (%) . (70)

Lemma 3.3. There exists a constant C' > 0 such that the convolution kernel K (x) satisfies the
following pointwise estimate:

[K(2)] < C(1+ |27, =R,
for some a > 1/2. Therefore, K € LP(R™) for all 1 < p < cc.
Proof. The proof is similar to an argument used in Miao, Yuan, and Zhang [27] for a different
kernel, where we use repeated integration by parts until we get the necessary decay.

More precisely, to perform integration by parts and to obtain the desired estimates, it is useful
to introduce the following operator:

_x-Ve
a2

x- Ve

L(z,D — .
(2,D) o

and its adjoint L*(z,D) =

Operator L(x, D) has the following crucial property
L(z, D)™t = ¢i®,

We now integrate by parts to obtain:

3 y
1 g sin (Tlf‘) we . 1 e 1 S0 (T‘ﬂ)
K(z) = (2m)" /n g e dg @) /nL(e Je de
in (V3
LY P Rl )
R <2w>n/ S ST (71)
g sin( 2 1l)

Integration by parts is justified because e™ 2

(V3
) o &l sin( 3% (€]
creasing at infinity, and e™ 2 &3725)
7

g and all of its £ derivatives are rapidly de-
2

is bounded near the origin.

To estimate the resulting integral, we will do a high and a low frequency estimate. For this
purpose, define a radially symmetric smooth compactly supported function p such that:

p(§) =1 if £ <1, p(§) =0 if [§| > 2, and p is decreasing radially.

Then, we can split the integral (71) above into two integrals,

K@) = /nei”ﬁp <§> L e—%@

(2m)” g 2l
(V3
V) o [ (P
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where 6 > 0 will be chosen later.

Estimate of integral I. We start by estimating the factor involving the operator L*:

s (FEDN| |owe (s (BEDN| 4 g sin (le))

Pler = e \¢ " ) S Ve le " v
el ile] L] =] L]

n (%e))

1] 1 i [(eos (Fhel)  sin (Fel)
w72 e T T e )| Ve
o 5 I¢] €l

Now, from the Taylor expansion of sin and cos, and the boundedness of |V¢|||, there exists a
constant C' > 0 such that

(V3
_ 1 ix-€ g * _%SIH (7’5‘) -1 _ —1¢cn
1= g /ne p<5>L (e —g | %=k /5S25d§—0|a:| . (73)

2

Estimate of integral II. Let N be an arbitrary positive integer such that N > n + 1. Using
integration by parts N — 1 times, we get:

o (V3
B! e AN L _%Sln(ﬂf\)
R O e T

f \sr

- rx\N—1 _ § * U
<C - S (L") <1 p<5>>L e \/_\5]
(£ |£|

o e (-of8)) = (5L )dﬁ

By the triangle inequality and the support properties of p, we get:

i (V3
sin ( %52|¢
11| < C/ ()N e—%M
6128 L]

(V3
1€
- C/ (LN p <§> L e_EM d¢:=1Io+1Ip. (74)
<|€]<26

We estimate 114 as follows:

N N-1
as o™ [ 5 s (@a)'m 14 3 e K oos <£|£|>'|§|_Hd£
s\>al o 2 — 2
<owlal™ [ Yo Hieag, (73)
€128 =

where the cosine part has the index [ going only up to N — 1, since at least one £ derivative must
be used to turn sine into cosine.
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We estimate [1g as follows:

—k
I15 < Cyla| ™ / (5 e S ain (L) g
5<|g|<20 k ‘ z 2
N—-k—1

+ Z e % co ( |£|> |£|—H>ds

V3
2
C -N _le . @ -1
< Clal~ /<|£|<26k0 <lo sm<2|£| e
\/5
2|

Nok-1
e 2 cos < ) |§|_l_l)d§a

Y
1=0

where we used the fact that =% < 2NV=1¢|=* for k = 0,1,..., N — 1 and for § < |¢| < 2J. Continuing

to estimate the above quantity, we get

— NZE g
IT5 < Cyla| ™ / Zr (Ze—zm-l)ds

<|§|<2(5 k=0 1=0
—1N—-k

= Clal™ | 3 et (76)

<|§|<25k 0 1=0

l\.’)|~/‘r}

3]
w|m

where k is the number of derivatives that fall on p ( 6) Note that for all j = 0,1,..., N, we have

that there exists a constant Cy such that 0 < e %\ [/ < Cp, for all j = 0,1,..., N and for all
¢ € R™. Using this fact in (75) and (76), we get that

114 < CN|:E|_N/
§1>6

By employing estimates (77) in (74), and recalling that N is an arbitrary positive integer such that
N > n+ 1 so that the integral converges, we get

1€ Nd¢ and IIp < Cnlz|™V / €]~ Nae. (77)
0<|€[<26

1] < Cyle[ Y /lf el = Ol e (78)

Estimate of K(z). Using the low frequency estimate (73) and high frequency estimate (78) in

(72), we obtain
K (2)] < Cn(Jz| 710" + [z 7N a~Fm).

Now we set § = |$|_¥ in the above inequality so that both terms in the sum are the same, to
obtain Nt
K (@)] < Oyl 705, (79)

Since N > n + 1 was arbitrary, choose a positive integer N sufficiently large such that a :=

-1-n (%) < -n-— % Note that K(z) is bounded uniformly in z, since e —4 i integrable in

R™. Then, we conclude that there exists a constant C' > 0 such that
|K(x)] < C(1+|z|))™% xR,

for some a > 1/2. Therefore, K(x) € LP(R") for all 1 < p < 0. O
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In fact, there is an explicit formula for K (z), which will allow us to explicitly show a sharp decay
rate for K (x) in dimensions n = 1,2, 3. To state this formula, we must first recall the fundamental
solution for the wave equation, given by the following inverse Fourier transform,

1 sin(tl¢]) o
KV (z) = / e, 80
C O G fe I 0
where superscript “W” stands for the wave equation. The explicit form of the fundamental solution
for the wave equation is well-known for all dimensions, but is particularly easy to state in dimensions
n =1,2,3. We give the well-known formulas below, which can be deduced from the discussion on
pg. 4-5 of Sogge [37].

1
For n =1, K (x) = §1|m|§t-
Forn=2 I(W(gn):ii1 Liglet-
’ t B[z <
1
For n =3 KV (z) = —oy. 81
or n , () 47rt0t (81)

Here, 0; denotes Lebesgue measure on the sphere of radius ¢. There are more complicated formulas
for higher dimensions, and in particular, for n > 3, KtW (x) is distribution-valued.

Proposition 3.1. For arbitrary dimension n,

K(z) =cn <P + K" ﬁ> (z), (82)

2
where * denotes a spatial convolution and
1

Plz) = —— .
) (1 + 4f2f2) T

Proof. Recall that K (x) is defined by the inverse Fourier transform given in (71). We first consider

g sin( 2 ¢])

the inverse Fourier transform of e 2 an BT separately. The Poisson kernel, corresponding
3

to the operator e"V~—2, is well-understood and in particular,

1 lel . &

— ix-€ _ n o

- e 2e”df = ———— = ¢, P(2),
(2m)" /R" : (1+4]z)2)"s )

for some constant ¢, depending only on the dimension n. By formula (81),

1 sin(@’f‘) it e 2
Jo T L)

The result follows from the fact that the Fourier transform interchanges multiplication and convo-

lution, where we absorbed the extra factor of % into the dimension-dependent constant c,. O

Because the fundamental solution for the wave equation is particularly simple in dimensions
n =1,2,3, as given in (81), we can use Proposition 3.1 to show a sharp decay rate for K (z). This
sharp decay rate estimate will verify the result proved for general dimension n in Lemma 3.3 for
the explicit dimensions n = 1,2, 3.
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Proposition 3.2. For n = 1,2, 3, the convolution kernel K (z) has the following pointwise estimate:

C

|K(z)| < W7

x € R,

for some constant C' > 0. In particular, K (z) € LP(R™) for all 1 < p < oo in dimensions n = 1,2, 3.

Proof. We use the explicit formula for K (z) given in Proposition 3.1. Note that P(z) is bounded
near the origin, and decays as O(|z|~"~!) away from the origin. We begin with n = 3, then describe
the case of n =1, 2.

V3

For n = 3, because KtW /5 is Lebesgue measure on the sphere of radius %5, K () in dimension

7
n = 3 is an average over the boundary of spheres of radius @,

1 1
K@) =C (w0 @ =c [ —
<u+4mwf? ¥) =g (1 e — )

from which we deduce the desired estimate for n = 3. We remark that in dimension n = 3, K(x)
(up to a constant factor) can be interpreted as spherical means of the Poisson kernel.

For n = 1,2, one can use a similar interpretation of K(z) as appropriate spatial averages of
P(x), and we sketch the idea. Note that KtV[_/ 3 () is integrable and supported on the closed ball of

2
radius t for dimensions n = 1,2. Therefore, from the formula in Proposition 3.1, up to the constant

factor, K (x) in dimensions n = 1 is an average of K (z) over closed intervals of radius @,
7 1
K0=0 | & i
V3

and K (z) in dimension n = 2 is a weighted average of K (x) over open balls of radius 5>,

1 1

=T dy.
W< f3 oy (44— y?) T

Because K(z) in both n = 1,2 is, up to a constant factor, appropriate averages of values of P(z),
K () hence shares the same decay rate as P(x), which is O(|z|™"71), and K(z) is also bounded
near the origin, since P(x) is. This establishes the desired estimate for n = 1,2.

In particular, we see explicitly that K (z) € LP for all 1 <p < oo for n = 1,2, 3. O

K(z)=C

Next, we use Lemma 3.3 to prove an estimate on the action of S(t) for ¢ > 0. This will then be
used to obtain the first part of the Strichartz estimate (52), namely to show

||u||Lg([O,T];L;’(R”)) < qu‘iﬂ‘ﬂ|F||Lf’([0,T];L§’(Rn))' (83)

The following result is the analogue of Lemma 3.1 in [27].

Lemma 3.4. Let 1 <7 < p < 0o. There exists a constant C' > 0, depending only on p and r, such
that for all ¢ € L"(R") and for all £ > 0,

1-n(i-1
ISO6@ 2@ < 131611z oy
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Proof. This follows from the previous lemma, by Young’s inequality, and the scaling property of
our convolution kernels K. In particular, recall that

_@tsin (@V—At)
=

with the unit scale kernel K given by (71). By Young’s inequality,

S(t)p(x) ==e ¢ = (K; x ¢)(x), where K;(z) =t'™"K (%) ,

1S@) (@) L2y = (1Kt * Ol o @ny < K]l L mn)l|Bl] L1 m7), (84)
where 1
St =14-.
q r p

Using the scaling of the kernel,

ellsggee =t ([

Substituting this into (84), we obtain the final result that

1/q
q et 1_1
K (%)‘ d$> =" 1Kl Lg = Cp,rtHn(p ')

1—n(i-1
1SO@ 2@ < Cort ") 6]z
for t > 0 and for all ¢ € L"(R"). O

Remark 3.4. The result of Lemma 3.4 can be interpreted as a parabolic smoothing effect, due
to the dissipative effects of the fluid viscosity. For parabolic equations, parabolic smoothing can
often be captured by using energy estimates. Energy estimates for the linear viscous wave equation
would correspond to the case of r = 2 in Lemma 3.4, as a basic energy estimate would consider
initial data (f,g) € H'(R") x L?(R") and S(t)¢ in the statement of Lemma 3.4 corresponds to
the solution of the linear viscous wave equation with zero initial displacement and initial velocity
¢. We chose to use Fourier methods to establish Lemma 3.4 because they easily allow for more
general ¢ in L"(R™) for 1 < r < oo, which allows for a wider range of exponents than basic energy
estimates.

Now, we have the necessary components to establish inequality (83).

Lemma 3.5. Let n > 2 and let (¢, r), (¢, 7) satisfy 1 < ¢ < ¢ < 00,1 <# < r < o0, and the gap
condition (53):

Then, there exists a constant C > 0 depending only on ¢, ¢, r, 7, such that for all 0 < T < oo, and
for all F' € LY ([0,T7]; L (R™)),

2A(t—'r

. < o -t .
B TA F(r,-)dr < ClFl g o ryng o
2 L{([0,T); L (R™))

/t = )Sin <§\/I(t — 7'))
0
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For the inhomogeneous linear viscous wave equation with zero initial data, notice that since

- /t e—\/?(t—ﬂ sin (@M(i - 7'))
NS

F(r,-)dr,

this result implies
lellog oy < CaarillFll L (o gy )y

Remark 3.5. In contrast with the Strichartz estimates for the wave equation and the Schrodinger
equation, the result in Lemma 3.5 does not require any admissibility condition on (g,r) and (g, 7).

Proof. Similar to the approach used in [40] for fractional heat equations, the estimate in Lemma 3.5
is a consequence of the Hardy-Littlewood-Sobolev inequality.
More precisely, we first show the result in the case T'= co. We begin by estimating;:

t sin <§\/—A(t—7))
/ e~ 2 (t=7) F(r,-)dr
V3 A ’
2 LI([0,00); Ly (™)

in (V3 /—A(t —
/t R sm( =V —A(t T))
0 VENVEY

F(r,-) dr
Ly (R™) L9[0,00)
From Lemma 3.4, we have that for 0 < 7 < ¢, the integrand can be bounded as:
V=& sin (@V—A(t - 7'))
(t=7) (

_ 1-n(L4 -1 . _,
e 2 BA F(r,) < Crlt — 71" E TN F () g ey
2 Ly (®n))

which implies:

F(r,-)dr

L{([0,00); L5 (R™))

n(%-1
/|t (s r)||F(T,.)||L;,(Rn)dT

/ = T)SIII(\/_\/I(t—T))
i\/j

<CTT

(85)
L1[0,00)

We would like to apply the Hardy-Littlewood-Sobolev inequality in one dimension to the convolution
in time above, which states that for all 0 < @ < 1, and for s and §, 1 < § < s < oo, such that

1 1
1+—:t+a,
S S

the following holds:
(=% )] e

We plan to apply this estimate in (85) by lettlng

r) < CsallfllLs )



where indeed, 0 < o < 1 since we assumed that 1 < ¢’ < ¢ < oo, and the second equality holds by
the gap condition (53). We can then let § = ¢’ and s = ¢q. To apply the Hardy-Littlewood-Sobolev
inequality, which holds on R, we extend the function F' from t € [0,00) to t € R:

F(t,x) = F(t,z) for t > 0 and F(t,x) = 0 for t < 0,

and rewrite estimate (85) in terms of F:

2

in (¥3./Z _
/t e_m(t_ﬂ&n( 5V —A(t T))
0
LI([0,00);L7 (R™))

n(L—1) 7
[ te= G DBl oy

— ’f"f‘

LIE)

By applying the Hardy-Littlewood-Sobolev inequality we get:

in (V3 /—A(t —
/t e_\/?(t_7)51n< 5V —A(t 7'))

F(r,-)dr
V3 /A ’
2 LY([0,00); L1y (R™))

< CriCoygl |F] = Cogrill Fll o

LY (R;LE (R™)) (10,00):LF (R™))’
which is what we wanted to prove.

The case for 0 < T < oo follows from the case T' = oo by considering
Fr(t,z) = F(t,z) for 0 <t < T and Fp(t,z) = 0 otherwise.

This proves the lemma.
O

So we have just shown that [[ul| e(07);L7®n)) < Cogmill Il o for u given by (65).

LY ((0.7):L7 (R™))
What remains to be shown to complete the inhomogeneous Strlchartz estimate in Theorem 3.3 is
given by the following lemma:

Lemma 3.6. Let 2 < § < o0, 2 <7 < 0o and s satisfy

n 1 n

Then, there exists a constant C' depending only on ¢ and 7, such that for all 0 < T" < oo and for u
as in (65):

0T, g ey + 10T s gy < Cadl Fl (36)

Lf ((0,T);LF (R™)"

Proof. The proof uses similar arguments as in the proof of Theorem 3.2. First, recall from (65)
that if u is the solution to the linear viscous wave equation with zero initial data and source term

F, then
t = )sin (@V—A(t—ﬂ)
) :/ e T2 UTT
3\/—A

F(r,-)dr.
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We define the Littlewood-Paley decomposition contributions as:
1 ZSC 6 ~ 1 ZSC é.
w69 = g [, () 06 B0 = g [ e () Fe e

Step 1. We first claim that it is sufficient to show that estimate (86) holds for each integer j for
all F with F(t,¢) for 0 <t < T supported in an annulus 2/~! < |¢] < 27! where the constant in
the estimate is independent of j and 0 < T < oo.

To see why this is so, we follow an argument similar to the one in the proof of Theorem 3.2. In
particular, note that u; is the solution to the linear viscous wave equation with zero initial data
and source term F);, where j’; is supported in the annulus 27 -1 < €] < 2t forall 0 <t < T.
So if we had established that the estimate holds for each F' with Fourier transform at all times
supported in an annulus 2771 < |¢| < 27F! for each j, for a constant independent of j, we would
have for each j that

HU](T, )HHS(Rn) + H(‘M@(T, ')H]'—'Isfl(]Rn) < qufH‘FjHL;?'([QT};L;’(Rn))a

[l (T, M e ey < Cq,fHF}'Hig/ and [[9yu;(T, = quHFszL;/

M- @ (0. ThLE (R)

([0,7];L% (R™))

for all 0 < T' < oo and for any function F' (since Fj now has Fourier transform at all times with
support in 2771 < |¢] < 27F1). To get the estimate in Lemma 3.6, note that since ZJ__OO B2 (‘€‘>

c for some constant ¢ > 0, and since E?tuj(t,g) = (]f\/%)atu(t,g), we have

HU(T7 ')st(Rn — _1 Z Hu] H25Rn a‘ndHatu(T7 ')H?;'[sfl(Rn — _1 Z Hatu] Hs I(Rn)

j=—o00 J==o0

In addition, since 7 # oo, we have 7 # 1, and from the assumptions on ¢ and 7 from the lemma,
we see that 1 < ¢ <2, 1 <7 < 2. So by estimate (55) in Lemma 3.1,

Z l JHL‘I ([0,T];LE (R™)) CliF || ([0,T];LE (R™))”

Therefore, for general F' and associated u,

(11T e +||atu<T,->||Hsfl<Rn) <2ty (105 (T ) gy + 10005y )
j=—00
_1 .

Taking square roots gives the desired result.

Step 2. Because of the gap condition (53), we claim that it suffices to show estimate (86) for all F’
such that F' is supported in 2771 < [¢| < 2/F! for only j = 0, i.e., for F' supported in 1/2 < [¢] < 2
for all 0 <t < T with 0 <T < oo arbitrary.
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As in the proof of Theorem 3.2, we can use the scaling that preserves solutions of the linear
viscous wave equation, that maps I and v into A2F (M, Az), u(At, Az). Under this scaling,

[T, A2) | sy = A2 [uONT, 2)] | o gy

G (AT, A2 |71 ) = A‘%*SH@WT,w>llysfl<Rn>v

Jun

2-2-4
TNEE o)

2 _
INEOE A 0705y = A R e

0, T);LE (R™))

Because of the gap condition (53), once we prove estimate (86) in the case where F(¢, ) is supported
in 1/2 < |¢] < 2, we can use the scalings above to get that the inequality holds whenever F'(t, &)
(for 0 < t < T) is supported in any annulus 2/~1 < [¢] < 2/F! for any integer j, with the same
constant Cj 7.

Step 3. Thus, we must show that there exists a constant Cj; > 0, independent of 0 < T" < oo,
such that whenever F\(t,€) is supported in 1/2 < [¢] < 2 for all 0 < ¢ < T, the following holds:

HU(T7)HH5(R’”) + Hatu( )HHS 1 ]R”) < Cq T’HFHLQ [0 T] LT_I(R”))

We begin by estimating ||u (T, -)HHs(Rn)Z

/T e—m(T—r) sin <§\/I(T - 7'))

||'LL(T, )||H-s Rn é 2 F(T,‘) dT
(R™) @m -
2 1/2
T oo | il T)sin<§|g|(T—T)) ~
—c[ | — Fre)| ae| ar
0 1€l

To further estimate the right hand-side of this inequality, we first notice that on the support of
F(t,&), which is in 1/2 < |¢] < 2, we have |£]?® < Oy, where the constant C, can be expressed to
depend only on ¢,7, i.e., Cs = Cj 7 because of the gap condition. Furthermore, on the support of

F(t,€) and for 0 < 7 < T we have:

in (V3 _
o sm( = E[(T T))
2l

<(T- T)e_%(T_T) <(T - T)e_i(T_T).

Therefore, we now have:

T N 1/2
(T ) s ry < C«i,f/o </R \(T—7)6_%(T_T)X1/2g|g|g2(§)’QIF(Tyf)\2d§> dr.

> 1, we get:

D=1

By Holder’s inequality with ~= > 1 and

T
HU(T’)HHS(]R”) S Cq,f/ </ ‘ T—T)e 4(T T)
0 1/2<€|1<L2
T

T e v
SC[]',;/O (T—T)e 7 (T )||F(Tv')||L§(R”)dT§O§f ; (T—T)e (T )||F(T7')||L7;'(R")d7—’

=2

27
df) IET g @n) | dr
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where we used that 1/2 < [¢] < 2 in R”™ has finite volume and the fact that the Fourier transform
is a bounded operator from L to L7, since 7 > 2. Using Holder’s inequality one more time with §
and ¢, we obtain:

T . g 1/G
(T — 7)e"aT=7) d7> I|F||

(T, ')||Hs(Rn) < Gy L ((0,T};L7 (R™))

1,

é q7

Q

!
!

i

q 1/‘1
f< 0 dT) 1E UL o.z1,2z oy
o0 119 1/q
(1@:(/ re=tr dT> 1Flly
0

Next, we estimate ||0u(T,§)|| frs—1(gn)- First note that

IN

Carl | Fll

([0,T];L7 (R")) = L7 ([0,17:L7 (&R))"

dyu(t,€) = 9,(u(t.€))

b, V3 1. (V3 ~
:/0 e 3 ( )<cos <7\§](t—7')> —%sm <7‘§’(t—T)>>F(T, )dr.

By the support properties of F (1,€) and boundedness of sines and cosines, we get:

T - €l 9 1/2
H(‘)tu(T,g)HHs,l(Rn) g(}/o </R M ‘6_7( _T)F(T,f)‘ d§> dr

T
0 R

After applying Holder’s inequality with % and g, we get:

T
Lt
||atu(T,£)||Hs—1(Rn) S C[]’j/ (/ ‘e 4(T )
0 1/2<]¢]<2

T
_Llep_.
< Cgr | e ATNEG g oy

T, 1/q
= Cyr </ 4 d7> [Fal
0

This completes the proof of the lemma. O

. R s N\ 1/2
6_1(T_T)X1/2g|§|§2(5)F(7',f)‘ dﬁ) dr.

T—2

% 27 R
T dé) £ )z remydr

CallFl o

L8 (0. (Rn) = L ([0.T):LE (Rn))*

Lemmas 3.5 and 3.6 now imply the proof of Theorem 3.3, which completes the proof of the
inhomogeneous Strichartz estimates for the linear viscous wave equation.

4 C°0,T], H*(R")) estimates for the linear viscous wave equation

In this section we present the H* estimates on the solution of the linear viscous wave equation, which
will be needed in probabilistic randomization, presented in Sec. 5. In contrast with the Strichartz
estimates, where scale invariance plays an important role since the estimates hold globally in time,
the H*(R™) norms are not invariant under the natural scaling map, and so the estimates will hold
only on a finite time interval [0,7]. Since the focus of Sec. 5 will be on the case n = 2, we present
the estimates only for n = 2.
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Proposition 4.1. Let n = 2. Let 2 < § < 00, 2 < 7 < 00, and s > 0 satisfy the gap condition

1 n
—S:?—FF—Q.

o3

Then, for all 0 < T < 1, there exists a constant C' > 0 independent of T', depending only on ¢ and
7, such that

in (2B-A(t—
t _ sin V t—7)
/ e T2 (t-7) < 2\/5 >F(T, )dr < Cii#l|lFll,#
2

= LY ([o,T;Ly (7))
A CO([0,T];H*(R™))

(87)

Proof. We start by obtaining an L>([0, 7], L%(R"))-estimate of the left hand-side in (87) and then
use

Al < Cs (Il ez + 11 gs)

along with the result of Theorem 3.3 to obtain an L>°(]0, 7], H*(R™)) estimate. This estimate will
then be improved by showing continuity in time, to get the desired C°([0,T], H*(R")) estimate.

We first obtain the spatial H® estimate. Since we already have the homogeneous H*-norm
estimates from the inhomogeneous Strichartz estimates in Theorem 3.3, it suffices to obtain the
corresponding L%-estimate. For 0 < T < 1 we have, by Holder’s inequality:

in (3= _
/T e—m(T——r) sm( >V —A(T 7'))
0

z F(r,-)dr
@ — 7
2V A L2(Rn)
S RVE]

T sin ( 2 1E[(T — 1)) T R
<[]l (4 - >F<ns> ar< [N = e ST e 1B, ggar
0 Biel s P 1 ﬁ

T T
\5\ P2
§Cf/ T—T1 (T=7) FT,' 7 ndT:Cf/ T—Tl_n-WFT,' # o) AT.
e I, 2 g 1P sz @ R P g o
Note that since n = 2,2 < 7 < oo, we have 1 — n - =2 > 0. Then, using Holder’s inequality once

more, we can continue estimating the right hand-51de as

T i 1/q
< Cj _ )i(l-ni?) " , — O 2T , ,
=G </0 = odr ) WPl oy @ny = CorT W g o ryngr gy (88)

for some a7 > 0 depending on ¢ and 7. Therefore, we have shown that for all 0 < 7" <1,

A sin (@v—A(T— )) B
Y (T_T) . < _ T, 7 _ -
) G e = Gy oy ey

where Cj 7 is independent of 0 < 7" < 1. Now, from the inhomogeneous Strichartz estimates in
Theorem 3.3, we have

T _H(T_T)sin (@v—A(T—ﬂ) )
€ 2 ﬁ\/—A F(Tv )dT < Cj r||F||Lq ([0,T); Lr (R"))?
B I+ (")
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for all 0 < T' < oo where C’éf is independent of 0 < T' < co. Combining these two estimates we get
that for all 0 < T <1,

in (V3 /—A(+ —
te—?(t—ﬂsm< 5V —A(t 7‘))
V3
2

F(r,-)dr < Ci#||FIl,q
Lo ([0,T];H*(R™))

L7 ([0,T);L7 (Rn))? (89)

for some constant Cj 7 independent of 0 < 7" < 1.

We need to show that the above estimate holds in terms of the C°([0, T]; H*(R")) norm on the
left hand-side of (89). For this purpose, we first notice that estimate (89) establishes the continuity
at t = 0, in the H*(R™) norm, of the map

sm V3 /ZA(t—71
ul(-) tt — u(t / —58 (=) <2\é\§/\/—A_X ))

We next show that this map is, in fact, a continuous map from [0,1] to H*(R™). More precisely,
fix an arbitrary 0 < t; < 1. Given € > 0, we want to find § > 0 such that for all £ € (t1 — 0,11 +0)
(or t € (t1 — d,t1) if t = 1), we have

Hu(t17 )= u(i )HHS(]R") <e€

F(r,-)dr.

Thus, we want to estimate:

in (¥3./= _
3wl M = | [ —m(tl—T)SIIl( 2 VAl T)>F 3
||u(t17 ) u(t7 )HH%R”) = e 2 /3 (Tv ) T
0 B
. . (V3 .
- i =50 <T3\/—A(t—7')) .
e 2 7 F(r,-)dr
0 2 _A Hs(Rn)

To do this, we introduce a ¢’ > 0, which will be specified later, and then find § < §’/2 sufficiently
small so that ¢ € (t; — d,t; + §) will always be greater than ¢; — &', and estimate the left hand side
from above via the following three integrals:

luty, ) = wE )l s gy

(V3
' 2V =At —
< /1 e_\/z_A(tl—T)Sm( 2 n T)) F(r,-)dr
t1—d’ B4 He(R™)
! \/g \/g t
5 _ sin (5 V=A(t — 7 = ;S (T VAT
+ / e_\/z_A(tl—'r) (2 3 o )) _e_\/Q_A(t ™) <2 3 /_( )> F(r,)dr
0 5V A 2 —-A Hs(R™)
. - (V3 /—A(f —
+ / LB sin (V=8 - 7)) F(r, )dr =1 4+ 1% 1%, (90)
t1—o’ 73 V—A Hs(Rn) ™ " "

We now choose §' > 0, &' < t1/2 (and &' < 1 —t1 if 0 < t; < 1), sufficiently small so that on
[tl - 5/7t1 + 6/]7
€
Cq’FHF"Lgl([t1—5’7t1+5’],L§/(R")) < 57
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where Cj 7 is the constant in (89). Then, using (89), the first and the third integral are immediately
estimated as:

< 0<ﬂQ<

(1)
0§1i<3’ < I

t1

(91)

o~
Wl ™

)

What remains is to estimate It(f -. To simplify notation, we will use

i

o (Biels

Ky (&) = e_%tsmsgﬂ
Ay

to denote the Fourier transform of the kernel K; introduced in (68). By Holder’s inequality and
Hausdorff-Young’s inequality, we have that

t1—5l R N ~
N / 1L+ 16/ (B, = (€) = Ky () F (7. |y

7 ﬁ7,~ # (e dT
s o Mz

t1—0" N N
< / 1L+ €252 (Ko —r () — Ki_.(6))
0

|
L

27
—2

t1—6' N N
<c / 10+ €[22 Ry (€) — By (D]
0 ¢ (

< 2 8/2 2 _ A~ f ., . .
< O+ P Karl®) = Kicr Oy 2 g ooy (92

| E () ey T
L7 2 (R)

Since || F| L7 ([0.1:LF (B") is a fixed constant for a given F', we just need to show that the factor
t »hHx
multiplying this term is small, i.e., it can be bounded in terms of €. The term we need to bound,

in expanded form, reads:
Cl|(1+ [€[*)** (K (&) = Kz ()] 2
LI([0,t1—8"L{ 7 (R™))
) 1/4

o[ Jarierra o g o ) T ar) o

First we bound the interior integral, namely the integral with respect to £&. We divide the integral
into two parts: the integral over |{| < M, and the integral over |£| > M, where M will be determined
later:

/ (A €YK () — K7 (€)) g

= [ ey R - K ()]
[¢1<M )

[P R 6 - Ry e
1§|>M

We estimate each part separately, keeping in mind that |K,(&)] < e_‘iz‘t|t|, lt1 — 1] < 4, and
7 € (0,t;1 — &'). The smallness of the first integral will follow from the absolute continuity of
the integrand as a function of time, and the smallness of the second integral will follow from the
exponential decay of the kernel Kt(f ), which can be made arbitrarily small for high frequencies &
by the choice of M > 1.
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Indeed, we start with the integral over |{| > M. We claim that we can choose M > 1 sufficiently
large such that the contribution of that integral is smaller than a bound given in terms of e.
Namely, we will show that for every ¢ > 0, there is an M > 1, such that for all 0 < 7 < t; — ¢,
[t —t1] < 6 < &'/2, we have

27
T—2

o 10122 @)~ 6]

27

g +/ ‘(1 + |€]2)¥2(F - 7_)6—(5_7)% -3 i
l€1=M

€]

< Cr </ ‘(1 + |£|2)s/2(t1 — T)e_(tl—T)T
|€|>M

Later, we will choose €’ to depend on € and F so that the total integral I 15(12)5 is bounded by €/3. The

contribution of each integral in the sum above can be estimated by noticing that both integrals
have the form . /
73

/ 1+ 1Py 25| T g, ford e [S,1],
&|>M 2

where ¢ plays the role of t; — 7 and ¢ — 7. Indeed, because of the exponential decay in &, for every
€ > 0, there exists a constant M > 1 such that

/ R 5/
Yt € [5,

Cr [ |+ gy
|§|>M

€

e < 7 1]. (95)

Here, € will be chosen below in terms of € and || F Hqu (0.11:LE (Bn)°

[

psin( 2 elf)
V3
Zlel

v

To estimate the integral over |{| < M, we notice that the integrand e~ is uniformly

continuous on the compact set [{| < M,d'/2 < t < 1. This implies that for every ¢ > 0, we can
choose § > 0 such that § < §/2 and such that for all £ € (t; — 6, +6) and 0 < 7 < t; — &', we
have

27

F—2 df

[l e @ - K@)

. V3 . V3 7 7—2
sin ( =2 [€|(ty — 7 _ o osin [ B2E|(t—T /
< el el 2

By combining inequalities (94) and (96) with (92) and (93), we see that we can choose ¢’ small
enough, depending on € and ||F||Lq’([0 1LE (RR)’ such that for all £ € (t; — 6,1 + ),
t - Hx

2 _ €
0<I7; < 3 (97)

Continuity in time now follows by combining the estimates (90), (91), and (97). This completes
the proof. O

Remark 4.1. We remark that Proposition 4.1 also reflects the parabolic regularizing effects of
the fluid viscosity. In fact, once one shows that the solution to the linear viscous wave equation
with source term F € LY ([0,T]; L7 (R™)) and zero initial data gives rise to a solution that is in
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C°([0,T); H*(R™)), one can use energy estimates to establish (87) for a couple of specific exponents
in n = 2. In particular, the case of s = 1, § = oo, and 7 = 2 follows from usual basic energy
estimates, while the case of s =1, ¢ = 2, and 7 = 4 can be obtained from energy estimates along
with the Sobolev embedding of HY/?(R?) into L*(R?). However, the Fourier methods we have used
to establish Proposition 4.1 provide a simpler way of covering a much larger range of potential
parameters (s, q,7) than basic energy estimates.

Remark 4.2. We have established the result in Proposition 4.1 for n = 2. The main place we have
used the fact that n = 2 is in (88), where we need the time integral

/T(T - T)‘j(l_"'%)dT
0

to be finite. For n = 2, the exponent § (1 —-n- %) is always nonnegative. If one were to attempt
to extend the result to higher dimensions, this exponent could potentially be negative, and one
would have to impose additional conditions on ¢ and 7 to ensure that the resulting time integral
above is finite.

5 Probabilistic well-posedness for the supercritical quintic nonlin-
ear viscous wave equation

5.1 Description of the randomization and main result

In this section, we will specialize to the case of the quintic nonlinear viscous wave equation. In

particular, we consider
Opu — Au+ V—Adu+u® =0 on R?, (98)

with a randomization of the deterministic initial data in H*(R?) = H® x H*~ L
u(0,2) = f(z) € H®,  dwu(0,z) = g(x) € H*™1,

The reason for considering the quintic nonlinearity is that 5 is the first odd exponent in n = 2 for
which we have ill-posedness as described by Theorem 2.1, as it is the first odd exponent for which
Ser = 4 — % for n = 2 is positive. Moreover, for this nonlinearity, we can use our results from
the previous sections to generate Strichartz estimates for the solution space (106) that allow us to
handle the quintic nonlinearity, as the Remarks 5.1 and 5.2 below explain.

For this specific case of the quintic viscous wave equation, the critical exponent is s¢; = 1/2. It
is likely that there is well posedness in the strong Hadamard sense for initial data in H® for s > 1/2,
but in Sec. 2, we showed that there is a lack of continuity in the solution map for 0 < s < 1/2. We
will show that this lack of continuity in the solution map is in some sense a non-generic phenomenon
by considering a randomization of the initial data, as described below. In particular, we will use
what is called the Wiener randomization.

To define the randomization, denote by ¢ € C§°(B,=2(0)), 0 < ¢ < 1, a function such that

S wE-k) =1
kez?

This function defines a partition of unity created by translates of the same compactly supported
function. Then, we note that for a given function f with Fourier transform f(¢),

F&) =3 w(E—k)F©.

keZ?
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For each k € Z? define R
Pef = F (w6 - 0]©)

to be the inverse Fourier transform of a localized portion of the function in frequency space. Note
that for some positive constant ¢ > 0,

0<c< Y W (E—k) <1,

kez?

and therefore, the two norms

11 g2y ~ (Y 11 Pef I e ge))? (99)

keZ?

are equivalent.

Now, let hy(w) and I (w) indexed by k € Z? be independent real random variables with mean
zero on a probability space (Q, F, P). Assume that the independent random variables hx(w) and
It (w) have uniformly bounded sixth moments:

/Q(|hk(w)|6 Fle@))dp(w) < ¢ for all k € Z2. (100)

The uniform boundedness of sixth moments is associated with the quintic nonlinearity. It will
provide sufficient regularity for the randomization of the initial data by the real independent random
variables with mean zero and uniformly bounded sixth moments to improve the regularity of the
averaged randomized free evolution solution in expectation, where the averaging is performed in
terms of the averaged LS-norms of the solution. See Lemma 5.3 below.

For each w € €2, we define the randomized initial data, given by

= @RS, ¢¢ =3 h(w) Peg. (101)
kez? kez?
We introduce the map that associates to each possible outcome w € €2, the corresponding initial
data ¢ = (f*,g*) € H*(R?):
WY = (f99Y), ¢ Q= H(RY). (102)

One can show that the map ¢“ is a measurable map from Q — H*(R?), and ¢* € L%(Q; H*(R?)).
Thus, ¢“ is a random variable taking values in H*(R?). In particular, one can show that the
following result holds:

Proposition 5.1. Let ¢ € H*(R?), and let ¥ = (f“,¢*) be defined as in (101) and (102) via
the independent random variables hi(w) and li(w) with uniformly bounded sixth moments (100).
Then

16“] L2 (@:ps m2)) < Ol (103)

Namely, ¢ has almost surely finite H® norm.

Proof. Indeed, using (99), we get:

Tl /Q 1 F|30dP = /Q I'S" hi@)Pef|edP < C /Q SIS hiw)Pef) e dP.

kezZ? jEz2 kez?
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Now, by the support properties of 1)(§), we have P; P, f = 0 when |j — k| > c¢. We use this property
to continue the above estimate as follows:

2

:C/QZH > hk(w)PijfH%sdPé(J/QZ S he@) PPl | dP.

JEZ?  |k—j|<c JEZ? \|k—j|<c

Since for each j, the inner sum has finitely many terms with the same number of terms for each j,

2
we can use the following inequality (Z;Ll ak) < Cn Ei\;l ai for the sum of N terms, to continue

the above estimate:

= C/QZ > @ PP Pf|[FdP = C Y </Q|hk(w)|2dp.||Pjpkf||%{s>‘

JEZ? [k—j|<c JEZ? |k—j|<c

Now, from the boundedness of the sixth moments (100), we have that the second moments are
uniformly bounded, and we use this to continue to estimate the L?(2;H*(R?))-norm of f“ as
follows:

<O N PP = YT T A+ P e — H)PRE — B)PIF(E)[Pde.
RZ

JeZ? |k—j|<c JEZ? [k—j|<c

Denote by N be the number of terms in the sum with |k — j| < ¢, which is the same for all j
by translation. Then, since (¢ — k)|? < (&€ — k)| < 1, we finally obtain the following estimate
for the L?(£2; H*(R?))-norm of f«:

SCON | T+ EPE = DIFEPdE=C" | (1+ €)1 F(©)Pde = O f 13-
R2 R2

JEL?
By repeating the above computation with ¢ and ¢“, one obtains:

1“2 (sms m2)) < Cllopllaes (104)

where ¢ = (f,g) € H® denotes the initial data before randomization, and C' > 0 is independent of
¢=(f9) e H. O

The goal in this section is to prove probabilistic well-posedness for the quintic nonlinear
viscous wave equation with initial data ¢ € L?(Q;H*(R?)) where —1/6 < s < 1/2. We do
this in two steps. First we will prove the existence of a unique solution stated in Theorem 5.1
below, and then show in Theorem 5.2 that the solution depends continuously on data in H?®, for
—1/6 <s<1/2.

Theorem 5.1 (Existence and uniqueness). Let —1/6 < s < 1/2, and let ¥ € L%(Q; H*(R?))
be the Wiener randomization of the initial data ¢ = (f,g) € H*(R?). Then, for almost all w € €,
there exists T,, > 0 such that there is a unique solution u to the Cauchy problem of the nonlinear
quintic viscous wave equation (98) with initial data ¢*, where the solution belongs to the space

-4 — sin ﬁ\/It
Ziom,) = Y30 <c0s (?Mt) + %sin <?\/It)) (f“) + o~ ot &;m )(gw)
2

+CO([0, T,); HY2(R?)) N L5([0, T, ]; LE(R?)). (105)
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In particular, there exists C' > 0 such that for every 0 < T < 1, there is an event Q7 with
P(Qr) >1-CT*H/S,

such that for all w € Q, the Cauchy problem for (98) with initial data ¢* has a unique solution
in the space Z[°6 AR

Theorem 5.2 (Continuous dependence). Let —1/6 < s < 1/2 and ¢ € H*(R?). Then, for any
choice of ¢ > 0,0 < T < 1, and 0 < p < 1, there exists an event A, and § > 0 (with § > 0
depending only on ¢, T', and p), such that for every w € A, . the Cauchy problem for the nonlinear
quintic viscous wave equation with initial data ¢ has a solution u € C°([0,T]; H*(R?)), which
satisfies

|[ullco(jo,m;ms (r2)) < € with probability P(Ay ) > p, whenever [|¢]|ysm2) < 0.

5.2 The solution space and preliminary estimates

We begin by justifying the choice for the function space (105) in the statement of the existence
result in Theorem 5.1. For this purpose, we introduce the following notation:

Definition 5.1. For each T > 0, define the function space

Xy = CO([0, T]; HY2(R?)) 1 L8([0, T]; LS(R?)). (106)
Using this notation, the solution space (105) can be written as:
o _vE V3 1 (V3 o
Zigg,) =€ 2 t (cos <7\/—At) + ﬁsm (7\/—At>> (f“)
_mtsin <§\/—At>
+e 2
vV—A

To obtain the main existence result in Theorem 5.1, we will use Strichartz estimates to obtain
estimates on the L{L” norm of the solution to the linear viscous wave equation in terms of the

(gw) + XTw

S

Lg/Lf norm of the “right hand side,” which will be the quintic nonlinearity —u®. This will be the
basis for a fixed point argument, which will provide existence of a unique solution to the nonlinear
problem.

Remark 5.1. The choice of the function space X7 in (106) follows from the Strichartz estimates
that we plan to use to obtain the well-posedness result, combined with a fixed point argument. In
particular, we will be using the inhomogeneous Strichartz estimates for all 0 < 7' < oo in Lemma
3.5, and the “local” Cy([0, T]; H*(R?)) estimate for all 0 < T" < 1 from Proposition 4.1 to estimate
the solution to the linear problem, with the nonlinearity —u® treated as a source term. For the
inhomogeneous Strichartz estimates in Lemma 3.5 to hold, we need
- ) 1 n 1 n
I1<q<g<oo, 1<#F<r<oo, —+—==+- -2, (107)
q T q r
and for the “local” Cy([0,T); H*(R?)) estimate with 0 < 7' < 1 in Proposition 4.1, we need s > 0,

and
B 5 n 1 n
2<G<o0, 2<7<00, ——8§=—=+—=—2. (108)
2 q/ r/
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In particular, for n = 2, the following exponents satisfy all of the conditions above:
-~ 1
(¢,7) = (¢,7) = (6,6), and 5 = .

More importantly, for this choice, we can indeed use the estimates in Lemma 3.5 to estimate
u € L7(R?) = L%(R?) in terms of the L?—norm of the source term —u’, since the conjugate
exponent 7 to the exponent r = 6 is ¥ = 6/5, and we know that v € LS(R?) = u® € L5/°(R?).
Thus, the pair of exponents 6 and 6/5 is well suited for the nonlinear quintic viscous wave equation.

Remark 5.2. Note that the fact that we are requiring our solutions to be in L5([0, T]; L5(R?))
allows us to interpret solutions of

Opu — Au+ V—Adu+u® =0,

u(0,z) = f(x) € HS,  9u(0,2) = g(zx) € H*™1,
as weak solutions, defined in the usual way by integrating against a test function ¢ € C§°([0,T") x
R?). If we require solutions u to be in L8([0, T]; LS (R?)) = L%([0, T]xR?), then u> € L5/5(]0, T|xR?)
is indeed a distribution. In particular, it is also a tempered distribution in space, for almost every
t € [0,T] (since it is in LO/5(R?) for a.e. t € [0,T]). Therefore, all of the Fourier methods applied
to the Fourier representation of the solution used above are applicable.

Strichartz estimate. We will need the following version of the Strichartz estimate:

Corollary 5.1 (Strichartz estimates for solution space Xr). There exists a constant C' (indepen-
dent of T") such that for all 0 < 7' <1,

F(r,)dr|| < ClIF|[pess(0,17xR2)-
Xr
Proof. The proof follows immediately from Lemma 3.5 and Proposition 4.1, where we let ¢ = r =

g=7==6and s=1/2. O

Averaging effects. The following two lemmas will be useful in proving the averaging effects
result in Lemma 5.3 below, which concerns the regularity in expectation of the averaged free
evolution solution to the linear viscous wave equation for the random initial data ¢*. The first is
a probabilistic lemma, stated in Burq and Tzvetkov [5]:

Lemma 5.1. For (h,)52, independent, mean 0, complex-valued random variables that satisfy a
uniform moment bound

/ |hn (W) **dP < C foralln >1
Q

for some positive integer k, there exists a uniform constant C, such that for all 2 < p < 2k and for
all (¢,)22, € £%(C),

1/2
1> hnw)enllLroy < C (Z Icnl2> = Cllenllez(c)-

The next result is a unit-scale Bernstein’s inequality for the frequency pieces Py f. See Lemma
2.1 in Lihrmann and Mendelson [26]:
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Lemma 5.2 (Bernstein unit-scale inequality). For all 2 < p; < ps < oo, there exists a constant
C = C(p1,p2) > 0 such that for all f € L?(R?), k € Z2,

[P f |2 r2y < C[|PefllLem (2)-

The proof is a simple consequence of Young’s convolution inequality and the localization in the
frequency domain of Py f [26].

We are now ready to state and prove the averaging lemma. It is well-known that the randomiza-
tion does not improve the regularity of the initial data almost surely. In particular, if ¢ € H*(R?)
is not in H5+t¢(R?), then ¢* is a.s. not in H5+t¢(R?) (see Liihrmann and Mendelson [26], Burq and
Tzvetkov [5]). Although the randomization almost surely does not improve the regularity of the
initial data, it does improve the averaging of the L5 norms of the randomized free evolution solution
in expectation. More precisely, we have:

Lemma 5.3 (Averaging Lemma). Let u¢ be the free evolution associated with the randomization
¥ = (f“,g”) of the initial data p = (f,g) € H*(R?), with —1/6 < s < 1/2:

ug(t, z) = €_¢E_At (COS <?Mt> + %sin (?Mt)) (f) + e_@tsm

Then, there exists a constant C' > 0 depending only on s, independent of ¢, such that for every
@€ H(R?) and for all 0 < T' < 1,

/N

@mt)

(9*)

1(gal
il zo@xorrxezy < CTE6) (1o lygs gy

Proof. First, we show the result for the case with zero initial velocity g = 0:

VB, V5 TR VB, 5 TR
uf(t,z) = e~ Tt T At — Z hi(w)e™ T tel —Atp.f.

keZ?

We recall that (hy) are independent real random variables with mean zero on a probability space
(Q, F, P), and calculate:

[[uf s @xo,7)xr2) = W8 (0,71 xR2: L5 ()

By the bounded sixth moment assumption on (hy), we can apply Lemma 5.1 with & = 3 to obtain

V=B, ;B
|uf ][ zs xorixre) S C ||, [ D> le™ 2 et s VoAIP, f12

kez? L5([0,T]xR2)

1/2
2

(109)

<o $ ety
kez?

LS((0,T];L8(R?))
We now want to apply the unit scale Bernstein inequality of Lemma 5.2, to estimate the L6-norm in

space with the L?-norm. Since P, commutes with the other Fourier multipliers that are acting on
. . .. . V=&, V3 /TA .
f, we will apply the unit scale Bernstein inequality to Py <e_ 7o tei g V=AL f > For this purpose,
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. _Y=Ay VB TR ..
as required by Lemma 5.2, we first need to show that e~z ‘e’ o V-At f € L?(R?). This is, indeed,
the case, since:

_JV-A iﬁ — —i iﬁ iy - 7
P gy = [l T Bagary = [ IO

le

= /R e )T A+ P IF©)Pdg < Cay /R (L [EPIF©PdE = Catl £l g2y

where we used the fact that for all s € R, e~ lé/t(1 4 |£|?)~* is bounded whenever ¢ > 0.
Therefore, we can apply the unit scale Bernstein inequality in (109) to get:

Ay B TRt < Ay iﬁ\/It
Z He e Pkf‘ LS((0,T];L5(R2)) _C\/Z He e kf‘ L5((0,T);L2(R2))
kez? kez?
i
=c\/ S+ 6R)2e S+ 1)V 2 P a0y (110)
kez?

By Minkowski’s integral inequality we can “change the order of integration” in (110) to obtain that
(110) is bounded from above by:

1/2
<O [ ST +1eP) 2 T + 162 2Pt Bee ooy | (111)
keZ?

. . . . . . €]
and we estimate the contribution in time of the exponential e~ 2 ¢ as follows:

g 1 ) 1/6 1 1 _ —3lEITy1/6
le™ 2| oo,y = <—(1 —e 3£T)> = - ( s+l/)6 :
3¢ (3[¢1) (3¢1)

Since we can bound the exponential 1 — e in terms of monomial ¢, for any « € [0, 1], so that

—3z

1—e 3 < Cua®, Vo >0,

we conclude that there exists a constant Cg > 0, such that
i 5_* S s —d(s 1 s 1
lle™ 2 Y ooy < Csl€P1E| 7> s (€[ T)8¢F8) = Cyfef*|g) ) T (s+3),

where we chose 0 < a =s+1/6 <1 and 6(s) = 2 (s+ %) > 0.
We now continue to estimate (111) by separating the sum into the low frequency part |k| < 4,
and the high frequency part |k| > 4. For the low frequency estimate, we note that
— e 1/6
lle™ 2 llzoouy < TV°.

Moreover, in the |k| < 4 part, we can get rid of (1 + | ]2)_5/ 2 using the support properties of ]gk\f
for |k| < 4 to obtain that (111) can be bounded from above by:

CY NS + [P 2 Pf 12 oy
|k|<4
1/2

+C DI+ P2l - g5 - TS (14 6P 2 Puf IR ey

|k|>4
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In the |k| > 4 part, we have |(1 4 |€]?)7%/2¢]*| < C and |¢]7%() <1 for all € in the support of Df.
Therefore, we can further continue the estimate as follows:

1/2
< |CTY3 311+ 1€ 2Pl R ay + CT306) ST I(1+ 1622 P12 e
|k|<4 |k[>4
Now, since 0 < 1/3(s +1/6) < 1/3 for —1/6 < s < 1/2, and 0 < T < 1 we get that the above
expression is bounded from above by:
1/2
< | cr3(s+3) 1+ (¢[2)%/2P, f||2 < oT5(5+5)
< ST+ BT gy | < T

kez?

where we used (99) in the last step. Thus, we have shown that

1(gal
]| L6 (ax o, xR2) < ors( +6)HfHHS(R2)7

where C' > 0 depends only on s.
For the term involving g, the same proof still holds, with slight modifications. In particular,

/3
e’TIﬂt‘ < 1, we have to use the bound

instead of using the simple bound

sin (@\ﬂt
B §1{\5\g1}(£)+ NG 1{|§|>1}(5),
1€ 5[l

which holds for all 0 < ¢ < T < 1. This will give the low and high frequency estimate in the same
way. Therefore, we have shown that there exists a constant C' > 0, depending only on s, such that

1(ga1
il ooy < CTSE6) (1o lygs gy
]

Crucial for the probabilistic well-posedness is the following corollary of the averaging lemma:

Corollary 5.2. Let ug be the free evolution associated with the randomization ¢* = (f*, g*) of
the initial data ¢ = (f,g) € H*(R?), with —1/6 <s<1/2and 0 < T < 1:

ug(t,z) = eVt (cos <§\/It) + LSin (?Mt)) (f) + R

tsin (@Mt)
% 7

V&
Define the set
Exre={w € Q| [[ugllLs(orxr2) = A}- (112)

Then,
1
P(Exr) < CT 6 X781l [$,0 g2,

where the constant C' depends only on s.

The proof is a direct consequence of Chebychev’s inequality and Lemma 5.3.

Notice how, because we are using probabilistic methods, Chebyshev’s inequality associates the
size of the solution in the L%-norm to the size of the initial data in the H*-norm, with the probability
of such a bound given in terms of the size of the initial data.
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5.3 Proof of probabilistic well-posedness for —1/6 < s < 1/2

We are now ready to prove the probabilistic well-posedness results stated in Theorems 5.1 and 5.2.

5.3.1 Proof of Theorem 5.1 on existence of a unique solution

We want to prove that for —1/6 < s < 1/2, and for almost all w € , there exists T, > 0 such that
there is a unique solution u to the Cauchy problem of the nonlinear quintic viscous wave equation
(98) with initial data ¥ € L?(2; H*(R?)), where the solution belongs to the space

= . sin V3 /Tt
2o = e (cos <§\/—At> + sin (?Mt)) (f*) + e 5 (ﬁf — )
2V

/3 (9)

+CO([0, TL); H'Y2(R?) 0 L8([0, TL]; L°(R?)).
In particular, we need to show that there exists C' > 0 such that for every 0 < T < 1, there is an

event Qr with
P(Qp) >1—CT*/6, (113)

such that for all w € Qp and initial data ¢“, the Cauchy problem for (98) has a unique solution in

w

the space Z[QT}.

Proof. To prove this theorem we use a fixed point argument. We look for a solution to
(O + V=D — Au+u®=0, u(0)=rf  du(0) =g,

by expressing the solution u as the sum of the free evolution u, satisfying

(O + V=20, = Mg =0, ug(0)=f*,  ui(0) = ¢*,

and the function v := u — g, which satisfies:

(O + V=00 — A = —(ug + v)°,  w(0)=0, 9w(0)=0.

A solution to this equation on [0,77] is a fixed point of the map

t s sin (@V—A(t—ﬂ)
Kot -) = —/ e~z (t7)
0 NERy.N

defined on X7, where this map depends on w. Therefore, if we can show that the map K has a
fixed point v* € Xp, the solution u of the nonlinear quintic viscous wave equation will be given by
u = ug + v*, where ug is the free evolution. More precisely, we need to show that for almost all
w € , there exists T;, > 0, such that K has a fixed point v* € X7,,.

We will show this in three steps:

((us +v)°) (7, )dr, (114)

1. First we will show that there exists A = A\g > 0 such that if w is in the complement of E\, 1,
Le., w € Ef Ty where F) 7, is defined by (112) in Corollary 5.2, then the mapping KJ is
a strict contraction on an appropriate closed subset of X, for arbitrary 0 < T < 1.

2. Then, we will show that for almost all w € §, there exists a time T,, > 0, such that w €

C
B T
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Steps 1 and 2 will imply that for almost all w € €, there exists T, > 0, such that u = ug+v* € Zi 0.7.]
is a solution to the quintic nonlinear viscous wave equation, where v* is the fixed pomt of K. The
third step is as follows:

3. Finally, we show that this solution u = ug + v* € Z[°67Tw] is unique in Z[f)va}.

We start by taking w in the complement of E) 1, i.e., w € Ef T where Ey 1, is defined by
(112) in Corollary 5.2. Namely, w is an outcome for Whlch the initial data ¥ has a free evolution
solution with bounded L8([0, 7] x R?) norm:

. . et d o
u@llLooryxrzy < A, with  P(ESp ) >1—CT*" s\ GHSDH%SURZ)-

This holds for any 0 < T < 1.

For this fixed w, we want to find A = Ag > 0, such that the mapping K7 is a contraction. We
start by estimating K¢ (v). By using the Strichartz estimate in Corollary 5.1, for each w € EX . =
we have

KL () |xr < Cl(uf +0)°[ | poss o1y xr2)
< CU1gl s o.mxmey + [0llZs o mpxrz)) < CO° + [ol[x,)- (115)

Similarly, one can show that for each w € ES 1. the following estimate holds:

1K (v) = K& (w)llx, < Cll(ug +0)° = (u +w)|| posso.17r2)
< Cllv = wllxy (X + [[ollx, + [lwllx,.). (116)

Notice that because the constant in Corollary 5.1 is independent of 0 < T' < 1 and F', the constant
C in the above two inequalities is also independent of 0 < T <1 and w € Eﬁ’TW.
Therefore, for w € ES 1. for any 0 < T <1, the map K is a strict contraction on the ball of

radius 2C\° in X7 provided that the following two conditions on A hold:

1. The mapping K maps the ball of radius 2C\° in X7 into the same ball of radius 2C\° in
X7; from (115), this means that we need A to satisfy:

CN° 4 2°C00\% < 207, (117)

2. The coefficient multiplying ||v — w||x, in (116) is strictly less than one:
CN 4 2505\ < % (118)
One can see that this will be guaranteed if A?° << 1.

Thus, there exists a A\g > 0 (A\3” << 1) such that whenever we choose an outcome w so that the
free evolution u associated with initial data ¢ lies within the ball of radius )¢ in L5(]0,T] x R?),
the mapping K, defined on the closed ball of radius 20\ in Xr, is a strict contraction (where C
is the constant from (115) and (116), which is independent of 0 < 7" < 1). So there exists a fixed
point v* of K in the closed ball of radius 2C\} in X7 for every w € ESo 1.0

Notice that with this argument, we have shown the last part of the statement in the theorem,
which is that there exists C’ > 0 such that for every 0 < T' < 1, there exists an event Qp := Ef\mT’@
with

P(ES, 1,) 2 1= O3l 8y oy T /0 = 1 — 0115, (119)
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such that for all w € Qp the existence of a solution in Z[0 7] holds, where C is the constant from

Corollary 5.2, and C" = C\y GHcpHHS(RQ). By the fixed point argument above, for each w € Qp =
EKO,T,W the solution u = ug + v* that we constructed is unique within the class of solutions of the
form u = ug + v such that

[0]1x, < 20X, (120)

where C, the constant from (115) and (116), is independent of 0 < 7" < 1.

We need to show more specifically that the solution u = ug+v* that we constructed is unique in
the space of solutions u“f + v, where v more generally is any element in X7 and not just an element
of Xr subject to condition (120). To see this, consider w € Qp := Ef 1, for some 0 <7 < 1. In
particular,

HUZHLS([O,T]XRQ) < Xo- (121)

We know that there exists a solution u; := ug + v} to (98) with initial data ¢*, where
[[7]]x, < 26X, (122)

by our previous fixed point argument.
Assume for contradiction that there is another solution us = ug + v3 to (98) with initial data
¢*, where v} € X7 is different from v. Since both v and v§ are continuous in H'/2 on [0, 7], we

can define
T, = max{t € [0,T] : v} = v} on [0,] as functions in H/?(R?)}. (123)

We use maximum instead of supremum in the definition (123) due to continuity in H'/2. Because
any two solutions to (98) with initial data ¢“ for our given w are unique as long as the condition
(120) holds, by continuity of the norms involved and the fact that v] and v both have zero initial
data, T, > 0. Furthermore, T, < T by assumption.

Because v} and v3 in Xr are different and the v component of any solution u := ug + v to (98)
with initial data ¢ is unique up to condition (120), we conclude that

03 ]]x, > 20N for all t > T, (124)
since v} satisfies (122). Furthermore, since v} and v3 agree in H'/?(R?) up to time T,
[[v3]]x, < 20N for all t < T, (125)

by (122).

We will derive a contradiction by showing that v} and v5 must agree past T to at least T} + e,
for a suitably small € > 0. To do this, we observe that the conditions (117) and (118) describing the
choice of A are “open” conditions. More precisely, there exists A\g > Ao such that A also satisfies
(117) and (118). As a result, the map K defined in (114) is a strict contraction on the ball of

radius 205\8 in X, for w € E§ . for any 0 < ¢ < 1.

0%,

We now observe the following crucial fact: since o > Ao, we have that for our w € Qrp,

C
we Qr: _EAOTSDCEAO,TngES\O,tM forall 0 <t <T.
Hence, for our arbitrary w € Qp, K is a strict contraction on the ball of radius 20;\8 in X; for
any 0 <t <7T. Since 205\8 > 20/\8, by (125) and continuity of the norm, there exists € > 0 such
that T, + ¢ < T and 3

1031157, .. < 20X
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Since ||v] || xp .. < 20)] by (122), vi and v} are two different fixed points of the strict contraction
K¢ on the ball of radius 205\8 in X7, 1. Here, we used the crucial fact that Ty + ¢ < T'. This
gives the desired contradiction, which proves that the solution to (98) with initial data ¢ is unique
within the space Z[°6’T] for w € Q7.

We now show the second step of the proof, namely, that for almost all w € §Q, there exists
T, > 0, such that the existence of a unique solution u € Z[%,Tw} holds. This follows from the fact

that for T'=1/n, n > 1, the sets Ef\o T=1/n,p increase to a probability 1 subset of €2 as n — oo, since
P(ES, T=1/n eo) 1 by (113). Therefore, for almost all w € €2, we take T,, = 1/n to be determined

by the first n for which Ef\o T=1/n includes w, and then we obtain existence of a unique solution
u € Zf‘é 7] from the first step of the proof.
This completes the proof. O

We are now in a position to prove the result on continuous dependence on H® data, stated in
Theorem 5.2. The two results, Theorem 5.1 and Theorem 5.2, imply probabilistic well-posedness
for —1/6 < s < 1/2. This is an improvement over deterministic well-posedness, as the Cauchy
problem for (98) is ill-posed for 0 < s < s, = 1/2. The results in these two theorems show that
the critical exponent for probabilistic well-posedness is pushed all the way down to sProb — 1 /6,
excluding —1/6.

5.3.2 Proof of Theorem 5.2 on continuous dependence on H?® data

We want to prove that for any fixed —1/6 < s < 1/2 and ¢ € H*(R?), and for any choice of ¢ > 0,
0<T <1, and 0 < p < 1, there exists an event A, and 6 > 0, such that for any w € A, . the

Cauchy problem for the nonlinear quintic viscous wave equation with initial data ¢* has a solution
u € C°([0,T); H*(R?)) which satisfies

|ullco(o,ry;m2)) < €

with the probability of the event A, . being greater than p whenever

o] l24s m2) < 6.

Proof. Fix —1/6 < s < 1/2 and take ¢ € H*(R?). We want to show that for every ¢ > 0,0 < T < 1,
and 0 < p < 1, we can construct an event A, . and find § > 0, such that the nonlinear quintic
viscous wave equation (98) with initial data ¢*, where w € A, has a solution which satisfies
[ullcoo,r; s (r2)) < €, with probability P(Ay ) > p, whenever [|¢]|ysm2) < 0.

For this purpose, we recall that the probabilistic solution u can be written as the sum of the
free evolution ug and the inhomogeneous part v*. Therefore, the C°([0,T); H*(R?))-norm of u is
bounded from above by the C°([0, T]; H*(R?))-norm of u, plus the C°([0, T; H*(R?))-norm of v*.
We would like to find A, . and § so that the C°([0,7]; H*(R?))-norms of ug and v* are each bounded
by €/2, with the probability of this happening being greater than p, whenever |[¢|[ys g2y < 0.

We start with the inhomogeneous part v*. Recall that Theorem 5.1 implies that there exists
Ao small enough such that for every w € Eg\ovT,W K¢ is a strict contraction on the ball of radius
20\ in X7, where C > 0 is the constant from inequalities (115) and (116). Note that the constant

C > 0 is independent of ¢ € H*(R?). We can now choose \g so small that it also satisfies:
20N} < % (126)

With this choice of Ag, which depends on €, we have that for w € Eﬁo Ty there exists a solution
u = ug +v* for which the Xp-norm of v* is bounded from above by €/2. Moreover, the probability
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of this happening can be estimated from (119). Namely, (119) implies that there exists a C' > 0
such that for the \g above, and 0 < T <1,

P(ES, 1.p) > 1= CAGO[ @[50 () T* /0 > 1 = CAFOSOT /0, (127)

where we have used the assumption that ||¢||3s®2) < 0. This will be used a bit later to determine
d > 0 such that the probability of the event A, ., which will be a subset of Eio,Tw is greater than
p, as required by the theorem.

Next, we find conditions under which the C°([0,T]; H*(R?)) norm of the free evolution part of
the solution can be made less than €/2. We claim that the free evolution part of the solution with
arbitrary initial data ¢ = (f, g) in H*(R?), can be estimated as follows:

Proposition 5.2. Let ¢ = (f,g) € H*(R?). Then, the following estimate on the free evolution
associated with ¢ holds:

—Ay V3 I V£
() 2
. e_\/;_Atsin (@Mt) ©
NS

< Cfreo’ ‘90‘ ’HS(RQ)a

CO([0,T); H*(R?))
where Ce. is independent of ¢ € H*(R?), and depends only on s.

We will prove this result after we finish the proof of the main result.
Proposition 5.2 implies that for each fixed w, we have:

_vea, V3 1. (V3 w
e 2 <COS (7\/115) + %sm <7\/It)) (f“)

lugllco o, s r2)) =

. @t sin (@Mt)

55

) < Chreel " [l34s (r2)- (128)

CO([0,T];H* (R?))

To find the conditions under which [[ug||cojo,7; 7 (r2)) < €/2 whenever |||y (r2) is small (less than
§), we need to associate the smallness of ||¢]|3sr2) with the smallness of [|¢”||3s g2 in probability.
Indeed, we recall from Proposition 5.1 and (104) that for any ¢ € H*(R?), the L?(£2; H*(R?)) norm
of ¢* is bounded by a constant times the H* norm of ¢ for our given randomization satisfying the
conditions of Proposition 5.1. Moreover, one can estimate the probability that the H® norm of ¢
is smaller than a given value o > 0 in terms of a and the size of the H*® norm of ¢ as follows:

P([l¢% Il r2y < @) > 1= Coa™6?, (129)
whenever |[¢||ys®2) < . Estimate (129) is a direct consequence of Chebyshev’s inequality:
P ety = @) < CRa ol < O~

Therefore, given € > 0, we see from (128) that there exists ap > 0 depending on €, where «g
measures the size of |[¢* || g2, such that

lusllco o1y s (R2)) < €/2,
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whenever [[¢*|[ys®2) < ao, where the probability of the event that [|¢®|[3s®2) < ap, is bounded

from below by 1 — C2ag?6? whenever [[]lps(m2) < 6, as specified in (129). This will be used to
determine 6 > 0, depending on € and p, such that the probability of the event A, ., which will be
a subset of the event {[|¢“[|ysm2) < ao}, is greater than p.

We are now in a position where we can combine these two steps into one. We define our event
Ay to be the intersection of the events specified by (127) and (129):

Age = {ll¢ I r2) < a0(€)} NVES (¢ 1 = [{116° [l (m2) = @0(€)} U Bxge),10) (130)
and choose § > 0 so that the probability of this event is greater than p:

P(A,e) > p.

More precisely, given € > 0, 0 < T < 1, and 0 < p < 1, there exist \y(¢) and ag(e) that define
the event

Ape = {6 lsr2) < a0(€)} N ES () 1,0
such that for every w € A, . there exists a solution u associated with ¢*, such that
lullco o, ;1 (r2Y) < €

The probability of this event is associated with the size of the initial data ||¢||ys®r2), and so we
can choose d > 0, depending on € and p, so that

P(A,e) >p

whenever
[0l [ (m2y < 9.

The choice of § that guarantees P(A, ) > p whenever ||¢||ys g2y < ¢ is obtained from (129) and
(127), and the calculation

P(Age) > P ([l lps 2y < aole)) + P(ES (1) — 1
>1—C2a5%0% +1— OS85 +Y6 —1 > p.

This concludes the proof of the main part of the theorem.
What remains is to prove Proposition 5.2. Namely, we want to obtain the following estimate:

_VoE, V3 1 (V3
e~ 2 <c0s (7\/115) + %sm <7\/It)) (f)
+e—‘/§_AtSin <§\/It) >
A5

This inequality follows from the fact that for 0 <t < T < 1, we have
1
o~ st <cos <§|£|t> + %sin <§|£|t>)

o4

< Cfree||‘10||7{5(R2)-
CO([0,T]; H*(R?))

<2




and from the following low and high frequency estimate:

ﬂtsin<§mt)( 2 L/ e sim(@\ﬂt)
R2

s | - GOR(+ gy
ERADTI Py 2Kl
. (3 2
1 —[€lt - (7‘6“) |2 2)s4
<o | f Jo g ) Oy

1 2|2 2ys—1 12 L+ [EPY o2 2ys—1
= @y </|g|<12t morasierras [ (J5) () mora e d5>

<co( [ ariePrg©Pa+ [ QHIER)TGEOPS ) = CuuellglBreos ey
l€1<1 |€1>1

2
where in the last step, we used that 0 <t <T <1 and for || > 1, we have 1|i§‘|€2‘— < 2.

Continuity in time with respect to the H*(R?) norm follows similarly from uniform continuity
and a similar low and high frequency estimate. O

With this proof, we conclude the section in which we have shown probabilistic well-posedness
for the supercritical quintic viscous wave equation, which holds for the initial data in H*®, where
—1/6 < s < s¢ =1/2.

Remark 5.3. For concreteness, we handled the case of p = 5 corresponding to the nonlinear
quintic viscous wave equation, since this is the smallest positive odd integer p for which we get
deterministic ill-posedness as described in Theorem 2.1. However, one can extend these results to
encompass general power nonlinearities with p being a positive odd integer greater than or equal
to five, for the equation

Ot — Au+vV—AOwu+uP =0 on R2.

In this case, the solution space X7 as defined in (106) would change to
Xp = C°([0,T); H'~71) 0 L3 (0,7 L0V (R2)).

This is because we must find (¢,7), (¢,7), and s > 0 satisfying the various conditions in (107)
and (108). As described in Remark 5.1, for the Strichartz estimate to work well with the power
nonlinearity, we would want ¢’ and 7' to be p times ¢ and p times r respectively. If we set ¢ = r
for simplicity, this forces us to choose ¢,r = %(p —1). Then, the condition on s in (108) forces us
to choose s = 1 — p%l, which we note is exactly equal to s.. for n = 2. One can carry out the
remaining arguments in the section with very minor modifications to conclude a similar probabilistic
well-posedness result like that of Theorem 5.1 for the exponents —ﬁ <s<1-— 1%'

6 Appendix

In the appendix, we provide the proof of the local existence result that was used in the proof of
deterministic ill-posedness for 0 < s < s. in Sec. 2. Specifically, we recall that this proof relied
crucially on the result of Proposition 2.1, which states that the solution ¢(t,z) to the initial value
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problem for (25) is close to the solution ¢(¥) (¢, z) to the initial value problem for the visco-dispersive
limit (26) in H*(R™) norm for all visco-dispersive parameters v sufficiently close to 0, and for a
given range of times ¢. In the proof of Proposition 2.1, we did not explicitly justify why the initial
value problem in (28) indeed has a solution that exists and is unique for the times for which we
perform our analysis. This is what we establish in this appendix in the following lemma.

Note on notation. In what follows, we use multi-indices « in differentiation operators 9%
to represent differentiations with respect to spatial variables and explicitly write out 0; for any
differentiations with respect to time. In particular, multi-indices o will never be used to represent
any derivatives involving time. In addition, we will use the shorthand notation w’ to denote the
spacetime gradient of w,

w' = (Opw, Oy, w, ..., O, W), (131)

which includes the derivative of w with respect to each spatial variable and also the derivative of
w with respect to time.

Lemma 6.1. Let £ > n + 1 be an integer, let p > 1 be a positive odd integer, and let 0 < v < 1.
For initial data (f,g) € HFTY(R™) x H*(R"), consider the initial value problem on R™,

Opw — V2 Aw + vV=Adw = 12 A" — GV + w) + G(¢?) — V=286, (132)
w(0,z) = f(z),  dw(0,z) = g(x),

where G(z) = 2P, and o (t,z), given by (27), is the solution to the dispersive limit problem given
by (26) for fixed initial displacement ¢9 € CG°(R™) and zero initial velocity. This initial value
problem (132) has a unique solution (w,w’) in C([0,T]; H**(R™)) x C([0,T]; H*(R™)) for some
T > 0 sufficiently small. Furthermore, if we let T, be the supremum of all such times for which
this is true, then either T, = oo, or T is finite and

sup | Y [10%w(t )lzeen) + Y 10%wi(t, )| 2@ny | =00

0SE<To \ |a|<k+1 o] <k

Intuitively, this lemma says that there is a solution to the initial value problem (132) which
we can extend locally in time, as long as the H*t! x H* norm of the solution at a given time is
bounded.

The proof below follows standard Picard iteration and energy methods, as one can find in
Sogge [37] in the context of quasilinear wave equations. We divide the proof into the following
steps.

Step 1: Energy Inequality
The first step is to obtain an energy inequality for the problem
wy — VAW + vV —Adw = F(t,x),
where we emphasize that v € (0,1] is fixed. We have already done this in the proof of Proposition

2.1, so we simply tailor the result of that proof to fit our current problem.
We first start by defining the v-wave energy of the solution w by

1 V2 1 V2
Byt = [ glut.a) + S Vulta)Pde = ool + Z Ve (139
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The corresponding energy inequality in the proof of Proposition 2.1 shows that for the kth v-wave
energy defined as

w(t) = Y B, (05w(t)), (134)

la|<k
which includes the energy of all derivatives of order less than or equal to k, we have that
1/2
(B, (w(t))) < CIE(E, ) -
Hence,
t

B w(®) < B ) +C [ 1P ldr (135)
by integrating.

We want to estimate our solutions to (132) with (w,w’) € H**! x H¥, so in particular, our kth
v-wave energy defined by (133) and (134) is missing a term that estimates ||w(¢,-)||z2. However,

we can estimate ||w(t,-)||z2, which is subsumed in ||w(t,-)|| g%, by using the fundamental theorem
of calculus:

[, ) e < [[w(0, )| e +/0 10w (T, )| redr. (136)

Therefore, by (135) and (136),

1/2 1/2
ot e+ B 0) < (0. e + B2 + [ 10wt e +C [ 1F(r
(137)
This expression (137) gives the desired energy inequality, as ||w(t, )| g+ + El/ 2( (t)) is the

appropriate energy for estimating (w,w’) in H**! x H*¥. We can rewrite the energy |Jw(t,-)||r +

Ei/kz (w(t)) in the more concise form,

E(w(t)) = [|0w(t, ) g + Y 1105wt )l e (138)

lo|<1

which is equivalent to [|w(t, -)|| g« +E1/2( (t)) since, as we emphasize, v € (0,1] is fived. Then, by
(137), we conclude that for some constant C' independent of w and (which depends on the choice

of k and v), .
£w(v) < ¢ (£l /er Mar+ [ 1 ar )

ammgcé%aww+émﬂﬂmmw)

by Gronwall’s inequality. By taking

Then,

Cr = CetT (139)
where Cp depends on T', we have that for all 0 <t < T,

E(w(t)) < Or E (T ) gedr ) (140)
(stwon+ |, )

where T is an arbitrary time in 0 < T' < oco. Here, Cr depends on T and furthermore, C1 can be
chosen to be strictly increasing in 7', as seen by the definition (139).

o7



Step 2: Picard iteration and uniform boundedness of iterates

Now that we have an energy inequality, the general strategy will be to show that our initial
value problem has local existence for well-behaved initial data (f,g). Then, we will use the energy
inequality (140) to extend this to more general data.

In particular, we first assume that f,g € S(R") and we wish to show that we have local
existence. We use Picard iteration. Define the first iterate as w_; := 0. Picard iteration then
defines a sequence of solutions inductively, where we hope that the iterates converge to an actual
solution. Explicitly, for m > 0, we define w,, to be the solution to the initial value problem

Opw — V2 Aw + vV/—=A8w = *A¢®) — G(¢©) + wp_1) + G(¢0) — V=28, (141)
w(07x) = f(x)v 8{(0(0,33) = g(gj)

This has a solution in all of time, as can be seen by Fourier methods, because the inhomogeneous
term no longer depends on the solution w anymore. So we can indeed define w,, by this inductive
procedure.

We will consider the following mth step energy:

E(win(t)) = 1Brwm(t, Mg + Y 05w (t, ) ge- (142)

lal<1

where & is the energy in (138). We want to show that there exists a time 7" and a constant A such
that for all m, the following uniform energy estimate holds:

E(wp(t) <A< oo, forall0 <t <T. (143)

This is the content of Step 2. We will show this by induction.

For the base case, estimate (143) is clearly true for u_; = 0 for any positive A, where we will
choose A later in the inductive step. To establish the inductive step, we will use the energy inequal-
ity. Before using the energy inequality, we collect some estimates from the proof of Proposition 2.1
that we will need. By the previous estimates (33) and (36), there exists a constant C' (depending
on k and our fixed v) such that

1226 | g < C(1+1),

vV =28, g < C(1+1)°.

In addition since k > 1, we can appeal to the previous estimate (34) to obtain
1G(@ D + wa1)(t) = GO) () x < C(L+ ) w1 (t, )| gz (14 [ (t ) )P

Now that we have collected all of the necessary estimates, we use the energy inequality (140)
to estimate &(wy,(t)) as

Ewn(t) < Cr () + [ €O+ + €O+ 8 s (5 a5 e~ )
< Cr <5(wm(0)) +(C+ CA(1+ AP /t(1 + s)Cds> , (144)
0

where we used the inductive assumption in the second inequality. Now, we will choose A to be any
positive number such that
A > C1E(wm(0)), (145)
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where C is the constant Cp for T' = 1 defined by (139). This is possible because the right hand
side of (145) is the same for all m since w,, all have the same initial data (f, g). Upon choosing A,
we can then choose 0 < T < 1 sufficiently small so that

T

&) <5(wm(0)) F(C+ CAQ + AP /

(1+ s)Cds> < A. (146)
0

Then because Cr is strictly increasing in T' by (139), we get from (144) and (146) that £(wp,(t)) < A
for all 0 < ¢ < T'. So for this choice of A and 0 < T' < 1, we have the desired uniform bound (143)
on the mth step energies of our iterates wy,.

Step 3: Convergence to a solution

Next, we show that the iterates w;, from Step 2 form a Cauchy sequence in C([0, T1]; HET1(R™))N
C([0, Ty]; H*(R™)), for some time 0 < Ty < T where T is the time chosen in Step 2 in (146).

First note that since f,g € S, the w,, are all smooth since the inhomogeneous term is smooth
and rapidly decreasing. Using the notation £ from (138), it suffices to show that for all t € [0, T}],

E((wm — wm-1)(t)) = [|Owm(t, ) = Opwm—1(t,-)| e
+ Z Ha:?wm(t7 ) - 8§wm—1(t7 )”Hk = 0(2_m)7 (147)

o<1

for some time 0 < T} < T, where T is chosen in Step 2 in (146). Let A, chosen in the previous step
in (145), be the constant in this O(27™). Thus, we claim that there exists a time 77 > 0, smaller
than the T from (146), such that

E((Wp —wm—1)(t)) < A27™ for all t € [0,T1],m > 0. (148)

As before, we will show this by induction. This inequality is indeed true for m = 0 because w_; = 0,
and thus the inequality for m = 0 follows directly from (143).
For the inductive step, note that wy,+1 — wy, is a solution to

Byv — V2 Av + vV=Adw = — G0 + wp) + G0 + w_1), (149)
v(0,2) =0, 0w (0,2) = 0.

By using the same inequality on pg. 11 of Christ, Colliander, and Tao [11] used to establish the
inequality in (34), we get that

IG(6© + wm) — G + w1 || (150)
<O+ + A wm(t, ) — w1 (t, ) e (1 + [[wna(t, ) — w1 (t, )| e )P

Then, by the energy inequality (140), for all 0 < ¢ < T for T as in (146),
E((Wmt1 — wm)(t))
t
<Cr <0/ (1+5)7 + A (1 + E((wnm — wn—1)($)" ™" E(wpn — wm—l)(S))d8> o (151)
0
since there is zero initial data in (149). Choose 0 < 77 < T such that

Cr, CTy((1+T1)C + A)°(1 + AP~ < 1/2, (152)

99



where Cr is defined by (139). Then, for all m > 0,
Cr,CTi((1+T1)° + A (1 + A27m™)P~1A2™™ < A2—m~ 1, (153)
Then, by (151) and (153), we get that
E((Wmp1 — wm)(t)) < A2~ (M+D) for all 0 < t < Ty,

which establishes the inductive step. Hence, we have proved (147).

So (wy,, w!,), where the prime denotes the spacetime gradient (131), forms a Cauchy sequence
in C([0,T1]; Hk“) x C([0, Ty]; H*). Therefore, w,, — w for some w € C([0, T1]; H**') and w!, — v
for some v € C([0,T]; H*). Hence w,, — w in D'([0,7}) x R") and hence w!,, — w’ in D’'([0,T7) x
R™) also. But by uniqueness, this means that w’ = v. Therefore, (w,w') € C([0,Ty]; H*') x
C([07 Tl]v Hk)

Note in particular that

1Osw(t, Mg + > 0wt g <A forall 0 <t < Ty, (154)
o<1

since this is true for each of the wy,, by the uniform bound (143) in Step 2. In addition, we
emphasize that the constants A and Ty here depend only on the H*T1 x H* norm of the initial data
(f,9) € S(R™) x S(R™). This fact will be important in the next step.

It remains to show that w, constructed as the limit of the iterates w,,, solves the original initial
value problem (132). Because the inhomogeneous term in (132) depends on the solution w itself,
we need to check that this inhomogeneous term converges appropriately as m — oo to conclude
that w is a weak solution. To see this, for all 0 < ¢ < T, by the argument on pg. 11 in Christ,
Colliander, and Tao [11],

1G(6 +w)(t) = GO + wm) (8)l]
< O((L+ ) + A Nw(t, ) = wan(t, e (L + lw(t, ) = win(t, g =0,
where this convergence as m — oo happens uniformly in ¢ € [0,77] (since the convergence of w,, —
w happens in C([0, Ty]; H**1)). Therefore, G(¢© + w,,) — G(¢® + w) in L=([0,T]; H*) and

hence this convergence happens in the sense of weak convergence of distributions D’([0,77) x R™).
So we conclude that w is indeed a weak solution to the initial value problem (132).

Step 4: Approximation argument for general initial data
Now, we consider the initial value problem
Opw — V2 Aw + vvV=Adw = 12 A¢") — G0 + w) + G(¢?) — V=286, (155)
w(07$) = f(l‘), atw(()’x) = g(:E),

for general f,g € H**1(R™) x H*(R") and not just f, g that are in S(R™). For this more general
class of initial data, we show that we still have local existence by approximating this general initial
data by functions in S(R").

Let f,, — f and g,, — g in H**! and H*, where f,,, gm € S(R"). By refining this sequence as
necessary, we can choose a subsequence (which we will continue to denote by f,, and g¢,,) so that

1 _ 1 _
| fm — fm—1l|grer < n—H(maX(ZC'l)) ", l9m — gm—1llgr < n—H(maX(ZC'l)) ",
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where C is the constant Cp (139) for T' = 1 from the energy inequality (140). Since the norms
of f., and g, are uniformly bounded in H*t! and H* respectively, from our previous step, there
exist uniform constants A and

0< Ty <1, (156)

(since the norms of (fn, gm) € H**1x H* are all uniformly bonded in m, see the remark immediately
following (154)) such that:

e There exists a solution (wy,,w,,) € C([0, Tz]; H*+1) x C([0, Ty]; H*) (with T% uniform) to the
initial value problem

Opw — V2 Aw + vV/—=Adw = P A" — G(¢©) + w) + G(¢?) — vV =Ad0, (157)
w(O,a;) = fm(x)7 atw(OwT) = gm( )

e The solutions wy, satisfy the uniform energy bound

0w (8, e + Y 105w (8, )| ge <A forall 0 <t < T, (158)
o<1

by (154).
We want to show that
(W, w!,) is Cauchy in C([0,T3]); H*1) x C([0, Ts]; H*) for some time 0 < T3 < Ts. (159)
To do this, consider

E((wn = wn1)(1)) = [Oswm(t, ) = Qw1 ()l gs + D 105w (t, ) = Fgwm—1(t,)l| e (160)

lal<1

Here, £ is the energy from (138) and wy, is defined by (157). Then, wy,, — wy,—1 satisfies the initial
value problem

vy — VAU + vV =A0w = =GV + wy,) + G0 + wm_1), (161)
’U(O,l‘) = fm(x) - fm—1($)y 8{0(0,3)) = gm(:E) - gm_1(:17),

where we recall that by the choice of our subsequences f,, and g,

1 _
+2 lgm — gm—1| e < n——|—2p ™ where p := max(2,C}). (162)

We claim that for some T3 such that 0 < T3 < T, where T3 satisfies the conditions in (157)
and (158),

Hfm fm 1||Hk+1 <

E((Wm — Wp—1)(t)) < p~™H forallm>2, 0<t<Ts. (163)

We show this by using a bootstrap argument.
We consider m > 2. By applying the energy inequality (140), the uniform bound (158) on the
Wiy, and the previous estimate (150) to the initial value problem in (161),

E((wm — wm1)(1)) < O, (s«wm ) 0)

+0/0 (14 5) + A1+ E((wm — wim-1)(5))P " E((wm — wm—l)(S))d8> ;
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for all 0 <t < T for T, defined as in (157) and (158). Note that by the way we chose f,, and g,
in (162), we have &((wpm, — wm—1)(0)) < p~™. Therefore, for all 0 < ¢ < Th,

E((wm — wm-1)(t))

< Cp, <p_m + C/O (145 + D1+ E(wm — wm-1)(5)))PLE((wp, — wm_l)(s))ds> )

Let us make the bootstrap assumption that
E((wm — wm—1)(t)) <1 for all 0 <t < T3, (164)

where T4 < Ty will be chosen later (independently of m). Then, for ¢t € [0, T3],

E((Wp — wpm—1)(t)) < CTz’ <p_m + C’/O ((1+ s)c + A)02p_18((wm — wm_l)(s))ds> .

After consolidating constants and using the fact that 0 < T < Tp < 1 (see (156)),

E((wm — wm-1)(t)) < Cry <p_m + C//O E (W, — wm_l)(s))ds> , forall t €0,73].

Using Gronwall’s inequality, we get that for ¢ € [0, T3]:
E((wm — wn-1)(t)) < Cpyp™™ exp(C'CTQ/t).
Then, we can choose the T4 < T, appearing in the bootstrap assumption (164) so that
Cry exp(C"C’TéTQ') < p=max(2,Cy).

This is possible because the constant Cp (139) in the energy inequality (140) is strictly increasing
in T. Thus, we get that

E((Wm — Wpp—1)(t)) < p~™H for all t € [0, T3] (165)

Since m > 2 and p > 2, this also closes the bootstrap assumption (164), since we have shown that
if E((wp — wm—1)(t)) <1 for all ¢t € [0,T3], then

1
E((Wm — W—1) (1)) < p ™ < p7t < 3 for all ¢ € [0,T%)].

In addition, since &((wp, — wm—1)(0)) < p~™, the bootstrap assumption (164) is true at t = 0.
Note that indeed, &((wy, — wm—1)(t)) is continuous on [0, 73], since we showed in the previous step
that the solutions (wy,,w!,) are in C ([0, T»]; H**1) x C([0, Ty]; H*).

So we have established the claim (163) for T5 := T5. Therefore, (wy,,w),) is Cauchy in
C([0,T3]; H**1) x C([0,T3]; H*). By the same argument in the previous step, there exists w €
C([0, Ts]; H*1) with w' € C([0,T3); H*) such that (wy,,w),) — (w,w’) in the sense of weak con-
vergence of distributions.

To show that the w we have constructed is indeed a weak solution to our desired initial value
problem (155), we again must show appropriate convergence of the inhomogeneous terms which
depend on the solution w. As before, an argument similar to that on pg. 11 in Christ, Colliander,
and Tao [11] shows that for all 0 <t < T3,

1G(6” +w)(t) = G + wyn) (1) v
< C(A+ 1+ DNt ) = wint, ) e (L w(t, ) = wa(t, ) gr)P =0
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uniformly in ¢ € [0, T3] (since the convergence of w,, — w happens in C([0,73]; H**1)) as m — oo,
where we used the uniform bound on w,, in (158). So G(¢© +w,,) — G(¢© +w) in L=([0, T3]; H*).
Finally, since f,, — f and g¢,, — g in H**! and HF respectively, this convergence of the initial
data happens in the sense of distributions on R" also.
Therefore,
(w,w') € C([0,T5]; H*) x C([0, T5]; H*) (166)

is indeed a weak solution to the given initial value problem with general initial data (f,g) €
HF < HF,
Step 5: Uniqueness of solution

Next, we show that the solution (w,w’) in C([0,T]; H**1) x C([0,T]; H*) that we have con-
structed is unique for any given T for which the solution exists, where for simplicity of notation,
we have replaced T3 from Step 4 (166) with 7. This uniqueness will play an important role in the
next step.

Suppose w and w are both solutions to the initial value problem given in (132). Then, their
difference v := w — W is a solution to

vy — V2 A + vV =A0w = —G(¢V + w) + G(¢V + ), (167)
v(0,2) =0, O (0,z) = 0.

Using an argument similar to that on pg. 11 of Christ, Colliander, and Tao [11], for all 0 <¢ < T,
the right hand side of equation (167) can be bounded as follows:

1G(6©) +w)(t) = G(@ + @) (t)l| g
<O+ + [0t ) ge)lw(t, ) = () w1+ Jwlt, ) — D))~

Note that since @ € C([0,T); H**1), we have that ||@(t, )| zx < A for all 0 < ¢t < T for some A.
So then,

IG(6© +w)(t) — GO + @) (t)]| g
S C(A+6) + A w(t,) —dt, ) ge(L+ Jw(t,-) = Dt )| e )"
< O lw(t, ) — ot ) gr (1 + ||Jw(t, ) —D(t, )| )P for all t € [0, 7], (168)

where C' := C((1 +T)¢ + A)°.
For the difference v := w — W, consider

E(v(t) = 1100t Ve + D N0%0(t, ) = 10w — @)t g + Y 10%(w — D)t )| v,

o<1 o<1
where £ is defined as in (138). Let us make the bootstrap assumption that
lw(t, ) —w(t, )| ge <1 for all t € [0,T]. (169)

Then, using the energy inequality (140), for all ¢ € [0, T,
t
eu(t) < Cr ([ o)~ s, (1 + o) = e, ) s

t
< C’TC’”/ [|lw(s, ) —w(s,-)||gxrds  (by the bootstrap assumption)
0

S@WK&WWS
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since £(v(0)) = 0. So by Gronwall’s inequality, £(v(t)) < 0 for t € [0,T]. So therefore, E(v(t)) =0
for ¢t € [0,7]. This also closes the bootstrap assumption (169), since £(v(0)) = 0 so the boot-
strap assumption is satisfied for ¢ = 0, and in addition, £(v(¢)) is a continuous function of ¢,
since (w — w,w’ — @) is in C([0,T]; H*') x C(]0,T]; H*). This shows that (w,w’) = (@, @') in
C([0,T]; H**1) x ([0, T]; H").

Step 6: Existence as long as H**! x H* norm is bounded

We have finished the proof of local existence and uniqueness. However, for the purposes of the
proof of Proposition 2.1, we need something stronger: existence in H*+1 x H* as long as this norm
is bounded. This claim justifies our computations in the proof of Proposition 2.1. This will be the
content of this final step.

We show that a solution to the initial value problem (132) exists as long as the HF*! x H*
norm of the solution is bounded. So far, for given (f,g) € H**' x H* we have shown that there
exists a T' > 0 depending only on the norm of the initial data such that there is a unique solution
w to the given initial value problem (132) with

> 0wt gz + > 08w(t, )2 < oo forall t € [0, 7], (170)

o] <k+1 la|<k

where the left hand side is equivalent to the energy £(w(t)) defined in (138).
Let T} be the supremum of all such times T" > 0 for which we have local existence and uniqueness
of a solution for given initial data (f,g) € H**! x H* on [0,7]. We assert that either T} = oo or

sup > lo5wt, iz + D N0gwi(t, )z | = oo

OSE<Ts \ |a<k+1 o] <k

To see this, suppose for contradiction that T, < oo satisfies

sup | > (08wt Iz + Y [0%wi(t, |2 | =M < 0.

0St<Tee \ o <k+1 || <k

Recall that the time of existence that we found in Step 4 depends only on the norm of the initial data.
Since ||w(t,-)|| gr+1 and ||[Opw(t, )| g+ are both bounded in their sum by M for 0 < ¢t < T, there
exists a uniform time of existence Th; > 0 for the initial value problem (132) for any initial data with
HF1 x H* norm less than or equal to M. Recalling that (w,w’) € C([0,T]; H**1) x C([0,T]; H*)
for T € [0,T,), we can consider 0 < tg < T} such that tg > T, — Ths. We then consider the initial
value problem (132) with initial data w(to,z) and dyw(tg,z). Gluing the resulting solution which
exists for at least time T); with the previous solution w from time 0 to tg, we get a new solution
that is extended past T,. The uniqueness assertion from Step 5 shows that on the overlap, w and
this newly constructed solution must be the same, and furthermore, the newly constructed solution
is unique on the time interval on which it is defined. This contradicts the definition of 7.
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