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ABSTRACT
Cognitive biases are hard-wired behaviors that influence developer
actions and can set them on an incorrect course of action, necessi-
tating backtracking. While researchers have found that cognitive
biases occur in development tasks in controlled lab studies, we still
don’t know how these biases affect developers’ everyday behavior.
Without such an understanding, development tools and practices
remain inadequate. To close this gap, we conducted a 2-part field
study to examine the extent to which cognitive biases occur, the
consequences of these biases on developer behavior, and the prac-
tices and tools that developers use to deal with these biases. About
70% of observed actions that were reversed were associated with
at least one cognitive bias. Further, even though developers rec-
ognized that biases frequently occur, they routinely are forced to
deal with such issues with ad hoc processes and sub-optimal tool
support. As one participant (IP12) lamented: There is no salvation!

CCS CONCEPTS
•Human-centered computing→ Field studies;Empirical stud-
ies in collaborative and social computing; •Applied comput-
ing → Psychology.
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1 INTRODUCTION
Cognitive biases—systematic patterns of deviations from optimal
reasoning [19, 50, 51]—compromise how humans search, evaluate
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and remember information. They help us quickly find solutions
in a complex world [47]. As a result, they are hard wired in our
behavior and occur daily, even in the simplest of situations. A
common example is confirmation bias–the tendency to pay more
attention to information that agrees with our preconceptions. For
example, say we are visiting Korea for the first time, and have been
led to believe that the food is very spicy. When we first encounter
kimchi, we take a taste and say "Korean food really is spicy!", failing
to remember all the non-spicy food we have already eaten. In doing
so, we confirm our preconceptions, even in the face of contrary
evidence.

Cognitive biases are a result of numerous factors and depend on
how individuals–including software developers–think. Some biases
occur due to our limited cognitive capacity (e.g. Availability bias
may cause developers to choose solutions based on what examples
that are readily available in memory), while some are a by-product
of an individual’s development styles (e.g. Hyperbolic discount-
ing, some developers tend to choose a solution with smaller and
more recent rewards as opposed to waiting for larger rewards later
on [34]).

While these cognitive biases can result in correct solutions, they
can also lead to negative outcomes. For example, in the case of
hyperbolic discounting, the small solution that a developer initially
chooses might work temporarily but, later, if her chosen (small)
solution was not optimal, she could be forced to rewrite all the
functionality.

Past works have investigated the harmful effects of specific cog-
nitive biases on software aspects such as, defect density [3], de-
fect proneness [48], requirements specification [18], originality of
design [53], and feature design [7]. In fact, Mohanani et al. [34]
surveyed 65 primary studies of cognitive biases in Software Engi-
neering and identified 37 cognitive biases in literature.

These studies, however, had been conducted in controlled situa-
tions, such as lab studies with student participants, simplified study
tasks, and relying upon structured interviews and questionnaire
responses. Thus, there exists a gap in our understanding of how cog-
nitive biases manifest in the real world. For example, how often and
what kinds of cognitive biases occur in software development? How
do these cognitive biases affect developers’ actions and solutions,
and how do developers attempt to mitigate these cognitive biases?
Without the answer to such questions, it is nearly impossible to
develop effective tools and strategies to help developers avoid the
pitfalls of cognitive bias.

To gain insights into cognitive biases and their roles in practice,
our first research question (RQ1: How do cognitive biases affect
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developer actions?) explores how often cognitive biases occur in
real-world development sessions. In addition to the frequency of
occurrence, it is also important to understand which cognitive
biases developers encounter (RQ2: What types of cognitive biases
do developers frequently experience?) And based on these different
kinds cognitive biases, then RQ3: What are the consequences of these
cognitive biases on developers’ problem solving abilities?

To answer these questions, we conducted a field study of 10
developers while they worked on their routine development tasks,
in their work environments. We recorded all activities and interac-
tions with artifacts, resulting in more than 2,000 actions. Our results
show that cognitive biases do frequently occur, and can negatively
affect development activities.

Given the frequency of cognitive biases, we next investigated
how developers guard against or recover from them (RQ4: What
can developers do to overcome these cognitive biases?), and what tools
or practices they use in these efforts. We interviewed 16 developers
from three different companies to identify practices and recommend
tools that they perceive to be helpful for different types of cognitive
biases.

To the best of our knowledge, we are the first to study–in-situ–
the effects of cognitive biases on development activities. Our results
show that cognitive biases frequently occur and negatively impact
development activities. We present an initial consideration of tools
and practices that developers currently use to guard against or
recover from cognitive biases, and have also compiled a set of tool
features they seek. Our results are a call to action for researchers to
study the cognitive biases—their effects, interplay and remedies—in
the wild. Our findings also provide tangible recommendations for
tool builders to create solutions specifically catered to reduce the
effects of cognitive biases.

2 BACKGROUND
Cognitive biases were first introduced in 1974 by researchers Tver-
sky and Kahneman [51]. Researchers in software engineering have
been studying these biases in the domain since 1990 [45]. Mohanani
et al. summarizes 65 articles which characterize the current state of
studying biases in software engineering [34]. These articles investi-
gate 37 distinct cognitive biases (out of more than 200 previously
identified in psychology, sociology, and management research). For
example, studies affirm that confirmation bias leads to higher de-
fect rates and more post release defects when testing, availability
bias and representativeness bias lead to developers misrepresenting
code features, and overconfidence caused insufficient efforts when
performing requirements analysis.

Of the 65 papers examined none describe the use of in-situ field
studies as part of their research methodology. For example, Calikli
et al. [4] evaluate the effects of company culture, education, and
experience on confirmation bias among software developers and
testers through user studies involving interactive and written tests.
While lab studies and controlled experiments allow for control of
confounding factors, they do sacrifice the richness and spontane-
ity of naturalistic observations [10]. Calikli et al. [5] also observed
developers in hackathons to understand different levels of confirma-
tion bias. While hackathons have higher ecological validity than lab

studies, they still do not mimic developers’ natural work environ-
ment. Our study attempts to extend these lab-based (or studies in
non-natural environment) findings to actual development practice
via the use of observational studies in a real-world setting.

Importantly, examining biases within software development
tasks using empirical methods such as observation studies, requires
precise definitions of measurements and related constructs [10]. To
this end, we define goals as the end state towards which a devel-
oper directs her development effort, and actions as steps performed
by her to reach that goal [6]. Our coding schema and additional
description of its usage is expanded in Section 3.

Related Work. Prior studies have examined developer behavior
and activities to understand their practices in terms of problem
solving [29, 36, 52], tool-usage [12, 22, 35], information search and
use [26, 46], and work context [6, 20]. These studies, none of which
utilized a field study as a means of collecting data, help us under-
stand developer work practices [31, 32], where they struggle [2, 11],
and what information they need [23, 44].

Other studies have also investigated practitioners’ perceptions
or beliefs. For example, Devanbu et al., [9] explored the relationship
between quantitative evidence and practitioner belief, and found
that developers often rely on individual experience. Meyer et al. [32]
and Pandita et al. [37] investigated how developers solve problems
based on their perception of productivity and effort. While these
perceptions and beliefs may very well stem from cognitive biases,
we do not know which biases are presenting themselves, nor their
specific effects. Our work explicitly attempts to identify specific
cognitive biases, and understand their effect on developer work.

3 METHODOLOGY
3.1 Field Study
We observed 10 developers in-situ for our field study. Our partici-
pants were recruited from a US-based software startup (company
A) that specializes in the areas of distributed developer tools and
services, including: program analysis, user interface (UI) design,
infrastructure support, and software R&D. Due to the diversity
of focus areas in the startup, participants used a wide variety of
programming languages, tools, and working styles.

Table 1 presents demographic information about study partici-
pants, including development experience, code editor usage, and
preferred programming languages (the median software develop-
ment experience was 2 years, and the mean was 5 years 9 months).1

We observed participants performing their routine development
tasks on a typical workday. During the observation session, we
asked participants to think-aloud and verbalize their thoughts and
interactions. [40]. We recorded their screen, audio, and physical
workspace.

The total observation time per session was limited to 60 minutes
to prevent participant burnout and respect time restrictions at the
startup.

During each session, one researcher was positioned next to the
participant, taking notes. In a separate room, not visible to the
participant, an additional researcher served as a secondary field-
note taker, andmonitored the recordings of the participant to ensure
1We could not study whether gender had any association with biases as very few
participants in our study were women.

655



A Tale from the Trenches: Cognitive Biases and Software Development ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Study Participant Demographics

Ptc.i Gnd.ii Exp.iii Language(s)iv Editorv

P1 M 21y 0m Java Eclipse
P2 M 1y 11m Clojure Eclipse
P3 M 1y 10m Clojure, Java Emacs
P4 M 7y 3m Clojure, Python Emacs
P5 M 2y 0m Clojure, Java, Haskell Emacs
P6 M 2y 0m TypeScript, Clojure, Java VS Code
P7 M 5y 0m C/C++ Emacs
P8 F 15y 0m JavaScript, CSS VS Code
P9 M 0y 9m C, Prolog Sublime
P10 F 1y 0m Python PyCharm

i Ptc. = Participant ii Gnd. = Gender iii Exp. = Years/months of software
development experience iv Preferred programming language(s) v Editor used in

session

consistency. Members of the research team alternated between
serving as the primary and secondary note takers.

At the end of each session, participants were asked to complete
a brief demographic survey (see results in Table 1) while the two
researchers compiled and prepared follow-up questions to clarify
during a 15 minute retrospective interview.
3.2 Qualitative Coding
To understand how cognitive biases affect software development,
we identified and classified each individual action taken by par-
ticipants during our observational study using qualitative coding
methods.

To code the raw data, we first transcribed all data including:
1) participants’ verbalizations from the think aloud recordings, 2)
descriptions of actions taken by participants, and 3) the artifacts
interacted upon by the participants. Each piece of data, called an
instance, contains a quote and description of the participant’s ac-
tions.

Table 2: Action Codes

Action Definition

Read Examining information from artifacts (e.g. code,
documentation, terminal output).

Edit Any change made directly to code or artifacts.

Navigate Moving within or among artifacts (e.g. pulling files
from Git, opening files, scrolling through a file).

Execute Compiling and/or running code.
Ideate Constructing mental model of future changes.

3.2.1 Action coding. An action is a discrete step performed by a
participant to achieve their task. To code the actions in our tran-
script data, we created five sets of 94 (4.5%, total 22.5% over five
sets) random instances from the observations across all partici-
pants. Three authors individually coded each action with the codes
described in Table 2.

Using Fliess’ Kappa to calculate the inter-rater reliability (IRR)
measure for three coders [24], we achieved kappa values of 0.82,

0.80, 0.87, 0.88, and 0.87 for the five sets, respectively p-value <
0.001. After achieving the recommended threshold agreement, the
three researchers split the remaining dataset, and individually coded
the remaining actions.

Participants worked on three types of tasks when taking these
actions: implementation (1119 actions), debugging (535 actions) and
verification (731 actions). We found this through qualitative coding
(IRR of 0.86 across 3-raters; Fleiss kappa). Implementations actions
refer to adding new feature or functionality (e.g. adding wrapper
class), verification actions refer to verifying new or modified func-
tionality to check if added code executes (e.g. Compiling, executing
code), and debugging actions refer to identifying and eliminating
bugs in existing or added code (e.g. after error message, changing
query syntax in console).
3.2.2 Bias coding. We examined each action to identify the associ-
ated bias categories. These bias categories are explained in Section 4;
including discussion on how each category was observed.

To ensure the validity of the coded biases, three authors incre-
mentally coded the entire dataset using negotiated agreement [13].

3.3 Complementary Interviews
We next conducted semi-structured interviews with 16 develop-
ers to triangulate our findings from the initial field study. This
additional data collection was designed to develop a formative un-
derstanding of how developers both perceive, and deal with, the
observed biases. We used semi-structured interviews instead of
surveys to: (1) confirm that participants correctly understood the
biases, while allowing them to ask clarifying questions, (2) follow-
up on advice/practices that participants suggested to address bias.

We recruited interview participants from three companies to
examine debiasing practices across a variety of organization sizes
and cultures. First, we observed 11 developers from the original
company in our field study (Company A); from our observed 10
participants [see Table1], two employees had left and three others
had joined since our field study. Next, we interviewed one devel-
oper from another start-up of similar stature (Company B); team
sizes similar with those at Company A. Finally, we interviewed
four developers from a Fortune 500 company (Company C); a multi-
national company with large team size. These interviews helped
to confirm that the observed biases were not limited to a single
company. Table 3 provides demographic information for all of the
interview participants.

In the interviews, we defined ten bias categories and provided
examples based on instances observed in our field study (see Sec-
tion 4 for definitions). Using these generalized examples, we asked
two questions for each specific bias: (1) “On a scale from 1 (low) to
5 (high), how often do you think developers act under this bias?”
and (2) “What standard practices, guidelines, or tools would help
to avoid this bias?”

Interview responses were categorized by two authors using Pat-
tern Coding [33]—the process of grouping categories into smaller
thematic sets. In the first round of qualitative coding[41], we iden-
tified 29 development practices (e.g. brainstorming, referencing)
described in response to the second interview question. In the sec-
ond round, these practices were abstracted into five categories that
link specific biases with practices that directly address them (see
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Table 3: Interview Participant Demographics

Pti Gnii Ciii Expiv Rolev Pt Gn C Exp Role

IP1 M A 23y 0m Dev IP9 M A 8y 0m Dev
IP2 M A 2y 11m Dev IP10 M A 2y 0m Dev
IP3 M A 2y 10m Dev IP11 M A 1y 9m Dev
IP4 M A 8y 3m Dev IP12 M B 1y 0m Dev
IP5 M A 3y 0m Dev IP13 M C 5y 0m Dev
IP6 F A 19y 8m QA IP14 F C 2y 0m Dev
IP7 M A 6y 0m Dev IP15 M C 2y 0m Dev
IP8 M A 19y 0m Dev IP16 M C 5y 0m Dev
i Pt. = Participant ii Gn. = Gender iii C. = Company iv Exp. = Years/months of

software development experience v Job position in the company

Table 6 for details). We also aggregated the tools participants found
helpful for specific practices into these categories.

4 BIAS CATEGORIZATIONS
A description of individual biases can be found on our supplemental
site2. This site provides annonymized supplemental artifacts used
for data analysis. We cannot release raw data due to participant
privacy concerns.

Table 4 lists the 28 biases observed (out of the 37 reported by
Mohanani et al. [34]); the remaining 9 were likely not observable
because of our study design–an hour long observational study
with think aloud protocol. Additional details are available on the
supplemental website2.

4.1 Bias Categories
We grouped the 28 observed biases into 10 categories based on their ef-
fect on developer’s behavior. These categories were created through
the process of negotiated agreement. Two authors individually cat-
egorized the 28 biases by combining: (1) the definitions of cognitive
biases in the context of software engineering (per Mohanani et.
al. [34]), (2) the definitions of biases in cognitive science litera-
ture [50, 51], and (3) the observed effects of biases on participants’
development behavior (through direct observation and participants’
verbalizations). In the first round, the authors agreed on the cat-
egorization of 24 out of 28 biases (85.7% agreement), into a set of
11 categories. In the second round, the authors disagreed on one
bias categorization (96.4% agreement) and decided to merge the 1st
and 11th categories. Table 4 shows the final list of 10 categories
(CB1–CB10), and their mapping to individual cognitive biases.

The Preconceptions (CB1) category refers to the tendency to select
actions based on preconceived mental models for the task at hand.
Biases within this category cause developers to discount the degree
of solution space exploration required to take action.

Ownership (CB2) occurs when developers give undue weight
to artifacts that they themselves create or already posses, thereby
reducing the potential for other options to be objectively evalu-
ated. Preference for one’s own artifacts prevents developers from
exploring the solution space completely.

The Fixation (CB3) category refers to anchoring problem solv-
ing efforts on initial assumptions, and not modifying said anchor

2https://epiclab.github.io/ICSE20-CogBias/

sufficiently in light of added information or contradictory evidence.
This leads to reduced awareness of task context.

Resort to Default (CB4) occurs when developers choose readily
available options based solely on their status as the default, or the
tendency to prefer current conditions without regard to applicabil-
ity or fitness. This causes lost context of the overall task.

TheOptimism (CB5) category reflects the set of biases that lead to
false assumptions and premature conclusions regarding efficiency
or correctness of a chosen solution. This is shownwhen people over-
trust their abilities, or when the likelihood of a favorable outcome
is over-estimated.

The Convenience (CB6) category encompasses the assumption
that simple causes exist for every problem, and the predisposition
to take the seemingly quicker or more simplistic routes to solution.
This reduces the effort developers invest in reasoning and making
sense of information.

The Subconscious action (CB7) category refers to the offloading
of evaluation and sense-making to external resources (such as IDEs
or online resources) without regard to the actual merits of such
information.

Blissful ignorance (CB8) refers to the assumption that everything
is nominal and working, even in the face of information indicating
otherwise. Developers don’t pay attention to their surroundings.

The Superficial selection (CB9) category represents a range of
actions and information being unduly valued based on superfi-
cial criteria. Developers decide on a solution without thoroughly
reasoning through it.

The Memory bias (CB10) category affects how developers re-
member information from a series of alternates, prefer to use the
primary or most recent information encountered, or react as a result
of information most readily available in the memory.
5 RESULTS
5.1 Presence of Biases in Developer Actions
The field study included 2084 distinct developer actions; of these we
classified 953 actions that contained at least one bias category. Thus,
approximately half of developer actions (45.72%) were associated
with some form of bias. Note, the large number of biased actions
(953 out of 2084) in our observation time frame may likely be due to
cognitive biases being inherent in decision making actions, which
are a key part of software development.

However, not all cognitive biases necessarily result in a negative
outcome. Biases can lead to positive effects–participants taking
fewer actions than anticipated. However, in a non-controlled envi-
ronment we cannot differentiate between the “baseline” (no-bias)
or “optimized” (positive outcomes of bias) number of actions. Thus,
we focused on reversed actions (negative bias).

To identify biases that resulted in a negative outcome, we use the
notion of Reversal Actions. We define Reversal Actions as
the actions that developers need to undo, redo, or discard at a later
time. Reversal actions are thus indicative of non-optimal solution
paths.

Figure 1a shows the distribution of developer actions (biased or
non-biased), and whether it led to a negative outcome. There were
953 actions with biases, and 1131 without. Similarly, there were
1104 reversal actions and 980 non-reversal actions. Reversal actions
were more likely to occur with a bias – 68.75% (759/1104 cases), and
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Table 4: Cognitive Bias Categories

Bias Category Bias(es) Example

CB1 Preconceptions Confirmation, Selective perception P1 continually added hashmaps when other data structures
were more suited for data query APIs.

CB2 Ownership IKEA effect, Endowment effect P8 decided to reuse her old CSS file instead of the pre-made CSS
files from the Bootstrap project.

CB3 Fixation Anchoring and adjustment, Belief
preservation, Semmelweis reflex, Fixation

P9 fixated on changing the function definitions when the
environment just needed to be reloaded.

CB4 Resort to
Default Default, Status-quo, Sunk cost P2 opened a new code file and kept unused template code at the

top of the file.

CB5 Optimism Valence effect, Invincibility, Wishful
thinking, Overoptimism, Overconfidence

P4 was proud of his new aggregating map code, but it got an
error after it was printed.

CB6 Convenience
Hyperbolic discounting, Time-based bias,
Miserly information processing,
Representativeness

P2 created simple overly-verbose code that addressed his current
needs, but became spaghetti code that slowed future progress.

CB7 Subconscious
action Misleading information, Validity effect P6 focused on fixing the files listed in error messages instead of

the core dependency file causing errors throughout the system.

CB8 Blissful
ignorance Normalcy effect P10 disregarded all compiler warnings out of habit and failed to

notice a new exception detailing the cause of his build failure.

CB9 Superficial
selection

Contrast effect, Framing effect, Halo
effect

P4 copied and pasted a function from his documentation directly
into his syntax without examining it first.

CB10 Memory bias Primacy and recency, Availability P1 reused a design pattern that worked well on recent tasks,
since he could easily recall the structure of the code.

(a) Distribution of Actions (b) Distribution of Time (sec)

Figure 1: Distribution of Presence of Bias and Reversal Actions. Size
of circles are proportional to (a) the number of actions or (b) time (in
seconds). Each cell presents the actions matching these dimensions.
Totals are shown along the bottom and right edges, with overall to-
tals shown in the lower right-hand corners.

biased actions were more likely to be reversed – 79.64% (759/953
cases).

To verify this association, we conducted a chi-square test of
independence with a Bonferroni correction (to account for multiple
comparisons [42]). To be considered significant, the p-value needs
to be ≤ 0.0125 (adjustedα = 0.05×( 0.054 ) = 1.25e−2) when applying
Bonferroni correction to a chi-square test across 4 comparisons (2
categories for whether actions were biased and 2 categories for
whether actions were reversed). The chi-square test is significant
(χ2[4,N = 2084] = 499.35, p-value < 2.2e − 16). Thus, biased
actions were highly associated with reversals.

To evaluate the strength of this association we estimated the
Cramer’s V measure (for 2 × 2 comparisons) [39]. V ≥ 0.50 is con-
sidered a large effect size when the minimum number of categories
in either variable is 2 [43]. The Cramer’s V results signify a strong

association between the presence of bias and actions that need to
be reversed (V= 0.5).

However, if the time spent on reversing actions is not substantial,
the number of reversal actions alone might not provide an accurate
estimate of the negative outcomes of biases. Therefore, we analyzed
the time spent during each action, captured in Figure 1b. Each cell
presents the time (in second) spent in each type of action.

In total, developers spent 34.51% (7839/21407) of their time revers-
ing biased actions. When focusing only on the time spent in reversal
actions, 70.07% (7839/11187) of these involved biases. Therefore,
biased actions lead to significant negative outcomes in terms of
lost development time (approximately 25% of their entire working
time). A chi-square test of independence supports this hypothesis,
showing that the time spent reversing actions is not independent
of biased actions–χ2[4,N = 21407] = 5850.2,p-value < 2.2e − 16
showing significant results with Bonferroni corrected α , and large
effect size with Cramer’s V = 0.5.

Not only are biases frequently present during development
(45.72%), but also biased actions are significantly more likely to
be reversed later. Furthermore, developers spend a significant
amount of time reversing these biased actions.

5.2 Distribution of Biases
To understand how to reduce the negative effects of biases, our
analysis focuses on the reversal actions associated with biases (759
actions in Figure 1(a)). For example, P4 ended up reversing 91 ac-
tions (which he spent 699 seconds) because he was fixated (CB3) on
his hypothesis that the syntax of the query function was causing
an error. In addition to Fixation, our participants incurred 9 other
types of biases (Section 4).
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Figure 2 shows the distribution of these bias categories—CB3
had the highest instances of reversal actions (428 reversals), and
CB9 had the lowest instances (8 reversals). Note, a reversal actions
can be a result of multiple bias categories. For example, P4 ‘read’
the documentation of the query function because he was Fixated
(CB3) and that function was the first thing they remembered(CB10).
In this case, we counted the ‘read’ action once for both the CB3
and CB10 categories. Since our analysis focuses on the effects of
a specific bias category on a developer action, this coding scheme
does not impact our analysis.

Figure 2: Distribution of Biased Reversal Actions According to Bias
Category. Rectangle sizes are proportional to reversal action counts
for each bias category; category code counts are shown in each.

Next, we look at the instances of the reversal actions within each
bias category to understand when and why these are likely to occur.
We discuss these biases in descending order of frequency.

Fixation (CB3) bias was the most frequently occurring bias
category; 477 developer actions were associated with this bias, of
which 428 were reversed. A recurring scenario was when partici-
pants ‘fixated’ on a specific solution—rejecting warnings and errors
that contradicted their beliefs—as they continued to pursue their
solution. For example, P5 got connection errors when trying to
compile code. He became fixated on the connection issue; not only
resolving the issue but also improving the infrastructure to avoid
similar issues in the future. Because of this fixation, P5 lost sight
of his original task. Even after working on this improvement for
6 minutes and 5 seconds, his code still failed to compile which
then made him switch to his original task. The longer a participant
fixated on an (incorrect) solution, more changes required reverting.

Convenience (CB6) bias was the secondmost frequent bias; 245
developer actions were associated with this bias, of which 198 were
reversed. This bias occurs when individuals resort to the easiest, or
most convenient solution, even if the solution is not optimal. For
example, while using an array to simulate a graph, P1 implemented
a method to convert the first array element into the starting node.
However, P1 failed to address the case where the first element
was empty. Only after several failing tests did he realize that his
implementation was based on an over-simplified hypothesis, and
he had to re-implement the method. Such rework was a common
occurrence with convenience bias, as participants with this bias
performed limited explorations which resulted in incomplete or
incorrect solutions.

Subconscious Actions (CB7) All 76 actions associated with
this bias were reversed. This bias frequently occurred when partici-
pants blindly trusted their tools or IDE. For example, P10 executed
her test case but didn’t observe the status of the tests and started
adding code to the repository. She believed that the the tool would
notify the status of the test via an email when the test case exe-
cution terminated. However, when she didn’t receive any email
after several minutes, she went back to the test cases. She realized
“Testing finished, but it didn’t send an email so it’s stuck somewhere
on these results”. Eventually, she found out she needed to update
the data for the tests to run successfully.

Optimism (CB5) Optimistic actions were reversed for 72 out of
73 times. This was common when initial verification results looked
promising. Participants were most optimistic about their changes
once they received initial confirmation. Followingwhich, theymade
larger changes without thoroughly verifying their solution. We
observed this when P6 was undertaking a major refactoring within
a particular module and relocating files in the process. After P6
completed the refactoring and found no warnings from the IDE, he
convinced himself that the task was complete. Eventually, run-time
errors showed that associated paths still needed to be updated.

Preconception (CB1) bias was associated with 69 reversal ac-
tions out of a total 115 actions. For example, P4 tried to use a new
command to check for specific elements while debugging a newly
created data structure. When he received a syntax error instead, he
modified his command eight times based on documentation sugges-
tions and what he thought might work. Eventually, P4 concluded
that the new data structure did not allow membership checking.
We also observed participants reversing preconceived actions when
using tools (such as the debugger and developer tools) to verify
portions of code they suspected were functioning improperly. For
example, P8 used the developer tools in her browser to verify that
her changes were appropriately reflected on the web interface; ver-
ifying her preconceptions about the key elements to be changed
before committing to those changes.

Ownership (CB2) bias actions were reversed for 65 out of 77
total actions. Participants acting under this bias sometimes believed
that the objects they’ve created were superior to other options, pre-
venting them from considering other options that may have worked
better. They prioritized familiarity saying, “Lemme go ahead and
use what (already) did . . . ” [P8]. We observed this bias when P2 was
attempting to create his own namespace in Java before considering
other options. He eventually stopped and tried a different solution,
as the initial attempt was time consuming and didn’t work.

All 62 actions associated with Resort to Default (CB4) bias
were reversed. Participants expected less errors with existing code,
code they recently pulled from the repository. When errors were
present, participants took longer than average to locate and fix
them. For example, when P10 used an existing data file to test new
visualization code, the tests failed with a “response mismatch” error.
The code for extracting data from the file was copied and used with-
out modification, since the defaults were assumed to be correctly
configured. However, upon further inspection, P10 realized that
the extraction code required updates to correctly interface with the
new visualization code.

Blissful Ignorance (CB8) bias actions were reversed for 43
out of 44 instances. This is because developers operated under the
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assumption that everything is working, despite the information indi-
cating that the opposite is true. For example, we observed P9 looking
for something to verify if a list contains a vect. He repeatedly types
in his keyword, then tries a different keyword, then changes his
syntax, then hypothesized that something wasn’t working with his
logic, finally realizing that his prompt in the environment wasn’t
working. When he reloaded the environment, he needed to go back
to when he started his started his experimentation to see which of
his solutions worked.

Memory (CB10) bias actions needed to be reversed 33 times
out of 43 instances. Participants often would try a solution, even
though they only partially remembered the solution and its outcome
without reasoning about whether the solution fits the task at hand.
For example, P2 tries to implement a membership checking function
because it’s the first one he remembers. He ends up spending about
5 minutes searching for the function he thinks he remembers, even
though he could have found amore appropriate function by a simple
online search. Sometimes, participants spent time on artifacts they
perceived were relevant based on a biased memory. For example,
P10 spent 6 minutes trying to locate and remove an ‘outdated’ json
file she recalled. She searched for the file from the explorer, terminal
as well as remote repository. Eventually she said, “So that one[file]
wasn’t there to begin with.”

Finally, Superficial Selection (CB9) bias actions needed to be
reversed for all 8 observed instances . This bias caused participants
to quickly decide on a solution based on its aesthetic or appearance.
When P4 referred to the language documentation to find a function
to concatenate elements of two different types, he chose a function
that “sound(ed) right” to him, but was ultimately incorrect.

Bias categories affected developers uniquely, causing reversal ac-
tions. Fixation(CB3) was the most common and were associated
with themost number of reversals, followed by convenience(CB6)
and subconscious action(CB7) biases. Memory(CB10) and super-
ficial selection(CB9) biases had the least number of reversals.

5.3 Consequences of Biases
To identify the consequences of these biases on development, we
investigated the effects of bias categories on participants’ decision
making and problem solving.

Two authors categorized the effects of the bias categories into
four consequence groups by studying the instances of the biases
through negotiated agreement. During the first round of negoti-
ation, the authors only had three groups, and disagreed on the
classification of one category (CB8) (90% agreement). During the
second round, the authors resolved the disagreement with CB8,
and identified a fourth group (attention) which was not properly
addressed by the first three groups. Table 5 shows the consequences
of biases on development and the associated categories.

The authors identified the effect of each bias category on four
orthogonal problem solving activities in programming: gathering
information [44], making sense of the information [16, 39], and
maintaining information (context) that is relevant to particular
tasks and goals [6, 14, 15] and maintaining and focusing attention
in the necessary places [38]. Each consequence, and an example
from our observation, is described below.

Table 5: Consequences of Biases

Consequence Bias Categories (CB)

Inadequate Exploration 1, 2, 4, 5, 6, 10
Reduced Sense-making 5, 6, 7, 8, 9
Preserving Context 3, 5, 8
Misplaced Attention 3, 4, 8, 9

Inadequate Exploration– Exploring or foraging different pieces
of information [38, 44] and evaluation of alternate solutions [17, 21,
30] forms a key part of development. Cognitive biases sometimes
inhibited participants from investing in proper exploration.

Reduced explorations often led to participants creating sub-
optimal solutions, which they had to redo. For example, P4 needed
a subset of data from a hashmap which required him to query the
hashmap. As he was not familiar with the query interface and did
not how to construct the query, he decided that an easy-fix (CB6)
was to manually collect the data.
[14:26]“Easiest thing to do would be to collect all input statements
and instead of using the query, do this myself.”
P4 then began implementing this functionality under the precon-
ception (CB1) than manual data collection is easy. However, after
trying this for the next 18 minutes, he realized that the implemen-
tation was far more difficult than what he had expected, at which
point he decided to learn how to query a hashmap.

Reduced Sense-making– Sense-making is the process of cog-
nitively engaging with information to construct a relevant men-
tal model which can then be used to understand a given situ-
ation [8, 16, 39]. Actions that indicate synthesis of knowledge
through reasoning are considered examples of sense-making. We
identify reduced sense-making through participants’ verbalization
indicating previous actions (and assumptions) were incorrect.

For example, P10 was testing modifications to data pipelines
(used to aggregate and monitor data) and found that her tests
failed after she added new input data files to the pipeline, and
said “. . .we’re getting this fail response. Which shouldn’t be . . . ”.
She subconsciously (CB7) followed the error location suggested in
the message without reasoning about the error. She spent 5 minutes
trying to debug her data files but failed to locate the error. Eventu-
ally, she found that she was using older input files which caused
the error; her tests worked after she updated these files.
[13:25]“. . . So that one [file] wasn’t there to begin with . . . ”
Context Loss–When navigating and making sense of different

sets of information, developers must retain a mental model of the
problem space and relevant information to complete a task [6, 25].

A reduction in context can be seen when participants repeatedly
backtrack or verbalize confusion regarding the current task or goal
(i.e. losing track of their current actions). Biases can inhibit the
ability of developers to create and maintain context, either through
a lack of awareness of changes to relevant information or reduced
ability to recall elements from the context.

This is shown when P3 fixates(CB3) on trying to solve an error
and gets sidetracked, thus losing the larger context of their task. We
also observed that when participants were optimistic (CB8) about
an implementation, they would suspend the related context and
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move on with their task. These participants struggled to recall the
context at a later time when their implementation failed.

Misplaced Attention– Attention is a critical element of our
cognitive system, and affects what information developers perceive
as relevant, how developers interpret error messages, and what
solutions they decide to pursue. Biases can cause developers to
misplace their attention on peripheral or inappropriate information,
causing them to spend time working on issues that are irrelevant
to the current task.

When P4 tried to debug his query function which was returning
nil, he thought the problem could be an incorrect query syntax.
[26:28]“This is the API for Clojure and I’m looking for something
that tells me how to check if a list contains a vect.”
He became so focused on changing his syntax (CB3) that he

didn’t notice the syntax highlighting was no longer working and
his environment had failed (CB8). After trying five different tweaks
to the query function on the inactive environment, he noticed that
the syntax highlighting was not working. He killed and refreshed
his environment, and had to recall and try all the five tweaks again.

Biases affect multiple aspects of problem solving during devel-
opment. Specifically, biases affect how adequately developers
explore the solution space, how thoroughly they engage in sense-
making, how effectively they retain context, and how efficiently
they invest their attention.

5.4 Dealing with the Consequences of Biases
To further bolster our finding that biases occur frequently in prac-
tice, we interviewed 16 developers asking them: “how often do you
think developers act under [bias category]?” (see Section 3.3).

Figure 3 shows the perceived frequency of occurrences for each
bias; ranging from “Almost never” to “Always”. The frequencies are
indicated by hues of red. Dark red bars denote high frequencies (Of-
ten, Always), with their percentages reported far right. (E.g., 81% of
interviewees considered CB10 to be frequently occurring). Light red
bars denote low frequencies (Almost Never, Rarely), with percent-
ages reported far left (e.g., 6% found CB10 to be infrequent). Grey
bars in the center reflect the frequency of “sometimes” responses,
which is considered neutral within subsequent analysis.

Overall, interviewees felt that biases occur frequently in software
development (Figure 3), matching our observations. For example,
when talking about Convenience bias (CB6), IP12 said:
[32:12] “It happens all the time! . . . It’s the story behind why tech-
nical debt happens! Three months and then you go and ask why
on earth is this failing? And when you look back and somebody
overwrote something because it was easier. And it screwed up ev-
erything!”
Memory (CB10), Convenience (CB6), and Preconception (CB1)

bias were ranked highest in perceived frequency. These ratings are,
at least, partial confirmation of our empirical findings, as Conve-
nience(CB6), Fixation(CB3), and Preconception(CB1) were likewise
in the top 5 most observed biases (Figure 3 and Figure 2). How-
ever, Memory bias(CB10) and Subconscious Action(CB7), seem to
diverge in terms of the actual frequency of demonstration, and the
perceived frequency of.

Figure 3: Perceived Frequency of Biases from Interviews ranging
from ‘Almost Never’ to ‘Always’. Bias categories are ordered in de-
scending order frommost to least frequent (shown as percentages).

Developers perceive Memory bias (CB10) to occur more fre-
quently thanwhatwe observed, whereas, Subconscious Action(CB7)
was more frequent in our observation. These differences could be
attributed to the unconscious nature of these biases. For example,
it is difficult for developers to consciously distinguish what or how
they remembered a given piece of information, especially in hind-
sight. Similarly, developers might not be fully aware of how often
they subconsciously act based on environmental cues. Probing this
disparity between observation and perception could prove a very
interesting line of future work.

5.4.1 Practices that help: Although current development practices
and tools are not designed to avoid cognitive biases, developers
might still be using them to do so. Therefore, during our interviews,
we asked participants to identify practices and tools that could help
them (or their coworkers) avoid or recover from biases. There were
246 unique suggestions from these interviews.

Analysis: Two authors categorized the suggestions using Pattern
Coding [33]—the process of grouping categories into smaller sets
of themes. Three themes emerged—Development Practices, Who
performs these practices, and When. In the first cycle of qualitative
coding[41], 29 categories emerged (e.g. brainstorming, referencing).
In a second cycle, these practices were reorganized into 5 categories.

Table 6 displays these categories and themes, along with the
biases that these practices can help. The last column lists the tools
that participants found useful to help with these practices. The
‘Categories’ column indicates the category of the practice, and
the ‘Subcategories’ column describes helpful practices within the
category. The ‘Who’ column indicates whether the team (T) needs
engage in the practice or the individual (I) can do it themselves.
The ‘When’ column specifies whether the practice needs to be
done Before (B), During (D), or After (A) a task. Lastly, the ‘Biases’
column indicates the biases each practice can help with. We next
describe these development practices in detail:

Stepping Back: Taking a break from one’s own development
pattern can help developers become aware of beneficial practices
(like clean code), which can avoid biases like Preconception(CB1)
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Table 6: Helpful Practices

Categories Subcategories Time Who Biases Tools

Incentivized Training: discussion of clean code benefits, long term goals B/D T/I 2,6,7
Non-Code Days: documentation days, test fest, familiarize with concepts D T 1,6,10Stepping Back
Meaningful Configurations, updating configurations, meaningful defaults B T 4,10

NA

Confer With Developers: pair programming, collaborative decision brainstorming
(code/design/tool), verify global changes, designated tool guy B/D T 1,2,3,6,9,10Different

Perspectives Open Communication: encourage communication, communicate early with teams
like QA. Promote focus on functionality and need D T 2,5,6,7

Slack,
Hipchat

Systematic Exploration: prior research on tools, compare & contrast solutions,
problem decomposition B I 1,2,3,4,5,

6,7,8,9
Big Picture in Mind: re usability of code, backwards compatibility D I 1,2,6,10

Systematic
Approach

Consistent Early Feedback: reviews (design, expert, peer), sprint meetings D/A T 1,2,3,4,5,6

Dev Tools,
Sonarlint

Reference Doc.: req/API/design doc, code comments, online sources B T 1,4,5
Journal Options/Alternatives: playbook, team diary B T/I 1,2,10RTFM
Meaningful & Relevant Specifications: standard specs, severity/relevant levels for
warnings, protocol for resolution of warnings, descriptive errors B/D T 2,4,7,8

IDE
Suggestion

SE Concepts: agile, code review, shared artifacts, reduced ownership, design first,
UML diagrams, user story, TDD, BDD, constant debugging, data flows B/D/A T/I 1,3,4,5,6,

7,8,9,10
Standardization: corporate/coding/package standards, right arch. & microservices,
clean code, performance test, impact analysis A T 1,2,5,6,7,8,

9,10
Processes

Problem Solving Strategies: divergence & convergence thinking, defensive
programming, negative hypothesis testing, timebox, note todos in code B/D/A I 1,3,5,6,7,8,9

ZenHub,
Gerrit,
Debugger,
IDE, JIRA,
JaCoCo

and Memory(CB10). For example, IP13 described Documentation
days and Test Fests, as:
[20:01] “. . . documentation days are where we say, ‘Today, we’re
not going to be writing code. We’re going to focus on checking the
documentation, updating documentation . . . ’ You might run into
some of the new methods . . . and then you are more bound to use
them next time.”
Similarly, learning through focused and incentivized training

can help ingrain “good" practices that will help developers avoid
biases like Convenience(CB6). For example, IP14 mentioned how
“clean code" workshops were:
[20:06] “really instilled in all of us–oh, it really matters to build the
highest quality code!”
Different Perspectives: Appreciating a different perspective,

coupled with associated relevant feedback, can help avoid biases
such as Preconception(CB1), Fixation(CB3), and Superficial Selec-
tion(CB9). Being exposed to different methods can help break de-
velopers out of cognitive ‘boot loops’ by forcing them to reconsider,
evaluate, and justify any subsequent action. For example, pair pro-
gramming can help with Superficial Selection(CB9) as the navigator
can point out any errors in reasoning when programming.

Systematic Approach: To avoid falling victim to biases or other
errors, individuals should systematically approach the problem
space and explore available solutions and tools. Such systematic
review of different task parameters can help in avoiding biases such
as, Preconception (CB1), Memory (CB10), and Fixation (CB3) as
developers will be both better aware of potential pitfalls, and also
can consider alternate solutions ahead of time.

[14:49]“. . . [when choosing a tool] one of our criteria was [research-
ing] how well is it documented? And I think it [good documentation]
is very important.”
In addition to alternate solutions, systematic exploration helps

developers keep the ‘big picture’ in mind. In other words, it forces
developers to more explicitly appreciate and acknowledge the
larger goal, hopefully minimizing the likelihood that they will be
distracted when in situ. This can prevent biases such as Owner-
ship(CB2), by promoting the use of existing relevant code (that does
not necessarily just belong to a single developer), which helps keep
the larger code base backwards compatible.

RTFM: Consulting documentation before starting a task can
avoid biases such as, Preconception (CB1), Memory (CB10), and
Ownership (CB2), as developers can become aware of the multiple
ways to problem solve and the pitfalls of each solution. For example,
Team diaries and playbooks are journals where developers record
guidelines for libraries and packages that specify how to use any
code artifacts and avoid pitfalls.

Standardized, descriptive documentation of how to handle errors
(orwarnings) alongwith their severity levels can also help overcome
biases such as, Blissful ignorance (CB8) and Optimism (CB5) by
helping developers locate faults more quickly.

Processes: Good software engineering practices like designing
and testing early and frequently, agile software development, etc.
can help avoid biases in all categories to some extent. Developers
can avoid biases such as, Ownership (CB2), and Resort to Default
(CB4) through coding standards and the use of standard libraries.
This also helps developers to locate appropriate code to re-use.
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Finally, effective problem solving strategies can also help avoid
biases such as, Fixation(CB3), Convenience (CB6), and Subcon-
scious Actions (CB7). For example, convergent thinking exercises–
identifying a concrete solution to a problem–can help developers
reach a (specific) solution quickly whereas, divergent thinking exer-
cises–exploring multiple solutions to problems–can help developers
identify an optimal solution from a set of alternatives. These prevent
developers from fixating(CB3) on a single solution.

5.4.2 Tool Wishlist. Overall, participants felt that tool support to
help overcome biases was lacking, and had difficulty naming any
tools that they would use. Three participants (IP12, IP13, and IP15),
however, recommended the following tools that they wished existed
to help deal with each of the listed biases :

Fixation(CB3) can be reduced by IDEs that track developer
actions and detect situations where a developer is “fixated". It can
then prompt different actions. IP12 explained,
[12:44] “. . . The IDE–if you change [code] and you always get the
same error, it can say, hey, you have been do the same thing 5 times.
But you always get the same error, maybe try something different?”
Resort to Default(CB4) is a bias that developers will succumb

to since it’s a path of least resistance; as IP12 mentioned, “If there
are default options, they’ll just use it.” and the way to overcome this
problem would be via tool personalization and specification. He
felt that tools that generate defaults that better match the current
work context would be useful. For example, implementation of a
high-level “intention" wizard that allows developers to “feed their
intentions" into the wizard, which in turn then creates correct
defaults and parameters relevant to the task.

Optimism(CB5): Tools that continuously run tests (and build
scripts) in the background can counter this bias by identifying
faulty changes that the developer might not have verified. IP12
recommended
[12:44] “[the tool] could figure out, ‘hey! this is [code area] where I
could run the tests’ and it’d run the tests for you without you having
to doing anything.
However, he warned that such tools can become intrusive and

distracting to the developer if they continuously notify developers
of failing tests.

Convenience(CB6) bias can be prevented by a tool that can
identify sub-optimal code changes and recommend “clean" or “non-
smelly" code. Not having “quick fix" changes can also help maintain
backward compatibility and reduce technical debt. As IP1 explained,
[14:36] “some tools that could identify a quick fix . . .And then point
out some of the problems that this particular fix will cause.
Subconscious Actions(CB7)–based on misleading and recur-

rent environmental cues–can be prevented by annotating the sever-
ity of failures, exceptions, or results of flaky tests. IP12 mentioned
annotating flaky tests,
[42:45] “updating the cues to say, well, it’s not a red, it’s a blood
red! Because there is a test that we know shouldn’t fail is failing. A
test that has never failed in the past 20 builds, did now!”
Blissful Ignorance(CB8) can be avoided by tools that high-

light a problem that appears similar to what the developer has
experienced before and would otherwise ignore. Both IP15 and IP12

described a tool that allows developers to mark certain expected
failures, such that the tool can notify them of other related failures.

IP15 recommended a different tool, which takes test results from
the master branch and compares them with the current branch to
identify areas that the developer should further investigate.

Memory(CB10) bias can be avoided by a tool that automati-
cally identifies deprecated methods and recommends the relevant
updated API functions, instead of the function that the developer
remembered. IP13 mentioned:
[12:44] “API code is evolving very frequently...and you don’t know
[the updated] methods...so one way to tell you like, ‘hey, there’s
probably a better way of doing this.”’

6 IMPLICATIONS
Our results indicate that cognitive biases frequently disrupt devel-
opment, and compromise developers’ problem solving abilities both
in terms of task performance and time invested. Although develop-
ers currently deal with biases using a combination of standard and
impromptu practices, there is a lack of tools that prevent or help
recover from biases. Our findings have the following implications:

Implications for Researchers. Onset and Effects of a Bias: To
proactively detect and mitigate effects of biases, research needs to
identify when each of these biases manifests. This study reveals
the tip-of-the-iceberg of the different effects biases can have on
developers. Further studies are required to exhaustively understand
specifically how individual biases affect development and how these
different biases might interact.
Factors influencing biases: We noticed that biases were related to the
type of task developers performed. For example, developers were
more prone to fixation when debugging, which included small,
frequent tweaks and rapid evaluation. Whereas, preconception
biases were more prone to occur when developer implemented new
features. Our interviewees also suggested that the extent to which
a bias can affect a developer depends on experience (subconscious
action - IP8), time constraints (convenience - IP9) and, in some cases,
gender (optimism - IP13). Future studies are needed to identify how
these factors might attenuate or exacerbate such biases.

Moreover, cognitive biases are not confined to software devel-
opment tasks; In fact they are pervasive in disciplines involving
complex human behavior and can impact different activities ranging
from team decision-making to design acceptance. Other fields have
researched methods to counter biases that involve either explicitly
educating individuals to think in different ways [28], or create tools
that intervene in decision making to reduce the manifestation of
biases [1]. Exploring these methods across disciplines can uncover
unconventional ways to deal with biases in software development.

Implication for Developers. Developers should be made aware
that biases pose a significant threat to productive development, and
perhaps are more pervasive than they realize. We synthesized a list
of helpful practices (Table 6) that are expected to reduce the effect
of cognitive biases. Some of these biases require an organizational
level initiative. However, there are many practices that developers
can individually employ on their own (e.g. divergence thinking,
defensive programming etc.). Interviewees often discussed that
such practices have long term benefits.
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Implications for Tool Builders. Our interviews revealed that
developers perceived a lack of tool support for dealing with biases.
In Section 5.4, we identified various tool features that developers
envisioned might help deal with with biases. Further, as developers
currently rely on a combination of standard and improvised prac-
tices to deal with biases, these practices need better tool support for
effective implementation. IP4, IP11, IP12 all recommended using
very basic tools like personalized scripts, bullet journals, and even
paper-pencil to create playbooks. Thus, our results represent an
initial starting point for tool builders to actualize tools that help
prevent and deal with frequently demonstrated cognitive biases.

7 THREATS TO VALIDITY
Like any field study, certain threats arise that might challenge our
findings. We describe some of these threats and steps taken to
mitigate them.

Although our observational findings are derived from a small
number of participants from a single software development com-
pany, the startup nature of the company ensure variation among
the participants in terms of tasks and tools. Our primary units of
analysis were the 2084 participants’ actions (as opposed to the indi-
vidual participants). To bolster these observations we subsequently
used a more diverse interview sample, which included participants
from both large and small employers.

Observational studies are prone to confounds such as Hawthorne
effect (or response bias), which can influence participant responses
during our study [54]. We mitigate this threat by having only one
researcher directly observe a participant during our study, but sup-
ported behind the scenes by a second observer. Additionally, like
any other field study, we did not have complete control over the
observed setting. However, we feel that this provides a higher de-
gree of ecological validity, as we were able to observe participants
reactions and performance ‘in the wild’, thereby producing a richer
and ultimately more practical set of observation notes. While de-
sirable, generalizability was not the main focus of this study [27],
and we instead aim to present findings that provide transferable
knowledge and insights that were not previously known.

Finally, given the large amount of data observed, there is al-
ways a concern regarding internal validity. To mitigate this threat
we took explicit steps to maintain inter-rater reliability, and also
implemented a well defined coding scheme and process [49].

8 CONCLUSION
In this paper, through a field study of 10 developers, we investigated
both how often cognitive biases occur in the workplace, and how
these biases impact development. Our results indicate that cognitive
biases frequently disrupt development, and compromise developers’
problem solving abilities like exploration, sense-making and contex-
tual awareness. We conducted a complementary interview with 16
developers to support our observations, and in so doing compiled
an initial set of practices and tools that developers currently use
(or desire) to deal with cognitive biases.

Although the current work represents a strong initial effort to-
wards better understanding cognitive bias, our understanding of
biases and their effect in real-world development is still shallow.

The current findings provide a useful starting point for future inves-
tigations, and future efforts at developing a deeper understanding
of cognitive biases will help developers and researchers to imple-
ment more effective preventive practices, and guide tool builders
in creating curated support.
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