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Efficient Estimation of the ANOVA Mean Dimension, with an Application to
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Abstract. The mean dimension of a black box function of d variables is a convenient way to summarize the
extent to which it is dominated by high or low order interactions. It is expressed in terms of 2¢ — 1
variance components, but it can be written as the sum of d Sobol’ indices that can be estimated by
leave one out methods. We compare the variance of these leave one out methods: a Gibbs sampler
called winding stairs, a radial sampler that changes each variable one at a time from a baseline, and
a naive sampler that never reuses function evaluations and so costs about double the other methods.
For an additive function the radial and winding stairs are most efficient. For a multiplicative function
the naive method can easily be most efficient if the factors have high kurtosis. As an illustration we
consider the mean dimension of a neural network classifier of digits from the MNIST data set. The
classifier is a function of 784 pixels. For that problem, winding stairs is the best algorithm. We find
that inputs to the final softmax layer have mean dimensions ranging from 1.35 to 2.0.
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1. Introduction. The mean dimension of a square integrable function quantifies the ex-
tent to which higher order interactions among its d input variables are important. At one
extreme, an additive function has mean dimension one which makes numerical tasks such as
optimization and integration much simpler. It can also make it easier to compare the impor-
tance of the inputs to a function, and it simplifies some visualizations. At the other extreme, a
function that equals a d-fold interaction has mean dimension d and can be much more difficult
to study.

The mean dimension of a function can be expressed as a certain sum of Sobol’ indices
which we introduce below. There is extensive literature on efficiently estimating Sobol’ indices
(Homma and Saltelli, 1996; Jansen, 1999; Saltelli, 2002; Monod, Naud, and Makowki, 2006;
Glen and Isaacs, 2012; Janon et al., 2014; Saltelli et al., 2010), and there are additional
references in Puy et al. (2020) which has a thorough empirical comparison of methods for the
total index, which is the one we use below. In the case of mean dimension, the necessary
indices can be estimated numerically by algorithms that change just one input variable at
a time. Two prominent strategies for this case are the winding stairs estimator of Jansen,
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Rossing, and Daamen (1994) which runs a Gibbs sampler over the input space and a radial
strategy of Campolongo, Saltelli, and Cariboni (2011).

When estimating the mean dimension, a special consideration arises. Since it is a sum of
d Sobol’ indices, there are O(d?) covariances to consider which can greatly affect the efficiency
of the estimation strategy. Sometimes a naive approach that uses roughly twice as many
function evaluations can be more efficient than winding stairs because it eliminates all of
those covariances.

The outline of this paper is as follows. Section 2 introduces some notation and defines
the ANOVA decomposition, Sobol’ indices, and the mean dimension. Section 3 presents three
strategies for sampling pairs of input points that differ in just one component. A naive method
takes 2NN d function evaluations to get N such pairs of points for each of d input variables.
It never reuses any function values. A radial strategy (Campolongo, Saltelli, and Cariboni,
2011) uses N(d + 1) function evaluations in which N baseline points each get paired with
d other points that change one of the inputs. The third strategy is winding stairs (Jansen,
Rossing, and Daamen, 1994) which uses Nd 4+ 1 function evaluations. Section 4 compares
the variances of mean dimension estimates based on these strategies. Those variances involve
fourth moments of the original function. We consider additive and multiplicative functions.
For additive functions all three methods have the same variance making the naive method
inefficient by a factor of about 2 for large d. For some functions, methods that save function
evaluations by reusing some of them can introduce positive correlations yielding a less efficient
estimate. We find that the presence of factors with high kurtoses can decrease the value of
reusing evaluations. Section 5 presents an example where we measure the mean dimension of
a neural network classifier designed to predict a digit 0 through 9 based on 784 pixels. It was
interesting to see the mean dimensions fall in the range from 1.35 to 2.0 for the penultimate
layer of the network, suggesting that the information from those pixels is being used mostly
one or two or three at a time. For instance, there cannot be any meaningfully large interactions
of 100 or more inputs. Section 6 makes some concluding remarks. Notably, the circumstances
that make the radial method inferior to the naive method or winding stairs for computing
mean dimension serve to make it superior to them for some other uncertainty quantification
tasks. We also discuss randomized quasi-Monte Carlo sampling alternatives and make brief
comments about dependent inputs. Finally, there is an appendix in which we provide a more
detailed analysis of winding stairs.

2. Notation. We begin with the analysis of variance (ANOVA) decomposition for a func-
tion f: X — R, where X = H;-lzl X;. We let © = (21,...,2q), where z; € X;. The ANOVA
is defined in terms of a distribution on & for which the x; are independent and for which
E(f(z)?) < co. The X; are ordinarily subsets of R, but the ANOVA is well defined for more
general domains. We let P denote the distribution of @ and let P; denote the distribution of
x;. The ANOVA of [0,1]? was proposed by Hoeffding (1948) for U-statistics, and by Sobol’
(1969) for numerical integration. It is well known in statistics following Efron and Stein (1981)
where the ANOVA underlies the Efron—Stein inequality for the jackknife.

We will use 1:d as a short form for {1,2,...,d}. For sets u C 1:d, their cardinality is |u]
and their complement 1:d \ u is denoted by —u. The components z; for j € u are collectively
denoted by x,. We will use hybrid points that merge components from two other points. The
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point y = x,:z_, has y; = x; for j € v and y; = z; for j € u. It is typographically convenient
to replace singletons {j} by j, especially within subscripts.

The ANOVA decomposition writes f(x) = >, ;.4 fu(x), where the “effect” f, depends on
x only through «,. The first term is fz(x) = E(f(x)), and the others are defined recursively

via Fulz) :E(f(w) —qu(ac)‘xu).

vCu

The variance component for u is

2
0% = Var(f,()) = {E(f“(“’) houre
0, u=g.
The effects are orthogonal under P and 0% = Var(f(z)) = Y, 02. We will assume that o2 > 0
in order to make some quantities well defined.
Sobol’ indices quantify importance of subsets of input variables on f. They are a primary
method in global sensitivity analysis (Saltelli et al., 2008; Tooss and Lemaitre, 2015; Borgonovo
and Plischke, 2016). Lower and upper Sobol’ indices are

2 _ 2 —2 _ 2
Iu—g o, and T, = E Oy,

vCu vNUFED

respectively. The lower index is from Sobol” (1990, 1993), while the upper index was first
used by Homma and Saltelli (1996). Both indices are commonly normalized, with 72 /02
known as the closed index and 72/0? called the total index. Normalized indices are between
0 and 1 giving them interpretations as a proportion of variance explained, similar to R? from
regression models. The Sobol’ indices 72 and 7"]-2 for singletons {j} are of special interest.

J
Sobol’ indices satisfy the identities

7o = E(f(@)f (w2 _u)) — 4
= E(f(2)(f(@u:z—u) — f(2))) and

7= SE((f@) ~ fla-wz)),

when z is an independent copy of . Those identities make it possible to estimate 72 and
72 by Monte Carlo or quasi-Monte Carlo sampling without explicitly computing estimates of
any of the effects f,. The first identity is due to Sobol’ (1993). The second was proposed
independently by Saltelli (2002) and Mauntz (2002). The third identity underlies an estimator
of the total index from Jansen (1999). The numerator in the estimate of 7"]2 from Homma and
Saltelli (1996) is based on the identity of Sobol” along with 7_'3-2 =02 —72..

J
The mean dimension of f is
2

wp =y o

uCl:d

It satisfies 1 < v(f) < d. A low mean dimension indicates that f is dominated by low order
ANOVA terms, a favorable property for some numerical problems.
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An easy identity from Liu and Owen (2006) shows that Y, .4 ulo2 = Z;lzl 7"]-2. Then
the mean dimension of f is

1

d
v(f) %Zv"f for 7’32 = iE(f(cc) — f(cc_j:zj))2.
j=1

Although the mean dimension combines 2¢ — 1 nonzero variances, it can be computed from d
Sobol’ indices (and the total variance o2).

We can get a Monte Carlo estimate of the numerator of v(f) by summing estimates of 7"]-2
such as

1 N 2
(1) IN Z(f(mz) - f(mi,—j:ziaj))
=1

for independent random points x;, z; ~ P. Equation (1) corresponds to the strategy that
Jansen (1999) uses to estimate the numerator of the normalized total sensitivity index for x;.
The Jansen estimator was one of the best performers in Puy et al. (2020).

There is more than one way to arrange the computation that sums (1) over j = 1,...,d.
When computing a list of Sobol’ indices it is advantageous to reuse many of the function
values. See Saltelli (2002) for some strategies. When there are O(d) total indices to sum,
there are O(d?) covariances to consider, which is the issue we focus on here.

3. Estimation strategies. Equation (1) gives an estimate of 7’-]»2 evaluating f at pairs of
points that differ only in their jth coordinate. An estimate for the numerator of v(f) sums
these estimates. We have found, empirically and somewhat surprisingly, that different sample
methods for computing the numerator » y 7"]2 can have markedly different variances, even when
they are all of Jansen (1999) type.

A naive implementation uses 2N d function evaluations taking x;, z; independent for ¢ =
1,...,N for each of j = 1,...,d. In that strategy, the point x; in (1) is actually different for
each j. Such a naive implementation is wasteful. We could instead use the same x; and z; for
all j = 1,...,d in the radial method of Campolongo, Saltelli, and Cariboni (2011). This takes
N(d+ 1) evaluations of f. A third strategy is known as “winding stairs” (Jansen, Rossing,
and Daamen, 1994). The data come from a Gibbs sampler that in its most basic form changes
inputs to f one at a time changing indices in this order: j =1,...,d,1,...,d,---,1,...,d. It
uses only Nd + 1 evaluations of f. These three approaches are illustrated in Figure 1. We
will also consider a variant of winding stairs that randomly refreshes after every block of d+ 1
evaluations.

First, we compare the naive to the radial strategy. For v = " j ?]-2 /o? we concentrate on
estimation strategies for the numerator

§=oc’v = E ?]-2.
Jj=1

This quantity is much more challenging to estimate than the denominator o2, especially for
large d, as it involves d? covariances.
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Naive Radial Winding

Figure 1. Ezamples of three input sets to compute 6 = 24:1 7’32 when d = 2. The naive estimate uses dN
pairs of points of which there are N pairs for each of the d variables. Each edge connects a pair of points used
in the estimate. The radial estimate uses N baseline points and d comparison points for each of them. The
winding stairs estimates sequentially change one input at a time.

The naive sampler takes
R d 2 2 1 N ; ; 2
(2) 0= Z?j, where 7, = IN Z(f(a:ﬁj)) — f(a:ijzjz”))
j=1 i=1

with independent zi,mgj) ~ Pfori=1,...,Nand j = 1,...,d. It takes N(d + 1) input
vectors and 2N d evaluations of f.

The radial sampler takes
Ay 2 1 & 2
(3) 0= 7;, where Tj=-= (f(@i)— f(@i—jizi;))

j=1 i=1

for independent x;,z; ~ P,i=1,...,N.

For f € L?(P) both 6 and & converge to § = vo? as N — oo by the law of large numbers.
To compare accuracy of these estimates we assume also that f € L*(P). Then E(f(x)*) < oo
and both estimates have variances that are O(1/N).

A first comparison is that

d
Var(8) = ZVar(;i) +2 Z Cov(%?,%i)a while
j=1 1<j<k<d
. d
(4) Var(9) = ZVar(??) +2 Z Cov(??,?i)
j=1 1<j<k<d
d
~2
= Z Var (7))
j=1
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by independence of (wE]), z; ;) from (zcgk), zi ) for j # k. What we see from (4) is that while
the naive estimate uses about twice as many function evaluations, the radial estimate sums
d times as many terms. The off diagonal covariances do not have to be very large for us to
have Var(#) > 2Var(d), in which case § becomes the more efficient estimate despite using
more function evaluations. Intuitively, each time f(x;) takes an unusually large or small
value it could make a large contribution to all d of %?, which can result in O(d?) positive
covariances. We study this effect more precisely below giving additional assumptions under
which Cov(%?,%ﬁ) > 0. We also have a numerical counterexample at the end of this section,
and so this positive covariance does not hold for all f € L(P).

The winding stairs algorithm starts at &y ~ P and then makes a sequence of single variable
changes to generate x; for ¢ > 0. We let £(i) € 1:d be the index of the component that is
changed at step i. The new values are independent samples z; ~ Py;). That is, for i > 0

7 x4, J7#L(3i).

We have a special interest in the case where P = N(0,I) for which each P; is N'(0,1).

The indices £(i) can be either deterministic or random. We let £ be the entire collection
of £(i). We assume that the entire collection of z; are independent of £. The most simple
deterministic update has £(i) = 1+ (i — 1 mod d) and cycles through all indices j € 1:d in
order. The simplest random update has £() i U(1:d). In usual Gibbs sampling it would
be better to take £(1) Y U(l:d\ {¢(i — 1)}) for i > 2. Here, because we are accumulating
squared differences, it is not very harmful to have ¢(i) = ¢(: — 1). The vector x; contains
d independently sampled Gaussian random variables. Which ones those are, depends on L.
Because & ~ N (0, ) conditionally on L, it also has that distribution unconditionally.

Letting e; be the jth unit vector in R? we can write
T = Ti—1 + (2 — Ti_100))e)-

If (i) ~ U(1:d), then the distribution of x; given x;_; is a mixture of d different Gaussian
distributions, one for each value of £(i). As a result y; = (x],2] ;)T does not then have a
multivariate Gaussian distribution and is harder to study. For this reason, we focus on the
deterministic update.

In the deterministic update we find that any finite set of a; or y, has a multivariate
Gaussian distribution. We also know that «; and x;;; are independent for k > d because
after k steps all components of @; have been replaced by new z; values. It remains to consider

the correlations among a block of d + 1 consecutive vectors. Those depend on the pattern of
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shared components within different observations as illustrated in the following diagram:

Ty Ld+1 Td+2 T L2d—1 Tod
| I | I |
21 Zd+1 Zd+1 Zd+1
Zd+1
(5) z2 22 2d+2 2d+2 aro
Z3 Z3 Z3 Zd+3 .
294—
Zd—1 Zd—1 Zd—1 22d—1 2d—1
22d
2d 2d 2d 2d
Fori>dand j=1,...,d we can write
.. 1 — ] .
(6) Tij = (), Where r(i,j) = d{TJ + 7.

It is convenient to use (6) for all ¢ > 0 which is equivalent to initializing the sampler at
xo = (2-(d—1)> 2= (d-2), - - - ,Z_1,2)". Equation (6) holds for any independent z; ~ Py and
does not depend on our choice of P; = N(0,1).

The winding stairs estimate of d is

N
- 1
(7) 0= Z 3‘2 for j2 ~oN Z A?l(i—l)ﬂ"
i1

J=1

I«
I«

where A, = f(x,) — f(xy,—1). We will see that the covariances of ?12 and 77 depend on the
pattern of common components among the a;. In our special case functions certain kurtoses
have an impact on the variance of winding stairs estimates.

A useful variant of winding stairs simply makes N independent replicates of the d + 1
vectors shown in (5), which raises the number of function evaluations from Nd+1 to N(d+1).
It uses NV independent Markov chains of length d + 1. For large d the increased computation
is negligible. In original winding stairs, each squared difference A? = (f(x;) — f(x;—1))? can
be correlated with up to 2(d — 1) other squared differences. In truncated winding stairs, it
can only be correlated with d — 1 other squared differences. We denote the resulting estimate
by & which is a sum of 7"]2

For d = 2 this truncated winding stairs method is the same as radial sampling. For d > 3
they are different. For instance the value of f at the radial point is compared to f at d other
points in the radial method while no function value is compared to more than two others in
the variant of winding stairs. See Figure 2 for an illustration when d = 3.

In section 4.2 we present some multiplicative functions where the naive estimator of §
has much less than half of the variance of the radial estimator. To complete this section we
exhibit a numerical example where the naive estimator has increased variance which must
mean that the correlations induced by the radial and winding estimators are at least slightly
negative. The integrand is simply f(x) = ||z|2 for £ ~ N(0,I) in d dimensions. Figure 3
shows results. We used N = 10° evaluations to show that (truncated) winding stairs and
radial sampling both have smaller variance than the naive algorithm for estimating 6. We
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Radial Winding
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0.0 02 04 06 08 1.0

Figure 2. The left figure shows example input points used by the radial method for d = 3, with thick edges
connecting input points used to form differences in f. The right figure shows the same for the truncated variant
of winding stairs.

also see extremely small mean dimensions for f(x) that decrease as d increases. It relates to
some work in progress studying mean dimension of radial basis functions as a counterpart to
Hoyt and Owen (2020) on mean dimension of ridge functions. The visible noise in that figure
stems from the mean dimensions all being so very close to 1 that the vertical range is quite
small. The estimate for d = 1 is roughly 0.9983 where the true value must be 1.

4. Additive and multiplicative functions. The variances of quadratic functions of the
f(x;) values such as 4, 6, and & involve fourth moments of the original function. Whereas
2¢ variance components are sufficient to define Sobol’ indices and numerous generalizations,
fourth moments do not simplify nearly as much from orthogonality and involve considerably
more quantities. While distinct pairs of ANOVA effects are orthogonal, we find for nonempty
u,v,w C 1:d that

does not in general vanish when v C vUw, v C uUw, and w C wUwv all hold. This “chaining
phenomenon” is worse for products of four effects: the number of nonvanishing combinations
rises even more quickly with d. The chaining problem also comes up if we expand f in an
orthonormal basis for L2(P) and then look at fourth moments.

In this section we investigate some special functional forms. The first is an additive model

d
(8) fa@) = p+ > g5(z)),
j=1

where E(g;(z;)) = 0. An additive model with finite variance has mean dimension v(f4) = 1.
It represents one extreme in terms of mean dimension. The second function we consider is a
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Euclidean Norm of

. . Variance of Numerator
Spherical Gaussian
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Figure 3. The left panel shows low and mostly decreasing estimates of v(f) versus dimension for f(x) =
lz||2 when & ~ N(0,I). The right panel shows variances of estimates of § for this function.

product model
d
9) fe(@) =[] g;(=)),
j=1

where E(g;(z;)) = p; and Var(gj(z;)) = O'JQ-. Product functions are frequently used as
test functions. For instance, Sobol’s g-function (Saltelli and Sobol’, 1995) is the product
H;l:l(|4xj — 2|+ a;)/(1 + a;) in which later authors make various choices for the constants
Qj.

If all uj =0, then v(fp) = d. In general, the mean dimension of a product function is

d
i 3/ + o)

fp) =
T e )

See Owen (2003).

Additive and multiplicative functions comprise two extremes in mean dimension. Additive
functions always have mean dimension 1. While multiplicative functions can have any mean
dimension in the interval (1,d] they are easily engineered to provide functions with mean
dimension d by setting all u; = 0.

4.1. Additive functions. We will use Lemma 1 below to compare the variances of our
mean dimension estimators for additive functions. For these, we need the kurtosis of some
random variables. Recall that the kurtosis of a random variable Y with variance o? > 0 is
k =E((Y — u)*)/o* — 3 which can be infinite. As points of reference, if Y is Gaussian, then
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k =0 and if Y has a uniform distribution, then k = —6/5 and the smallest possible kurtosis
is —2.

Lemma 1. Let Y1,Y5,Ys, Yy be independent identically distributed random wvariables with
variance o and kurtosis k. Then

E((V1 —Y2)") = (12 + 2k)0?,
Var((Y] — Y2)?) = (8 +2/<;)
E((Y1 - Y2)%(Ys — Y1)*) = 4o
E((Y1 - ¥2)* (V1 = ¥3)%) = (6 + )0

Proof. These follow directly from independence of the Y; and the definitions of variance
and kurtosis. ]

Theorem 1. For the additive function fa of (8),

d .
(10) Var(8) = Var(é) = Var(§) = % Z<2 + %)a}l
j=1
and
(11) Var(d) = Var(d N2 Z Kj+2)o

Proof. The winding stairs results fog 6 and § quoted abgve are proved in Theorem 3 of
the appendix. For the naive estimate, %j is independent of 75, when j # k as remarked upon
at (4). For an additive function

fa(mi) — fa(mi—jizi5) = gj(xij) — 9j(zi;)

is independent of g (zix) — gr(zik) for j # k and so the radial estimate has the same indepen-
dence property as the naive estimate. Therefore,

Var(?‘_\?) = Var(%?) = &Var((gj(azlj) — gj(zlj))Q),

and using Lemma 1, Var((g;(z1;) — gj(21;))%) = (8 + 2/@)0?. [ ]

If f(x) is additive, then Theorem 1 shows that the radial method is better than the naive
one. They have the same variance, but the naive method uses roughly twice as many function
evaluations. If the function is nearly additive, then it is reasonable to expect the variances
to be nearly equal and the radial method to be superior. Because x; > —2 always holds, the
theorem shows an advantage to truncated winding stairs over plain winding stairs.
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4.2. Multiplicative functions. We turn next to functions of product form. For the factors

g;(z;) defining f in (9), we let poj = E(gj(z;)?), us; = E(g;(z)?), and paj = E(gj(x;)?). To
simplify some expressions for winding stairs we adopt the conventions that for 1 < j < k <d

s k—1 —1 d .
and quantities gy, Hee(j,k) ge Mmeans H£=j+1 ge and Hw[j’k] qe means [[)_; qe x [ 19—y 41 qe, with
products over empty index sets equal to one.

Theorem 2. For the product function fp of (9),
d
¢ 1 4 Kj 2
(12) Var(6) = Z ol ((3 + 5) H = H“”) and
j=1 L£j l#£]

(13) Var($) = Var()) + Z(M—U Jkﬂzgﬁézk) I #ae
J<k £¢{j.k}

where n; = E(gj(x;)?(g;(x5) — 9j(25))?) = paj — 243, —i—u%j for independent xj,z; ~ P;. The
winding stairs estimates satisfy

.. N 2 .
(14)  Var(d) ZVar<5>+Nz<%4% IT 3 TI mae = o3otuaiman T] H%e)

i<k 2e(4,k) 2[5,k L2k
and
(15) Var(é) = Var(é) + Z< eidid H [iag — 07 ak H MQg) H H3-
i<k LEj:k 05k Le(j,k)

Proof. The winding stairs results are from Theorem 4 in the appendix. Next, we turn to
the naive estimator. For x, z ~ P independently, define A; = Aj(x, z) = fp(x) — fr(T_j:2;).
Now

Aj = (g5(x5) = gi(z)) x [ [ 9e(=e),
t#y
and so E(A?) = 20]2 X 1y p2e and E(A?) = (12 4+ 2@)0}1 X Iy paj, from Lemma 1.
Therefore,
Var(AQ) (12 4 2k;5) O' X 1_[,u4J - 40 X Hu%,
L#£] t#j

establishing (12).
In the radial estimate, A; is as above and Ay = (gi(2k) — g (2k)) X [ 1oz, 9e(¢). In this
case, however, the same point x is used in both A; and Ay, so E(A?Az) equals

E<9j($j)29k(fck)2(gj(fﬂj)gj(Zj))2(9k(ﬂ:k —ge(z))* [ gele) )

{5k}
=mme [ e
(#Gk)

Then Cov(A?, A?) = (Uﬂlk — 40320;%#23‘11%) H&Z{j’k} fae, establishing (13). [ |
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We comment below on interpretations of the winding stairs quantities. First, we compare
naive to radial sampling.
As an illustration, suppose that g;(z;) ~ N (0,1) for j =1,...,d. Then

~ d d —_
Var() = %Z(:&d —1)= d(?’Nl),
j=1

and since this example has 7; = 4,

<~ d31-1) 2 16 go dBT—1) 2d(d—1)3¢!
Var(6>:T+NZ<Z_1)3 = + ~ )
i<k
For large d the radial method has variance about 2d/3 times as large as the naive method.
Accounting for the reduced sample size of the radial method it has efficiency approximately
3/d compared to the naive method for this function.

A product of mean zero functions has mean dimension d making it an exceptionally hard
case. More generally, if 1;/2 — szugj > e > 0 for j € 1:d, then Var(d) = O(d/N) while Var()
is larger than a multiple of d?/N.

Corollary 1. For the product function fp of (9), suppose that k; > —5/16 for j =1,...,d.
Then Cov(%?,%z) >0 for 1 <j<k<d, and so Var(8) > Var(d).

Proof. 1t suffices to show that n; > ZU?MQJ' for j =1,...,d. Let Y = gj(x;) for x; ~ P;
have mean (1, uncentered moments fio,, 113y, and py, of orders 2, 3, and 4, respectively, variance
o2, skewness v, and kurtosis k. Now let 7 = pugy — 2pupzy + M%y- This simplifies to

n=(k+2)0o*+2ucy + 2u26% + o*

and so
n— 2029y, = (k+ 2)o* + 2ucy + po?.

If 0 =0, then n — 2a2u2y = 0 and so we suppose that o > 0. Replacing Y by Y/o does
not change the sign of n — 202#2@/- It becomes & + 2 + 2,y + it for p, = p/o. If v and g,
have equal signs, then x -+ 2+ 24,y + u? > 0, so we consider the case where they have opposite
signs. Without loss of generality we take v < 0 < ps. An inequality of Rohatgi and Székely
(1989) shows that |y| < vk + 2, and so

(16) K24+ 2y + pf = 0% — 20,0 +

for # = vk + 2. Equation (16) is minimized over p, > 0 at u, = (6/2)"/% and so x + 2 +
201,y + it > 02 + (2_4/3 — 22/3)04/3. One last variable change to 6 = (2))3 gives

K+ 24 2y + iy > A4 - 3).

This is nonnegative for A > (3/4)'/2, equivalently § > 2(3/4)%/2, and finally for & >
—5/16. =
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From the above discussion we can see that large kurtoses, and hence large values of
paj = E(gj(z;)"), create difficulties. In this light we can compare winding stairs to the radial
sampler. The covariances in the radial sampler involve a product of d — 2 of the pg4;. The
winding stairs estimates involve products of fewer of those quantities. For truncated winding
stairs the j, k-covariance includes a product of only d — k 4+ j — 1 of them. The values pq4p
for ¢ nearest to 1 and d appear the most often and so the ordering of the variables makes
a difference. For regular winding stairs some additional fourth moments appear in a second
term.

5. Example: MNIST classification. In this section, we investigate the mean dimension of
a neural network classifier that predicts a digit in {0, 1, ...,9} based on an image of 784 pixels.
We compare algorithms for finding mean dimension, investigate some mean dimensions, and
then plot some images of Sobol’ indices.

The MNIST data set from http://yann.lecun.com/exdb/mnist/ is a very standard bench-
mark problem for neural networks. It consists of 70,000 images of handwritten digits that
were size-normalized and centered within 28 x 28 pixel gray scale images. We normalize the
image values to the unit interval, [0,1]. The prediction problem is to identify which of the
ten digits “0,” “1,” ..., “9” is in one of the images based on 282 = 784 pixel values. We are
interested in the mean dimension of a fitted prediction model.

The model we used is a convolutional neural network fit via tensorflow (Abadi et al., 2016).
The architecture applied the following steps to the input pixels in order:

(1) a convolutional layer (with 28 kernels, each of size 3x3),

(2) a max pooling layer (over 2x2 blocks),

(3) a flattening layer,
(4) a fully connected layer with 128 output neurons (ReLU activation),
(5) a dropout layer (node values were set to 0 with probability 0.2), and
(6) a final fully connected layer with 10 output neurons (softmax activation).
This model is from Yalcin (2018) who also defines those terms. The network was trained using
10 epochs of ADAM optimization, also described in Yalcin (2018), on 60,000 training images.
For our purposes, it is enough to know that it is a complicated black box function of 784
inputs. The accuracy on 10,000 held out images was 98.5%. This is not necessarily the best
accuracy attained for this problem, but we consider it good enough to make the prediction
function worth investigating.

There are 278 — 1 > 10236 nontrivial sets of pixels, each making their own contribution
to the prediction functions, but the mean dimension can be estimated by summing only 784
Sobol’ indices.

We view the neural network’s prediction as a function on 784 input variables x. For data
(z,Y) where Y € {0,1,...,9} is the true digit of the image, the estimated probability that
Y =y is given by

_ exp(gy())
fy(x) = 9
21— exp(ge(x))

for functions gy, 0 < y < 9. This last step, called the softmax layer, exponentiates and
normalizes functions g, that implement the prior layers. We study the mean dimension of
9o, - - -, g9 as well as the mean dimension of fy, ..., fo. Studying the complexity of predictions
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Lniform

Bootstrapping Al Bootstrapping 7s True sample

Figure 4. From left to right: draws from U{0,1}®*28 U0, 1]*%*%, margins of all images, margins of all
7s, an example 7.

via the inputs to softmax has been done earlier by Yosinski et al. (2015).

To compute mean dimension we need to have a model for & with 784 independent com-
ponents. Real images are only on or near a very small manifold within R"*. We considered
several distributions P; for the value of pixel j: U{0,1} (salt and pepper), U[0, 1] (random
gray), independent resampling from per pixel histograms of all images, and independent re-
sampling per pixel just from images with a given value of y € {0, 1,...,9}. The histogram of
values for pixel j from those images is denoted by hy(j) with h, representing all 784 of them.
Figure 4 shows some sample draws along with one real image. We think that resampling
pixels from images given y is the most relevant of these methods, though ways to get around
the independence assumption would be valuable. We nonetheless include the other samplers
in our computations.

Our main interest is in comparing the variance of estimates of §. We compared the naive
method 5, the radial method 6, and truncated winding stairs 6. For 6 our winding stairs
algorithm changed pixels in raster order, left to right within rows, taking rows of the image
from top to bottom. We omit § because we think there is no benefit from its more complicated
model and additional correlations. Our variance comparisons are based on N = 100,000
samples.

Figure 5 shows the results for all 10 output values y, and all 11 different input histogram
distributions. Ten of those histograms are from resampling pixel values within categories,
and the eleventh is a pooled histogram. There are separate plots for functions f, that include
softmax and g, that exclude it. The radial method always had greater variance than the naive
method. For functions g, it never had as much as twice the variance of the naive method,
and so the radial method proves better for g,. For f, there were some exceptions where the
naive method is more efficient. In all of our comparisons the winding stairs method had lower
variance than the radial method, and so for these functions, (truncated) winding stairs is
clearly the best choice.

Figure 5 is a summary of 660 different variance estimates. We inspected the variances
and found two more things worth mentioning but not presenting. The variances were all far
smaller using softmax than not, which is not surprising since softmax compresses the range of
fy to be within [0, 1] which will greatly affect the differences that go into estimates of §. The
variances did not greatly depend on the input distribution. While there were some statistically
significant differences, which is almost inevitable for such large N, the main practical difference
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Figure 5. The upper left histogram shows Var(g)/Var(S) for functions gy that exclude softmax. The upper
right histogram shows Var(8)/Var(d). The bottom two show the same ratios for functions f, that include
softmax. The histograms include all 10 values of output y, and all 10 y-specific input histograms and the pooled
input histogram.

was that variances tended to be much smaller when sampling from h;. We believe that this
is because images for y = 1 have much less total illumination than the others.

While our main purpose is to compare estimation strategies for mean dimension, the mean
dimensions for this problem are themselves of interest. Table 1 shows mean dimensions for
functions f, that include softmax as estimated via winding stairs. For this we used N = 106
when resampling from images hg, ..., hg and N = 2 x 10 otherwise. The first thing to note
is an impossible estimate of v(f1) for binary and uniform sampling. The true v(f;) cannot be
larger than 784. The function f; has tiny variance under those distributions, and we recall
that v = 6 /0. Next, we see that moving from binary to uniform to the combined histogram
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Table 1

Estimated mean dimension of functions f, using softmaz.
Sampler 0 1 2 3 4 5 6 7 8 9
Binary | 11.07 936.04 10.43 9.92 18.69 10.22 13.27 13.37 8.67 16.54
Uniform | 6.92 4,108.99 7.28 6.60 9.90 7.03 6.92 8.03 5.61 9.48
Combined | 8.77 4.68 4.06 3.95 4.56 5.11 7.62 4.62 3.43 7.39
0 3.52 6.81 3.48 7.20 6.56 5.78 7.54 4.67 4.04  9.08
1| 36.12 2.88 6.00 3.43 7.75 3.76 8.74 7.60 2.83 5.58
2 | 10.03 3.86 3.68 4.70 8.23 1227 12.57 720 431 17.23
3| 23.20 4.69 5.95 4.10 6.96 6.72 13.63 7.10 4.42 9.00
4 7.42 8.39 7.59  9.96 3.81 7.63 8.57 535 3.86 6.82
5 8.12 4.77 5.72 4.82 5.60 3.48 7.61 7.28 3.54 7.87
6 9.22 5.65 4.36 6.52 4.31 6.67 3.57 6.43 4.28 11.99
7| 857 5.85 4.42  4.09 4.66 5.09 3.59 3.59 4.29 5.58
8 | 19.58 6.06 4.54 4.77 8.21 6.28 13.15 6.72 4.20 10.11
9 7.47 7.00 5.25 4.96 3.15 4.52 7.34 3.74  2.92 3.48

generally lowers the mean dimension. Third, for the y-specific histograms h, we typically see
smaller mean dimensions for f, with the same y that was used in sampling. That is, the
diagonal of the lower block tends to have smaller values.

Table 2 shows mean dimensions for functions g, that exclude softmax as estimated via
winding stairs. They are all in the range from 1.35 to 1.92. We found no particular problem
with the function g; like we saw for f;. While the functions g, that are sent into softmax
were obtained by a very complicated process, they do not make much use of very high order
interactions. There must be a significantly large component of additive functions and two
factor interactions within them. There may be a small number of large high order interactions
but they do not dominate any of the functions f, under any of the sampling distributions we
use. The softmax function begins by exponentiating f, which we can think of as changing
a function with a lot of additive structure into one with a lot of multiplicative structure.
Multiplicative functions can have quite high mean dimension.

The measured mean dimensions of g, are pretty stable as the sampling distribution
changes. While the manifold of relevant images is likely to be quite small, it is reassur-
ing that 13 different independent data distributions give largely consistent and small mean
dimensions.

Figure 6 shows some Sobol” indices of f, and g, for y € {0,1,...,9} when sampling from
ho. In each set of 10 images, the gray scale goes from black for 0 to white for the largest
intensity in any of those 10 images. As a consequence some of the images are almost entirely
black.

The lower indices I? depict the importance of inputs one at a time. This is similar to what
one gets from a gradient (see, for instance, Grad-CAM (Selvaraju et al., 2017)), except that
I? is global over the whole range of the input instead of local like a gradient. Upper indices 7"]-2
depict the importance of each pixel combining all of the interactions to which it contributes,
not just its main effect.

For the influence on fy when sampling from hg, the difference between 72 and 72 is in

J J
that bright spot just left of the center of the image. That is the region of pixels involved in

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/25/21 to 171.66.161.100. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

724 ART B. OWEN AND CHRISTOPHER HOYT

Table 2
Estimated mean dimension of functions g, without softmaz.

Sampler 0 1 2 3 4 5 6 7 8 9
Binary | 1.66 1.76 174 172 173 179 175 169 174 1.79
Uniform | 1.65 1.62 166 1.66 167 171 1.71 1.61 1.68 1.70
Combined | 1.79 1.77 1.70 1.73 1.73 190 188 178 190 1.89
192 165 168 169 165 180 186 156 1.68 1.81
148 156 135 1.61 1.62 157 1.49 142 1.56 1.50
1.55 166 1.62 174 157 172 1.67 1.61 1.78 1.59
1.56 165 159 158 1.63 1.85 1.59 1.64 1.67 1.66
1.87 1.62 1.61 155 1.70 1.75 1.76 1.66 1.57 1.78
1.71 160 159 163 172 178 1.74 1.62 1.76 1.90
1.65 160 160 166 168 1.70 1.65 1.60 1.54 1.63
1.73 159 1.61 1.63 1.60 1.62 1.65 1.57 1.59 1.63
1.73 165 160 164 166 178 1.75 1.64 1.84 1.75
1.86 168 161 163 173 180 1.86 1.67 1.69 1.82

© 0O ULk Wi~ O

the most interactions. It appears to be involved in distinguishing Os from 2s and 8s because
that region is also bright for functions fo and fs. Without softmax that bright spot for @-2 is
lessened and so we see that much though not all of its interaction importance was introduced
by the softmax layer. For g5 when sampling from hg we see that a region just northeast of
the center of the image has the most involvement in interactions as measured by 7"]»2.

6. Discussion. We have found that the strategy under which differences of function val-
ues are collected can make a big difference in the statistical efficiency of estimates of mean
dimension. Computational efficiency in reusing function values can increase some correlations
enough to more than offset that advantage. Whether this happens depends on the function
involved. We have seen examples where high kurtoses make the problem worse.

Our interest in mean dimension leads us to consider sums of 7_'3‘2- In other uncertainty

quantification problems we are interested in comparing and ranking ij. For a quantity like

?j — 7%13 we actually prefer a large positive value for Cov(?'jz, 7%,3 ). In this case, the disadvantages
we described for the radial method become a strength. Correlation effects are more critical
for mean dimension than for these differences of Sobol’ indices, because mean dimension is
affected by O(d?) covariances, not just one.

The radial strategy and the truncated winding stairs strategy can both be represented in
terms of a tree structure connecting d+1 function values. There is a one to one correspondence
between the d edges in that tree and the components of x getting changed. There is no
particular reason to think that either of these strategies is the optimal graph structure or
even the optimal tree.

The mean dimension derives from an ANOVA decomposition that in turn is based on
models with independent inputs. There has been work on ANOVA for dependent inputs,
such as Stone (1994), Hooker (2007), and Chastaing, Gamboa, and Prieur (2012, 2015). The
underlying models require the density to have an unrealistically strong absolute continuity
property with respect to a product measure that makes them unrealistic for the MNIST
example. There are also approaches to global sensitivity analysis based on Shapley values
that do not require independence of the underlying variables (Song, Nelson, and Staum, 2016;
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Owen and Prieur, 2017).

Recent work by Hart and Gremaud (2018) shows how to define some Sobol’ indices directly
without recourse to the ANOVA, which may provide a basis for mean dimension without
ANOVA. Kucherenko, Tarantola, and Annoni (2012) have a copula based approach to Sobol’
indices on dependent data, though finding a specific copula that describes points near a
manifold would be hard.

We have studied the accuracy of mean dimension estimates as if the sampling were done by
plain Monte Carlo (MC). When P is the uniform distribution on [0, 1]¢ then we can instead use
randomized quasi-Monte Carlo (RQMC) sampling, surveyed in L’Ecuyer and Lemieux (2002).
The naive method can be implemented using N points in [0, 1]%*! for each of j = 1,...,d. The
first column of the jth input matrix could contain z;; for ¢ = 1,..., N while the remaining

d columns would have LL'Z(] ) e [0,1]%. The d + 1st point contains the values x; ;. The radial
method can be implemented with N points in [0, 1]2d with the first d columns providing a; and
the second d columns providing z;, both for ¢ = 1,..., N. Truncated winding stairs similarly
requires N points in [0, 1]??. For RQMC sampling by scrambled nets, the resulting variance
is 0(1/N). A reasonable choice is to use RQMC in whichever method one thinks would have
the smallest MC variance. The rank ordering of RQMC variances could, however, be different
from that of MC and it could even change with N, so results on MC provide only a suggestion
of which method would be best for RQMC.

A QMC approach to plain winding stairs would require QMC methods designed specifi-
cally for MCMC sampling; see, for instance, one based on completely uniformly distributed
sequences described in Owen and Tribble (2005).

We have used a neural network black box function to illustrate our computations. It is yet
another example of an extremely complicated function that nonetheless is dominated by low
order interactions. In problems like this where the input images had a common registration,
an individual pixel has some persistent meaning between images and then visualizations of 1?
can be informative. Many neural network problems are applied to data that have not been so
carefully registered as the MNIST data. For those problems the link from predictions back to
inputs may need to be explored in a different way.

Appendix A. Covariances under winding stairs. Winding stairs expressions are more
complicated than the others and require somewhat different notation. Hence we employ some
notation local to this appendix. For instance, in winding stairs £(i) has a special meaning as a
newly updated component of @;. Accordingly when we need a variable index other than j and
k we use t instead of £ in this appendix. We revert the ts back to £ when quoting these theorems
in the main body of the paper. Similarly, differences in function values are more conveniently
described via which observation ¢ is involved and not which variable. Accordingly, we work
with A; here instead of A; in the main body of the article.

We begin with the regular winding stairs estimates and let A; = f(x;) — f(x;—1). For
7' > 1, the differences A; and A, are independent if x;_; has no common component with
x;. This happens if ¢/ — 1 > i + d, that is, if ¢/ — ¢ > d. For any index ¢, the difference
A; may be dependent on A; for —d < i’ < d but no other Ay. It is not necessarily true
that Cov(AZ, A2 ) = Cov(AZ, A7 ) because different shared components of @ are involved
in these two covariances.
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zf Values (Bootstrapping 0s, with Softmax)

1 prediction 2 prediction 3 prediction

6 prediction 7 prediction 8 prediction

Ij? Values (Bootstrapping 0s, no Softmax)

1 prediction 2 prediction 3 prediction

6 prediction 7 prediction 8 prediction

Tj? Values (Bootstrapping 0s, with Softmax)

1 prediction 2 prediction 3 prediction

6 prediction 7 prediction 8 prediction

Tf Values (Bootstrapping 0s, no Softmax)
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Figure 6. From top to bottom: maps of I?-(fy), I?(gy), _Jz(fy), and 7"'j2(gy) versus pizels j when sampling
from hg.
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7+d)

The winding stairs estimate OfT is 7' = (1/(2N)) Zl 1 d(l 1)+ Because Cov(AZ, ,, AZ
= Cov(A?,A?), we find that for 1 <j < k <d,
. 1
(17) COV(TQ 7’13) AN (COV(AcHy Ad+k) + COV(A2d+J> Ad+k))

The truncated winding stairs algorithm has

1
= 7COV(A?H-j7 A?H—k)

(18) Cov(%f, 72 v

because Aggy; has no zs in common with Agyy.

Theorem 3. For the additive function fa of (8),

1 p N1 d
(19) Var(d) = >(2+ ) ot + S (ks + )0
j=1 j=1
d
(20) Var(§) = ]1VZ<2 +5 )t

<
Il
-

Proof. For an additive function under winding stairs

Ad(iq)ﬂ = gj(wd(ifl)+j,j) - gj(md(i72)+j,j)
= 9j(2Zagi-1)+j) — 95(Zd(i-2)+;)
because (i, j) = d|(i—j)/d] +j yields r(d(i—1)+j,j) = d(i—1)+j. It follows that 77 and 7,

have no zs in common when j # k and so they are independent. Now define the independent
and identically distributed random variables Y; = g;(zq(i—1)4;) for i = 1,..., N. Then

| X
Var(77) = Var <2N D (v - Yi1)2>

i=1

= 1 Var((Vi — Yo%) + S Cov((Yi ~ Yo, (¥ — ¥1)?)

AN N2
(84 2k;)0t N (N —1)(k +2)0*
N AN 2N2

by Lemma 1, establishing (19). For truncated winding squares all of the A; are independent
in the additive model establishing (20). [ ]

Next, we turn to the multiplicative model fp(x;) = H?Zl 9i(2raij)). A key distinction
arises for variables “between” the jth and kth and variables that are not between those. For
j < k the indices t between them are designated by ¢ € (j, k) and the ones “outside” of them
are designated by t ¢ [j, k], meaning that ¢t € {1,...,j — 1} U{k+1,...,d}. Recall that jy;
is E(g;(z4)*) for £ =2,3,4.
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Theorem 4. For the multiplicative function fp of (9),

Var(§ Za (( ?)Huu—l—[ui)

2 15k
+NZ<J4 H 1y H M4t—032‘013112jﬂ2k H M%t)
J<k te(gk)  tE[i K] tZ{j.k}
and
. .2 ,
oy Vi) V64 % (2 TT o TT s oot TT )
i<k te(4,k) tZ[5,k] t¢j:k

where 1; = puaj — 241035 + p3;-
Proof. We use (18) to write covariances in terms of the first few a;. For 1 < j < d we
have Agyj = [T/Z; 9e(zare) ¥ (95(2a15) — 95(2a)) * [Timj 1 9¢(2) so that

(Ad+J - 2‘7] HM% and E(Adﬂ) =12+ QHj>J?HM4t
oy t#j

and Var(A?Hj) = ;[ Liej par — 40;-L [Tz p3;. Then for 1 < j < k < d and using a convention
that empty products are one,

E(A%;A%k) = Hu4t X 1 X H (13, X g X H pae  and
t= ]+1 t=k+1

E(A341 A% k) = H Pt X 15 X H Hag X Mg X H 1.
t=j+1 t=k+1

Therefore,

Cov(AL ALy =mime [ w3 [I wae — 40i0inojpon [ w3, and

te(jk)  tE5k] tZ{j,k}
j—1
Cov(A3y ;s ALk =mime [[ mae [T w3 [ 13 — 40Fommojuon ] 13
te(k)  tglk]  t=1 tZ{j,k}
Putting these together establishes the theorem. |

Acknowledgments. We thank Masayoshi Mase of Hitachi for helpful discussions about
variable importance and explainable Al. We also thank the anonymous reviewers for sugges-
tions that have improved our presentation of this paper.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/25/21 to 171.66.161.100. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

EFFICIENTLY ESTIMATING MEAN DIMENSION 729

REFERENCES

M. ABaDpI, P. BArRHAM, J. CHEN, Z. CHEN, A. Davis, J. DEAN, M. DEVIN, S. GHEMAWAT, G. IRVING,
M. IsArD, M. KUDLUR, J. LEVENBERG, R. MONGA, S. MOORE, D. G. MURRAY, B. STEINER, P. TUCKER,
V. VASUDEVAN, P. WARDEN, M. WICKE, Y. YU, AND X. ZHENG (2016), Tensorflow: A system for large-
scale machine learning, in Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16), pp. 265-283.
E. BORGONOVO AND E. PLISCHKE (2016), Sensitivity analysis: A review of recent advances, European J. Oper.
Res., 248, pp. 869-887.

. CAMPOLONGO, A. SALTELLI, AND J. CARIBONI (2011), From screening to quantitative sensitivity analysis:
A wunified approach, Comput. Phys. Commun., 182, pp. 978-988.

. CHASTAING, F. GAMBOA, AND C. PRIEUR (2012), Generalized Hoeffding-Sobol decomposition for dependent
variables — application to sensitivity analysis, Electron. J. Stat., 6, pp. 2420—2448.

. CHASTAING, F. GAaMBOA, AND C. PRIEUR (2015), Generalized Sobol’ sensitivity indices for dependent
variables: Numerical methods, J. Stat. Comput. Simul., 85, pp. 1306-1333.

B. EFRON AND C. STEIN (1981), The jackknife estimate of variance, Ann. Statist., 9, pp. 586-596.

G. GLEN AND K. IsaAcs (2012), Estimating Sobol’ sensitivity indices using correlations, Environ. Model.
Softw., 37, pp. 157-166.

J. HART AND P. A. GREMAUD (2018), An approzimation theoretic perspective of Sobol’ indices with dependent
variables, Int. J. Uncertain. Quantif., 8, pp. 483-493.

W. HOEFFDING (1948), A class of statistics with asymptotically normal distribution, Ann. Math. Statist., 19,
pp. 293-325.

T. HoMMA AND A. SALTELLI (1996), Importance measures in global sensitivity analysis of nonlinear models,
Reliab. Eng. Syst. Safe., 52, pp. 1-17.

G. HOOKER (2007), Generalized functional ANOVA diagnostics for high-dimensional functions of dependent
variables, J. Comput. Graph. Statist., 16, pp. 709-732.

C. R. HoyTr AND A. B. OWEN (2020), Mean dimension of ridge functions, SIAM J. Numer. Anal., 58, pp.
1195-1216, https://doi.org/10.1137/19M127149X.

B. I00ss AND P. LEMAITRE (2015), A review on global sensitivity analysis methods, in Uncertainty Manage-
ment in Simulation-Optimization of Complex Systems, G. Dellino and C. Meloni, eds., Springer, Boston,
pp. 101-122.

A. JaNoN, T. KLEIN, A. LAGNOUX, M. NODET, AND C. PRIEUR (2014), Asymptotic normality and efficiency
of two Sobol’ index estimators, ESAIM Probab. Stat., 18, pp. 342—-364.

M. J. W. JANSEN (1999), Analysis of variance designs for model output, Comput. Phys. Commun., 117, pp.
35-43.

M. J. W. JANSEN, W. A. H. ROSSING, AND R. A. DAAMEN (1994), Monte Carlo estimation of uncertainty
contributions from several independent multivariate sources, in Predictability and Nonlinear Modelling
in Natural Sciences and Economics, J. Gasman and G. van Straten, eds., Kluwer Academic Publishers,
Norwell, MA, pp. 334-343.

S. KUCHERENKO, S. TARANTOLA, AND P. ANNONI (2012), Estimation of global sensitivity indices for models
with dependent variables, Comput. Phys. Commun., 183, pp. 937-946.

P. L’EcuYyER AND C. LEMIEUX (2002), A survey of randomized quasi-Monte Carlo methods, in Modeling
Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, M. Dror, P. L'Ecuyer,
and F. Szidarovszki, eds., Kluwer Academic Publishers, Norwell, MA, pp. 419-474.

R. Liu AND A. B. OWEN (2006), Estimating mean dimensionality of analysis of variance decompositions, J.
Amer. Statist. Assoc., 101, pp. 712-721.

W. MAUNTZ (2002), Global Sensitivity Analysis of General Nonlinear Systems, Master’s thesis, Imperial Col-
lege, London.

H. Monop, C. NAuD, AND D. MAKOWKI (2006), Uncertainty and sensitivity analysis for crop models, in
Working with Dynamic Crop Models: Evaluation, Analysis, Parametrization and Examples, D. Wallach,
D. Makowski, and J. W. Jones, eds., Elsevier, pp. 55-99.

A. B. OWEN (2003), The dimension distribution and quadrature test functions, Statist. Sinica, 13, pp. 1-17.

A. B. OWEN AND C. PRIEUR (2017), On Shapley value for measuring importance of dependent inputs,
STAM/ASA J. Uncertain. Quantif., 5, pp. 986-1002, https://doi.org/10.1137/16M1097717.

&)

Q Q@

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/19M127149X
https://doi.org/10.1137/16M1097717

Downloaded 08/25/21 to 171.66.161.100. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

730 ART B. OWEN AND CHRISTOPHER HOYT

A. B. OWEN AND S. D. TRIBBLE (2005), A quasi-Monte Carlo Metropolis algorithm, Proc. Natl. Acad. Sci.
USA, 102, pp. 8844-8849.

A. Puy, W. BECKER, S. L. PIANO, AND A. SALTELLI (2020), The Battle of Total-order Sensitivity Estimators,
Princeton University, Princeton, NJ.

V. K. RoHATGI AND G. SZEKELY (1989), Sharp inequalities between skewness and kurtosis, Statist. Probab.
Lett., 8, pp. 297—299.

A. SALTELLI (2002), Making best use of model evaluations to compute sensitivity indices, Comput. Phys.
Commun., 145, pp. 280-297.

A. SALTELLI AND I. M. SoBoL’ (1995), About the use of rank transformation in sensitivity analysis of model
output, Reliab. Eng. Syst. Safe., 50, pp. 225-239.

A. SarTteELL], M. RatTO, T. ANDRES, F. CAMPOLONGO, J. CARIBONI, D. GATELLI, M. SAISANA, AND
S. TARANTOLA (2008), Global Sensitivity Analysis. The Primer, John Wiley & Sons, New York.

A. SarreELLl, P. ANNONI, 1. AzziNi, F. CAMPOLONGO, M. RATTO, AND S. TARANTOLA (2010), Variance
based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Comput.
Phys. Commun., 181, pp. 259-270.

R. R. SELvARAJU, M. COGSWELL, A. DAs, R. VEDANTAM, D. PARIKH, AND D. BATRA (2017), Grad-
CAM: Visual explanations from deep networks via gradient-based localization, in Proceedings of the IEEE
International Conference on Computer Vision, IEEE, pp. 618-626.

I. M. SoBoL’ (1969), Multidimensional Quadrature Formulas and Haar Functions, Nauka, Moscow, (in Rus-
sian).

I. M. SoBoL’ (1990), On sensitivity estimation for nonlinear mathematical models, Mat. Model., 2, pp. 112-118
(in Russian).

I. M. SoBoL’ (1993), Sensitivity estimates for nonlinear mathematical models, Math. Modeling Comput. Ex-
periment, 1, pp. 407-414.

E. SonG, B. L. NELSON, AND J. STAUM (2016), Shapley effects for global sensitivity analysis: Theory and
computation, SIAM/ASA J. Uncertain. Quantif., 4, pp. 1060-1083, https://doi.org/10.1137/15M1048070.

C. J. STONE (1994), The use of polynomial splines and their tensor products in multivariate function estima-
tion, Ann. Statist., 22, pp. 118-184.

O. G. YALCIN (2018), Image Classification in 10 Minutes with MNIST Dataset, https://towardsdatascience.
com/imageclassification-in-10-minutes-with-mnist-dataset-54¢35b77a38d.

J. Yosinski, J. CLUNE, A. NGUYEN, T. FucHs, AND H. LipsoN (2015), Understanding Neural Networks
Through Deep Visualization, preprint, https://arxiv.org/abs/1506.06579.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/15M1048070
https://towardsdatascience.com/imageclassification-in-10-minutes-with-mnist-dataset-54c35b77a38d
https://towardsdatascience.com/imageclassification-in-10-minutes-with-mnist-dataset-54c35b77a38d
https://arxiv.org/abs/1506.06579

	Introduction
	Notation
	Estimation strategies
	Additive and multiplicative functions
	Additive functions
	Multiplicative functions

	Example: MNIST classification
	Discussion
	Appendix A. Covariances under winding stairs
	Acknowledgments

