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Ridge Regularization: An Essential Concept in Data Science
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ABSTRACT
Ridge or more formally �2 regularization shows up in many areas of statistics and machine learning. It is one
of those essential devices that any good data scientist needs to master for their craft. In this brief ridge fest, I
have collected together some of the magic and beauty of ridge that my colleagues and I have encountered
over the past 40 years in applied statistics.
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1. Ridge and Linear Regression

We first learn of ridge when we study linear regression. Ridge
provides a remedy for an ill-conditioned X�X matrix. If our n×
p regression matrix X has column rank less than p (or nearly so
in terms of its condition number, the ratio of largest to smallest
singular value), then the usual least-squares regression equation
is in trouble:

β̂ = (X�X)−1X�y. (1)

The poor (large) condition number of X is inherited by X�X,
which is either singular or nearly so, and here we try to invert it.
The problem is that X�X has some eigenvalues of zero or nearly
zero, so inverting is not a good idea. So what we do is add a ridge
on the diagonal—X�X+λI with λ > 0—which increases all the
eigenvalues by λ and takes the problem away:

β̂λ = (X�X + λI)−1X�y. (2)

This is the ridge regression solution proposed by Hoerl and
Kennard (1970) 50 years ago, and as we will see is alive and
strong today.

We can write out the optimization problem that ridge is
solving,

minimize
β

‖y − Xβ‖2
2 + λ‖β‖2

2, (3)

where ‖ · ‖2 is the �2 (Euclidean) norm. Some simple matrix
calculus gets us from (3) to (2).

What value of λ > 0 shall we use? If our main concern
is resolving the numerical issues with solving the least squares
equation, then a small value suffices—say λ = 0.001 or perhaps
that fraction of the largest eigenvalue of X�X.

The ridge remedy (2) comes with consequences. Under a true
linear model, the ridge estimate is biased toward zero. It also has
smaller variance than the OLS estimate. Selecting λ amounts to
a bias-variance trade-off. We address this further in Section 3.

The ridge modification works in many situations where we
fit linear models, and the effect is not as transparent as in (2).

CONTACT Trevor Hastie hastie@stanford.edu Department of Statistics, Department of Biomedical Data Science, Stanford University, Stanford, CA
94305.

• With GLMs we model η(x) = β�x and E(y|x) = g(η(x)),
and fit by maximum likelihood. If X is ill conditioned, this
will lead to a Hessian that is flat (near zero) in some direc-
tions, and the Newton algorithm will be unstable. We can
instead maximize

�(β ; X, y) − λ‖β‖2
2, (4)

which, as in (2), adds λI to the Hessian, and removes the
problem. One example is logistic regression. Here even if X
is well behaved, if the classes are separated in x-space, the
usual maximum-likelihood estimator is undefined—some
coefficients are infinite. A little bit of ridge resolves the issue.

• The same is true in the Cox model, multiclass logistic regres-
sion, and any other model linear in the parameters.

• In wide-data situations where p � n; for example, in
genomics where the variables are single nucleotide poly-
morphisms (SNPs) and can number in the millions, and
in document classification in the tens of thousands. Here
regularization is essential, and λ requires careful tuning.

Typically we do not penalize the intercept in the linear model;
in the case of least squares, we can center X and y upfront, and
ignore the intercept. In other GLMs, it is handled not quite as
simply, but is a detail which for now we will ignore.

We have expressed the ridge problem in Lagrange form in (3),
as opposed to the more evocative bound form

minimize
β

‖y − Xβ‖2 subject to ‖β‖2 ≤ c. (5)

The two problems are of course equivalent: every solution β̂λ

to problem (3) is a solution to (5) with c = ‖β̂λ‖2. The lasso
(Tibshirani 1996) uses an �1 rather than an �2 penalty in linear
models to achieve sparsity:

minimize
β

‖y − Xβ‖2
2 + λ‖β‖1. (6)

This penalty both shrinks coefficients like ridge, but also sets
some to zero and thus selects. Figure 1 compares their constraint
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Figure 1. Constraint balls for ridge, lasso, and elastic-net regularization. The sharp edges and corners of the latter two allow for variable selection as well as shrinkage.

regions, which explains the ability of lasso to set coefficients to
zero. The lasso has inspired ridge-like generalizations, such as
the two mentioned here:

• elastic net (Zou and Hastie 2005) which mixes the ridge and
lasso penalty

λ
[
(1 − α)‖β‖2

2 + α‖β‖1
]

. (7)

It still selects variables like the lasso, but deals more gracefully
with correlated variables.

• group lasso (Yuan and Lin 2007) that does lasso-like selection
for predefined groups of variables

λ

J∑
j=1

‖θj‖2; (8)

here each θj is a vector of parameters. Notice the lack of the
square on the �2 norms, which changes what would be an
overall ridge penalty to a group-wise lasso. The overlap group
lasso (Jacob, Obozinski, and Vert 2009; Hastie, Tibshirani,
and Wainwright 2015) allows for hierarchy in selection, and
has been used (by us, among others) for selecting interactions
(Lim and Hastie 2015) and additive models (Chouldechova
and Hastie 2015).

There is a Bayesian view of ridge regression. We assume yi|β ,
X = xi ∼ x�

i β + εi, with εi iid N(0, σ 2
ε ). Here we think of β as

random as well, and having a prior distribution β ∼ N(0, σ 2
β I).

Then the negative log posterior distribution is proportional
to (3) with λ = σ 2

ε /σ 2
β , and the posterior mean is the ridge

estimator (2). The smaller the prior variance parameter σ 2
β ,

the more the posterior mean is shrunk toward zero, the prior
mean for β . The Bayesian version of the lasso uses a Laplace
prior, which puts much more mass at and around zero, and has
wider tails than the Gaussian, per unit variance. Ridge therefore
expects more variables in the model, and shrinks them all to
stabilize variance. Lasso expects fewer variables, and hence is
able to shrink those included less to stabilize variance.

2. Ridge Computations and the SVD

In many wide-data and other ridge applications, we need to treat
λ as a tuning parameter, and select a good value for the problem

at hand. For this task, we have a number of approaches available
for selecting λ from a series of candidate values:

• With a validation dataset separate from the training data, we
can evaluate the prediction performance at each value of λ.

• Cross-validation does this efficiently using just the training
data, and leave-one-out (LOO) CV is especially efficient; see
Section 7.

• Cp and unbiased risk estimates, where we correct the bias in
the training risk at each λ.

Whatever the approach, they all require computing a number of
solutions β̂λ at different values of λ: the ridge regularization path.
With squared-error loss as in (3), we can achieve great efficiency
via the singular-value decomposition (SVD): X = UDV�. If X
is n×p, we use the full form of the SVD, with U n×n orthogonal,
V p × p orthogonal and D n × p diagonal, with diagonal entries
d1 ≥ d2 ≥ · · · ≥ dm ≥ 0, where m = min(n, p). Plugging this
into (2), we get

β̂λ = V(D�D + λI)−1D�U�y

=
∑
dj>0

vj
dj

d2
j + λ

〈uj, y〉. (9)

So once we have the SVD of X, we have the ridge solution for all
values of λ.

One can use this representation to show that if two or more
variables are identical (a serious problem for linear regression),
their ridge coefficients are identical (and sum to what would be
the ridge coefficient if just one were included in the model).
Similarly, correlated variables have their coefficients shrunk
toward each other—the mechanism exploited by the elastic net.

It is also illuminating to look at the fitted values using (9):

ŷλ =
∑
dj>0

uj
d2

j

d2
j + λ

〈uj, y〉. (10)

The uj form an orthonormal basis for the column space of X. If
X has its column means removed (which we would have done
if there were an unpenalized intercept in the model), then the
uj are the principal components of X. If λ = 0, then (10) says
the fit is the projection onto the column space of X, using the
principal components as a basis (〈uj, y〉 is the coordinate of y
on the jth principal component). With λ > 0 the coordinates
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Figure 2. Simulation from a linear model with n = 100, p = 54, and SNR = 3.3. Left panel: Coefficients profiles β̂λ versus log λ. The OLS coefficients are on the far left. The
left vertical broken line is at the optimal EPE, and the red bars are the true coefficients. The second vertical line corresponds to the minimum LOO CV error. The dashes on the
right axis are the James–Stein (uniformly shrunk) estimates. Right panel: The EPE of the fitted model on an infinite test dataset (orange): EPE(λ) = σ 2 +EX (f̂λ(X)− f (X))2,
and the LOO CV curve estimated from the 100 training points.

of ŷλ are shrunk by an increasing amount as we go through the
succession of principal components.

When n > p the ridge solution with λ = 0 is simply the
OLS solution for β . When p > n, there are infinitely many least
squares solutions for β , all leading to a zero-residual solution.
This is because the least-squares estimating equations

∇βRSS(β) = −2X�(y − Xβ) = 0 (11)

are under determined (more unknowns than equations). But
evidently from (9), we can get a unique solution

β̂mn =
∑
dj>0

vj
1
dj

〈uj, y〉. (12)

This is the least-squares solution with minimum �2 norm.
To see this, we go back to the SVD of X in the p > n setting,

and partition

Dn×p = [D̃n×n : 0n×(p−n)] and Vp×p = [Ṽp×n : Ṽ⊥
p×(p−n)].

(13)
Reparameterizing β = Vθ and plugging into (11), we get after
some simplification

U�(y − UD̃θ1) = 0, (14)

where θ = [θ1 : θ2] is partitioned like V . This defines θ̂1 =
D̃−1U�y, and β̂ = Ṽ θ̂1 + Ṽ⊥θ2 for any θ2 is a solution to (11).
The minimum norm solution is obtained by setting θ2 = 0. We
have for simplicity assumed that X has full row rank, and hence
d̃j > 0, j = 1, . . . , n; if not we use a generalized inverse D̃+

above, which inserts zeros in the inverse where d̃j = 0.

3. Ridge and the Bias-Variance Trade-Off

The coefficients of ridge regression are explicitly shrunk toward
the origin. If the data arise from a linear model

yi = x�
i β + εi, i = 1, . . . , n (15)

with iid zero-mean errors εi, then β̂λ will be a biased estimate
of β . If the xi are assumed fixed, n > p, and X has full column
rank, we can get an explicit expression for this bias from (9)

Bias(β̂λ) = Eβ̂λ − β

=
p∑

j=1
vj

λ

d2
j + λ

〈vj, β〉. (16)

So the coordinates of the true coefficient along different princi-
pal components (of the training data) are differentially shrunk
toward zero—the smaller the PC, the more the shrinkage. The
bias increases in all components as λ increases. Note, when p >

n, β̂λ lies in the at most n-dimensional row space of X, and any
component of β in the orthogonal component will contribute to
the bias as well.

Similarly there is a nice expression for the covariance matrix
under the sampling model (15):

var(β̂λ) = σ 2
p∑

j=1

d2
j

(d2
j + λ)2 vjv�

j , (17)

with σ 2 = var(εi). With λ = 0 this is the usual OLS covariance
σ 2(X�X)−1 in factored form. Here we see that the covariance
decreases uniformly (in a PSD sense) as λ increases.

These play off each other when we make predictions at new
locations x0, leading to a bias-variance trade-off.

MSE(x0, λ) = E(x�
0 β̂λ − x�

0 β)2

= x�
0 var(β̂λ)x0 + [x�

0 Bias(β̂λ)]2.
(18)

For the expected prediction error (EPE) we add σ 2, the vari-
ance of the target response. Even when the model is correct,
a shrunken estimate can perform considerably better than the
OLS solution if the bias and variances are traded off correctly.
This is especially true in cases when p/n is large and/or the
signal-to-noise ratio (SNR) is small. Figure 2 shows the results
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Figure 3. Examples of data augmentation. Left: A mass of fake points at the origin fattens the data cloud, and stabilizes the coefficient estimates in the direction of the
smaller principal axis. Right: Many perturbed versions of the original data points are presented, all with the same response. If the perturbations are zero-mean, scalar
covariance with the right scalar, the result is approximate ridge.

of a linear-model simulation with n = 100 and p = 54 and the
SNR = 3.3 (this is a population R2 of 77%). The OLS coefficients
(left panel, far left in plot) are wild but unbiased. The ridge-
shrunken versions at log(λ) ≈ −4 are much closer to the true
coefficients (red marks), and predictions using them achieve
minimum mean-squared error from the true linear function
EX(f̂λ(X) − f (X))2 (right panel). Of course we don’t know the
best λ, and typically use a left-out dataset or cross-validation to
estimate the prediction-error curve empirically. Included in the
plot is the LOO CV curve, discussed in Section 7, which finds a
reasonable value for λ.

A general form of shrinkage for any multivariate estimator is
given by the celebrated James–Stein formula (James and Stein
1961). In the context of linear regression we have

β̂JS =
[

1 − (p − 2)σ 2

β̂�X�Xβ̂

]
β̂ , (19)

where β̂ is the OLS estimator, and σ 2 can be estimated in
the usual fashion via the residual sum-of-squares for linear
regression (Efron and Hastie 2016, chap. 7). The left panel of
Figure 2 includes the James–Stein estimates on the right axis.
The corresponding MSE is above 15, and so is not that good on
this example.

4. Ridge and Data Augmentation

There are some interesting tricks for fitting a ridge regression
using standard linear-model software. Suppose we augment X
and y in the following way:

X̃ =
[

X√
λIp

]
ỹ =

[
y
0.

]
(20)

Think of the case where X and y are centered. We have added p
additional points around the origin, each a distance

√
λ along

a coordinate axis. It is straightforward to check that the OLS
coefficient is β̂λ. Another way to do this approximately is to
augment X in a similar way with na random draws Xa from

a N(0, λI) distribution (or any multivariate distribution with
mean zero and covariance λI). y is again padded with na zeros.
If we fit the model by weighted least squares, giving weight 1
to the original points, and 1/na to the augmentation points, we
approximately achieve β̂λ. Approximate because 1

na
X�

a Xa ≈ λI.
See the left plot in Figure 3 for an example. Another way to
achieve this is to perturb each observed data vector xi by a
random amount. We make m perturbed copies of each xi: x′

ij =
xi + εij, j = 1, . . . , m, where εij ∼ N(0, λ

n I). Each of the m x′
ij

vectors gets the same response yi. Then

n∑
i=1

m∑
j=1

x′
ijx

′�
ij ≈ m

(
X�X + λI

)
, (21)

because the zero-mean cross-terms get averaged away as m gets
large.

Here the augmentation is somewhat artificial. A more realis-
tic augmentation is used in image classification with deep neural
networks (e.g., Chollet and Allaire 2018). We have a limited
number of labeled training images. The idea is to take each
image and apply some natural deformations in such a way that
humans would have no trouble making the classification. For
example, suppose we have an image of a poodle. By making
small rotations, scale and location changes, hue and contrast
changes, it will still look like a poodle. We can now augment our
training set with all these additional versions, creating a cloud of
images around the original, as in Figure 3(right panel). This kind
of regularization prevents the model from over-training on the
original image, and by analogy is a form of ridge regularization.

5. Ridge and Dropout Regularization

Two forms of regularization have arisen in recent years in the
statistical and machine learning communities. They are similar
in spirit to each other, and rather closely aligned with ridge
regression.

Random forests (Breiman 2001) have an option whereby each
time a tree is grown, and a split is contemplated at a node, only a
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subset m of the p variables available are considered as candidates
for splitting. This causes variables to stand in for each other,
or share the predictive burden—a characteristic shared by ridge
regression. The smaller m, the more regularized the fit.

Modern deep neural networks employ a similar mechanism:
dropout learning (Srivastava et al. 2014). Neural networks have
layers of activations or transformations that feed forward into
successive layers through a series of linear models followed by
nonlinear transformations. For example, going from layer k − 1
with pk−1 units to layer k with pk units, consider computing the
activation a(k)

� for a single observation during the feed-forward
stage of training.

z(k)
� = w(k−1)

�0 +
pk−1∑
j=1

w(k−1)
�j a(k−1)

j ,

a(k)
� = g(z(k)

� ).

(22)

The idea is to randomly set each of the pk−1 activations a(k−1)
j

to zero with probability φ, and inflate the remaining ones by
a factor 1/(1 − φ). Hence, for this observation, those nodes
that survive have to stand in for those omitted. This is done
independently for each observation, and can also be seen as be a
form of ridge regularization, and when done correctly improves
performance. The fraction φ omitted is a tuning parameter, and
for deep networks it appears to be better to use different values
at different layers.

We illustrate using a simple version of dropout for linear
regression (see also Wager, Wang, and Liang 2013). For simplic-
ity we assume all variables have mean zero, so we can ignore
intercepts. Consider the following random least-squares crite-
rion:

LI(β) = 1
2

n∑
i=1

⎛
⎝yi −

p∑
j=1

xijIijβj

⎞
⎠2

. (23)

Here the Iij are iid variables for all i, j with

Iij =
{

0 with probability φ,
1/(1 − φ) with probability 1 − φ, (24)

(this particular form is used so that E[Iij] = 1). Using simple
probability it can be shown that the expected score equations
can be written

E
[
∂LI(β)

∂β

]
= −X�y + X�Xβ + φ

1 − φ
Dβ = 0, (25)

with D = diag{‖x1‖2, ‖x2‖2, . . . , ‖xp‖2}, where xj is the jth
column of X. Hence, the solution is given by

β̂ =
(

X�X + φ

1 − φ
D

)−1
X�y, (26)

a generalized ridge regression. If the variables are standardized,
the term D becomes a scalar, and the solution is identical to ridge
regression.

6. Ridge and the Kernel Trick

We start with the ridge problem (3) for the case p � n and write
out the score equation (up to a factor 2):

− X�(y − Xβ) + λβ = 0. (27)

For λ > 0, it is easy to see that the solution must satisfy β =
X�α for some n vector α. In other words, the solution β̂λ lies in
the row space of X, an n-dimensional subspace ofRp (we assume
X has full row rank, for ease of exposition).

From this we can easily derive

α̂λ = (K + λIn)
−1y, (28)

where K = XX� is the n × n gram matrix of pairwise inner
products. Likewise the fit vector is given by

ŷλ = Xβ̂λ

= XX�α̂λ

= K(K + λIn)
−1y.

(29)

So even though p can be very large, all we need to do are n-
dimensional calculations to compute the solution (although the
computations needed to produce K here are O(pn2)). This is the
kernel trick in its simplest form.

This is also the case for GLMs, and in fact any linear model fit
obtained by optimizing a quadratically penalized objective. We
will use a GLM as an example. Denoting the n-vector of fits by
η = Xβ , we can write the quadratically penalized log-likelihood
problem as

maximize
β

�(y, Xβ) − λ‖β‖2
2. (30)

Again it can be shown (Hastie and Tibshirani 2004) that the
solution has the form β = X�α, the fit vector η = Kα, and
the optimization in α becomes

maximize
β

�(y, Kα) − λα�Kα. (31)

Here the linear kernel matrix corresponds to ridged linear
models, but the formulation opens the door to the rich world of
function fitting in reproducing kernel Hilbert spaces (RKHS).
For any positive definite bivariate function K(x, x′), we can
think of it computing inner products in an implicit feature space
h(x): K(x, x′) = 〈h(x), h(x′)〉. We end up fitting functions of
the form f (x) = ∑n

i=1 K(x, xi)αi, by solving problems of the
form (31) where Kii′ = K(xi, xi′) (see Hastie, Tibshirani, and
Friedman 2009, chap. 6 for details). The support-vector machine
for two-class classification is of this form. With yi ∈ {−1, +1}
and η = Kα, the optimization problem is

minimize
n∑

i=1
(1 − yiηi)+ + λα�Kα. (32)

For GLMs, we can solve (31) using standard ridge software.
We compute the Cholesky decomposition of K = R�R, and
reparameterize via θ = Rα (again an n-vector). Then the
objective in θ becomes

maximize
β ′ �(y, R�θ) − λ‖θ‖2

2, (33)
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another ridged linear GLM, but in n rather p � n dimensions.
For the linear kernel K, it is easy to see that the solution for
the original β is β̂λ = Qθ̂λ, where X� = QR is the QR
decomposition of X� (same R). The beauty here is that we
reduce our n × p wide matrix X to an n × n matrix R�, and
then perform our ridge MLE with it instead. We can perform
CV to select λ in this space as well, and need only map back if
we want to make predictions on new wide vectors x0.

7. Ridge and Leave-One-Out Cross-Validation

We have already talked of using the SVD to compute the ridge
path of solutions efficiently. This eases the burden when com-
puting the solution paths k times during k-fold cross-validation.
For n-fold (LOO) CV, we have another beautiful result for ridge
and other linear operators.

LOOλ =
n∑

i=1
(yi − x�

i β̂
(−i)
λ )2 =

n∑
i=1

(yi − x�
i β̂λ)

2

(1 − Rλ
ii)

2 . (34)

Here β̂
(−i)
λ is the ridge estimate computed using the (n − 1)-

observation dataset with the pair (xi, yi) omitted, and

Rλ = X(X�X + λI)−1X� (35)

is the n × n ridge operator matrix for the original n-observation
X matrix. The equation says we can compute all the LOO
residuals for ridge from the original residuals, each scaled up
by 1/(1−Rλ

ii). From (10), we see we can obtain Rλ efficiently for
all λ via

Rλ = US(λ)U�, (36)

with S(λ) the diagonal shrinkage matrix with elements d2
j /(d2

j +
λ).

One can derive this result using the Sherman–Morrison–
Woodbury identity, but a more general and elegant derivation
due to Golub, Heath, and Wahba (1979) is as follows. For each
pair (xi, yi) left out we are required to solve

minimize
β

∑
� �=i

(y� − x�
� β)2 + λ‖β‖2 (37)

with solution β̂
(−i)
λ . Let y∗

i = x�
i β̂

(−i)
λ . If we insert the pair

(xi, y∗
i ) back into the size n − 1 dataset, it will not change the

solution to (37), since this point is on the solution surface (and
hence has zero loss at β = β̂

(−i)
λ ). Back at a full n dataset, and

using the linearity of the ridge operator, we have

y∗
i =

∑
� �=i

Rλ
ily� + Rλ

iiy
∗
i

=
n∑

�=1
Rλ

i�yi − Rλ
iiyi + Rλ

iiy
∗
i ,

(38)

from which we see that (yi − y∗
i ) = (yi − ŷi)/(1 − Rλ

ii) with
ŷi = x�

i β̂λ.
The LOO formula (34) appears to break down when p > n

in the limit as λ ↓ 0 toward the minimum-norm solution. It
turns out we can get an equally elegant solution in this case as
well (Hastie et al. 2019).

For λ > 0 from (29) we get

rλ = (In − K(K + λIn)
−1)y

= λ(K + λIn)
−1y. (39)

Hence, the summands in formula (34) can be written as

yi − x�
i β̂

(−i)
λ = {(K + λIn)−1y}i

{(K + λIn)−1}ii
(40)

(the λ multiplier from (39) in the numerator and denominator
cancel). Now we can set λ = 0 to obtain

LOOmn =
n∑

i=1

(
yi − x̂�

i β(−i)
mn

)2 =
n∑

i=1

( {K−1y}i
{K−1}ii

)2
. (41)

This formula does not apply if there is an unpenalized inter-
cept in the model. One can show in this case that the corre-
sponding formula is

LOOmn =
n∑

i=1

{K̃+y}i

{K̃+}ii
, (42)

where K̃ is the doubly-centered kernel matrix K̃ = (In −
M)K(In − M) (with rank at most n − 1), M = 1n1�

n /n is the
mean projection operator, and the K̃+ is a pseudo inverse.

8. Ridge, Minimum Norm, and Double Descent

There has been a burst of activity in the machine learning
community over some surprising behavior of a particular class
of estimators. Before we get into detail, a bit of context is
in order. Deep learning models are dominant in certain high
SNR domains, such as image classification. Practitioners have
found that fitting a deep convolutional network with many
layers by gradient descent all the way down to zero training
error performs very well on test data. These networks typically
have more parameters than training observations and so this
would normally be classed as severe overfitting. What has also
been observed is that increasing the number of parameters (via
more hidden units) can improve performance in some instances
(Zhang et al. 2016; Belkin et al. 2018; Hastie et al. 2019).

We first make the simple observation (Zhang et al. 2016) that
with p � n and squared-error loss, gradient descent starting
at β = 0 down to zero training error gives the minimum �2-
norm solution. This is because the gradient (11) is in the row
space of X, and hence all the gradient updates remain there.
This characterizes the minimum-norm solution (see end of
Section 2).

Figure 4 is a simple demonstration of this double descent
behavior. We generated data from a model y = f (x) + ε with
x ∈ R

9. The true function f is nonlinear and nonadditive, x is
distributed N(0, I9), ε is N(0, σ 2), and σ is chosen so the SNR
var(f (x))/σ 2 = 3. The sample size is n = 100, and we use a
very large test set (10K) to measure out-of-sample error. For our
estimation method we use an additive model

g(x; d) = θ0 +
9∑

j=1
θ�

j hj(xj; d), (43)
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Figure 4. Double descent in the generalization error of minimum-norm estimation as the dimension increases.

Figure 5. Singular values for the natural spline bases on the training data, as the
dimension increases from 100 (orange) to 270 (purple).

where each hj(·; d) is a d-vector of natural-spline basis functions,
with knots chosen at uniform quantiles of the training values
for variable xj (Hastie, Tibshirani, and Friedman 2009, chap. 5).
The total number of parameters or dimension of the model is
9d + 1, with d stepping from 1 thru 30. The dimension reaches
the training sample size of n = 100 when d = 11.

The black curve shows the test prediction error of the
minimum-norm least squares fits, and the orange curve their
training error. The training error behaves as expected, reaching
and staying at zero as the dimension passes 100. Before 100, the
fits are OLS and overfit almost immediately, and increase to a
dramatic level (around 2000) before descending down again
as the dimension increases. The blue curve corresponds to
the optimally tuned ridge estimator which is fairly flat, with
a minimum around dimension 20.

The apparent dilemma here is that the black curve does
not show the usual bias-variance trade-off as the dimension
increases. The explanation for the increase around 100 is that
the model has to interpolate the training data to achieve zero
training error. As a result the prediction curve has to wiggle a
lot between training points, and the �2 norm of θ̂ gets large.
This does not bode well for out-of-sample prediction, since the
test features fall in this in-between region. But as the dimension
grows beyond 100, zero error can be achieved more smoothly
with decreasing norm, and leads to improved out-of-sample
prediction. So the complexity of the model is not determined
by dimension alone; the potential for smaller �2 norm of the
solution at each dimension plays a role as well. The “objective”
that is optimized at each dimension combines loss and complex-
ity (OLS fit with minimum norm), which clouds the usual bias-
variance picture.

It is interesting to note that the minimum-norm fitting
method is linear in y (see (12)). However, as the number of
columns (dimension) of the basis matrix H increases, the small
singular values increase leading to the potential for more stable
and smaller �2-norm solutions. Figure 5 illustrates this for our
example.

9. Ridge + Ridge = Lasso

Suppose X is an m × n matrix. Consider the optimization
problem

minimize
M

‖X − M‖2
F s.t. rank(M) ≤ q. (44)

Even though the rank constraint makes this problem noncon-
vex, the solution is well known and easy to compute. We com-
pute the SVD of X = UDV�, set all but the top q singular values
of D to zero, and reconstruct. There is a convex relaxation of this
problem (Fazel 2002)

minimize
M

‖X − M‖2
F + λ‖M‖∗, (45)

where ‖M‖∗ is the nuclear norm of M—the sum of the singular
values. The solution is again via the SVD of X. Now we replace
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the singular values by their soft-thresholded values d̃i = (di −
λ)+, and reconstruct. This is the lasso version of rank selection
for matrices. Suppose λ is such that all but q of the d̃i are greater
than zero, and hence the solution M̃λ has rank q. Now consider
the doubly ridged problem (Srebro, Rennie, and Jaakkola 2005)

minimize
A,B

‖X − AB�‖2
F + λ

2
‖A‖2

F + λ

2
‖B‖2

F , (46)

over matrices Am×q and Bn×q. This biconvex problem has a
solution that coincides with that of (45): ÃB̃� = M̃. Quite
remarkable that a biconvex �2-regularized problem is equivalent
to a convex �1 regularized problem! At this point these con-
nections may seem somewhat academic, since the SVD of X
provides solutions to all the problems above. These connections
show their strength in variations of these problems.

• If X is massive and sparse, we can compute a low-rank matrix
approximation by alternating ridge regressions. Given A, we
obtain B via B� = (A�A+ λ

2 Iq)A�X, which is a dense skinny
matrix multiplying a sparse matrix. Likewise for A given B.

• When X has missing values, we can solve the matrix comple-
tion objective

minimize
M

‖P
(X − M)‖2
F + λ‖M‖∗, (47)

where P
 projects onto the observed values of X (i.e., the
Frobenius norm ignores the entries corresponding to missing
values in X). Objective (47) is convex in M, and for large X
solutions can be obtained again using the alternating ridged
version (46) (Hastie et al. 2015).

10. Discussion

We see through these examples that ridge regularization and
its extensions are pervasive in applied statistics. Although the
lasso enjoys widespread popularity in wide-data scenarios, both
ridge and elastic-net claim some of the territory. In document
and web-page classification using bag-of-words and n-grams,
synonyms create problems for methods that select variables.
Ridge includes them all, and suffers less. Furthermore, classifiers
are hurt less by bias than quantitative regressors. What started
off as a simple fix for wayward linear regression models has
evolved into a large collection of tools for data modeling. It
would be hard to imagine the life of a data scientist without
them.
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