2101.11849v1 [math.LO] 28 Jan 2021

.
.

arxiv

On computable aspects of algebraic and definable closure

Nathanael Ackerman Cameron Freer
Harvard University Massachusetts Institute of Technology
Cambridge, MA 02138, USA Cambridge, MA 02139, USA
nate@aleph@.net freer@mit.edu

Rehana Patel
African Institute for Mathematical Sciences
M’bour—Thies, Senegal
rpatel@aims-senegal.org

Abstract

We investigate the computability of algebraic closure and definable closure with
respect to a collection of formulas. We show that for a computable collection of formulas
of quantifier rank at most n, in any given computable structure, both algebraic and
definable closure with respect to that collection are X9, sets. We further show that
these bounds are tight.

keywords: algebraic closure, definable closure, computable model theory

1 Introduction

In this paper we study the computability-theoretic content of two model-theoretic concepts:
algebraic closure and definable closure. These notions are fundamental to model theory,
and have been studied explicitly in various contexts [1, 3, 7.

In order to study the computable model theory of these notions, we consider iteratively-
defined algebraic and definable closure operators with respect to a specified set of formulas,
and focus on certain associated sets. For a set of formulas ® and a structure N, we
define sets acle o+ and dclg pr, which capture the information contained in the operators
for algebraic and definable closure in A/ with respect to formulas in ®. We also define sets
ACL,, and DCL,,, which describe the computable information that is already present in
the first step of this iterative process, for first-order formulas of quantifier rank at most n.

The paper is organized as follows. In Section 2, we provide definitions of ACL,,, DCL,,
acle a7, and dclg pr and establish some basic relationships among them. Section 3 gives
upper bounds on the computability-theoretic strength of these objects in the quantifier-
free case — namely, of ACLg, DCLg, acle a7, and dclg or where @ is a computable set of
quantifier-free formulas. Section 4 gives corresponding lower bounds on these objects, which
establish tightness of the upper bounds; for ACLy and DCLyg, tightness is achieved via
structures that are model-theoretically “nice”, namely, are Rg-categorical or of finite Morley
rank. Finally, in Section 5 we use these results to provide bounds on the computational

strength of ACL,,, DCL,, acle o and dclg ar for arbitrary n and computable collections @
of formulas of quantifier rank n.
Parts of this paper appeared in an extended abstract [2] presented at LFCS 2020.

2 Preliminaries

In this section we introduce some terminology and notation, and define the main objects of
study of this paper: ACL,, DCL,, acle a7, and dclg pr. We prove some basic relationships
among them, and discuss their connection with standard model-theoretic notions of
algebraic and definable closure.

For standard notions from computability theory, see, e.g., [8]. We write {e}(n) to
represent the output of the eth Turing machine run on input n, if it converges, and in this
case write {e}(n)|. Define W, := {n € N : {e}(n)|} and Fin := {e € N : W, is finite}.
Recall that Fin is ¥9-complete [8, Theorem 4.3.2].

In this paper we will focus on computable languages that are relational. Note that
this leads to no loss of generality due to the standard fact that computable languages
with function or constant symbols can be interpreted computably in relational languages
where there is a relation for the graph of each function. For the definitions of languages,
first-order formulas, and structures, see [6].

In the context of algebraic and definable closure, we will often consider formulas with a
specified partition of their free variables, which we write with a semicolon, e.g., ¢(T;7).
When we refer to a set of formulas, we mean a set of formulas with specified variable
partitions.

We will work with many-sorted languages and structures; for more details, see [9, §1.1].
Let £ be a (many-sorted) language, let N be an L-structure, and suppose that @ is a tuple
of elements of A'. We say that the type of @ is [[,-,, X; when @ € [[,-,,(X;)"V, where each
of Xo,...,Xn_1 is a sort of £. The type of a tuple of variables is the product of the sorts
of its constituent variables (in order). The type of a relation symbol is defined to be the
type of the tuple of its free variables, and similarly for formulas. We write (VZ : X) and
(3z : X)) to quantify over a tuple of variables T of type X (which includes the special case
of a single variable of a given sort).

If one wanted to avoid the use of many-sorted languages, one could instead encode
each sort using a unary relation symbol — and indeed this would not affect most of our
results. However, in Section 4 we are interested in how model-theoretically complicated the
structures we build are, and the single-sorted version of the construction in Proposition 4.1
would no longer yield an Ng-categorical structure.

A graph is a pair (V, E) where V is a set of vertices and F is a symmetric irreflexive
binary relation on V. A chain in a graph is a cycle-free connected component of the graph
each of whose vertices has degree 1 or 2; hence a chain either is finite with at least two
vertices, or is infinite on one side (an N-chain), or is infinite on both sides (a Z-chain).
The order of a chain is the number of vertices in the chain.

Similarly, a digraph is a pair (V, E) where V is a set of vertices and F is an asymmetric
binary relation on V, i.e., no vertices have self-loops and any two vertices have an edge
in at most one direction. A path in a digraph is a connected component of the graph,
containing at least one edge, in which each vertex has in-degree at most 1 and out-degree

at most 1, and having a (necessarily unique) vertex with in-degree 0. A vertex of a path is
inatial if it has in-degree 0 and final if it has out-degree 0. Hence a path either is finite
with a unique initial and unique final vertex, or is infinite with a unique initial vertex (an
N-path). The order of a path is the number of vertices in the path.

We now define computable languages and structures.

Definition 2.1. Suppose L = ((X;)jes, (Ri)icr) is a language, where I,J € NU {N}
and (Xj)jes and (R;)ier are collections of sorts and relation symbols, respectively. Let
tys: I — J<¥ be such that for all i € I, we have ty (i) = (jo,-..,jn—1) where the type of
R; is [[ycp Xj.- We say that L is a computable language when ty, is a computable
function. For each computable language, we fix a computable encoding of all first-order
formulas of the language.

A computable L-structure N is an L-structure with computable underlying set such
that the sets {(a,j) : a € (X;)N} and {(b,7) : b€ (R)N} are computable subsets of the
appropriate domains.

We say that ¢ € N is a code for a structure if {c}(0) is a code for a computable
language (via some fized enumeration of functions of the form ty,) and {c}(1) is a code
for some computable structure in that language. In this case, we write L. for the language
that {c}(0) codes, M. for the structure that {c}(1) codes, and T, for the first-order theory
of M. Let CompStr be the collection of ¢ € N that are codes for structures.

Note that these notions relativize in the obvious way. For more details on basic notions
in computable model theory, see [4, 5].

Towards defining sets that capture the computable content of algebraic and definable
closure, we first describe when a formula is algebraic or definable at a given tuple.

Definition 2.2. Let £ be a language, let o(T;7) be a first-order L-formula, and let N be
an L-structure. Suppose @ € N has the same type as T. The formula ¢(T;7y) is algebraic
at @ if B ~

{beN : N Eoab)}
is finite (possibly empty), and definable at @ if this set is a singleton.

We now describe several sets that capture the information contained in a single step of
the process of determining algebraic or definable closure.

Definition 2.3.
« CL := {(c, o(T;Y),a, k) : ¢ € CompStr, p(T;7) is a first-order L -formula, @ € M,
has the same type as Z, and k € NU{oo} is such that ‘{B e M. : M. = ¢(a; B)}} = k}

« ACL := {(c,¢(z;7),a) : there exists k € N with (¢, ¢(z;¥),a,k) € CL}.

« DCL = {(¢,¢(%;7),a) : (c,¢(T;¥),a,1) € CL}.

ForY € {CL,ACL,DCL} and n € N let

Y, := {t € Y : the second coordinate of ¢ is a Boolean combination of ¥, -formulas}.

e ForY € {CL,ACL,DCL} U {CL,,, ACL,,, DCL, },en and ¢ € CompStr, let
Y¢:={u: (c)"ueY},

i.e., select those elements of Y whose first coordinate is ¢, and then remove this first
coordinate.

Note that CompStr is a I19 set. Hence the sets CL, ACL, DCL are already complicated
from the computability-theoretic perspective. As such, when we consider the complexity of
whether formulas are algebraic or definable at various tuples, we will consider the question
of how complex CL¢, ACL®, DCL® can be, when c is a code for a structure. The next three
lemmas connect these sets.

Lemma 2.4. Uniformly in the parameters ¢ € CompStr and n € N, the set
{(¢(m;7),a,k) € CL;, : keN, k>1}
is ©Y in DCLE.

Proof. Suppose ¢(T;y) is a Boolean combination of 3, -formulas of L., and let £ > 1. For
each j < k, choose a tuple of new variables Z7 of the same type as 7. Define the formula

Tap(f;@),k = /\ (Ei 7& Zj) A /\ gp(f,fj)7

1<j<k i<k

whose free variables we will partition in several different ways below. This formula specifies
k-many distinct realizations of the tuple ¥ in ¢(Z;7), given an instantiation of Z. Note
that T (z) 1 is also a Boolean combination of ¥, -formulas of L.
For j < k,let 7j ;=729 ... z7-1zJ+1 ... k=1 Note that (¢(T;7),a, k) € CL if and
only if
(Y p@g k(75:27), @b® - b1 pIF ... p*1) € DOLS,

for some j < k and b9,...,6771, b3t . bkl € M,.. By enumerating over all such
parameters, and enumerating over all choices of ¢ and k, we see that the desired set is X
in DCL,. O

Lemma 2.5. Uniformly in the parameters ¢ € CompStr and n € N, the set
{(¢@:7),a,k) € CLE : k =0}
is ¢ in DCLS.

Proof. Suppose ¢(T;7) is a Boolean combination of 3, -formulas of L.. Let Z be a tuple of
variables having the same type as 7 and disjoint from Zg. Define the formula

\chp(i;ﬂ) (f?, @) = 90(55 y) \ (? = z)'

Note that W z7)(TZ,%) is also a Boolean combination of %,,-formulas of L.
Now suppose by and by are distinct tuples of elements of M, having the same type as
Z. Then the following are equivalent:

« (Yy@yp (@Z7y),aby) € DCLS and (V74 (TZ;7),ab) € DCLY;

e {b: Mo o(@h)} = 0, ie., (p(3:7).,0) € CLE.
The result is then immediate. O

Lemma 2.6. Uniformly in the parameters ¢ € CompStr and n € N, there are computable
reductions in both directions between ACLS [[DCLS, and CLE.

Proof. It is immediate from the definitions that DCL{, is computable from CL{,. Further,
ACL;, is computable from CL;, as

ACLS = {(¢(z;7),a) : there exists k with (¢(Z;7), @, k) € CLS, and k # oo}

and as (¢(7;7),a, k) € CLg holds for a unique £ € NU {o0}.
Lemmas 2.4 and 2.5 together tell us that the set

{(¢(®;7),a,k) € CLS, : k € N}

is computably enumerable from DCLY,. But (¢(Z;7),a, 00) € CLS if and only if (p(7;7), a) &
ACL{. Therefore when ¢(7;y) is a Boolean combination of ¥,-formulas, and given
a € M., we can compute from ACL{ whether or not (¢(Z;7),a,o0) € CLS. Further, if
(p(7;9),a,00) € CLS, then we can compute from DCLS, the (unique) value of k such that
(p(7;7),a, k) € CLS. Hence CL¢, is computable from ACLS [[DCLE. O

Note that by Lemma 2.6 we are justified, from a computability-theoretic perspective,
in restricting our attention to ACL and DCL (and their variants), as opposed to CL.

We next define a closure operator with respect to a collection of formulas. We will use
it to study computable aspects of algebraic and definable closure. (See [6, §4.1] for more
details on the standard notions of algebraic and definable closure.)

Definition 2.7. Let L be a language, let ® be a set of first-order L-formulas, and let N
be an L-structure. Suppose B C N and S € NU {oc}. Define clg (B, S) forn € N by
induction as follows.

« clg \(B,S) == B,

. CICII)N(B, S):=BU{beN : t]riere exists ¢ e:I) and a tuple @ from B WiEh
[{d : N |= ¢(a;d)}| € S such that for some b € N
with b € b, we have N = ¢(a;b) },

. clng}(B,S) = clp . (clp (B, 9)).

Let clo Ar(B, S) := Usjen clﬁI,N(B,S).

When considering clo o7(-, S), it suffices to restrict our attention to the case where the
argument is a finite subset of A/, since for any B C N we have

cloa(B,S) = U{clq>7N(Bo,S) : By is a finite subset of B}.

There are two instances of S for which the operator cle ar(-, S) is especially important
model-theoretically. The algebraic and definable closure operators in A/ (with respect to
®) are given, respectively, by

aclp Ar(-) := clan(-,N)

and
delo ar(+) := cloa(-,{1}).

The standard model-theoretic notions of first-order algebraic and definable closure in N/
are acly, oy a(+) and dely,) ar(+), respectively. In these two cases, when ® = L, ,(£)
and S is either N or {1}, we have clp or(-,5) = clé,N(-,S), i.e., the first step of the
iterative process in Definition 2.7 is already idempotent. But this is not the case for every
set ® of formulas, and so to obtain a closure operator, we need the full iterative process.

Note that a key computability-theoretic distinction is whether or not S is finite, and
indeed one can easily check that all the upper and lower bounds proved in this paper for
delg ar() also hold for clg ar(-, .S) for any finite S.

In order to study the computability-theoretic content of the algebraic and definable
closure operators, we will consider the following encodings of their respective graphs.

Definition 2.8. Let L be a language, let ® be a set of first-order L-formulas, and let N
be an L-structure. Define

aclpy == {(a,A) : a € aclp x(A) and A is a finite subset of N},
delo v == {(a,A) : a € dclp n(A) and A is a finite subset of N'}.
For ¢ € CompStr, write clg (B, S) to denote clp a1, (B, S), and similarly with acle .(B),
acle ¢, dcle (B), and dclg ..

As can be seen from Definition 2.7, the set clg (B, S) is closely related to CL® via the
relation Zg on M, defined by

Zs = | J {@b) : M. v(@b) and (¢(x;7),ak) € CL® with k € S} .
Pped

For example, suppose every formula in ¢ has just two free variables, and let Ug be the
transitive closure in M, of Zg. Then

aclp (B, S) = {b € M, : there exists a € B for which Uy(a, b) holds}

and
delg (B, S) = {b € M. : there exists a € B for which Uy (a,b) holds}.

3 Upper Bounds for Quantifier-Free Formulas

We now provide straightforward upper bounds on the complexity of ACLg, DCLG, acls .,
and dclg . for ¢ € CompStr and ® a computable set of quantifier-free first-order £.-formulas.

Proposition 3.1. Uniformly in the parameter ¢ € CompStr, the set ACL§ is a XY set.

Proof. Uniformly in ¢ € CompStr, a quantifier-free L.-formula ¢(Z;7), and tuple a €
M. of the same type as T, we can computably find an e € N such that We equals
{be M. : M. =¢(a;b)} (where the tuples b of this set are encoded in N in a standard

way).
Further, (¢(%;7),a) € ACL§ if and only if {b € M, : M. |= ¢(a;b)} is finite. Therefore
ACL§ is 39, as Fin is X9. O

Proposition 3.2. Uniformly in the parameter ¢ € CompStr, the set DCL{ is the inter-
section of a T1Y set and a XY set (in particular, it is a AY set).

Proof. Uniformly in ¢ € CompStr, the set of all pairs (¢(7;7), a) such that

M. = (Y0, 71) ((e(@,70) A (@ 1) — (o = 1))

holds is a TIY set. Likewise, uniformly in ¢ € CompStr, the set of all pairs (¢(7;¥), @) such
that there exists b with M, = ¢(a;b) is a 3 set. O

As a consequence, DCL is computable from 0'.

Proposition 3.3. Uniformly in the parameter ¢ € CompStr and an encoding of a com-
putable set ® of quantifier-free first-order L.-formulas, the set aclg . is £ in ACL§. In
particular, acle . is a Eg set.

Proof. Let A C M, be a finite set. Note that b € aclg (A) if and only if there is a finite
sequence bg, . ..,b,_1 € M, where b = b,,_1 such that for each i < nLthere exists a formula
©i(T;y) € @, a tuple a; with entries from AU {b;};<;, and a tuple d; € M, satisfying

s (¢i(7;9),a;) € ACLg,

« M, ’: (pi(ai;ai), and

e b € Ez

Hence, uniformly in ¢, the set acls . is E(l) in ACLG. By Proposition 3.1, the set aclg . is
30, O

Proposition 3.4. Uniformly in the parameter ¢ € CompStr and an encoding of a com-
putable set ® of quantifier-free first-order L.-formulas, the set dclg . is 39 in DCL§. In
particular, dcle . is a ¥Y set.

Proof. Let A C M, be a finite set. Note that b € dclg (A) if and only if there is a finite
sequence bg, . ..,b,_1 € M, where b = b,,_1 such that for each i < nLthere exists a formula
©i(Z;y) € ®, a tuple a; with entries from AU {b;},<;, and a tuple d; € M, satisfying

s (¢i(T;9),a;) € DCLG,
« M. = pi(ai; d;), and
e b € El

Hence, uniformly in ¢, the set dclg . is ¥? in DCL§. By Proposition 3.2, the set dclg . is
9. O

4 Lower Bounds for Quantifier-Free Formulas

We now prove lower bounds on ACLg, DCLG, acle ., and dclg . that show that the upper
bounds in Section 3 are tight.

In Propositions 4.1 and 4.2, we establish tightness of the upper bounds in Propositions 3.1
and 3.2, respectively. Moreover, we do so using structures that have nice model-theoretic
properties (Xg-categoricity for ACLg and finite Morley rank for DCLy).

In Propositions 4.3 and 4.4 we show tightness of the upper bounds in Propositions 3.3
and 3.4, respectively.

We proved Propositions 3.3 and 3.4 by showing that when ® is a computable collection
of quantifier-free £.-formulas, the sets acle . and dcle . can be computably enumerated
from ACLG and DCLG, respectively. In Proposition 4.5, we show that in general the
converse does not hold, i.e., there is no information about ACL§ and DCL{ which can be
uniformly deduced from aclg . and dclg .

The structure we build in the proof of Proposition 4.1 has unary relations U; and
Vi, for ¢ € N, which each hold of a single element. These relations are not necessary
to show tightness, but we will need them when we reuse this structure in the proof of
Proposition 4.3.

Proposition 4.1. There is a parameter ¢ € CompStr such that the following hold.

(a) L. consists of, for each i € N, a sort X; and unary relation symbols U; and V; of sort
X;. Each of the U; and V; is instantiated by a single element of M.

(b) For each ordinal o, the theory T, has (|a+1|“)-many models of size R, . In particular,
T, is Ny-categorical.

(c) {e : (Xe)V is finite for every N |= 7.} = Fin.
(d) ACL§ =1 Fin. In particular, ACL§ is a ¥9-complete set.
Proof. Let ((ei, nz))Z N be a computable enumeration without repetition of

{(e,n) : e,n € Nand {e}(n)l}.

Note that for each ¢ € NU {oc}, there are infinitely many programs that halt on exactly
f-many inputs, and so there are infinitely many e € N that are equal to e; for exactly
f-many 1.

Let ¢ € CompStr be a code such that L. is as in (a), and M, satisfies the following.

+ The underlying set of M. is NU ({0,1} x N),
o (Up)Me = {(0,4)} and (V;)Me = {(1,4)} for i € N, and
o i€ (X,)Me forieN.

Each model of T, is determined up to isomorphism by the number of elements in the
instantiation of each sort. Consider a model of T, of size N,. For each j € N it has
No-many sorts whose instantiations are of size j. It also has Rg-many whose instantiations
are infinite, each of which may have size Ng for arbitrary 8 < o. Hence (b) holds.

Note that

(X)Me = {i : e; =e}U{(0,e),(1,e)}.

So for any countable N |= T, we have
(X V] = [We| + 2.

Hence F1n is 1l-equivalent to the set {e : (XN s ﬁnlte} which is equal to the set
{e: N'is finite for every N = T, }, proving (c).

Because all relation symbols in L. are unary, any definable set is the product of definable
sets that are each contained in the instantiation of a single sort. Further, given a countable
N E T, a finite A C N, and an ¢ € N, the definable sets (with parameters from A) in
(X;)V are Boolean combinations of {(U;)", (V;)V} U {{a} : a€ AN(}

Hence ACL§ is 1-equivalent to {e : (X.)MC is finite} as well, estabhshmg (d). O

We now show that the upper bound in Proposition 3.2 is tight.

Proposition 4.2. There is a parameter ¢ € CompStr such that the following hold.

(a) The language L. has one sort and one binary relation symbol E.
(b) The structure M. has underlying set N and is a countable saturated model of T.

(¢) For each ordinal o, the theory T, has (Jo + w|)-many models of size Xy, and has
finite Morley rank.

(d) There is a computable array (Uk’f)MeN of subsets of N such that each countable
model of Tt is isomorphic to the restriction of M. to the underlying set Uy for
exactly one pair (k,£).

(e) If N =2 M, then uniformly in N' we can compute 0' from the set
{a: |{b: N = E(a;b)}| =1},

(f) The set
{a : (E(z;y),a) € DCL§}

has Turing degree 0'.

Proof. Let g: N — {0,1} be the characteristic function of 0’ i.e., such that g(n) =1 if
and only if n € 0'. As 0’ is a AJ set, there is some computable function f: N x N — {0, 1}
such that lims_,o f(n,s) = g(n) for all n € N.

We will construct M. in the language specified in (a) so as to satisfy the following
axioms.

o (Vz) ~E(z,x)

» (Va,y) (E(z,y) = E(y, v))
(
(

* (Va)(3y) E(x,y)
Va)(3=%y) E(z,y)

These axioms specify that (N, EM¢) is a graph that is the union of chains. In fact, we
will construct M. so as to have infinitely many chains of certain finite orders, infinitely
many N-chains, and infinitely many Z-chains.

For n € N, let p, denote the nth prime number. We now construct M, with underlying
set N, in stages.

Stage O:

Let {N;}ien U{Zi}ien U{F'} be a uniformly computable partition of N into infinite sets.
For each 7 € N, let the induced subgraph on N; be an N-chain, and let the induced

subgraph on Z; be a Z-chain. The only other edges will be between elements of F' (to be

determined at later stages).

Stage 2s + 1:
Let a5 be the least element of F' that is not yet part of an edge. Create a finite chain of
order (ps)?+f(5%) consisting of as and other elements of F not yet in any edge.

Stage 2s + 2:
For each n < s, we have two cases, based on the values of f:

o If f(n,s) = f(n,s+ 1), do nothing.

o Otherwise, if f(n,s) # f(n,s+ 1), consider the (unique) chain whose order so far is
(pn)* for some positive k. Extend this chain by ((pn)**' — (pn)*)-many elements of
F which are not yet in any edge, to obtain a chain that has order (p,)**+f (n:s+1) for
some £ € N.

The resulting graph is computable, as every vertex participates in at least one edge,
and whether or not there is an edge between a given pair of vertices is determined by the
first stage at which each vertex of the pair becomes part of some edge.

Observe that every element of F' is part of a chain of elements of F' whose order is
some positive power of a prime, which moreover is the only chain in M, whose order is a
power of that prime.

10

Every model of T, is determined up to isomorphism by the number of N-chains and the
number of Z-chains in it. In a model of size R, there must be either N,-many N-chains
and 0, 1, ..., Ny, ..., or Ngp-many Z-chains, or vice-versa. The countable saturated models
of T, are those with Ng-many N-chains and Ng-many Z-chains, and since M, has Rp-many
N-chains and Rp-many Z-chains, condition (b) holds. None of these N-chains or Z-chains
are first-order definable, and so condition (c) holds.

For condition (d), let Uy := U;cp, Vi UU;c/ Zi U F.

Towards condition (e), note that for each n € N, there is a unique chain of order
a power of p,. Writing (p,)’» for this order, we have j, = g(n) (mod 2). An element
a € N is one of the two ends of a finite chain or the beginning of an N-chain if and only if
{b : N |E E(a;b)}| = 1. So, from the set {a : [{b : N = E(a;b)}| = 1} we can enumerate
the orders of all finite chains, and hence can compute g(n) for all n.

Finally, recall that DCL{ is computable from 0" and so the set {a : (E(z;y),a) € DCL§}
is also computable from 0’. Hence (f) follows from (e). O

We now use the structure constructed in Proposition 4.1 to prove that the bound in
Proposition 3.3 is tight.

Proposition 4.3. Let ¢ € CompStr be the parameter constructed in the proof of Proposi-
tion 4.1. Then there is a computable set = of quantifier-free first-order L.-formulas such
that if N = M., then uniformly in N we can compute Fin from aclz nr via a 1-reduction
relative to N'. In particular, for computable such N, the set aclz zr is ¥9-complete.

Proof. For each sort X; in L., let §(z,y) be the L -formula that asserts that x and y
are each of sort X;. Let = := {&(x;y)ien. Suppose N' = M,.. Then there exists an
isomorphism 7: N — M, that is computable in N'. Let A C N be finite and b € N/. Note
that b € aclz o(A) if and only if there is some a € A and i € N for which

(&i(z;y),7(a)) € ACL§ and N | &(a;b).

By the choice of the code c, for each i € N, the unique element of (V;) is in aclz, N((Ui)N)
if and only if X is finite, establishing the proposition. O

We now build a structure that shows that the bound in Proposition 3.4 is also tight.

Proposition 4.4. There is a parameter ¢ € CompStr such that L. contains a ternary
relation symbol F and, letting I := {F(xz,y;2)}, if N = M, then uniformly in N we can
compute Fin from dclr nr via a 1-reduction relative to N'. In particular, for computable
such N, the set dclp pr is ¥9-complete.

Proof. Let L be the (one-sorted) language consisting of unary relation symbols A, B, C,
D, H, a binary relation symbol F, and a ternary relation symbol F.

We first define a computable L-structure) such that dclr y is computable. Write Y
for its underlying set, and write % for a distinguished element of Y. The relation DY is the
singleton {x}, and the other unary relations AY, BY CY, and HY partition Y \ {%} into
disjoint infinite sets. Let {a;};en and {b;}sen be enumerations of the elements of AY and
BY, respectively.

11

The pair (Y, EY) is a graph whose non-trivial connected components are finite chains
L;, for i € N, with the following properties. For each ¢ € N, the chain L; has order i + 2.
The degree-1 vertices of L; are a; and b;, and its remaining vertices satisfy H (chosen
computably). Every element of HY is in one such L;, and no elements of C¥ or DY are.
We will define (Y, FY) later.

Observe that the graph (AY U BY U HY, EY) is rigid. Furthermore, for any graph P
that is isomorphic to (Ay UBYUHY, EY), the unique such isomorphism is computable
uniformly in P.

We will eventually use) to build a computable L-structure M, having the same
underlying set Y, satisfying the statement of the Proposition. The instantiations of A, B,
C, D, H, and E on M, and Y will agree. They will also agree on F' restricted to Y\ {x}.
We will encode Fin in M, via the behavior of F' on triples that include *.

We now define FY. The first coordinate of any F-triple in) will satisfy either A or C.
It will be useful to think of F¥ as a collection, indexed by the first axis of FY, of binary
relations on Y: for r € Y, write F, to denote the relation

{(s;t) eY xY : Y EF(r,s,t)}.

For r € Y, the pair (Y, F,) will be a digraph whose edge set is either empty or forms a
single path with initial vertex satisfying A. For such a path, if F, is finite, then the final
vertex of the path will satisfy B; all vertices of the path that are neither initial nor final
will satisfy C.

Partition CY into sets {P; o }ien U {P; ik }iken where for each i € N, the set P; o is
infinite and the set P;, has size k. For ¢ € N, enumerate P; o by {7i 0, : j € N}.

For r € Y \ (AY U,y Pio), let F, be empty.

For i € N, let (Y, Fq,) have a single non-trivial connected component, namely a single
N-path with its initial vertex equal to a; and vertex set {a;} U P; 0, With (a;, ric0,0) € Fa,
and (74 00,5, Ti,00,j+1) € Fa; for j € N.

For each i,k € N, let (Y, ‘FTi,oo,k) have a single non-trivial connected component, namely
a path of order k + 2 with initial vertex a;, final vertex b;, and vertex set {a;,b;} U P, .
Note that for all i,k € N, we have 7; o € dclr y({a;}), and further,

{t: VI Flrisomait)}| =1.

We say that P; j, witnesses that b; € dclr y({a;}). This completes the definition of Y.

We are now ready to define M., a computable structure that has the same underlying
set as) and that agrees with) on Y\ {x}.

As in the proof of Proposition 4.1, let ((ei,ni))i ey be a computable enumeration
without repetition of

{(e;n) : e,n € Nand {e}(n)!}.
Let M, |= F(r,s,t) with x € {r,s,t} hold if and only if for some i € N and k < n;,

(Ta S, t) = (Tei,oo,ka aei) *)-
Consequently, for ¢ € N and k£ < n; we have

Ht t M = F(Tei,oo,kaaei§t)}} =2,

12

and so P, does not witness that b, is in dclr .({ae, })-

On the other hand, for ¢ € N, if for all A~ € N with e;, = e¢; we have k > nj, then the
path P, i still witnesses that b, is in dclp o({ae, }).

Let ¢ € N. By construction, we have by € dclr.({as}) if and only if this fact is
witnessed by Py ; for some j € N. By the above, there is some j such that P ; witnesses
by € dclr o({as}) if and only if sup{n : {{}(n)]} is finite.

Hence Fin, a Eg—complete set, is 1-reducible to

{(ag,bg) : bg € dClnc({CLg})}
relative to NV, as desired. O

In Propositions 3.3 and 3.4, we provided upper bounds on the difficulty of computing
aclg . from ACLG, and of computing dclg . from DCLG, for ® a computable set of quantifier-
free first-order L -formulas. We now show that in general, merely knowing aclg . and dclg .
will not lower the difficulty of computing even the ®-fiber of ACLf or DCL. We do so by
providing examples where the ®-fibers of ACL{ and of DCL§ are maximally complicated
but acle . and dclg . are trivial.

Proposition 4.5. There are cg,c; € CompStr such that the following hold.

(a) The (one-sorted) language L., = L., contains a ternary relation symbol F and a
unary relation symbol U.

(b) M, and M., have the same underlying set M and agree on all unary relations.
(c) Lety(x,y,z) == F(z,y,2)N\=F(z, z,y), and write V = {¢(z,y;2)}. For any A C M,

M if ANU # 0, and

aclq,,CO (A) = dCl\I/,c1 (A) - {@ ZfA NU = Q)

(d) If N = M., then uniformly in N, the set Fin is 1-reducible to the set
{(w,a) : we U and {b : N |=1(u,a;b)} is finite},
relative to N'. In particular, Fin <; ACLY, and so ACLY is a X3-complete set.
(e) If N = M., then uniformly in N we can compute 0" from the set
{(u,a) s ueU and [{b : N = (u,a;b)}| =1}.
In particular DCLG" is Turing equivalent to 0'.

Proof. Let L' be the (one-sorted) language consisting of unary relation symbols U, A, B,
C, D, H, a binary relation symbol F, and a ternary relation symbol F. Let K be the
sublanguage of L' consisting of the relation symbols A, B, C, D, H and FE.

We begin by defining a computable £’-structure Z. The reduct of the structure Z
to I will be the same as the reduct to K of the structure) in the proof of Proposi-
tion 4.4 (in particular, the underlying set of Z is also Y'). This will imply that the graph

13

(AZ U B®Z U H?, E?) is rigid, and that for any graph P that is isomorphic to (A€ U BZ U
HZ,E?), the unique such isomorphism is computable uniformly in P.

The unary relation UZ consists of three elements ug, u;, us where ug,u; € CZ and
D? = {uy}. Tt remains to describe FZ.

We will eventually build computable £’-structures M., and M,,, each with underlying
set Y, which agree with Z on the unary and binary relations, and are such that F'Z C F Me;
for j € {0,1}. For j € {0,1} we will construct M., such that if (r,s,t) € FMe | then
reU=.

We now describe F'Z. For any (r,s,t) € FZ we will have r € UZ. Define, for
i € {0,1,2}, the binary relations

F; = {(s,t) ceYxY : Z FF(ui,s,t)}-

For each i, the structure (Y, F;) will be a digraph; further if (s,¢) € F; and {s,t}NUZ # ()
then s = u; and ¢t = ug, where k =i+ 1 (mod 3). In particular, for each i there is a single
Fi-edge in UZ and no other Fj-edge involves an element of UZ.

To complete the description of F'Z, we now describe each F; outside UZ. Let the digraph
(Y'\ UZ, Fy) be any computable infinite path, and let F; be such that for s,t € Y\ U we
have Z |= Fo(s,t) ¢ Fi(t,s). The digraph (Y \ UZ, F,) has no edges, i.e., Fo = {(uz,ug)}.
This completes the definition of Z.

Now we move towards defining M., for i € {0,1}. Suppose G is a computable bipartite
graph with underlying set A% U B# and underlying partition { A%, BZ}, in the single-sorted
language consisting of a single binary relation symbol G. For such a G, define Z(G) to be
the L/-structure with underlying set Y that agrees with Z on all unary relations and F,
and for which

FZO) = pZ {(ug,s,t) : (s,t) € G’g}.

Let f be any computable function which takes a code for computable bipartite graphs G
with underlying partition {A?, BZ} and returns a code for Z(G). Similarly define d to be
any computable function such that d(G) is a code for G.

It is straightforward to check that for any computable bipartite graph G with underlying
partition {AZ, BZ}, we have that Z(G) is computable and

aclyz = acly z(g),
dCl\p,Z = dCl\II,Z(g)-

In particular, if Gy and G; are such graphs then (a), (b) and (c) hold for ¢y = f(Gp) and
a = f(G1).

Observe that from the set of pairs of the form (¢ (x,y; 2), (u2,b)) in ACLg(g), we can
compute those of the form (G(z;y),a) in ACLg(g). Likewise, from the set of pairs of
the form (¢ (z,y; 2), (u2,b)) in DCLg(g) we can compute those of the form (G(x;y),a) in
DCLA),

To finish the proof, we now choose Gy and G;. For ¢ € N, let a; be the unique element
of A% in a chain of order i + 2 in (Y, EZ).

Let Gy be any computable bipartite graph with underlying partition {AZ ,BZ } such
that for each e € N, the vertex ac is adjacent to [{n : {e}(n)|}|-many elements in BZ. If

14

N is any computable structure isomorphic to f(Gy), then Fin is 1-reducible to
{(u,a) : we U and {b : N |= F(u,a;b)} is finite }

relative to A/. Hence Fin is 1-reducible to ACLg(go), and so (d) holds.

Let G be any computable bipartite graph with partition { A%, BZ} such that for each
e € N, the vertex a, is adjacent a single element of BZ if {e}(0) |, and to no elements
otherwise. Then if N is any computable structure isomorphic to f(G1), we can compute
Fin from

{(u,a) : we Uand [{b: N = F(u,a;b)}| = 1}.

Hence DCLg(gl) can compute 0, and so (e) holds, completing the proof. O

5 Bounds for Boolean Combinations of >,,-Formulas

In Sections 3 and 4 we studied, for ¢ € CompStr, the complexity of ACLG§ and DCL, and
of aclp . and dclg . where ® is a computable set of quantifier-free first-order L.-formulas.
We now study the complexity of ACL;, and DCL;,, for arbitrary n € N, and of aclg . and
dclg . where ® is a computable set of first-order L. -formulas of quantifier rank at most n.

Morleyization is a technique for translating a structure in a given language to a new
structure, in a new language, that has quantifier elimination but the same definable sets.
This is done by introducing new relation symbols to take the place of existing formulas.
The following lemma is a computable version of this standard method. The proof is
straightforward.

Lemma 5.1. Let L be a computable language and A a computable L-structure. For each
n € N there is a computable language K, and a 0™ -computable K,,-structure A, such that

the following hold.
e L - ,Cn - ICnJrl'
o A is the reduct of A,, to the language L.

s For each first-order IC,,-formula ¢ there is a first-order L-formula 1, (of the same
type as) such that

An E (Vxo, ..., x5-1) ©(zo, ... k1) > Yyp(zo, . .., Th—1),
where k is the number of free variables of p.

o For each first-order L-formula v, if 1 is a Boolean combination of ¥, -formulas then
there is a first-order quantifier-free ICy,-formula @y, (of the same type as) such that

An): (va) ey xk—l) w(xO) .. 7'1"](:—1) — pr(x(b cee 71‘16—1)7
where k is the number of free variables of 1.

We now use Lemma 5.1 to extend our earlier results about algebraic and definable
closure for quantifier-free formulas to formulas of higher quantifier rank; this comes at the
expense of greater computability-theoretic complexity.

15

Corollary 5.2. Let n € N. Uniformly in ¢ € CompStr, we have that
(a) ACLS, is a $2 ., set, and
(b) DCLS, is a AY_, set.

Further, uniformly in ¢ € CompStr and in a computable collection ® of first-order L.-
formulas of quantifier rank at most n, we have that

(c) aclo. is a B9, set, and
(d) dclp is a B9, set.

Proof. By Lemma 5.1, we know that ACL,, and DCL,, are equivalent to the relativization,
to the class of structures computable in 0", of ACLg and DCLy, respectively. Therefore
by Propositions 3.1 and 3.2, ACL¢ is a £9(0(™) set and DCLE is a AY(0(™) set and so (a)
and (b) hold.

Similarly, (c¢) and (d) hold by Propositions 3.3 and 3.4. O

In Theorem 5.6 we will show that these bounds are tight. Towards this fact, we will
need a definition and the technical results in Lemma 5.4 and Proposition 5.5 below.

Let (N, Succ) be the digraph with underlying set N where Succ is the graph of the
successor function on N, i.e., such that Succ(k,¢) holds precisely when ¢ =k + 1.

Definition 5.3. Suppose that L is o language containing a sort N and a relation symbol
S of type N x N. Let A be an L-structure. We call (NA, SA) a copy of N when there is
an isomorphism between (N4, SA) and (N, Succ).

Note that any such isomorphism is necessarily unique. Given £ € N, we write 7 to
denote the corresponding element of N* under this isomorphism.

Lemma 5.4. Let L be a language containing a sort N and a relation symbol S of type
N x N (and possibly other sorts and relation symbols). Let A be an L-structure such that
(N4, SA) is a copy of N. Let k € N and let 4(Z,y) be an L-formula that is a Boolean
combination of X-formulas, where T is of some type X, and y has sort N.

Suppose that

Al (Vz: X)3%y: N)3z: N) Sy, 2) A (v(T,y) < (T, 2)).

Let f: X4 x N — {True, False} be the function where

~

A E~(a,l) if and only if f(@,£) = True.

Note that limy_,o. f(@,£) exists for all @ € X*.
There is a first-order L-formula v'(T), where T is of type X, such that ' is a Boolean
combination of Xj41-formulas and for alla € X4,

A~ (a) if and only if g]im f(@,t) = True.
—00

16

Proof. Define the formula ' by

V(@) = [(Vy: N) (@, y)] Vv [Cy.2:N) (S(y,2) AT, y) Ay (T, 2))].
Clearly +/ is a Boolean combination of 3y 1-formulas and has the desired property. [J

Proposition 5.5. Let n € N. Let L be a language containing a sort N and a relation
symbol S of type N x N (and possibly other sorts and relation symbols). Suppose A is an
L-structure that is computable in 0 and such that (N4, SA) is a computable copy of N.
Then there is a computable language LT and a computable L -structure AY with the same
underlying set as A such that for every quantifier-free first-order L-formula n in which
S does not occur, there is a first-order LT -formula ¢, that is a Boolean combination of
Y -formulas such that n* = (gpn)A+.
Proof. We begin by defining, for relation symbols in £ other than S, certain auxiliary
functions.

For R a relation symbol in £ other than S, let X be its type. For every k € N such
that 0 < k < n, inductively define the 0*~*)-computable function fRrE: XA x NF -
{True, False} satisfying the following, for all @ € X,

e fro(a) = True if and only if A = R(a).

e Suppose k > 1 and let ({p,...,lr_2) € N*=1. There is at most one ¢,_1 € N for
which

fre(@, o, ..., lp—2,lp—1) # fri(@,lo, ..., lg—2,lp—1 +1).

Further,

frRE—1(@ Lo, ... ly—2) = lim frp(@lo,... ,ly—2,lk—1).
fk,1—>00

Next, we define the computable language £ as follows.
o LT has the same sorts as L.

« For each relation symbol R € £ other than S, there is a relation symbol RT € LT of
type X x N" where X is the type of R. The language £ also contains a relation
symbol S of type N x N. These are the only relation symbols in £7.

Now define the computable £1-structure AT as follows.

o AT has the same underlying set as A, and sorts are instantiated on the same sets in

AT asin A.
o SAT = gA

o For each R € L other than S, each tuple @ € X A" where X is the type of R, and
any o, ...,¢,_1 € N, we have

17

= R"'(d,l%, . ,E;jl) if and only if fr,(@,%o,...,ln—1) = True.

(Recall that for £ € N, we have defined 7€ N4 to be the £t® element of the copy of N.)
We now build, for each relation symbol R € £ other than S, an £LT-formula ¢g, as
follows. First apply Lemma 5.4 (with k = 0) to A" and the £*-formula

Y(TYo -+ Yn—2,Yn—1) == RY(Z, 90, -+, Yn-1)

(where T has type X and each y; has type N) to obtain an £ -formula v)(Zyo - - - yn—2)
that is a Boolean combination of ¥;-formulas. Next apply Lemma 5.4 again (with k& = 1)
to A" and the £*-formula

Y1(TYo * Yn—3:Yn—2) = V0(TYo - * * Yn—2)

to obtain an £T-formula Y1 (Tyo - - yn—3) that is a Boolean combination of 3g-formulas.
Proceed in this way for k = 2,...,n — 1, to obtain an £1-formula pr(Z) := v/,_,(T) that
is a Boolean combination of X,-formulas for which R4 = (¢g)A".

We can now extend the definition of ¢, to quantifier-free formulas ¢ by induction,

where p_y, is —py, Where Qyag, 1S ©yo A @y, and where @y, 1S Oy V P, - O
Combining Proposition 5.5 with results from Section 4, we obtain the following.
Theorem 5.6. For each n € N, the following hold.

(a) There exists a € CompStr such that ACLY is a £ ,-complete set.

(b) There exists b € CompStr such that DCLY =1 01,

(c) There is a computable set ® of first-order Lq-formulas, all of quantifier rank at most
n such that acle o is a X2 ,-complete set, where a € CompStr is as in (a).

(d) There exists d € CompStr and a computable set © of first-order Lg-formulas, all of
quantifier rank at most n, such that dclg 4 is a 22+2—complete set.

Proof. We first prove (a) and (c). Let P be the relativization to the oracle 0™ of the
computable structure M, from the statement of Proposition 4.1, and call its language L.
Consider the set = of quantifier-free formulas from Proposition 4.3. Let £* be the language
that extends £ by a new sort IV and a relation symbol S of type N x N. Consider the
L*-structure P* whose restriction to £ is P and such that (N7", S7") is a computable copy
of N (instantiated on the new set of elements N7"). Let a € CompStr be such that M, is
the computable structure (P*)* obtained from Proposition 5.5 (when A = P*), and let
o = {npn NS E} be the corresponding set of first-order (£,)"-formulas, each partitioned
in the same way as in 2. Then ACL? and aclg , are %0 4o-complete sets, establishing (a)
and (c).

Towards (b), let Q be the relativization to 0 of the structure M. from Proposition 4.2.
Consider the structure Q* obtained from Q by augmenting it by (N<",S<97), a new
computable copy of N, as in the proof of (a) and (c) above. Let b € CompStr be such that
My, is the computable structure (Q*)* obtained by applying Proposition 5.5 to Q*. Then
DCL? =1 01,

18

We now prove (d). Let M. and F(z,y,2) be as in Proposition 4.4, and let R be the
relativization of M, to 0. Consider the structure R* obtained by augmenting R by a
computable copy of N, as above. Let d € CompStr be such that My is the computable
structure (R*)* obtained by applying Proposition 5.5 to R*, and let © := {pp(z,y;2)}.
Then dclg q is a X2, ,-complete set. O

Note that the structures constructed in Theorem 5.6 (a) and (b) do not obviously
have the nice model-theoretic properties (Xp-categoricity or finite Morley rank) that those
constructed in Propositions 4.1 and 4.2 do, because the application of Proposition 5.5
encodes a copy of N in a way that makes their theories more elaborate. Nor is it obvious
that the structures constructed in Theorem 5.6 (¢) and (d) have these nice model-theoretic
properties, because they derive from the structures constructed in Propositions 4.3 and 4.4,
which themselves do not obviously have these properties. This leads us to the following
question.

Question 1. Is there some ¢ € CompStr such that ACLY, is Z%+2-complete or DCLY =7
0"+ | and M, is nice model-theoretically (e.g., No-categorical, strongly minimal, stable,
etc.)?

Similarly, is there some ¢ € CompStr and computable set ¥ of first-order L.-formulas,
all of quantifier rank at most n, such that either acly . or dcly . is a E?L+2—complete set
and M, is nice model-theoretically?

Acknowledgements

The authors would like to thank Sergei Artemov, Valentina Harizanov, Anil Nerode, and
the anonymous referees for helpful comments. The third author’s work on this paper was
partially supported by the National Science Foundation under Grant No. DMS-1928930
while she was in residence at the Mathematical Sciences Research Institute in Berkeley,
California, during the Fall 2020 semester.

References

[1] N. Ackerman, C. Freer, and R. Patel, Invariant measures concentrated on countable
structures, Forum Math. Sigma 4 (2016), no. el7, 59 pp.

[2] N. Ackerman, C. Freer, and R. Patel, Computability of algebraic and definable closure,
LFCS 2020: Logical Foundations of Computer Science (S. Artemov and A. Nerode,
eds.), Lecture Notes in Computer Science, vol. 11972, Springer, 2020, pp. 1-11.

[3] G. Cherlin, S. Shelah, and N. Shi, Universal graphs with forbidden subgraphs and
algebraic closure, Adv. in Appl. Math. 22 (1999), no. 4, 454-491.

[4] E. B. Fokina, V. Harizanov, and A. Melnikov, Computable model theory, Turing’s
Legacy: Developments from Turing’s Ideas in Logic (R. Downey, ed.), Lecture Notes in
Logic, vol. 42, Cambridge University Press, 2014, p. 124-194.

19

[5] V. S. Harizanov, Pure computable model theory, Handbook of recursive mathematics,
vol. 1, Studies in Logic and the Foundations of Mathematics, vol. 138, North-Holland,
1998, pp. 3-114.

[6] W. Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42,
Cambridge University Press, 1993.

[7] A. Ould Houcine and D. Vallino, Algebraic and definable closure in free groups, Ann.
Inst. Fourier (Grenoble) 66 (2016), no. 6, 2525-2563.

[8] R. L. Soare, Turing computability, Theory and Applications of Computability, Springer,
2016.

[9] K. Tent and M. Ziegler, A course in model theory, Lecture Notes in Logic, vol. 40,
Cambridge University Press, 2012.

20

