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Abstract

We investigate the computability of algebraic closure and definable closure with
respect to a collection of formulas. We show that for a computable collection of formulas
of quantifier rank at most n, in any given computable structure, both algebraic and
definable closure with respect to that collection are Σ0

n+2 sets. We further show that
these bounds are tight.

keywords: algebraic closure, definable closure, computable model theory

1 Introduction

In this paper we study the computability-theoretic content of two model-theoretic concepts:
algebraic closure and definable closure. These notions are fundamental to model theory,
and have been studied explicitly in various contexts [1, 3, 7].

In order to study the computable model theory of these notions, we consider iteratively-
defined algebraic and definable closure operators with respect to a specified set of formulas,
and focus on certain associated sets. For a set of formulas Φ and a structure N , we
define sets aclΦ,N and dclΦ,N , which capture the information contained in the operators
for algebraic and definable closure in N with respect to formulas in Φ. We also define sets
ACLn and DCLn, which describe the computable information that is already present in
the first step of this iterative process, for first-order formulas of quantifier rank at most n.

The paper is organized as follows. In Section 2, we provide definitions of ACLn, DCLn,
aclΦ,N , and dclΦ,N and establish some basic relationships among them. Section 3 gives
upper bounds on the computability-theoretic strength of these objects in the quantifier-
free case — namely, of ACL0, DCL0, aclΦ,N , and dclΦ,N where Φ is a computable set of
quantifier-free formulas. Section 4 gives corresponding lower bounds on these objects, which
establish tightness of the upper bounds; for ACL0 and DCL0, tightness is achieved via
structures that are model-theoretically “nice”, namely, are ℵ0-categorical or of finite Morley
rank. Finally, in Section 5 we use these results to provide bounds on the computational
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strength of ACLn, DCLn, aclΦ,N and dclΦ,N for arbitrary n and computable collections Φ
of formulas of quantifier rank n.

Parts of this paper appeared in an extended abstract [2] presented at LFCS 2020.

2 Preliminaries

In this section we introduce some terminology and notation, and define the main objects of
study of this paper: ACLn, DCLn, aclΦ,N , and dclΦ,N . We prove some basic relationships
among them, and discuss their connection with standard model-theoretic notions of
algebraic and definable closure.

For standard notions from computability theory, see, e.g., [8]. We write {e}(n) to
represent the output of the eth Turing machine run on input n, if it converges, and in this
case write {e}(n)↓. Define We := {n ∈ N : {e}(n)↓} and Fin := {e ∈ N : We is finite}.
Recall that Fin is Σ0

2-complete [8, Theorem 4.3.2].
In this paper we will focus on computable languages that are relational. Note that

this leads to no loss of generality due to the standard fact that computable languages
with function or constant symbols can be interpreted computably in relational languages
where there is a relation for the graph of each function. For the definitions of languages,
first-order formulas, and structures, see [6].

In the context of algebraic and definable closure, we will often consider formulas with a
specified partition of their free variables, which we write with a semicolon, e.g., ϕ(x; y).
When we refer to a set of formulas, we mean a set of formulas with specified variable
partitions.

We will work with many-sorted languages and structures; for more details, see [9, §1.1].
Let L be a (many-sorted) language, let N be an L-structure, and suppose that a is a tuple
of elements of N . We say that the type of a is

∏
i≤nXi when a ∈

∏
i≤n(Xi)

N , where each
of X0, . . . , Xn−1 is a sort of L. The type of a tuple of variables is the product of the sorts
of its constituent variables (in order). The type of a relation symbol is defined to be the
type of the tuple of its free variables, and similarly for formulas. We write (∀x : X) and
(∃x : X) to quantify over a tuple of variables x of type X (which includes the special case
of a single variable of a given sort).

If one wanted to avoid the use of many-sorted languages, one could instead encode
each sort using a unary relation symbol — and indeed this would not affect most of our
results. However, in Section 4 we are interested in how model-theoretically complicated the
structures we build are, and the single-sorted version of the construction in Proposition 4.1
would no longer yield an ℵ0-categorical structure.

A graph is a pair (V,E) where V is a set of vertices and E is a symmetric irreflexive
binary relation on V . A chain in a graph is a cycle-free connected component of the graph
each of whose vertices has degree 1 or 2; hence a chain either is finite with at least two
vertices, or is infinite on one side (an N-chain), or is infinite on both sides (a Z-chain).
The order of a chain is the number of vertices in the chain.

Similarly, a digraph is a pair (V,E) where V is a set of vertices and E is an asymmetric
binary relation on V , i.e., no vertices have self-loops and any two vertices have an edge
in at most one direction. A path in a digraph is a connected component of the graph,
containing at least one edge, in which each vertex has in-degree at most 1 and out-degree
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at most 1, and having a (necessarily unique) vertex with in-degree 0. A vertex of a path is
initial if it has in-degree 0 and final if it has out-degree 0. Hence a path either is finite
with a unique initial and unique final vertex, or is infinite with a unique initial vertex (an
N-path). The order of a path is the number of vertices in the path.

We now define computable languages and structures.

Definition 2.1. Suppose L =
(
(Xj)j∈J , (Ri)i∈I) is a language, where I, J ∈ N ∪ {N}

and (Xj)j∈J and (Ri)i∈I are collections of sorts and relation symbols, respectively. Let
tyL : I → J<ω be such that for all i ∈ I, we have tyL(i) = (j0, . . . , jn−1) where the type of
Ri is

∏
k<nXjk . We say that L is a computable language when tyL is a computable

function. For each computable language, we fix a computable encoding of all first-order
formulas of the language.

A computable L-structure N is an L-structure with computable underlying set such
that the sets {(a, j) : a ∈ (Xj)

N } and {(b, i) : b ∈ (Ri)
N } are computable subsets of the

appropriate domains.
We say that c ∈ N is a code for a structure if {c}(0) is a code for a computable

language (via some fixed enumeration of functions of the form tyL) and {c}(1) is a code
for some computable structure in that language. In this case, we write Lc for the language
that {c}(0) codes, Mc for the structure that {c}(1) codes, and Tc for the first-order theory
of Mc. Let CompStr be the collection of c ∈ N that are codes for structures.

Note that these notions relativize in the obvious way. For more details on basic notions
in computable model theory, see [4, 5].

Towards defining sets that capture the computable content of algebraic and definable
closure, we first describe when a formula is algebraic or definable at a given tuple.

Definition 2.2. Let L be a language, let ϕ(x; y) be a first-order L-formula, and let N be
an L-structure. Suppose a ∈ N has the same type as x. The formula ϕ(x; y) is algebraic
at a if {

b ∈ N : N |= ϕ(a; b)
}

is finite (possibly empty), and definable at a if this set is a singleton.

We now describe several sets that capture the information contained in a single step of
the process of determining algebraic or definable closure.

Definition 2.3.

• CL :=
{

(c, ϕ(x; y), a, k) : c ∈ CompStr, ϕ(x; y) is a first-order Lc-formula, a ∈Mc

has the same type as x, and k ∈ N∪{∞} is such that
∣∣{b ∈Mc : Mc |= ϕ(a; b)}

∣∣ = k
}

.

• ACL :=
{

(c, ϕ(x; y), a) : there exists k ∈ N with (c, ϕ(x; y), a, k) ∈ CL
}

.

• DCL :=
{

(c, ϕ(x; y), a) : (c, ϕ(x; y), a, 1) ∈ CL
}

.

• For Y ∈ {CL,ACL,DCL} and n ∈ N let

Yn := {t ∈ Y : the second coordinate of t is a Boolean combination of Σn-formulas}.
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• For Y ∈ {CL,ACL,DCL} ∪ {CLn,ACLn,DCLn}n∈N and c ∈ CompStr, let

Y c := {u : (c)∧u ∈ Y },

i.e., select those elements of Y whose first coordinate is c, and then remove this first
coordinate.

Note that CompStr is a Π0
2 set. Hence the sets CL,ACL,DCL are already complicated

from the computability-theoretic perspective. As such, when we consider the complexity of
whether formulas are algebraic or definable at various tuples, we will consider the question
of how complex CLc,ACLc,DCLc can be, when c is a code for a structure. The next three
lemmas connect these sets.

Lemma 2.4. Uniformly in the parameters c ∈ CompStr and n ∈ N, the set{
(ϕ(x; y), a, k) ∈ CLcn : k ∈ N, k ≥ 1

}
is Σ0

1 in DCLcn.

Proof. Suppose ϕ(x; y) is a Boolean combination of Σn-formulas of Lc, and let k ≥ 1. For
each j < k, choose a tuple of new variables z j of the same type as y. Define the formula

Υϕ(x;y),k :=
∧

i<j<k

(z i 6= z j) ∧
∧
j<k

ϕ(x, z j),

whose free variables we will partition in several different ways below. This formula specifies
k-many distinct realizations of the tuple y in ϕ(x; y), given an instantiation of x. Note
that Υϕ(x;y),k is also a Boolean combination of Σn-formulas of Lc.

For j < k, let τj := x z 0 · · · z j−1 z j+1 · · · z k−1. Note that (ϕ(x; y), a, k) ∈ CLcn if and
only if (

Υϕ(x;y),k(τj ; z
j), a b 0 · · · b j−1 b j+1 · · · b k−1

)
∈ DCLcn

for some j < k and b 0, . . . , b j−1, b j+1, . . . , b k−1 ∈ Mc. By enumerating over all such
parameters, and enumerating over all choices of ϕ and k, we see that the desired set is Σ0

1

in DCLcn.

Lemma 2.5. Uniformly in the parameters c ∈ CompStr and n ∈ N, the set{(
ϕ(x; y), a, k

)
∈ CLcn : k = 0

}
is Σ0

1 in DCLcn.

Proof. Suppose ϕ(x; y) is a Boolean combination of Σn-formulas of Lc. Let z be a tuple of
variables having the same type as y and disjoint from x y. Define the formula

Ψϕ(x;y)(x z, y) := ϕ(x, y) ∨ (y = z).

Note that Ψϕ(x;y)(x z, y) is also a Boolean combination of Σn-formulas of Lc.
Now suppose b0 and b1 are distinct tuples of elements of Mc having the same type as

z. Then the following are equivalent:
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•
(
Ψϕ(x;y)(x z; y), a b0

)
∈ DCLcn and

(
Ψϕ(x;y)(x z; y), a b1

)
∈ DCLcn;

•
{
b : Mc |= ϕ(a; b)

}
= ∅, i.e., (ϕ(x; y), a, 0) ∈ CLcn.

The result is then immediate.

Lemma 2.6. Uniformly in the parameters c ∈ CompStr and n ∈ N, there are computable
reductions in both directions between ACLcn

∐
DCLcn and CLcn.

Proof. It is immediate from the definitions that DCLcn is computable from CLcn. Further,
ACLcn is computable from CLcn as

ACLcn =
{

(ϕ(x; y), a) : there exists k with (ϕ(x; y), a, k) ∈ CLcn and k 6=∞
}

and as (ϕ(x; y), a, k) ∈ CLcn holds for a unique k ∈ N ∪ {∞}.
Lemmas 2.4 and 2.5 together tell us that the set{

(ϕ(x; y), a, k) ∈ CLcn : k ∈ N
}

is computably enumerable from DCLcn. But (ϕ(x; y), a,∞) ∈ CLcn if and only if (ϕ(x; y), a) 6∈
ACLcn. Therefore when ϕ(x; y) is a Boolean combination of Σn-formulas, and given
a ∈ Mc, we can compute from ACLcn whether or not (ϕ(x; y), a,∞) ∈ CLcn. Further, if
(ϕ(x; y), a,∞) 6∈ CLcn, then we can compute from DCLcn the (unique) value of k such that
(ϕ(x; y), a, k) ∈ CLcn. Hence CLcn is computable from ACLcn

∐
DCLcn.

Note that by Lemma 2.6 we are justified, from a computability-theoretic perspective,
in restricting our attention to ACL and DCL (and their variants), as opposed to CL.

We next define a closure operator with respect to a collection of formulas. We will use
it to study computable aspects of algebraic and definable closure. (See [6, §4.1] for more
details on the standard notions of algebraic and definable closure.)

Definition 2.7. Let L be a language, let Φ be a set of first-order L-formulas, and let N
be an L-structure. Suppose B ⊆ N and S ⊆ N ∪ {∞}. Define clnΦ,N (B,S) for n ∈ N by
induction as follows.

• cl0Φ,N (B, S) := B,

• cl1Φ,N (B, S) := B ∪
{
b ∈ N : there exists ϕ ∈ Φ and a tuple a from B with∣∣{d : N |= ϕ(a; d)}

∣∣ ∈ S such that for some b ∈ N
with b ∈ b,we have N |= ϕ(a; b)

}
,

• cln+1
Φ,N (B, S) := cl1Φ,c

(
clnΦ,N (B,S)

)
.

Let clΦ,N (B,S) :=
⋃
i∈N cliΦ,N (B,S).
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When considering clΦ,N ( · , S), it suffices to restrict our attention to the case where the
argument is a finite subset of N , since for any B ⊆ N we have

clΦ,N (B,S) =
⋃{

clΦ,N (B0, S) : B0 is a finite subset of B
}
.

There are two instances of S for which the operator clΦ,N ( · , S) is especially important
model-theoretically. The algebraic and definable closure operators in N (with respect to
Φ) are given, respectively, by

aclΦ,N ( · ) := clΦ,N ( · ,N)

and
dclΦ,N ( · ) := clΦ,N ( · , {1}).

The standard model-theoretic notions of first-order algebraic and definable closure in N
are aclLω,ω(L),N ( · ) and dclLω,ω(L),N ( · ), respectively. In these two cases, when Φ = Lω,ω(L)

and S is either N or {1}, we have clΦ,N ( · , S) = cl1Φ,N ( · , S), i.e., the first step of the
iterative process in Definition 2.7 is already idempotent. But this is not the case for every
set Φ of formulas, and so to obtain a closure operator, we need the full iterative process.

Note that a key computability-theoretic distinction is whether or not S is finite, and
indeed one can easily check that all the upper and lower bounds proved in this paper for
dclΦ,N ( · ) also hold for clΦ,N ( · , S) for any finite S.

In order to study the computability-theoretic content of the algebraic and definable
closure operators, we will consider the following encodings of their respective graphs.

Definition 2.8. Let L be a language, let Φ be a set of first-order L-formulas, and let N
be an L-structure. Define

aclΦ,N :=
{

(a,A) : a ∈ aclΦ,N (A) and A is a finite subset of N
}
,

dclΦ,N :=
{

(a,A) : a ∈ dclΦ,N (A) and A is a finite subset of N
}
.

For c ∈ CompStr, write clΦ,c(B,S) to denote clΦ,Mc(B,S), and similarly with aclΦ,c(B),
aclΦ,c, dclΦ,c(B), and dclΦ,c.

As can be seen from Definition 2.7, the set clΦ,c(B,S) is closely related to CLc via the
relation ZS on Mc defined by

ZS :=
⋃
ψ∈Φ

{
(a, b) : Mc |= ψ(a; b) and (ψ(x; y), a, k) ∈ CLc with k ∈ S

}
.

For example, suppose every formula in Φ has just two free variables, and let US be the
transitive closure in Mc of ZS . Then

aclΦ,c(B,S) =
{
b ∈Mc : there exists a ∈ B for which UN(a, b) holds

}
and

dclΦ,c(B,S) =
{
b ∈Mc : there exists a ∈ B for which U{1}(a, b) holds

}
.
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3 Upper Bounds for Quantifier-Free Formulas

We now provide straightforward upper bounds on the complexity of ACLc0, DCLc0, aclΦ,c,
and dclΦ,c for c ∈ CompStr and Φ a computable set of quantifier-free first-order Lc-formulas.

Proposition 3.1. Uniformly in the parameter c ∈ CompStr, the set ACLc0 is a Σ0
2 set.

Proof. Uniformly in c ∈ CompStr, a quantifier-free Lc-formula ϕ(x; y), and tuple a ∈
Mc of the same type as x, we can computably find an e ∈ N such that We equals{
b ∈Mc : Mc |= ϕ(a; b)

}
(where the tuples b of this set are encoded in N in a standard

way).
Further, (ϕ(x; y), a) ∈ ACLc0 if and only if

{
b ∈Mc : Mc |= ϕ(a; b)

}
is finite. Therefore

ACLc0 is Σ0
2, as Fin is Σ0

2.

Proposition 3.2. Uniformly in the parameter c ∈ CompStr, the set DCLc0 is the inter-
section of a Π0

1 set and a Σ0
1 set (in particular, it is a ∆0

2 set).

Proof. Uniformly in c ∈ CompStr, the set of all pairs (ϕ(x; y), a) such that

Mc |= (∀y0, y1)
(
(ϕ(a, y0) ∧ ϕ(a, y1))→ (y0 = y1)

)
holds is a Π0

1 set. Likewise, uniformly in c ∈ CompStr, the set of all pairs (ϕ(x; y), a) such
that there exists b with Mc |= ϕ(a; b) is a Σ0

1 set.

As a consequence, DCLc0 is computable from 000′.

Proposition 3.3. Uniformly in the parameter c ∈ CompStr and an encoding of a com-
putable set Φ of quantifier-free first-order Lc-formulas, the set aclΦ,c is Σ0

1 in ACLc0. In
particular, aclΦ,c is a Σ0

2 set.

Proof. Let A ⊆Mc be a finite set. Note that b ∈ aclΦ,c(A) if and only if there is a finite
sequence b0, . . . , bn−1 ∈Mc where b = bn−1 such that for each i < n, there exists a formula
ϕi(x; y) ∈ Φ, a tuple ai with entries from A ∪ {bj}j<i, and a tuple di ∈Mc satisfying

• (ϕi(x; y), ai) ∈ ACLc0,

• Mc |= ϕi(ai; di), and

• bi ∈ di.

Hence, uniformly in c, the set aclΦ,c is Σ0
1 in ACLc0. By Proposition 3.1, the set aclΦ,c is

Σ0
2.

Proposition 3.4. Uniformly in the parameter c ∈ CompStr and an encoding of a com-
putable set Φ of quantifier-free first-order Lc-formulas, the set dclΦ,c is Σ0

1 in DCLc0. In
particular, dclΦ,c is a Σ0

2 set.

Proof. Let A ⊆Mc be a finite set. Note that b ∈ dclΦ,c(A) if and only if there is a finite
sequence b0, . . . , bn−1 ∈Mc where b = bn−1 such that for each i < n, there exists a formula
ϕi(x; y) ∈ Φ, a tuple ai with entries from A ∪ {bj}j<i, and a tuple di ∈Mc satisfying
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• (ϕi(x; y), ai) ∈ DCLc0,

• Mc |= ϕi(ai; di), and

• bi ∈ di.

Hence, uniformly in c, the set dclΦ,c is Σ0
1 in DCLc0. By Proposition 3.2, the set dclΦ,c is

Σ0
2.

4 Lower Bounds for Quantifier-Free Formulas

We now prove lower bounds on ACLc0, DCLc0, aclΦ,c, and dclΦ,c that show that the upper
bounds in Section 3 are tight.

In Propositions 4.1 and 4.2, we establish tightness of the upper bounds in Propositions 3.1
and 3.2, respectively. Moreover, we do so using structures that have nice model-theoretic
properties (ℵ0-categoricity for ACL0 and finite Morley rank for DCL0).

In Propositions 4.3 and 4.4 we show tightness of the upper bounds in Propositions 3.3
and 3.4, respectively.

We proved Propositions 3.3 and 3.4 by showing that when Φ is a computable collection
of quantifier-free Lc-formulas, the sets aclΦ,c and dclΦ,c can be computably enumerated
from ACLc0 and DCLc0, respectively. In Proposition 4.5, we show that in general the
converse does not hold, i.e., there is no information about ACLc0 and DCLc0 which can be
uniformly deduced from aclΦ,c and dclΦ,c.

The structure we build in the proof of Proposition 4.1 has unary relations Ui and
Vi, for i ∈ N, which each hold of a single element. These relations are not necessary
to show tightness, but we will need them when we reuse this structure in the proof of
Proposition 4.3.

Proposition 4.1. There is a parameter c ∈ CompStr such that the following hold.

(a) Lc consists of, for each i ∈ N, a sort Xi and unary relation symbols Ui and Vi of sort
Xi. Each of the Ui and Vi is instantiated by a single element of Mc.

(b) For each ordinal α, the theory Tc has (|α+1|ω)-many models of size ℵα. In particular,
Tc is ℵ0-categorical.

(c)
{
e : (Xe)

N is finite for every N |= Tc
}
≡1 Fin.

(d) ACLc0 ≡1 Fin. In particular, ACLc0 is a Σ0
2-complete set.

Proof. Let
(
(ei, ni)

)
i∈N be a computable enumeration without repetition of{

(e, n) : e, n ∈ N and {e}(n)↓
}
.

Note that for each ` ∈ N ∪ {∞}, there are infinitely many programs that halt on exactly
`-many inputs, and so there are infinitely many e ∈ N that are equal to ei for exactly
`-many i.

Let c ∈ CompStr be a code such that Lc is as in (a), and Mc satisfies the following.
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• The underlying set of Mc is N ∪ ({0, 1} × N),

• (Ui)
Mc = {(0, i)} and (Vi)

Mc = {(1, i)} for i ∈ N, and

• i ∈ (Xei)
Mc for i ∈ N.

Each model of Tc is determined up to isomorphism by the number of elements in the
instantiation of each sort. Consider a model of Tc of size ℵα. For each j ∈ N it has
ℵ0-many sorts whose instantiations are of size j. It also has ℵ0-many whose instantiations
are infinite, each of which may have size ℵβ for arbitrary β ≤ α. Hence (b) holds.

Note that
(Xe)

Mc = {i : ei = e} ∪ {(0, e), (1, e)}.

So for any countable N |= Tc we have∣∣(Xe)
N ∣∣ = |We|+ 2.

Hence Fin is 1-equivalent to the set
{
e : (Xe)

N is finite
}

, which is equal to the set{
e : (Xe)

N is finite for every N |= Tc
}

, proving (c).
Because all relation symbols in Lc are unary, any definable set is the product of definable

sets that are each contained in the instantiation of a single sort. Further, given a countable
N |= Tc, a finite A ⊆ N , and an i ∈ N, the definable sets (with parameters from A) in
(Xi)

N are Boolean combinations of {(Ui)N , (Vi)N } ∪
{
{a} : a ∈ A ∩ (Xi)

N}.
Hence ACLc0 is 1-equivalent to

{
e : (Xe)

Mc is finite
}

as well, establishing (d).

We now show that the upper bound in Proposition 3.2 is tight.

Proposition 4.2. There is a parameter c ∈ CompStr such that the following hold.

(a) The language Lc has one sort and one binary relation symbol E.

(b) The structure Mc has underlying set N and is a countable saturated model of Tc.

(c) For each ordinal α, the theory Tc has (|α + ω|)-many models of size ℵα, and has
finite Morley rank.

(d) There is a computable array
(
Uk,`

)
k,`∈N of subsets of N such that each countable

model of Tc is isomorphic to the restriction of Mc to the underlying set Uk,` for
exactly one pair (k, `).

(e) If N ∼=Mc then uniformly in N we can compute 000′ from the set{
a :

∣∣{b : N |= E(a; b)}
∣∣ = 1

}
.

(f) The set {
a : (E(x; y), a) ∈ DCLc0

}
has Turing degree 000′.
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Proof. Let g : N → {0, 1} be the characteristic function of 000′, i.e., such that g(n) = 1 if
and only if n ∈ 000′. As 000′ is a ∆0

2 set, there is some computable function f : N×N→ {0, 1}
such that lims→∞ f(n, s) = g(n) for all n ∈ N.

We will construct Mc in the language specified in (a) so as to satisfy the following
axioms.

• (∀x) ¬E(x, x)

• (∀x, y) (E(x, y)→ E(y, x))

• (∀x)(∃y) E(x, y)

• (∀x)(∃≤2y) E(x, y)

These axioms specify that (N, EMc) is a graph that is the union of chains. In fact, we
will construct Mc so as to have infinitely many chains of certain finite orders, infinitely
many N-chains, and infinitely many Z-chains.

For n ∈ N, let pn denote the nth prime number. We now constructMc with underlying
set N, in stages.

Stage 0:
Let {Ni}i∈N ∪ {Zi}i∈N ∪ {F} be a uniformly computable partition of N into infinite sets.

For each i ∈ N, let the induced subgraph on Ni be an N-chain, and let the induced
subgraph on Zi be a Z-chain. The only other edges will be between elements of F (to be
determined at later stages).

Stage 2s+ 1:
Let as be the least element of F that is not yet part of an edge. Create a finite chain of
order (ps)

2+f(s,s) consisting of as and other elements of F not yet in any edge.

Stage 2s+ 2:
For each n ≤ s, we have two cases, based on the values of f :

• If f(n, s) = f(n, s+ 1), do nothing.

• Otherwise, if f(n, s) 6= f(n, s+ 1), consider the (unique) chain whose order so far is
(pn)k for some positive k. Extend this chain by

(
(pn)k+1 − (pn)k

)
-many elements of

F which are not yet in any edge, to obtain a chain that has order (pn)2`+f(n,s+1) for
some ` ∈ N.

The resulting graph is computable, as every vertex participates in at least one edge,
and whether or not there is an edge between a given pair of vertices is determined by the
first stage at which each vertex of the pair becomes part of some edge.

Observe that every element of F is part of a chain of elements of F whose order is
some positive power of a prime, which moreover is the only chain in Mc whose order is a
power of that prime.
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Every model of Tc is determined up to isomorphism by the number of N-chains and the
number of Z-chains in it. In a model of size ℵα, there must be either ℵα-many N-chains
and 0, 1, . . ., ℵ0, . . ., or ℵα-many Z-chains, or vice-versa. The countable saturated models
of Tc are those with ℵ0-many N-chains and ℵ0-many Z-chains, and since Mc has ℵ0-many
N-chains and ℵ0-many Z-chains, condition (b) holds. None of these N-chains or Z-chains
are first-order definable, and so condition (c) holds.

For condition (d), let Uk,` :=
⋃
i<kNi ∪

⋃
i<` Zi ∪ F .

Towards condition (e), note that for each n ∈ N, there is a unique chain of order
a power of pn. Writing (pn)jn for this order, we have jn ≡ g(n) (mod 2). An element
a ∈ N is one of the two ends of a finite chain or the beginning of an N-chain if and only if
|{b : N |= E(a; b)}| = 1. So, from the set {a : |{b : N |= E(a; b)}| = 1} we can enumerate
the orders of all finite chains, and hence can compute g(n) for all n.

Finally, recall that DCLc0 is computable from 000′ and so the set {a : (E(x; y), a) ∈ DCLc0}
is also computable from 000′. Hence (f) follows from (e).

We now use the structure constructed in Proposition 4.1 to prove that the bound in
Proposition 3.3 is tight.

Proposition 4.3. Let c ∈ CompStr be the parameter constructed in the proof of Proposi-
tion 4.1. Then there is a computable set Ξ of quantifier-free first-order Lc-formulas such
that if N ∼=Mc, then uniformly in N we can compute Fin from aclΞ,N via a 1-reduction
relative to N . In particular, for computable such N , the set aclΞ,N is Σ0

2-complete.

Proof. For each sort Xi in Lc, let ξi(x, y) be the Lc-formula that asserts that x and y
are each of sort Xi. Let Ξ := {ξi(x; y)}i∈N. Suppose N ∼= Mc. Then there exists an
isomorphism τ : N →Mc that is computable in N . Let A ⊆ N be finite and b ∈ N . Note
that b ∈ aclΞ,N (A) if and only if there is some a ∈ A and i ∈ N for which(

ξi(x; y), τ(a)
)
∈ ACLc0 and N |= ξi(a; b).

By the choice of the code c, for each i ∈ N, the unique element of (Vi)
N is in aclΞ,N

(
(Ui)

N )
if and only if Xi is finite, establishing the proposition.

We now build a structure that shows that the bound in Proposition 3.4 is also tight.

Proposition 4.4. There is a parameter c ∈ CompStr such that Lc contains a ternary
relation symbol F and, letting Γ := {F (x, y; z)}, if N ∼=Mc then uniformly in N we can
compute Fin from dclΓ,N via a 1-reduction relative to N . In particular, for computable
such N , the set dclΓ,N is Σ0

2-complete.

Proof. Let L be the (one-sorted) language consisting of unary relation symbols A, B, C,
D, H, a binary relation symbol E, and a ternary relation symbol F .

We first define a computable L-structure Y such that dclΓ,Y is computable. Write Y
for its underlying set, and write ? for a distinguished element of Y . The relation DY is the
singleton {?}, and the other unary relations AY , BY , CY , and HY partition Y \ {?} into
disjoint infinite sets. Let {ai}i∈N and {bi}i∈N be enumerations of the elements of AY and
BY , respectively.
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The pair (Y,EY) is a graph whose non-trivial connected components are finite chains
Li, for i ∈ N, with the following properties. For each i ∈ N, the chain Li has order i+ 2.
The degree-1 vertices of Li are ai and bi, and its remaining vertices satisfy H (chosen
computably). Every element of HY is in one such Li, and no elements of CY or DY are.
We will define (Y, FY) later.

Observe that the graph (AY ∪BY ∪HY , EY) is rigid. Furthermore, for any graph P
that is isomorphic to (AY ∪BY ∪HY , EY), the unique such isomorphism is computable
uniformly in P.

We will eventually use Y to build a computable L-structure Mc having the same
underlying set Y , satisfying the statement of the Proposition. The instantiations of A, B,
C, D, H, and E on Mc and Y will agree. They will also agree on F restricted to Y \ {?}.
We will encode Fin in Mc via the behavior of F on triples that include ?.

We now define FY . The first coordinate of any F -triple in Y will satisfy either A or C.
It will be useful to think of FY as a collection, indexed by the first axis of FY , of binary
relations on Y : for r ∈ Y , write Fr to denote the relation{

(s, t) ∈ Y × Y : Y |= F (r, s, t)
}
.

For r ∈ Y , the pair (Y,Fr) will be a digraph whose edge set is either empty or forms a
single path with initial vertex satisfying A. For such a path, if Fr is finite, then the final
vertex of the path will satisfy B; all vertices of the path that are neither initial nor final
will satisfy C.

Partition CY into sets {Pi,∞}i∈N ∪ {Pi,k}i,k∈N where for each i ∈ N, the set Pi,∞ is
infinite and the set Pi,k has size k. For i ∈ N, enumerate Pi,∞ by {ri,∞,j : j ∈ N}.

For r ∈ Y \ (AY ∪
⋃
i∈N Pi,∞), let Fr be empty.

For i ∈ N, let (Y,Fai) have a single non-trivial connected component, namely a single
N-path with its initial vertex equal to ai and vertex set {ai} ∪ Pi,∞, with (ai, ri,∞,0) ∈ Fai
and (ri,∞,j , ri,∞,j+1) ∈ Fai for j ∈ N.

For each i, k ∈ N, let (Y,Fri,∞,k
) have a single non-trivial connected component, namely

a path of order k + 2 with initial vertex ai, final vertex bi, and vertex set {ai, bi} ∪ Pi,k.
Note that for all i, k ∈ N, we have ri,∞,k ∈ dclΓ,Y({ai}), and further,∣∣{t : Y |= F (ri,∞,k, ai; t)

}∣∣ = 1.

We say that Pi,k witnesses that bi ∈ dclΓ,Y({ai}). This completes the definition of Y.
We are now ready to define Mc, a computable structure that has the same underlying

set as Y and that agrees with Y on Y \ {?}.
As in the proof of Proposition 4.1, let

(
(ei, ni)

)
i∈N be a computable enumeration

without repetition of {
(e, n) : e, n ∈ N and {e}(n)↓

}
.

Let Mc |= F (r, s, t) with ? ∈ {r, s, t} hold if and only if for some i ∈ N and k ≤ ni,

(r, s, t) = (rei,∞,k, aei , ?).

Consequently, for i ∈ N and k ≤ ni we have∣∣{t : Mc |= F (rei,∞,k, aei ; t)
}∣∣ = 2,
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and so Pei,k does not witness that bei is in dclΓ,c({aei}).
On the other hand, for i ∈ N, if for all h ∈ N with eh = ei we have k > nh then the

path Pei,k still witnesses that bei is in dclΓ,c({aei}).
Let ` ∈ N. By construction, we have b` ∈ dclΓ,c({a`}) if and only if this fact is

witnessed by P`,j for some j ∈ N. By the above, there is some j such that P`,j witnesses
b` ∈ dclΓ,c({a`}) if and only if sup{n : {`}(n)↓} is finite.

Hence Fin, a Σ0
2-complete set, is 1-reducible to{

(a`, b`) : b` ∈ dclΓ,c({a`})
}

relative to N , as desired.

In Propositions 3.3 and 3.4, we provided upper bounds on the difficulty of computing
aclΦ,c from ACLc0, and of computing dclΦ,c from DCLc0, for Φ a computable set of quantifier-
free first-order Lc-formulas. We now show that in general, merely knowing aclΦ,c and dclΦ,c
will not lower the difficulty of computing even the Φ-fiber of ACLc0 or DCLc0. We do so by
providing examples where the Φ-fibers of ACLc0 and of DCLc0 are maximally complicated
but aclΦ,c and dclΦ,c are trivial.

Proposition 4.5. There are c0, c1 ∈ CompStr such that the following hold.

(a) The (one-sorted) language Lc0 = Lc1 contains a ternary relation symbol F and a
unary relation symbol U .

(b) Mc0 and Mc1 have the same underlying set M and agree on all unary relations.

(c) Let ψ(x, y, z) := F (x, y, z)∧¬F (x, z, y), and write Ψ = {ψ(x, y; z)}. For any A ⊆M ,

aclΨ,c0(A) = dclΨ,c1(A) =

{
M if A ∩ U 6= ∅, and

∅ if A ∩ U = ∅.

(d) If N ∼=Mc0 then uniformly in N , the set Fin is 1-reducible to the set{
(u, a) : u ∈ U and {b : N |= ψ(u, a; b)} is finite

}
,

relative to N . In particular, Fin ≤1 ACLc00 , and so ACLc00 is a Σ0
2-complete set.

(e) If N ∼=Mc1 then uniformly in N we can compute 000′ from the set{
(u, a) : u ∈ U and

∣∣{b : N |= ψ(u, a; b)}
∣∣ = 1

}
.

In particular DCLc10 is Turing equivalent to 000′.

Proof. Let L′ be the (one-sorted) language consisting of unary relation symbols U , A, B,
C, D, H, a binary relation symbol E, and a ternary relation symbol F . Let K be the
sublanguage of L′ consisting of the relation symbols A, B, C, D, H and E.

We begin by defining a computable L′-structure Z. The reduct of the structure Z
to K will be the same as the reduct to K of the structure Y in the proof of Proposi-
tion 4.4 (in particular, the underlying set of Z is also Y ). This will imply that the graph
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(AZ ∪BZ ∪HZ , EZ) is rigid, and that for any graph P that is isomorphic to (AZ ∪BZ ∪
HZ , EZ), the unique such isomorphism is computable uniformly in P.

The unary relation UZ consists of three elements u0, u1, u2 where u0, u1 ∈ CZ and
DZ = {u2}. It remains to describe FZ .

We will eventually build computable L′-structuresMc0 andMc1 , each with underlying
set Y , which agree with Z on the unary and binary relations, and are such that FZ ⊆ FMcj

for j ∈ {0, 1}. For j ∈ {0, 1} we will construct Mcj such that if (r, s, t) ∈ FMcj , then
r ∈ UZ .

We now describe FZ . For any (r, s, t) ∈ FZ we will have r ∈ UZ . Define, for
i ∈ {0, 1, 2}, the binary relations

Fi :=
{

(s, t) ∈ Y × Y : Z |= F (ui, s, t)
}
.

For each i, the structure (Y,Fi) will be a digraph; further if (s, t) ∈ Fi and {s, t} ∩UZ 6= ∅
then s = ui and t = uk, where k ≡ i+ 1 (mod 3). In particular, for each i there is a single
Fi-edge in UZ and no other Fi-edge involves an element of UZ .

To complete the description of FZ , we now describe each Fi outside UZ . Let the digraph
(Y \UZ ,F0) be any computable infinite path, and let F1 be such that for s, t ∈ Y \UZ we
have Z |= F0(s, t)↔ F1(t, s). The digraph (Y \UZ ,F2) has no edges, i.e., F2 = {(u2, u0)}.
This completes the definition of Z.

Now we move towards defining Mci for i ∈ {0, 1}. Suppose G is a computable bipartite
graph with underlying set AZ ∪BZ and underlying partition {AZ , BZ}, in the single-sorted
language consisting of a single binary relation symbol G. For such a G, define Z(G) to be
the L′-structure with underlying set Y that agrees with Z on all unary relations and E,
and for which

FZ(G) = FZ ∪
{

(u2, s, t) : (s, t) ∈ GG
}
.

Let f be any computable function which takes a code for computable bipartite graphs G
with underlying partition {AZ , BZ} and returns a code for Z(G). Similarly define d to be
any computable function such that d(G) is a code for G.

It is straightforward to check that for any computable bipartite graph G with underlying
partition {AZ , BZ}, we have that Z(G) is computable and

aclΨ,Z = aclΨ,Z(G),

dclΨ,Z = dclΨ,Z(G) .

In particular, if G0 and G1 are such graphs then (a), (b) and (c) hold for c0 = f(G0) and
c1 = f(G1).

Observe that from the set of pairs of the form (ψ(x, y; z), (u2, b)) in ACL
f(G)
0 , we can

compute those of the form (G(x; y), a) in ACL
d(G)
0 . Likewise, from the set of pairs of

the form (ψ(x, y; z), (u2, b)) in DCL
f(G)
0 we can compute those of the form (G(x; y), a) in

DCL
d(G)
0 .

To finish the proof, we now choose G0 and G1. For i ∈ N, let ai be the unique element
of AZ in a chain of order i+ 2 in (Y,EZ).

Let G0 be any computable bipartite graph with underlying partition {AZ , BZ} such
that for each e ∈ N, the vertex ae is adjacent to

∣∣{n : {e}(n)↓}
∣∣-many elements in BZ . If
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N is any computable structure isomorphic to f(G0), then Fin is 1-reducible to{
(u, a) : u ∈ U and {b : N |= F (u, a; b)} is finite

}
relative to N . Hence Fin is 1-reducible to ACL

d(G0)
0 , and so (d) holds.

Let G1 be any computable bipartite graph with partition {AZ , BZ} such that for each
e ∈ N, the vertex ae is adjacent a single element of BZ if {e}(0) ↓, and to no elements
otherwise. Then if N is any computable structure isomorphic to f(G1), we can compute
Fin from {

(u, a) : u ∈ U and |{b : N |= F (u, a; b)}| = 1
}
.

Hence DCL
d(G1)
0 can compute 000′, and so (e) holds, completing the proof.

5 Bounds for Boolean Combinations of Σn-Formulas

In Sections 3 and 4 we studied, for c ∈ CompStr, the complexity of ACLc0 and DCLc0, and
of aclΦ,c and dclΦ,c where Φ is a computable set of quantifier-free first-order Lc-formulas.
We now study the complexity of ACLcn and DCLcn, for arbitrary n ∈ N, and of aclΦ,c and
dclΦ,c where Φ is a computable set of first-order Lc-formulas of quantifier rank at most n.

Morleyization is a technique for translating a structure in a given language to a new
structure, in a new language, that has quantifier elimination but the same definable sets.
This is done by introducing new relation symbols to take the place of existing formulas.
The following lemma is a computable version of this standard method. The proof is
straightforward.

Lemma 5.1. Let L be a computable language and A a computable L-structure. For each
n ∈ N there is a computable language Kn and a 000(n)-computable Kn-structure An such that
the following hold.

• L ⊆ Kn ⊆ Kn+1.

• A is the reduct of An to the language L.

• For each first-order Kn-formula ϕ there is a first-order L-formula ψϕ (of the same
type as ϕ) such that

An |= (∀x0, . . . , xk−1) ϕ(x0, . . . , xk−1)↔ ψϕ(x0, . . . , xk−1),

where k is the number of free variables of ϕ.

• For each first-order L-formula ψ, if ψ is a Boolean combination of Σn-formulas then
there is a first-order quantifier-free Kn-formula ϕψ (of the same type as ψ) such that

An |= (∀x0, . . . , xk−1) ψ(x0, . . . , xk−1)↔ ϕψ(x0, . . . , xk−1),

where k is the number of free variables of ψ.

We now use Lemma 5.1 to extend our earlier results about algebraic and definable
closure for quantifier-free formulas to formulas of higher quantifier rank; this comes at the
expense of greater computability-theoretic complexity.
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Corollary 5.2. Let n ∈ N. Uniformly in c ∈ CompStr, we have that

(a) ACLcn is a Σ0
n+2 set, and

(b) DCLcn is a ∆0
n+2 set.

Further, uniformly in c ∈ CompStr and in a computable collection Φ of first-order Lc-
formulas of quantifier rank at most n, we have that

(c) aclΦ,c is a Σ0
n+2 set, and

(d) dclΦ,c is a Σ0
n+2 set.

Proof. By Lemma 5.1, we know that ACLn and DCLn are equivalent to the relativization,
to the class of structures computable in 000(n), of ACL0 and DCL0, respectively. Therefore
by Propositions 3.1 and 3.2, ACLcn is a Σ0

2(000(n)) set and DCLcn is a ∆0
2(000(n)) set and so (a)

and (b) hold.
Similarly, (c) and (d) hold by Propositions 3.3 and 3.4.

In Theorem 5.6 we will show that these bounds are tight. Towards this fact, we will
need a definition and the technical results in Lemma 5.4 and Proposition 5.5 below.

Let (N, Succ) be the digraph with underlying set N where Succ is the graph of the
successor function on N, i.e., such that Succ(k, `) holds precisely when ` = k + 1.

Definition 5.3. Suppose that L is a language containing a sort N and a relation symbol
S of type N ×N . Let A be an L-structure. We call (NA, SA) a copy of N when there is
an isomorphism between (NA, SA) and (N, Succ).

Note that any such isomorphism is necessarily unique. Given ` ∈ N, we write ̂̀ to
denote the corresponding element of NA under this isomorphism.

Lemma 5.4. Let L be a language containing a sort N and a relation symbol S of type
N ×N (and possibly other sorts and relation symbols). Let A be an L-structure such that
(NA, SA) is a copy of N. Let k ∈ N and let γ(x, y) be an L-formula that is a Boolean
combination of Σk-formulas, where x is of some type X, and y has sort N .

Suppose that

A |= (∀x : X)(∃≤1y : N)(∃z : N) S(y, z) ∧
(
γ(x, y)↔ ¬γ(x, z)

)
.

Let f : XA × N→ {True,False} be the function where

A |= γ(a, ̂̀) if and only if f(a, `) = True.

Note that lim`→∞ f(a, `) exists for all a ∈ XA.
There is a first-order L-formula γ′(x), where x is of type X, such that γ′ is a Boolean

combination of Σk+1-formulas and for all a ∈ XA,

A |= γ′(a) if and only if lim
`→∞

f(a, `) = True.
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Proof. Define the formula γ′ by

γ′(x) :=
[
(∀y : N) γ(x, y)

]
∨
[
(∃y, z : N)

(
S(y, z) ∧ ¬γ(x, y) ∧ γ(x, z)

)]
.

Clearly γ′ is a Boolean combination of Σk+1-formulas and has the desired property.

Proposition 5.5. Let n ∈ N. Let L be a language containing a sort N and a relation
symbol S of type N ×N (and possibly other sorts and relation symbols). Suppose A is an
L-structure that is computable in 000(n) and such that (NA, SA) is a computable copy of N.
Then there is a computable language L+ and a computable L+-structure A+ with the same
underlying set as A such that for every quantifier-free first-order L-formula η in which
S does not occur, there is a first-order L+-formula ϕη that is a Boolean combination of

Σn-formulas such that ηA = (ϕη)
A+

.

Proof. We begin by defining, for relation symbols in L other than S, certain auxiliary
functions.

For R a relation symbol in L other than S, let X be its type. For every k ∈ N such
that 0 ≤ k ≤ n, inductively define the 000(n−k)-computable function fR,k : XA × Nk →
{True,False} satisfying the following, for all a ∈ XA.

• fR,0(a) = True if and only if A |= R(a).

• Suppose k ≥ 1 and let (`0, . . . , `k−2) ∈ Nk−1. There is at most one `k−1 ∈ N for
which

fR,k(a, `0, . . . , `k−2, `k−1) 6= fR,k(a, `0, . . . , `k−2, `k−1 + 1).

Further,

fR,k−1(a, `0, . . . , `k−2) = lim
`k−1→∞

fR,k(a, `0, . . . , `k−2, `k−1).

Next, we define the computable language L+ as follows.

• L+ has the same sorts as L.

• For each relation symbol R ∈ L other than S, there is a relation symbol R+ ∈ L+ of
type X ×Nn, where X is the type of R. The language L+ also contains a relation
symbol S of type N ×N . These are the only relation symbols in L+.

Now define the computable L+-structure A+ as follows.

• A+ has the same underlying set as A, and sorts are instantiated on the same sets in
A+ as in A.

• SA
+

= SA.

• For each R ∈ L other than S, each tuple a ∈ XA+
where X is the type of R, and

any `0, . . . , `n−1 ∈ N, we have
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A+ |= R+(a, ̂̀0, . . . , `̂n−1) if and only if fR,n(a, `0, . . . , `n−1) = True.

(Recall that for ` ∈ N, we have defined ̂̀∈ NA+
to be the `th element of the copy of N.)

We now build, for each relation symbol R ∈ L other than S, an L+-formula ϕR, as
follows. First apply Lemma 5.4 (with k = 0) to A+ and the L+-formula

γ0(xy0 · · · yn−2, yn−1) := R+(x, y0, . . . , yn−1)

(where x has type X and each yi has type N) to obtain an L+-formula γ′0(xy0 · · · yn−2)
that is a Boolean combination of Σ1-formulas. Next apply Lemma 5.4 again (with k = 1)
to A+ and the L+-formula

γ1(xy0 · · · yn−3, yn−2) := γ′0(xy0 · · · yn−2)

to obtain an L+-formula γ′1(xy0 · · · yn−3) that is a Boolean combination of Σ2-formulas.
Proceed in this way for k = 2, . . . , n− 1, to obtain an L+-formula ϕR(x) := γ′n−1(x) that

is a Boolean combination of Σn-formulas for which RA = (ϕR)A
+

.
We can now extend the definition of ϕψ to quantifier-free formulas ψ by induction,

where ϕ¬ψ is ¬ϕψ, where ϕψ0∧ψ1 is ϕψ0 ∧ ϕψ1 , and where ϕψ0∨ψ1 is ϕψ0 ∨ ϕψ1 .

Combining Proposition 5.5 with results from Section 4, we obtain the following.

Theorem 5.6. For each n ∈ N, the following hold.

(a) There exists a ∈ CompStr such that ACLan is a Σ0
n+2-complete set.

(b) There exists b ∈ CompStr such that DCLbn ≡T 000(n+1).

(c) There is a computable set Φ of first-order La-formulas, all of quantifier rank at most
n such that aclΦ,a is a Σ0

n+2-complete set, where a ∈ CompStr is as in (a).

(d) There exists d ∈ CompStr and a computable set Θ of first-order Ld-formulas, all of
quantifier rank at most n, such that dclΘ,d is a Σ0

n+2-complete set.

Proof. We first prove (a) and (c). Let P be the relativization to the oracle 000(n) of the
computable structure Mc from the statement of Proposition 4.1, and call its language L.
Consider the set Ξ of quantifier-free formulas from Proposition 4.3. Let L∗ be the language
that extends L by a new sort N and a relation symbol S of type N ×N . Consider the
L∗-structure P∗ whose restriction to L is P and such that (NP

∗
, SP

∗
) is a computable copy

of N (instantiated on the new set of elements NP
∗
). Let a ∈ CompStr be such that Ma is

the computable structure (P∗)+ obtained from Proposition 5.5 (when A = P∗), and let
Φ :=

{
ϕη : η ∈ Ξ

}
be the corresponding set of first-order (La)+-formulas, each partitioned

in the same way as in Ξ. Then ACLan and aclΦ,a are Σ0
n+2-complete sets, establishing (a)

and (c).
Towards (b), let Q be the relativization to 000(n) of the structureMc from Proposition 4.2.

Consider the structure Q∗ obtained from Q by augmenting it by (NQ
∗
, SQ

∗
), a new

computable copy of N, as in the proof of (a) and (c) above. Let b ∈ CompStr be such that
Mb is the computable structure (Q∗)+ obtained by applying Proposition 5.5 to Q∗. Then
DCLbn ≡T 000(n+1).

18



We now prove (d). Let Mc and F (x, y, z) be as in Proposition 4.4, and let R be the
relativization of Mc to 000(n). Consider the structure R∗ obtained by augmenting R by a
computable copy of N, as above. Let d ∈ CompStr be such that Md is the computable
structure (R∗)+ obtained by applying Proposition 5.5 to R∗, and let Θ := {ϕF (x, y; z)}.
Then dclΘ,d is a Σ0

n+2-complete set.

Note that the structures constructed in Theorem 5.6 (a) and (b) do not obviously
have the nice model-theoretic properties (ℵ0-categoricity or finite Morley rank) that those
constructed in Propositions 4.1 and 4.2 do, because the application of Proposition 5.5
encodes a copy of N in a way that makes their theories more elaborate. Nor is it obvious
that the structures constructed in Theorem 5.6 (c) and (d) have these nice model-theoretic
properties, because they derive from the structures constructed in Propositions 4.3 and 4.4,
which themselves do not obviously have these properties. This leads us to the following
question.

Question 1. Is there some c ∈ CompStr such that ACLcn is Σ0
n+2-complete or DCLcn ≡T

000(n+1), and Mc is nice model-theoretically (e.g., ℵ0-categorical, strongly minimal, stable,
etc.)?

Similarly, is there some c ∈ CompStr and computable set Ψ of first-order Lc-formulas,
all of quantifier rank at most n, such that either aclΨ,c or dclΨ,c is a Σ0

n+2-complete set
and Mc is nice model-theoretically?
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