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Efficient Estimation of the ANOVA Mean Dimension, with an Application to
Neural Net Classification\ast 

Art B. Owen\dagger and Christopher Hoyt\dagger 

Abstract. The mean dimension of a black box function of d variables is a convenient way to summarize the
extent to which it is dominated by high or low order interactions. It is expressed in terms of 2d  - 1
variance components, but it can be written as the sum of d Sobol' indices that can be estimated by
leave one out methods. We compare the variance of these leave one out methods: a Gibbs sampler
called winding stairs, a radial sampler that changes each variable one at a time from a baseline, and
a naive sampler that never reuses function evaluations and so costs about double the other methods.
For an additive function the radial and winding stairs are most efficient. For a multiplicative function
the naive method can easily be most efficient if the factors have high kurtosis. As an illustration we
consider the mean dimension of a neural network classifier of digits from the MNIST data set. The
classifier is a function of 784 pixels. For that problem, winding stairs is the best algorithm. We find
that inputs to the final softmax layer have mean dimensions ranging from 1.35 to 2.0.

Key words. chaining, explainable AI, global sensitivity analysis, pick-freeze, Sobol' indices, winding stairs

AMS subject classifications. 62K99, 65D99, 68T07

DOI. 10.1137/20M1350236

1. Introduction. The mean dimension of a square integrable function quantifies the ex-
tent to which higher order interactions among its d input variables are important. At one
extreme, an additive function has mean dimension one which makes numerical tasks such as
optimization and integration much simpler. It can also make it easier to compare the impor-
tance of the inputs to a function, and it simplifies some visualizations. At the other extreme, a
function that equals a d-fold interaction has mean dimension d and can be much more difficult
to study.

The mean dimension of a function can be expressed as a certain sum of Sobol' indices
which we introduce below. There is extensive literature on efficiently estimating Sobol' indices
(Homma and Saltelli, 1996; Jansen, 1999; Saltelli, 2002; Monod, Naud, and Makowki, 2006;
Glen and Isaacs, 2012; Janon et al., 2014; Saltelli et al., 2010), and there are additional
references in Puy et al. (2020) which has a thorough empirical comparison of methods for the
total index, which is the one we use below. In the case of mean dimension, the necessary
indices can be estimated numerically by algorithms that change just one input variable at
a time. Two prominent strategies for this case are the winding stairs estimator of Jansen,
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Rossing, and Daamen (1994) which runs a Gibbs sampler over the input space and a radial
strategy of Campolongo, Saltelli, and Cariboni (2011).

When estimating the mean dimension, a special consideration arises. Since it is a sum of
d Sobol' indices, there are O(d2) covariances to consider which can greatly affect the efficiency
of the estimation strategy. Sometimes a naive approach that uses roughly twice as many
function evaluations can be more efficient than winding stairs because it eliminates all of
those covariances.

The outline of this paper is as follows. Section 2 introduces some notation and defines
the ANOVA decomposition, Sobol' indices, and the mean dimension. Section 3 presents three
strategies for sampling pairs of input points that differ in just one component. A naive method
takes 2Nd function evaluations to get N such pairs of points for each of d input variables.
It never reuses any function values. A radial strategy (Campolongo, Saltelli, and Cariboni,
2011) uses N(d + 1) function evaluations in which N baseline points each get paired with
d other points that change one of the inputs. The third strategy is winding stairs (Jansen,
Rossing, and Daamen, 1994) which uses Nd + 1 function evaluations. Section 4 compares
the variances of mean dimension estimates based on these strategies. Those variances involve
fourth moments of the original function. We consider additive and multiplicative functions.
For additive functions all three methods have the same variance making the naive method
inefficient by a factor of about 2 for large d. For some functions, methods that save function
evaluations by reusing some of them can introduce positive correlations yielding a less efficient
estimate. We find that the presence of factors with high kurtoses can decrease the value of
reusing evaluations. Section 5 presents an example where we measure the mean dimension of
a neural network classifier designed to predict a digit 0 through 9 based on 784 pixels. It was
interesting to see the mean dimensions fall in the range from 1.35 to 2.0 for the penultimate
layer of the network, suggesting that the information from those pixels is being used mostly
one or two or three at a time. For instance, there cannot be any meaningfully large interactions
of 100 or more inputs. Section 6 makes some concluding remarks. Notably, the circumstances
that make the radial method inferior to the naive method or winding stairs for computing
mean dimension serve to make it superior to them for some other uncertainty quantification
tasks. We also discuss randomized quasi-Monte Carlo sampling alternatives and make brief
comments about dependent inputs. Finally, there is an appendix in which we provide a more
detailed analysis of winding stairs.

2. Notation. We begin with the analysis of variance (ANOVA) decomposition for a func-
tion f : \scrX \rightarrow \BbbR , where \scrX =

\prod d
j=1\scrX j . We let \bfitx = (x1, . . . , xd), where xj \in \scrX j . The ANOVA

is defined in terms of a distribution on \scrX for which the xj are independent and for which
\BbbE (f(\bfitx )2) < \infty . The \scrX j are ordinarily subsets of \BbbR , but the ANOVA is well defined for more
general domains. We let P denote the distribution of \bfitx and let Pj denote the distribution of
xj . The ANOVA of [0, 1]d was proposed by Hoeffding (1948) for U -statistics, and by Sobol'
(1969) for numerical integration. It is well known in statistics following Efron and Stein (1981)
where the ANOVA underlies the Efron--Stein inequality for the jackknife.

We will use 1:d as a short form for \{ 1, 2, . . . , d\} . For sets u \subseteq 1:d, their cardinality is | u| 
and their complement 1:d \setminus u is denoted by  - u. The components xj for j \in u are collectively
denoted by \bfitx u. We will use hybrid points that merge components from two other points. TheD
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710 ART B. OWEN AND CHRISTOPHER HOYT

point \bfity = \bfitx u:\bfitz  - u has yj = xj for j \in u and yj = zj for j \not \in u. It is typographically convenient
to replace singletons \{ j\} by j, especially within subscripts.

The ANOVA decomposition writes f(\bfitx ) =
\sum 

u\subseteq 1:d fu(\bfitx ), where the ``effect"" fu depends on
\bfitx only through \bfitx u. The first term is f\varnothing (\bfitx ) = \BbbE (f(\bfitx )), and the others are defined recursively
via

fu(\bfitx ) = \BbbE 
\Bigl( 
f(\bfitx ) - 

\sum 
v\subsetneq u

fv(\bfitx )
\bigm| \bigm| \bfitx u

\Bigr) 
.

The variance component for u is

\sigma 2
u \equiv Var(fu(\bfitx )) =

\Biggl\{ 
\BbbE (fu(\bfitx )2), u \not = \varnothing ,

0, u = \varnothing .

The effects are orthogonal under P and \sigma 2 = Var(f(\bfitx )) =
\sum 

u \sigma 
2
u. We will assume that \sigma 2 > 0

in order to make some quantities well defined.
Sobol' indices quantify importance of subsets of input variables on f . They are a primary

method in global sensitivity analysis (Saltelli et al., 2008; Iooss and Lema\^{\i}tre, 2015; Borgonovo
and Plischke, 2016). Lower and upper Sobol' indices are

\tau 2u =
\sum 
v\subseteq u

\sigma 2
v and \=\tau 2u =

\sum 
v\cap u\not =\varnothing 

\sigma 2
v ,

respectively. The lower index is from Sobol' (1990, 1993), while the upper index was first
used by Homma and Saltelli (1996). Both indices are commonly normalized, with \tau 2u/\sigma 

2

known as the closed index and \=\tau 2u/\sigma 
2 called the total index. Normalized indices are between

0 and 1 giving them interpretations as a proportion of variance explained, similar to R2 from
regression models. The Sobol' indices \tau 2j and \=\tau 2j for singletons \{ j\} are of special interest.

Sobol' indices satisfy the identities

\tau 2u = \BbbE 
\bigl( 
f(\bfitx )f(\bfitx u:\bfitz  - u)

\bigr) 
 - \mu 2

= \BbbE 
\bigl( 
f(\bfitx )(f(\bfitx u:\bfitz  - u) - f(\bfitz ))

\bigr) 
and

\=\tau 2u =
1

2
\BbbE 
\bigl( 
(f(\bfitx ) - f(\bfitx  - u:\bfitz u))

2
\bigr) 
,

when \bfitz is an independent copy of \bfitx . Those identities make it possible to estimate \tau 2u and
\=\tau 2u by Monte Carlo or quasi-Monte Carlo sampling without explicitly computing estimates of
any of the effects fv. The first identity is due to Sobol' (1993). The second was proposed
independently by Saltelli (2002) and Mauntz (2002). The third identity underlies an estimator
of the total index from Jansen (1999). The numerator in the estimate of \=\tau 2j from Homma and

Saltelli (1996) is based on the identity of Sobol' along with \=\tau 2j = \sigma 2  - \tau 2 - j .
The mean dimension of f is

\nu (f) =
\sum 
u\subseteq 1:d

| u| \sigma 2
u

\sigma 2
.

It satisfies 1 \leqslant \nu (f) \leqslant d. A low mean dimension indicates that f is dominated by low order
ANOVA terms, a favorable property for some numerical problems.D
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EFFICIENTLY ESTIMATING MEAN DIMENSION 711

An easy identity from Liu and Owen (2006) shows that
\sum 

u\subseteq 1:d | u| \sigma 2
u =

\sum d
j=1 \=\tau 

2
j . Then

the mean dimension of f is

\nu (f) \equiv 1

\sigma 2

d\sum 
j=1

\=\tau 2j for \=\tau 2j =
1

2
\BbbE 
\bigl( 
f(\bfitx ) - f(\bfitx  - j :\bfitz j)

\bigr) 2
.

Although the mean dimension combines 2d  - 1 nonzero variances, it can be computed from d
Sobol' indices (and the total variance \sigma 2).

We can get a Monte Carlo estimate of the numerator of \nu (f) by summing estimates of \=\tau 2j
such as

1

2N

N\sum 
i=1

\bigl( 
f(\bfitx i) - f(\bfitx i, - j :\bfitz i,j)

\bigr) 2
(1)

for independent random points \bfitx i, \bfitz i \sim P . Equation (1) corresponds to the strategy that
Jansen (1999) uses to estimate the numerator of the normalized total sensitivity index for xj .
The Jansen estimator was one of the best performers in Puy et al. (2020).

There is more than one way to arrange the computation that sums (1) over j = 1, . . . , d.
When computing a list of Sobol' indices it is advantageous to reuse many of the function
values. See Saltelli (2002) for some strategies. When there are O(d) total indices to sum,
there are O(d2) covariances to consider, which is the issue we focus on here.

3. Estimation strategies. Equation (1) gives an estimate of \=\tau 2j evaluating f at pairs of
points that differ only in their jth coordinate. An estimate for the numerator of \nu (f) sums
these estimates. We have found, empirically and somewhat surprisingly, that different sample
methods for computing the numerator

\sum 
j \=\tau 

2
j can have markedly different variances, even when

they are all of Jansen (1999) type.
A naive implementation uses 2Nd function evaluations taking \bfitx i, \bfitz i independent for i =

1, . . . , N for each of j = 1, . . . , d. In that strategy, the point \bfitx i in (1) is actually different for
each j. Such a naive implementation is wasteful. We could instead use the same \bfitx i and \bfitz i for
all j = 1, . . . , d in the radial method of Campolongo, Saltelli, and Cariboni (2011). This takes
N(d + 1) evaluations of f . A third strategy is known as ``winding stairs"" (Jansen, Rossing,
and Daamen, 1994). The data come from a Gibbs sampler that in its most basic form changes
inputs to f one at a time changing indices in this order: j = 1, . . . , d, 1, . . . , d, \cdot \cdot \cdot , 1, . . . , d. It
uses only Nd + 1 evaluations of f . These three approaches are illustrated in Figure 1. We
will also consider a variant of winding stairs that randomly refreshes after every block of d+1
evaluations.

First, we compare the naive to the radial strategy. For \nu =
\sum 

j \=\tau 
2
j /\sigma 

2 we concentrate on
estimation strategies for the numerator

\delta = \sigma 2\nu =

d\sum 
j=1

\=\tau 2j .

This quantity is much more challenging to estimate than the denominator \sigma 2, especially for
large d, as it involves d2 covariances.D
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Figure 1. Examples of three input sets to compute \delta =
\sum d

j=1 \=\tau 
2
j when d = 2. The naive estimate uses dN

pairs of points of which there are N pairs for each of the d variables. Each edge connects a pair of points used
in the estimate. The radial estimate uses N baseline points and d comparison points for each of them. The
winding stairs estimates sequentially change one input at a time.

The naive sampler takes

\^\delta =
d\sum 

j=1

\widehat \=\tau 2j , where \widehat \=\tau 2j = 1

2N

N\sum 
i=1

\bigl( 
f(\bfitx 

(j)
i ) - f(\bfitx 

(j)
i, - j :\bfitz i,j)

\bigr) 2
(2)

with independent \bfitz i,\bfitx 
(j)
i \sim P for i = 1, . . . , N and j = 1, . . . , d. It takes N(d + 1) input

vectors and 2Nd evaluations of f .
The radial sampler takes

\~\delta =
d\sum 

j=1

\widetilde \=\tau 2j , where \widetilde \=\tau 2j = 1

2N

N\sum 
i=1

\bigl( 
f(\bfitx i) - f(\bfitx i, - j :\bfitz i,j)

\bigr) 2
(3)

for independent \bfitx i, \bfitz i \sim P , i = 1, . . . , N .
For f \in L2(P ) both \~\delta and \^\delta converge to \delta = \nu \sigma 2 as N \rightarrow \infty by the law of large numbers.

To compare accuracy of these estimates we assume also that f \in L4(P ). Then \BbbE (f(\bfitx )4) < \infty 
and both estimates have variances that are O(1/N).

A first comparison is that

Var(\~\delta ) =
d\sum 

j=1

Var(\widetilde \=\tau 2j ) + 2
\sum 

1\leqslant j<k\leqslant d

Cov(\widetilde \=\tau 2j ,\widetilde \=\tau 2k), while

Var(\^\delta ) =
d\sum 

j=1

Var(\widehat \=\tau 2j ) + 2
\sum 

1\leqslant j<k\leqslant d

Cov(\widehat \=\tau 2j ,\widehat \=\tau 2k)
=

d\sum 
j=1

Var(\widehat \=\tau 2j )
(4)
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EFFICIENTLY ESTIMATING MEAN DIMENSION 713

by independence of (\bfitx 
(j)
i , \bfitz i,j) from (\bfitx 

(k)
i , \bfitz i,k) for j \not = k. What we see from (4) is that while

the naive estimate uses about twice as many function evaluations, the radial estimate sums
d times as many terms. The off diagonal covariances do not have to be very large for us to
have Var(\~\delta ) > 2Var(\^\delta ), in which case \^\delta becomes the more efficient estimate despite using
more function evaluations. Intuitively, each time f(\bfitx i) takes an unusually large or small

value it could make a large contribution to all d of \widetilde \=\tau 2j , which can result in O(d2) positive
covariances. We study this effect more precisely below giving additional assumptions under
which Cov(\widetilde \=\tau 2j ,\widetilde \=\tau 2k) > 0. We also have a numerical counterexample at the end of this section,
and so this positive covariance does not hold for all f \in L4(P ).

The winding stairs algorithm starts at \bfitx 0 \sim P and then makes a sequence of single variable
changes to generate \bfitx i for i > 0. We let \ell (i) \in 1:d be the index of the component that is
changed at step i. The new values are independent samples zi \sim P\ell (i). That is, for i > 0

\bfitx i,j =

\Biggl\{ 
zi, j = \ell (i),

\bfitx i - 1,j , j \not = \ell (i).

We have a special interest in the case where P = \scrN (0, I) for which each Pj is \scrN (0, 1).
The indices \ell (i) can be either deterministic or random. We let \scrL be the entire collection

of \ell (i). We assume that the entire collection of zi are independent of \scrL . The most simple
deterministic update has \ell (i) = 1 + (i  - 1 mod d) and cycles through all indices j \in 1:d in

order. The simplest random update has \ell (i)
\mathrm{i}\mathrm{i}\mathrm{d}\sim U(1:d). In usual Gibbs sampling it would

be better to take \ell (i)
\mathrm{i}\mathrm{i}\mathrm{d}\sim U(1:d \setminus \{ \ell (i  - 1)\} ) for i \geqslant 2. Here, because we are accumulating

squared differences, it is not very harmful to have \ell (i) = \ell (i  - 1). The vector \bfitx i contains
d independently sampled Gaussian random variables. Which ones those are, depends on \scrL .
Because \bfitx \sim \scrN (0, I) conditionally on \scrL , it also has that distribution unconditionally.

Letting ej be the jth unit vector in \BbbR d we can write

\bfitx i = \bfitx i - 1 + (zi  - xi - 1,\ell (i))e\ell (i).

If \ell (i) \sim U(1:d), then the distribution of \bfitx i given \bfitx i - 1 is a mixture of d different Gaussian
distributions, one for each value of \ell (i). As a result \bfity i = (\bfitx T

i ,\bfitx 
T
i - 1)

T does not then have a
multivariate Gaussian distribution and is harder to study. For this reason, we focus on the
deterministic update.

In the deterministic update we find that any finite set of \bfitx i or \bfity i has a multivariate
Gaussian distribution. We also know that \bfitx i and \bfitx i+k are independent for k \geqslant d because
after k steps all components of \bfitx i have been replaced by new zi values. It remains to consider
the correlations among a block of d+ 1 consecutive vectors. Those depend on the pattern ofD
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714 ART B. OWEN AND CHRISTOPHER HOYT

shared components within different observations as illustrated in the following diagram:

\bfitx d \bfitx d+1 \bfitx d+2 \cdot \cdot \cdot \bfitx 2d - 1 \bfitx 2d

\| \| \| \| \| \left(         

z1
z2
z3
...

zd - 1

zd

\right)         

\left(         

zd+1

z2
z3
...

zd - 1

zd

\right)         

\left(         

zd+1

zd+2

z3
...

zd - 1

zd

\right)         
\cdot \cdot \cdot 

\left(         

zd+1

zd+2

zd+3
...

z2d - 1

zd

\right)         

\left(       
zd+1

zd+2
...

z2d - 1

z2d

\right)       
.(5)

For i \geqslant d and j = 1, . . . , d we can write

\bfitx i,j = zr(i,j), where r(i, j) = d
\Bigl\lfloor i - j

d

\Bigr\rfloor 
+ j.(6)

It is convenient to use (6) for all i \geqslant 0 which is equivalent to initializing the sampler at
\bfitx 0 = (z - (d - 1), z - (d - 2), . . . , z - 1, z0)

T. Equation (6) holds for any independent zi \sim P\ell (i) and
does not depend on our choice of Pj = \scrN (0, 1).

The winding stairs estimate of \delta is

\v \delta =
d\sum 

j=1

\v \=\tau 2j for \v \=\tau 2j =
1

2N

N\sum 
i=1

\Delta 2
d(i - 1)+j ,(7)

where \Delta r = f(\bfitx r)  - f(\bfitx r - 1). We will see that the covariances of \v \=\tau 2j and \v \=\tau 2k depend on the
pattern of common components among the \bfitx i. In our special case functions certain kurtoses
have an impact on the variance of winding stairs estimates.

A useful variant of winding stairs simply makes N independent replicates of the d + 1
vectors shown in (5), which raises the number of function evaluations from Nd+1 to N(d+1).
It uses N independent Markov chains of length d+ 1. For large d the increased computation
is negligible. In original winding stairs, each squared difference \Delta 2

i = (f(\bfitx i) - f(\bfitx i - 1))
2 can

be correlated with up to 2(d  - 1) other squared differences. In truncated winding stairs, it
can only be correlated with d - 1 other squared differences. We denote the resulting estimate
by \"\delta which is a sum of \"\=\tau 

2
j .

For d = 2 this truncated winding stairs method is the same as radial sampling. For d \geqslant 3
they are different. For instance the value of f at the radial point is compared to f at d other
points in the radial method while no function value is compared to more than two others in
the variant of winding stairs. See Figure 2 for an illustration when d = 3.

In section 4.2 we present some multiplicative functions where the naive estimator of \delta 
has much less than half of the variance of the radial estimator. To complete this section we
exhibit a numerical example where the naive estimator has increased variance which must
mean that the correlations induced by the radial and winding estimators are at least slightly
negative. The integrand is simply f(\bfitx ) = \| \bfitx \| 2 for \bfitx \sim \scrN (0, I) in d dimensions. Figure 3
shows results. We used N = 106 evaluations to show that (truncated) winding stairs and
radial sampling both have smaller variance than the naive algorithm for estimating \delta . WeD
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Figure 2. The left figure shows example input points used by the radial method for d = 3, with thick edges
connecting input points used to form differences in f . The right figure shows the same for the truncated variant
of winding stairs.

also see extremely small mean dimensions for f(\bfitx ) that decrease as d increases. It relates to
some work in progress studying mean dimension of radial basis functions as a counterpart to
Hoyt and Owen (2020) on mean dimension of ridge functions. The visible noise in that figure
stems from the mean dimensions all being so very close to 1 that the vertical range is quite
small. The estimate for d = 1 is roughly 0.9983 where the true value must be 1.

4. Additive and multiplicative functions. The variances of quadratic functions of the
f(\bfitx i) values such as \^\delta , \~\delta , and \v \delta involve fourth moments of the original function. Whereas
2d variance components are sufficient to define Sobol' indices and numerous generalizations,
fourth moments do not simplify nearly as much from orthogonality and involve considerably
more quantities. While distinct pairs of ANOVA effects are orthogonal, we find for nonempty
u, v, w \subset 1:d that

\BbbE 
\bigl( 
fu(\bfitx )fv(\bfitx )fw(\bfitx )

\bigr) 
does not in general vanish when u \subset v \cup w, v \subset u\cup w, and w \subset u\cup v all hold. This ``chaining
phenomenon"" is worse for products of four effects: the number of nonvanishing combinations
rises even more quickly with d. The chaining problem also comes up if we expand f in an
orthonormal basis for L2(P ) and then look at fourth moments.

In this section we investigate some special functional forms. The first is an additive model

fA(\bfitx ) = \mu +
d\sum 

j=1

gj(xj),(8)

where \BbbE (gj(xj)) = 0. An additive model with finite variance has mean dimension \nu (fA) = 1.
It represents one extreme in terms of mean dimension. The second function we consider is aD
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Figure 3. The left panel shows low and mostly decreasing estimates of \nu (f) versus dimension for f(\bfitx ) =
\| \bfitx \| 2 when \bfitx \sim \scrN (0, I). The right panel shows variances of estimates of \delta for this function.

product model

fP (\bfitx ) =

d\prod 
j=1

gj(xj),(9)

where \BbbE (gj(xj)) = \mu j and Var(gj(xj)) = \sigma 2
j . Product functions are frequently used as

test functions. For instance, Sobol's g-function (Saltelli and Sobol', 1995) is the product\prod d
j=1(| 4xj  - 2| + aj)/(1 + aj) in which later authors make various choices for the constants

aj .
If all \mu j = 0, then \nu (fP ) = d. In general, the mean dimension of a product function is

\nu (fP ) =

\sum d
j=1 \sigma 

2
j /(\mu 

2
j + \sigma 2

j )

1 - 
\prod d

j=1 \mu 
2
j/(\mu 

2
j + \sigma 2

j )
.

See Owen (2003).
Additive and multiplicative functions comprise two extremes in mean dimension. Additive

functions always have mean dimension 1. While multiplicative functions can have any mean
dimension in the interval (1, d] they are easily engineered to provide functions with mean
dimension d by setting all \mu j = 0.

4.1. Additive functions. We will use Lemma 1 below to compare the variances of our
mean dimension estimators for additive functions. For these, we need the kurtosis of some
random variables. Recall that the kurtosis of a random variable Y with variance \sigma 2 > 0 is
\kappa = \BbbE ((Y  - \mu )4)/\sigma 4  - 3 which can be infinite. As points of reference, if Y is Gaussian, thenD
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\kappa = 0 and if Y has a uniform distribution, then \kappa =  - 6/5 and the smallest possible kurtosis
is  - 2.

Lemma 1. Let Y1, Y2, Y3, Y4 be independent identically distributed random variables with
variance \sigma 2 and kurtosis \kappa . Then

\BbbE 
\bigl( 
(Y1  - Y2)

4) = (12 + 2\kappa )\sigma 4,

Var((Y1  - Y2)
2) = (8 + 2\kappa )\sigma 4,

\BbbE 
\bigl( 
(Y1  - Y2)

2(Y3  - Y4)
2
\bigr) 
= 4\sigma 4,

\BbbE 
\bigl( 
(Y1  - Y2)

2(Y1  - Y3)
2
\bigr) 
= (6 + \kappa )\sigma 4.

Proof. These follow directly from independence of the Yj and the definitions of variance
and kurtosis.

Theorem 1. For the additive function fA of (8),

Var(\~\delta ) = Var(\^\delta ) = Var(\"\delta ) =
1

N

d\sum 
j=1

\Bigl( 
2 +

\kappa j
2

\Bigr) 
\sigma 4
j(10)

and

Var(\v \delta ) = Var(\"\delta ) +
N  - 1

2N2

d\sum 
j=1

(\kappa j + 2)\sigma 4
j .(11)

Proof. The winding stairs results for \v \delta and \"\delta quoted above are proved in Theorem 3 of
the appendix. For the naive estimate, \widehat \=\tau 2j is independent of \widehat \=\tau 2k when j \not = k as remarked upon
at (4). For an additive function

fA(\bfitx i) - fA(\bfitx i, - j :\bfitz i,j) = gj(xij) - gj(zij)

is independent of gk(xik) - gk(zik) for j \not = k and so the radial estimate has the same indepen-
dence property as the naive estimate. Therefore,

Var(\widehat \=\tau 2j ) = Var(\widetilde \=\tau 2j ) = 1

4N
Var
\bigl( 
(gj(x1j) - gj(z1j))

2
\bigr) 
,

and using Lemma 1, Var((gj(x1j) - gj(z1j))
2) = (8 + 2\kappa j)\sigma 

4
j .

If f(\bfitx ) is additive, then Theorem 1 shows that the radial method is better than the naive
one. They have the same variance, but the naive method uses roughly twice as many function
evaluations. If the function is nearly additive, then it is reasonable to expect the variances
to be nearly equal and the radial method to be superior. Because \kappa j \geqslant  - 2 always holds, the
theorem shows an advantage to truncated winding stairs over plain winding stairs.D
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4.2. Multiplicative functions. We turn next to functions of product form. For the factors
gj(xj) defining f in (9), we let \mu 2j = \BbbE (gj(xj)2), \mu 3j = \BbbE (gj(xj)3), and \mu 4j = \BbbE (gj(xj)4). To
simplify some expressions for winding stairs we adopt the conventions that for 1 \leqslant j < k \leqslant d
and quantities q\ell ,

\prod 
\ell \in (j,k) q\ell means

\prod k - 1
\ell =j+1 q\ell and

\prod 
\ell \not \in [j,k] q\ell means

\prod j - 1
\ell =1 q\ell \times 

\prod d
\ell =k+1 q\ell , with

products over empty index sets equal to one.

Theorem 2. For the product function fP of (9),

Var(\^\delta ) =
1

N

d\sum 
j=1

\sigma 4
j

\Biggl( \Bigl( 
3 +

\kappa j
2

\Bigr) \prod 
\ell \not =j

\mu 4\ell  - 
\prod 
\ell \not =j

\mu 2
2\ell 

\Biggr) 
and(12)

Var(\~\delta ) = Var(\^\delta ) +
2

N

\sum 
j<k

\Bigl( \eta j\eta k
4

 - \sigma 2
j\sigma 

2
k\mu 2j\mu 2k

\Bigr) \prod 
\ell \not \in \{ j,k\} 

\mu 4\ell ,(13)

where \eta j = \BbbE (gj(xj)2(gj(xj) - gj(zj))
2) = \mu 4j  - 2\mu j\mu 3j +\mu 2

2j for independent xj , zj \sim Pj. The
winding stairs estimates satisfy

Var(\"\delta ) = Var(\^\delta ) +
2

N

\sum 
j<k

\biggl( 
\eta j\eta k
4

\prod 
\ell \in (j,k)

\mu 2
2\ell 

\prod 
\ell \not \in [j,k]

\mu 4\ell  - \sigma 2
j\sigma 

2
k\mu 2j\mu 2k

\prod 
\ell \not \in j:k

\mu 2
2\ell 

\biggr) 
(14)

and

Var(\v \delta ) = Var(\"\delta ) +
2

N

\sum 
j<k

\biggl( 
\eta j\eta k
4

\prod 
\ell \not \in j:k

\mu 4\ell  - \sigma 2
j\sigma 

2
k

\prod 
\ell \not \in j:k

\mu 2
2\ell 

\biggr) \prod 
\ell \in (j,k)

\mu 2
2\ell .(15)

Proof. The winding stairs results are from Theorem 4 in the appendix. Next, we turn to
the naive estimator. For \bfitx , \bfitz \sim P independently, define \Delta j = \Delta j(\bfitx , \bfitz ) \equiv fP (\bfitx ) - fP (\bfitx  - j :\bfitz j).
Now

\Delta j = (gj(xj) - gj(zj))\times 
\prod 
\ell \not =j

g\ell (x\ell ),

and so \BbbE (\Delta 2
j ) = 2\sigma 2

j \times 
\prod 

\ell \not =j \mu 2\ell and \BbbE (\Delta 4
j ) = (12 + 2\kappa j)\sigma 

4
j \times 

\prod 
\ell \not =j \mu 4j , from Lemma 1.

Therefore,

Var(\Delta 2
j ) = (12 + 2\kappa j)\sigma 

4
j \times 

\prod 
\ell \not =j

\mu 4j  - 4\sigma 4
j \times 

\prod 
\ell \not =j

\mu 2
2\ell ,

establishing (12).
In the radial estimate, \Delta j is as above and \Delta k = (gk(xk)  - gk(zk)) \times 

\prod 
\ell \not =k g\ell (x\ell ). In this

case, however, the same point \bfitx is used in both \Delta j and \Delta k so \BbbE (\Delta 2
j\Delta 

2
k) equals

\BbbE 

\Biggl( 
gj(xj)

2gk(xk)
2(gj(xj) - gj(zj))

2(gk(xk) - gk(zk))
2
\prod 

\ell \not \in \{ j,k\} 

g\ell (x\ell )
4

\Biggr) 

= \eta j\eta k
\prod 

\ell \not \in \{ j,k\} 

\mu 4\ell .

Then Cov(\Delta 2
j ,\Delta 

2
k) =

\bigl( 
\eta j\eta k  - 4\sigma 2

j\sigma 
2
k\mu 2j\mu 2k

\bigr) \prod 
\ell \not \in \{ j,k\} \mu 4\ell , establishing (13).D
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We comment below on interpretations of the winding stairs quantities. First, we compare
naive to radial sampling.

As an illustration, suppose that gj(xj) \sim \scrN (0, 1) for j = 1, . . . , d. Then

Var(\^\delta ) =
1

N

d\sum 
j=1

(3d  - 1) =
d(3d  - 1)

N
,

and since this example has \eta j = 4,

Var(\~\delta ) =
d(3d  - 1)

N
+

2

N

\sum 
j<k

\Bigl( 16
4

 - 1
\Bigr) 
3d - 2 =

d(3d  - 1)

N
+

2d(d - 1)3d - 1

N
.

For large d the radial method has variance about 2d/3 times as large as the naive method.
Accounting for the reduced sample size of the radial method it has efficiency approximately
3/d compared to the naive method for this function.

A product of mean zero functions has mean dimension d making it an exceptionally hard
case. More generally, if \eta j/2 - \sigma 2

j\mu 2j \geqslant \epsilon > 0 for j \in 1:d, then Var(\^\delta ) = O(d/N) while Var(\~\delta )

is larger than a multiple of d2/N .

Corollary 1. For the product function fP of (9), suppose that \kappa j \geqslant  - 5/16 for j = 1, . . . , d.

Then Cov(\widetilde \=\tau 2j ,\widetilde \=\tau 2k) \geqslant 0 for 1 \leqslant j < k \leqslant d, and so Var(\~\delta ) \geqslant Var(\^\delta ).

Proof. It suffices to show that \eta j > 2\sigma 2
j\mu 2j for j = 1, . . . , d. Let Y = gj(xj) for xj \sim Pj

have mean \mu , uncentered moments \mu 2y, \mu 3y, and \mu 4y of orders 2, 3, and 4, respectively, variance
\sigma 2, skewness \gamma , and kurtosis \kappa . Now let \eta = \mu 4y  - 2\mu \mu 3y + \mu 2

2y. This simplifies to

\eta = (\kappa + 2)\sigma 4 + 2\mu \sigma 3\gamma + 2\mu 2\sigma 2 + \sigma 4

and so

\eta  - 2\sigma 2\mu 2y = (\kappa + 2)\sigma 4 + 2\mu \sigma 3\gamma + \mu 2\sigma 2.

If \sigma = 0, then \eta  - 2\sigma 2\mu 2y = 0 and so we suppose that \sigma > 0. Replacing Y by Y/\sigma does
not change the sign of \eta  - 2\sigma 2\mu 2y. It becomes \kappa + 2 + 2\mu \ast \gamma + \mu 4

\ast for \mu \ast = \mu /\sigma . If \gamma and \mu \ast 
have equal signs, then \kappa +2+2\mu \ast \gamma +\mu 4

\ast \geqslant 0, so we consider the case where they have opposite
signs. Without loss of generality we take \gamma < 0 < \mu \ast . An inequality of Rohatgi and Sz\'ekely
(1989) shows that | \gamma | \leqslant 

\surd 
\kappa + 2, and so

\kappa + 2 + 2\mu \ast \gamma + \mu 4
\ast \geqslant \theta 2  - 2\mu \ast \theta + \mu 4

\ast (16)

for \theta =
\surd 
\kappa + 2. Equation (16) is minimized over \mu \ast \geqslant 0 at \mu \ast = (\theta /2)1/3 and so \kappa + 2 +

2\mu \ast \gamma + \mu 4
\ast \geqslant \theta 2 +

\bigl( 
2 - 4/3  - 22/3

\bigr) 
\theta 4/3. One last variable change to \theta = (2\lambda )3 gives

\kappa + 2 + 2\mu \ast \gamma + \mu 4
\ast \geqslant \lambda 4(4\lambda 2  - 3).

This is nonnegative for \lambda \geqslant (3/4)1/2, equivalently \theta \geqslant 2(3/4)3/2, and finally for \kappa \geqslant 
 - 5/16.D
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720 ART B. OWEN AND CHRISTOPHER HOYT

From the above discussion we can see that large kurtoses, and hence large values of
\mu 4j = \BbbE (gj(xj)4), create difficulties. In this light we can compare winding stairs to the radial
sampler. The covariances in the radial sampler involve a product of d  - 2 of the \mu 4j . The
winding stairs estimates involve products of fewer of those quantities. For truncated winding
stairs the j, k-covariance includes a product of only d  - k + j  - 1 of them. The values \mu 4\ell 

for \ell nearest to 1 and d appear the most often and so the ordering of the variables makes
a difference. For regular winding stairs some additional fourth moments appear in a second
term.

5. Example: MNIST classification. In this section, we investigate the mean dimension of
a neural network classifier that predicts a digit in \{ 0, 1, . . . , 9\} based on an image of 784 pixels.
We compare algorithms for finding mean dimension, investigate some mean dimensions, and
then plot some images of Sobol' indices.

The MNIST data set from http://yann.lecun.com/exdb/mnist/ is a very standard bench-
mark problem for neural networks. It consists of 70,000 images of handwritten digits that
were size-normalized and centered within 28 \times 28 pixel gray scale images. We normalize the
image values to the unit interval, [0, 1]. The prediction problem is to identify which of the
ten digits ``0,"" ``1,"" . . . , ``9"" is in one of the images based on 282 = 784 pixel values. We are
interested in the mean dimension of a fitted prediction model.

The model we used is a convolutional neural network fit via tensorflow (Abadi et al., 2016).
The architecture applied the following steps to the input pixels in order:
(1) a convolutional layer (with 28 kernels, each of size 3\times 3),
(2) a max pooling layer (over 2\times 2 blocks),
(3) a flattening layer,
(4) a fully connected layer with 128 output neurons (ReLU activation),
(5) a dropout layer (node values were set to 0 with probability 0.2), and
(6) a final fully connected layer with 10 output neurons (softmax activation).

This model is from Yalcin (2018) who also defines those terms. The network was trained using
10 epochs of ADAM optimization, also described in Yalcin (2018), on 60,000 training images.
For our purposes, it is enough to know that it is a complicated black box function of 784
inputs. The accuracy on 10,000 held out images was 98.5\%. This is not necessarily the best
accuracy attained for this problem, but we consider it good enough to make the prediction
function worth investigating.

There are 2784  - 1 > 10236 nontrivial sets of pixels, each making their own contribution
to the prediction functions, but the mean dimension can be estimated by summing only 784
Sobol' indices.

We view the neural network's prediction as a function on 784 input variables \bfitx . For data
(\bfitx , Y ) where Y \in \{ 0, 1, . . . , 9\} is the true digit of the image, the estimated probability that
Y = y is given by

fy(\bfitx ) =
exp(gy(\bfitx ))\sum 9
\ell =0 exp(g\ell (\bfitx ))

for functions gy, 0 \leqslant y \leqslant 9. This last step, called the softmax layer, exponentiates and
normalizes functions gy that implement the prior layers. We study the mean dimension of
g0, . . . , g9 as well as the mean dimension of f0, . . . , f9. Studying the complexity of predictionsD
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Figure 4. From left to right: draws from \bfU \{ 0, 1\} 28\times 28, \bfU [0, 1]28\times 28, margins of all images, margins of all
7s, an example 7.

via the inputs to softmax has been done earlier by Yosinski et al. (2015).
To compute mean dimension we need to have a model for \bfitx with 784 independent com-

ponents. Real images are only on or near a very small manifold within \BbbR 784. We considered
several distributions Pj for the value of pixel j: U\{ 0, 1\} (salt and pepper), U[0, 1] (random
gray), independent resampling from per pixel histograms of all images, and independent re-
sampling per pixel just from images with a given value of y \in \{ 0, 1, . . . , 9\} . The histogram of
values for pixel j from those images is denoted by hy(j) with hy representing all 784 of them.
Figure 4 shows some sample draws along with one real image. We think that resampling
pixels from images given y is the most relevant of these methods, though ways to get around
the independence assumption would be valuable. We nonetheless include the other samplers
in our computations.

Our main interest is in comparing the variance of estimates of \delta . We compared the naive
method \^\delta , the radial method \~\delta , and truncated winding stairs \"\delta . For \"\delta our winding stairs
algorithm changed pixels in raster order, left to right within rows, taking rows of the image
from top to bottom. We omit \v \delta because we think there is no benefit from its more complicated
model and additional correlations. Our variance comparisons are based on N = 100,000
samples.

Figure 5 shows the results for all 10 output values y, and all 11 different input histogram
distributions. Ten of those histograms are from resampling pixel values within categories,
and the eleventh is a pooled histogram. There are separate plots for functions fy that include
softmax and gy that exclude it. The radial method always had greater variance than the naive
method. For functions gy it never had as much as twice the variance of the naive method,
and so the radial method proves better for gy. For fy there were some exceptions where the
naive method is more efficient. In all of our comparisons the winding stairs method had lower
variance than the radial method, and so for these functions, (truncated) winding stairs is
clearly the best choice.

Figure 5 is a summary of 660 different variance estimates. We inspected the variances
and found two more things worth mentioning but not presenting. The variances were all far
smaller using softmax than not, which is not surprising since softmax compresses the range of
fy to be within [0, 1] which will greatly affect the differences that go into estimates of \delta . The
variances did not greatly depend on the input distribution. While there were some statistically
significant differences, which is almost inevitable for such largeN , the main practical differenceD
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Figure 5. The upper left histogram shows Var(\~\delta )/Var(\^\delta ) for functions gy that exclude softmax. The upper
right histogram shows Var(\~\delta )/Var(\"\delta ). The bottom two show the same ratios for functions fy that include
softmax. The histograms include all 10 values of output y, and all 10 y-specific input histograms and the pooled
input histogram.

was that variances tended to be much smaller when sampling from h1. We believe that this
is because images for y = 1 have much less total illumination than the others.

While our main purpose is to compare estimation strategies for mean dimension, the mean
dimensions for this problem are themselves of interest. Table 1 shows mean dimensions for
functions fy that include softmax as estimated via winding stairs. For this we used N = 106

when resampling from images h0, . . . , h9 and N = 2 \times 106 otherwise. The first thing to note
is an impossible estimate of \nu (f1) for binary and uniform sampling. The true \nu (f1) cannot be
larger than 784. The function f1 has tiny variance under those distributions, and we recall
that \nu = \delta /\sigma 2. Next, we see that moving from binary to uniform to the combined histogramD
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Table 1
Estimated mean dimension of functions fy using softmax.

Sampler 0 1 2 3 4 5 6 7 8 9

Binary 11.07 936.04 10.43 9.92 18.69 10.22 13.27 13.37 8.67 16.54
Uniform 6.92 4,108.99 7.28 6.60 9.90 7.03 6.92 8.03 5.61 9.48

Combined 8.77 4.68 4.06 3.95 4.56 5.11 7.62 4.62 3.43 7.39

0 3.52 6.81 3.48 7.20 6.56 5.78 7.54 4.67 4.04 9.08
1 36.12 2.88 6.00 3.43 7.75 3.76 8.74 7.60 2.83 5.58
2 10.03 3.86 3.68 4.70 8.23 12.27 12.57 7.20 4.31 17.23
3 23.20 4.69 5.95 4.10 6.96 6.72 13.63 7.10 4.42 9.00
4 7.42 8.39 7.59 9.96 3.81 7.63 8.57 5.35 3.86 6.82
5 8.12 4.77 5.72 4.82 5.60 3.48 7.61 7.28 3.54 7.87
6 9.22 5.65 4.36 6.52 4.31 6.67 3.57 6.43 4.28 11.99
7 8.57 5.85 4.42 4.09 4.66 5.09 3.59 3.59 4.29 5.58
8 19.58 6.06 4.54 4.77 8.21 6.28 13.15 6.72 4.20 10.11
9 7.47 7.00 5.25 4.96 3.15 4.52 7.34 3.74 2.92 3.48

generally lowers the mean dimension. Third, for the y-specific histograms hy we typically see
smaller mean dimensions for fy with the same y that was used in sampling. That is, the
diagonal of the lower block tends to have smaller values.

Table 2 shows mean dimensions for functions gy that exclude softmax as estimated via
winding stairs. They are all in the range from 1.35 to 1.92. We found no particular problem
with the function g1 like we saw for f1. While the functions gy that are sent into softmax
were obtained by a very complicated process, they do not make much use of very high order
interactions. There must be a significantly large component of additive functions and two
factor interactions within them. There may be a small number of large high order interactions
but they do not dominate any of the functions fy under any of the sampling distributions we
use. The softmax function begins by exponentiating fy which we can think of as changing
a function with a lot of additive structure into one with a lot of multiplicative structure.
Multiplicative functions can have quite high mean dimension.

The measured mean dimensions of gy are pretty stable as the sampling distribution
changes. While the manifold of relevant images is likely to be quite small, it is reassur-
ing that 13 different independent data distributions give largely consistent and small mean
dimensions.

Figure 6 shows some Sobol' indices of fy and gy for y \in \{ 0, 1, . . . , 9\} when sampling from
h0. In each set of 10 images, the gray scale goes from black for 0 to white for the largest
intensity in any of those 10 images. As a consequence some of the images are almost entirely
black.

The lower indices \tau 2j depict the importance of inputs one at a time. This is similar to what
one gets from a gradient (see, for instance, Grad-CAM (Selvaraju et al., 2017)), except that
\tau 2j is global over the whole range of the input instead of local like a gradient. Upper indices \=\tau 2j
depict the importance of each pixel combining all of the interactions to which it contributes,
not just its main effect.

For the influence on f0 when sampling from h0, the difference between \tau 2j and \=\tau 2j is in
that bright spot just left of the center of the image. That is the region of pixels involved inD
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Table 2
Estimated mean dimension of functions gy without softmax.

Sampler 0 1 2 3 4 5 6 7 8 9

Binary 1.66 1.76 1.74 1.72 1.73 1.79 1.75 1.69 1.74 1.79
Uniform 1.65 1.62 1.66 1.66 1.67 1.71 1.71 1.61 1.68 1.70

Combined 1.79 1.77 1.70 1.73 1.73 1.90 1.88 1.78 1.90 1.89

0 1.92 1.65 1.68 1.69 1.65 1.80 1.86 1.56 1.68 1.81
1 1.48 1.56 1.35 1.61 1.62 1.57 1.49 1.42 1.56 1.50
2 1.55 1.66 1.62 1.74 1.57 1.72 1.67 1.61 1.78 1.59
3 1.56 1.65 1.59 1.58 1.63 1.85 1.59 1.64 1.67 1.66
4 1.87 1.62 1.61 1.55 1.70 1.75 1.76 1.66 1.57 1.78
5 1.71 1.60 1.59 1.63 1.72 1.78 1.74 1.62 1.76 1.90
6 1.65 1.60 1.60 1.66 1.68 1.70 1.65 1.60 1.54 1.63
7 1.73 1.59 1.61 1.63 1.60 1.62 1.65 1.57 1.59 1.63
8 1.73 1.65 1.60 1.64 1.66 1.78 1.75 1.64 1.84 1.75
9 1.86 1.68 1.61 1.63 1.73 1.80 1.86 1.67 1.69 1.82

the most interactions. It appears to be involved in distinguishing 0s from 2s and 8s because
that region is also bright for functions f2 and f8. Without softmax that bright spot for \=\tau 2j is
lessened and so we see that much though not all of its interaction importance was introduced
by the softmax layer. For g5 when sampling from h0 we see that a region just northeast of
the center of the image has the most involvement in interactions as measured by \=\tau 2j .

6. Discussion. We have found that the strategy under which differences of function val-
ues are collected can make a big difference in the statistical efficiency of estimates of mean
dimension. Computational efficiency in reusing function values can increase some correlations
enough to more than offset that advantage. Whether this happens depends on the function
involved. We have seen examples where high kurtoses make the problem worse.

Our interest in mean dimension leads us to consider sums of \=\tau 2j . In other uncertainty

quantification problems we are interested in comparing and ranking \=\tau 2j . For a quantity like
\^\=\tau 2j  - \^\=\tau 2k we actually prefer a large positive value for Cov(\^\=\tau 2j , \^\=\tau 

2
k ). In this case, the disadvantages

we described for the radial method become a strength. Correlation effects are more critical
for mean dimension than for these differences of Sobol' indices, because mean dimension is
affected by O(d2) covariances, not just one.

The radial strategy and the truncated winding stairs strategy can both be represented in
terms of a tree structure connecting d+1 function values. There is a one to one correspondence
between the d edges in that tree and the components of \bfitx getting changed. There is no
particular reason to think that either of these strategies is the optimal graph structure or
even the optimal tree.

The mean dimension derives from an ANOVA decomposition that in turn is based on
models with independent inputs. There has been work on ANOVA for dependent inputs,
such as Stone (1994), Hooker (2007), and Chastaing, Gamboa, and Prieur (2012, 2015). The
underlying models require the density to have an unrealistically strong absolute continuity
property with respect to a product measure that makes them unrealistic for the MNIST
example. There are also approaches to global sensitivity analysis based on Shapley values
that do not require independence of the underlying variables (Song, Nelson, and Staum, 2016;
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Owen and Prieur, 2017).
Recent work by Hart and Gremaud (2018) shows how to define some Sobol' indices directly

without recourse to the ANOVA, which may provide a basis for mean dimension without
ANOVA. Kucherenko, Tarantola, and Annoni (2012) have a copula based approach to Sobol'
indices on dependent data, though finding a specific copula that describes points near a
manifold would be hard.

We have studied the accuracy of mean dimension estimates as if the sampling were done by
plain Monte Carlo (MC). When P is the uniform distribution on [0, 1]d then we can instead use
randomized quasi-Monte Carlo (RQMC) sampling, surveyed in L'Ecuyer and Lemieux (2002).
The naive method can be implemented using N points in [0, 1]d+1 for each of j = 1, . . . , d. The
first column of the jth input matrix could contain \bfitz ij for i = 1, . . . , N while the remaining

d columns would have \bfitx 
(j)
i \in [0, 1]d. The d + 1st point contains the values \bfitx i,j . The radial

method can be implemented with N points in [0, 1]2d with the first d columns providing \bfitx i and
the second d columns providing \bfitz i, both for i = 1, . . . , N . Truncated winding stairs similarly
requires N points in [0, 1]2d. For RQMC sampling by scrambled nets, the resulting variance
is o(1/N). A reasonable choice is to use RQMC in whichever method one thinks would have
the smallest MC variance. The rank ordering of RQMC variances could, however, be different
from that of MC and it could even change with N , so results on MC provide only a suggestion
of which method would be best for RQMC.

A QMC approach to plain winding stairs would require QMC methods designed specifi-
cally for MCMC sampling; see, for instance, one based on completely uniformly distributed
sequences described in Owen and Tribble (2005).

We have used a neural network black box function to illustrate our computations. It is yet
another example of an extremely complicated function that nonetheless is dominated by low
order interactions. In problems like this where the input images had a common registration,
an individual pixel has some persistent meaning between images and then visualizations of \tau 2j
can be informative. Many neural network problems are applied to data that have not been so
carefully registered as the MNIST data. For those problems the link from predictions back to
inputs may need to be explored in a different way.

Appendix A. Covariances under winding stairs. Winding stairs expressions are more
complicated than the others and require somewhat different notation. Hence we employ some
notation local to this appendix. For instance, in winding stairs \ell (i) has a special meaning as a
newly updated component of \bfitx i. Accordingly when we need a variable index other than j and
k we use t instead of \ell in this appendix. We revert the ts back to \ell when quoting these theorems
in the main body of the paper. Similarly, differences in function values are more conveniently
described via which observation i is involved and not which variable. Accordingly, we work
with \Delta i here instead of \Delta j in the main body of the article.

We begin with the regular winding stairs estimates and let \Delta i = f(\bfitx i)  - f(\bfitx i - 1). For
i\prime > i, the differences \Delta i and \Delta i\prime are independent if \bfitx i\prime  - 1 has no common component with
\bfitx i. This happens if i\prime  - 1 \geqslant i + d, that is, if i\prime  - i > d. For any index i, the difference
\Delta i may be dependent on \Delta i\prime for  - d < i\prime < d but no other \Delta i\prime . It is not necessarily true
that Cov(\Delta 2

i ,\Delta 
2
i+s) = Cov(\Delta 2

i ,\Delta 
2
i - s) because different shared components of \bfitx are involved

in these two covariances.D
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726 ART B. OWEN AND CHRISTOPHER HOYT

Figure 6. From top to bottom: maps of \tau 2
j (fy), \tau 

2
j (gy), \=\tau 2

j (fy), and \=\tau 2
j (gy) versus pixels j when sampling

from h0.
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The winding stairs estimate of \=\tau 2j is \v \=\tau 2j = (1/(2N))
\sum N

i=1\Delta 
2
d(i - 1)+j . Because Cov(\Delta 

2
i+d,\Delta 

2
i\prime +d)

= Cov(\Delta 2
i ,\Delta 

2
i\prime ), we find that for 1 \leqslant j < k \leqslant d,

Cov(\v \=\tau 2j , \v \=\tau 
2
k ) =

1

4N

\Bigl( 
Cov(\Delta 2

d+j ,\Delta 
2
d+k) + Cov(\Delta 2

2d+j ,\Delta 
2
d+k)

\Bigr) 
.(17)

The truncated winding stairs algorithm has

Cov(\"\=\tau 2j , \"\=\tau 
2
k ) =

1

4N
Cov(\Delta 2

d+j ,\Delta 
2
d+k)(18)

because \Delta 2d+j has no zs in common with \Delta d+k.

Theorem 3. For the additive function fA of (8),

Var(\v \delta ) =
1

N

d\sum 
j=1

\Bigl( 
2 +

\kappa j
2

\Bigr) 
\sigma 4
j +

N  - 1

2N2

d\sum 
j=1

(\kappa j + 2)\sigma 4
j ,(19)

Var(\"\delta ) =
1

N

d\sum 
j=1

\Bigl( 
2 +

\kappa j
2

\Bigr) 
\sigma 4
j .(20)

Proof. For an additive function under winding stairs

\Delta d(i - 1)+j = gj(\bfitx d(i - 1)+j,j) - gj(\bfitx d(i - 2)+j,j)

= gj(zd(i - 1)+j) - gj(zd(i - 2)+j)

because r(i, j) = d\lfloor (i - j)/d\rfloor +j yields r(d(i - 1)+j, j) = d(i - 1)+j. It follows that \v \=\tau 2j and \v \=\tau 2k
have no zs in common when j \not = k and so they are independent. Now define the independent
and identically distributed random variables Yi = gj(zd(i - 1)+j) for i = 1, . . . , N . Then

Var(\v \=\tau 2j ) = Var

\Biggl( 
1

2N

N\sum 
i=1

(Yi  - Yi - 1)
2

\Biggr) 

=
1

4N
Var((Y1  - Y0)

2) +
N  - 1

2N2
Cov((Y1  - Y0)

2, (Y2  - Y1)
2)

=
(8 + 2\kappa j)\sigma 

4

4N
+

(N  - 1)(\kappa + 2)\sigma 4

2N2

by Lemma 1, establishing (19). For truncated winding squares all of the \Delta i are independent
in the additive model establishing (20).

Next, we turn to the multiplicative model fP (\bfitx i) =
\prod d

j=1 gj(zr(i,j)). A key distinction
arises for variables ``between"" the jth and kth and variables that are not between those. For
j < k the indices t between them are designated by t \in (j, k) and the ones ``outside"" of them
are designated by t \not \in [j, k], meaning that t \in \{ 1, . . . , j  - 1\} \cup \{ k + 1, . . . , d\} . Recall that \mu \ell j

is \BbbE (gj(xj)\ell ) for \ell = 2, 3, 4.D
ow

nl
oa

de
d 

08
/2

5/
21

 to
 1

71
.6

6.
16

1.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

728 ART B. OWEN AND CHRISTOPHER HOYT

Theorem 4. For the multiplicative function fP of (9),

Var(\"\delta ) =
1

N

d\sum 
j=1

\sigma 4
j

\Biggl( \Bigl( 
3 +

\kappa j
2

\Bigr) \prod 
t\not =j

\mu 4t  - 
\prod 
t\not =j

\mu 2
2t

\Biggr) 

+
2

N

\sum 
j<k

\Biggl( 
\eta j\eta k
4

\prod 
t\in (j,k)

\mu 2
2t

\prod 
t\not \in [j,k]

\mu 4t  - \sigma 2
j\sigma 

2
k\mu 2j\mu 2k

\prod 
t\not \in \{ j,k\} 

\mu 2
2t

\Biggr) (21)

and

Var(\v \delta ) = Var(\"\delta ) +
2

N

\sum 
j<k

\Biggl( 
\eta j\eta k
4

\prod 
t\in (j,k)

\mu 4t

\prod 
t\not \in [j,k]

\mu 2
2t  - \sigma 2

j\sigma 
2
k\mu 2j\mu 2k

\prod 
t\not \in j:k

\mu 2
2t

\Biggr) 
,(22)

where \eta j = \mu 4j  - 2\mu j\mu 3j + \mu 2
2j.

Proof. We use (18) to write covariances in terms of the first few \bfitx i. For 1 \leqslant j \leqslant d we
have \Delta d+j =

\prod j - 1
t=1 gt(zd+t)\times 

\bigl( 
gj(zd+j) - gj(zd)

\bigr) 
\times 
\prod d

t=j+1 gt(zt) so that

\BbbE (\Delta 2
d+j) = 2\sigma 2

j

\prod 
t\not =j

\mu 2t and \BbbE (\Delta 4
d+j) = (12 + 2\kappa j)\sigma 

4
j

\prod 
t\not =j

\mu 4t

and Var(\Delta 2
d+j) = \eta j

\prod 
t\not =j \mu 4t  - 4\sigma 4

j

\prod 
t\not =j \mu 

2
2t. Then for 1 \leqslant j < k \leqslant d and using a convention

that empty products are one,

\BbbE (\Delta 2
d+j\Delta 

2
d+k) =

j - 1\prod 
t=1

\mu 4t \times \eta j \times 
k - 1\prod 

t=j+1

\mu 2
2t \times \eta k \times 

d\prod 
t=k+1

\mu 4t and

\BbbE (\Delta 2
2d+j\Delta 

2
d+k) =

j - 1\prod 
t=1

\mu 2
2t \times \eta j \times 

k - 1\prod 
t=j+1

\mu 4t \times \eta k \times 
d\prod 

t=k+1

\mu 2
2t.

Therefore,

Cov(\Delta 2
d+j ,\Delta 

2
d+k) = \eta j\eta k

\prod 
t\in (j,k)

\mu 2
2t

\prod 
t\not \in [j,k]

\mu 4t  - 4\sigma 2
j\sigma 

2
k\mu 2j\mu 2k

\prod 
t\not \in \{ j,k\} 

\mu 2
2t and

Cov(\Delta 2
2d+j ,\Delta 

2
d+k) = \eta j\eta k

\prod 
t\in (j,k)

\mu 4t

\prod 
t \not \in [j,k]

\mu 2
2t

j - 1\prod 
t=1

\mu 2
2t  - 4\sigma 2

j\sigma 
2
k\mu 2j\mu 2k

\prod 
t\not \in \{ j,k\} 

\mu 2
2t.

Putting these together establishes the theorem.
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