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We introduce the notion of a semi-retraction. Given two structures A and B, A is 
a semi-retraction of B if there exist quantifier-free type respecting maps f : B → A
and g : A → B such that f ◦ g is an embedding. We say that a structure has the 
Ramsey property if its age does. Given two locally finite ordered structures A and 
B, if A is a semi-retraction of B and B has the Ramsey property, then A also has 
the Ramsey property. We introduce notation for what we call semi-direct product 
structures, after the group construction known to preserve the Ramsey property [11].
We introduce the notion of a color-homogenizing map, and use this notion to give 
a finitary argument that the semi-direct product structure of ordered relational 
structures with the Ramsey property must also have the Ramsey property. Finally, 
we characterize NIP theories using a generalized indiscernible sequence indexed by 
a semi-direct product structure.

© 2020 Published by Elsevier B.V.

1. Introduction

Structural Ramsey theory is the study of partition properties of classes of first-order structures. We may 
consider the natural numbers as a first-order structure, M = (ω, <), in the signature consisting of one 
binary relation symbol < for order. The finite substructures of M up to isomorphism form the age, K, of 
M, which we may call age(M) (see Section 2 for more detailed definitions). For every integer n ≥ 1, there is 
a unique linear order An ∈ K. Let 

(M
An

)
denote all substructures of M isomorphic to An. Given an integer 

k ≥ 1, a k-coloring of 
(M

An

)
is a function f :

(M
An

)
→ k. It is clear that {f−1(i) | i ∈ k} forms a finite 

partition of 
(M

An

)
. Ramsey’s theorem for finite sequences states that for any integers k, n, m ≥ 1, there exists 

an integer N such that for any k-coloring f of 
(AN

An

)
there exists B ⊆ AN such that B ∼= Am and f �

( B
An

)
is a constant function [18]. The property just described is called the Ramsey property (RP) for K, and may 
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be stated for any class K of finite structures in some signature. We say that a locally finite structure M
has RP if age(M) has RP. In this paper, we consider RP only for structures M that are locally finite and 
ordered by some 0-definable relation. To read a survey of some recent work in structural Ramsey theory, 
please see [17].

We consider the following:

Question 1.1. What mechanisms transfer RP from one ordered structure to another?

It is natural to ask whether taking reducts or expansions could preserve RP, perhaps under some addi-
tional assumptions. In [14], it is shown that the age of any linearly ordered structure with RP must have 
the amalgamation property (AP). Thus, if B is an ordered structure with RP and A is an ordered reduct of 
B that fails to have AP, then A fails to have RP. For example, let I0 = (<ωω, �, ∧, <lex) where �, ∧, <lex
are defined as in Definition 3.1. I0 is shown to have RP in [13] but the reduct It = I0 � {�, <lex}, though 
ordered, has an age that fails to have AP, and thus fails to have RP (see [24] or Corollary 3.19 of [20] for a 
discussion).

There are many examples of ages of ordered structures that have AP but not RP, and the class of all 
finite partial orders with an added linear order is one such age (see Lemma 4 in [22]). The class of all finite 
equivalence relations that are linearly ordered is another example of an ordered class with AP but not RP, 
though the class of all finite equivalence relations with a convex linear order does have RP [11].

Furthermore, given an age with RP, not all ordered reducts with AP have RP. Let K1 be the class of all 
finite convexly ordered equivalence relations in the signature σ1 = {E1, <1}, and let K2 be the same in a 
disjoint signature σ2 = {E2, <2}. As in Definition 3.21 of [3], define the free superposition K1 ∗ K2, which 
is the class of all finite (σ1 ∪ σ2)-structures whose σi-reduct is in Ki. The Fraïssé limit of K1 ∗ K2 has RP, 
by Theorem 3.24 in [3], but the ordered reduct to {E1, E2, <1} does not, even though its age has AP. It 
is worth noting that, in some cases, one may start with a class of finite structures that is not ordered and 
does not have AP or RP, and achieve these properties by expanding the signature. The case of bowtie-free 
graphs in [9] is one such example.

It is also natural to consider interpretations of one structure in another in relation to Question 1.1 (see [10, 
Definitions 7.1, 7.6 in Models and Groups] for background on interpretations). Recent work has shown how 
notions of interpretability of one structure in another may transfer RP: “simply bi-definable” expansions 
in [11, Proposition 9.1] and Ramsey expansions of a structure interpretable in a Ramsey structure in [3, 
Proposition 3.8]. By a well-known result from [11], a closed subgroup G ≤ S∞ is extremely amenable if 
and only if G is the automorphism group of an ordered Fraïssé limit with RP. Countable structures A and 
B have homeomorphic automorphism groups if and only if A and B are infinitarily bi-interpretable (see 
[10, Corollary 7.7 in Models and Groups] for a proof). By a combination of these results, given two linearly 
ordered Fraïssé limits F1 and F2, if F1 and F2 are infinitarily bi-interpretable, then F1 has RP if and only 
if F2 has RP.

In this paper, we introduce the notion of a semi-retraction (see Definition 3.3). A semi-retraction has 
some elements in common with an infinitary interpretation. In Corollary 3.7, we show that for any locally 
finite ordered structures A and B, if B has RP and A is a semi-retraction of B, then A also has RP. In 
Section 2, we explain our notation as well as some background on RP, the modeling property and generalized 
indiscernible sequences. In Section 4, we define color-homogenizing maps in Definition 4.1 and prove the 
corresponding RP transfer result in Theorem 4.2. In Section 5, we define semi-direct product structures in 
Definition 5.6 and apply Theorem 4.2 to obtain a finitary argument that the semi-direct product structure 
obtained from ordered relational structures with RP has RP (Theorem 5.13). In Section 6, we deduce 
examples of structures with RP as special cases of Theorem 5.13, some of which are known. We also prove 
a characterization of NIP theories using a generalized indiscernible sequence indexed by the semi-direct 
product structure named in Corollary 6.4(2) (see [7] for more results of this kind).
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2. Preliminaries

2.1. Notation and conventions

The notation → is reserved for the function arrow in f : A → B as well as for the Erdős-Rado partition 
arrow in C → (B)A

k (see Section 2.1.4 Ramsey notions). The notation ⇒ is reserved for the material 
conditional.

2.1.1. Size and order
For a set X, |X| is the cardinality of X. We follow the logical convention that ω is the set of non-negative 

integers, and for any n ∈ ω, n = {0, 1, . . . , n − 1}. Thus, “i < n” and “i ∈ n” may be used interchangeably, 
for any i ∈ ω. The notation < is reserved for the linear order on ω, and a different symbol is used for linear 
orders on other structures. An order is a linear order unless otherwise specified. For sets A, B, by AB, we 
mean the set of all functions f : A → B. Tuples a from A are finite sequences (ai)i<n for some n ∈ ω and for 
some ai ∈ A, for all i < n. We define (a)i = ai and ran a = {ai | i < n}. We reserve the notation � for the 
function that outputs the length of a tuple: e.g. �(a) = n, when a = (ai)i<n. Given a function f : A → B

and a tuple a = (a0, a1, . . . , an−1) from A, f(a) is defined to be the tuple (f(a0), f(a1), . . . , f(an−1)) from 
B. Given some m-tuples aji

for all i < n, by aj we mean the m · n-tuple (aj0 , . . . , ajn−1).

2.1.2. Structures
A signature is a set of relation and function symbols with assigned arities (where 0-ary function symbols 

play the role of constant symbols). Given a signature L, an L-structure A consists of an underlying set |A|
with interpretations of all symbols in L as relations or functions on |A| of the correct arity. For example, 
in the case that R ∈ L is a relation symbol of arity n, A interprets R as some relation RA ⊆ |A|n. (See [8]
as a reference for common model-theoretic terms.) As usual, a ∈ A means that a ∈ |A|, and we may use 
the symbol R to stand for its interpretation, if the intended structure A is understood. We say that A is a 
structure on |A| in the signature L. The cardinality of a structure, A, is denoted by ||A||. The (first-order) 
language of L is the set of all first-order L-formulas. Given a structure A, we use σ(A) to refer to the 
signature of A and L(A) to refer to the language of A. By an ordered structure A, we mean one that is 
linearly ordered by some binary relation symbol in σ(A). A subset X ⊆ |B|n is 0-definable (in B) if there 
exists an n-ary formula ϕ(v0, . . . , vn−1) in L(B) such that for every b ∈ |B|n, b ∈ X if and only if B � ϕ(b). 
Given two L-structures A1, A2 and L′ ⊆ L, an L′-embedding σ : A1 → A2 is an injection from |A1| into 
|A2| such that for any L′-formula ϕ, for all a from A1, A1 � ϕ(a) ⇔ A2 � ϕ(f(a)). Given two L-structures 
A1, A2, an embedding σ : A1 → A2 is assumed to be an L-embedding. Given two L-structures A1, A2, an 
(L-)isomorphism σ : A1 → A2 is an embedding that is surjective onto |A2|, and thus σ−1 : A2 → A1 is 
also an embedding. We denote that A1, A2 are isomorphic by A1 ∼= A2, or A1 ∼=L A2, for clarity. For two 
L-structures A, B, A ⊆ B means that A is a substructure of B, i.e., the identity map is an L-embedding 
from A into B.

Given a relational structure A and a 0-definable subset D ⊆ |B| suppose that there exists a bijection 
f : A → D such that for every n and n-ary relation symbol R ∈ σ(A), there is a set R̂ ⊆ |B|n that is 
0-definable in B such that a ∈ RA if and only if f(a) ∈ R̂. In this case we say that A is a reduct of B (see 
[4] for a statement of the more general case). Given an L-structure B and a subset L′ ⊂ L, by B � L′ we 
mean the L′-structure on |B| obtained from B by restricting to the symbols in L′. We refer to B � L′ as the 
L′-reduct of B.

The age, K, of a structure I, denoted by K = age(I), is the collection of all finitely-generated substructures 
of I, up to isomorphism. (In the case that the signature of I is relational, age(I) is the collection of all finite 
substructures of I, up to isomorphism.) Every age has the hereditary property and the joint embedding 
property (JEP) (see [8] for a reference). We say that an age K has the amalgamation property (AP) if given 
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any structures A, B, C ∈ K and embeddings f1 : A → B, f2 : A → C (what we call an amalgamation problem 
in K), there exist a structure D ∈ K and embeddings g1 : B → D, g2 : C → D (what we call a solution to the 
amalgamation problem) such that g1 ◦ f1 = g2 ◦ f2. A structure M is ultrahomogeneous if any isomorphism 
between finitely-generated substructures of M extends to an automorphism of M. The age of a countable, 
ultrahomogeneous structure in a countable signature has AP, and for every nonempty countable age K with 
AP in a countable signature, there is a countable ultrahomogeneous structure with age K, M, (unique, up 
to isomorphism) which we refer to as the Fraïssé limit of K, Flim K [5].

Given any signature L = {R, ≺} that consists of two binary relation symbols, the random ordered graph 
in the signature L is defined to be any structure isomorphic to Flim K, where K is the class of all finite 
L-structures (up to isomorphism) that are linearly ordered by ≺ and that interpret R as a graph edge 
relation (symmetric, with no loops). The relation that plays the role of ≺ should be clear from context.

2.1.3. Types
Given an integer n ≥ 1 and an n-tuple a from A, the quantifier-free type of a in A, which is denoted by 

qftpA(a), is the set of all n-ary quantifier-free formulas in L(A) satisfied by a in A. It is typical to write 
some subtype for qftpA(a), whose closure under logical consequence in A is qftpA(a). We say that η is a 
complete quantifier-free n-type in A if η = qftpA(a) for some length-n tuple a from A. We say that η is a 
complete quantifier-free type if it is a complete quantifier-free n-type for some n. We say that A � η(a) if and 
only if A � θ(a), for all θ ∈ η. The notation η(a) (similarly, θ(a)) presupposes that a is a tuple of the correct 
length, and we may sometimes specify the length of a to aid in clarity. We define η(A) to be all tuples from 
A that satisfy η in A. Given a structure A, we write a ≡A b to mean that A � ϕ(a) ⇔ A � ϕ(b), for all 
formulas ϕ ∈ L(A). We write a ∼A b to mean that A � θ[a] ⇔ A � θ[b], for all quantifier-free formulas θ in 
L(A). The statement a ∼A b is equivalent to the statement qftpA(a) = qftpA(b) which is equivalent to the 
statement that the map ai �→ bi extends to an isomorphism of the structures generated by a and b.

2.1.4. Ramsey notions
For any integer k ≥ 1, a k-coloring of a set X is any function c : X → k. A copy of A in B is a 

substructure A′ ⊆ B where A′ ∼= A. The set of all copies of A in B is denoted by 
(B

A
)
. Assuming that A is 

a structure ordered by the relation ≺, for any tuple b from A, we say that b = (bi)i<n is an increasing tuple
if bi ≺ bj ⇔ i < j, for all i, j < n. Moreover, the increasing enumeration of A is the increasing tuple a such 
that ran a = |A|. By an increasing copy of A in B we mean the increasing enumeration of A′, where A′ is 
some copy of A in B. We work with the following definition of the Ramsey property (see [14,11]).

Definition 2.1. We say that an age, K, of finite structures has the A-Ramsey property if for all B ∈ K and 
for any integer k ≥ 2, there exists C ∈ K such that for any k-coloring c of 

(C
A

)
, there is a structure B′ ∈

(C
B
)

such that for any A′, A′′ ∈
(B′

A
)
, c(A′) = c(A′′).

We say that C is Ramsey for A, B, k and denote this property of C by the expression:

C → (B)A
k

We say that B′ is a copy of B that is homogeneous for c (on copies of A).
We say that K has the Ramsey Property (RP) if it has the A-Ramsey property for all A ∈ K.
We say that a locally finite structure I has RP if age(I) has RP.

Observation 2.2. Note that we obtain an equivalent definition of RP if we replace the arbitrary k-coloring 
c :

(C
A

)
→ k in the definition with any function c′ :

(C
A

)
→ Y , where Y is any set of cardinality k.

We give a slight rephrasing of Theorem 4.2(i) from [14] as Theorem 2.3:
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Theorem 2.3. If K is an age of ordered structures and K has RP, then K has AP.

Theorem 2.4 is a well-known result from [1,15]:

Theorem 2.4. The age of any random ordered graph has RP.

Remark 2.5. If a finite ordered structure I has RP, then there are no isomorphisms between distinct subsets 
of I. This is easy to show letting I play the role of B in Definition 2.1.

2.2. The modeling property

In the study of classification theory in model theory there has been significant use of generalized indis-
cernible sequences, named “I-indexed indiscernible sets” in [21].

Definition 2.6. Fix a structure I, an integer l ≥ 1, and l-tuples ai from some structure M, for all i ∈ I. We 
say that (ai | i ∈ I) is an I-indexed indiscernible set if for any integer n ≥ 1, for all n-tuples ı, j from I,

ı ∼I j ⇒ aı ≡M aj.

We say that (ai | i ∈ I) is an I-indexed indiscernible sequence if I is an ordered structure, or a
generalized indiscernible sequence if I is an ordered structure that is clear from context.

We repeat definitions from [20] as Definition 2.7 and Definition 2.9.

Definition 2.7. Given an integer l ≥ 1, an L′-structure I, an L-structure M and an I-indexed set of l-tuples 
from M, X = (ai | i ∈ I), we define the EM-type of X (EMtp(X)) to be a syntactic type in variables 
(xi | i ∈ I), where �(xi) = l for each i ∈ I, as follows:

EMtp(X) = {ψ(xi0 , . . . , xin−1) | ψ ∈ L, ı ∈ nI and (∀j ∈ nI)(j ∼I ı ⇒ M � ψ(aj0 , . . . , ajn−1))}

Proposition 2.8 is a useful equivalence which follows directly from Definition 2.7 (see Proposition 2 of 
[20] for more details):

Proposition 2.8. Given an L′-structure I and an L-structure M, fix sets of l-tuples from M indexed by I, 
X = (ai | i ∈ I) and Y = (bi | i ∈ I). Y � EMtp(X) if and only if for any integer n ≥ 1, for all complete 
quantifier-free n-types η in I and all n · l-ary formulas ϕ ∈ L, if

(∀j)(I � η(j) ⇒ M � ϕ(aj))

then

(∀j)(I � η(j) ⇒ M � ϕ(bj))

If I is ordered by a 0-definable relation in I, it is trivial to produce I-indexed indiscernible sets, by 
Ramsey’s theorem for finite sequences. The following property guarantees that we can produce I-indexed 
indiscernible sets that witness additional structure.

Definition 2.9. Given a structure I, we say that I-indexed indiscernible sets have the modeling property if 
for any integer l ≥ 1, any |I|+-saturated structure M, and any I-indexed set of l-tuples from M
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X = (ai | i ∈ I),

there exists an I-indexed indiscernible set of l-tuples from M

Y = (bi | i ∈ I)

such that Y � EMtp(X).
We say that Y is locally based on X.

Theorem 2.10. Suppose that I is a locally finite ordered structure. I-indexed indiscernible sequences have 
the modeling property if and only if age(I) has RP.

Proof. In Theorem 3.12 of [20], this result is stated for locally finite ordered structures I with the additional 
condition qfi, which stands for “quantifier-free types are isolated by quantifier-free formulas”. Theorem 3.12 
in [20] generalizes Theorem 4.31 in [19] which is stated only for ordered structures I in a finite relational 
signature. In fact, it was later pointed out to the author that the qfi assumption is not needed (see the 
Acknowledgements section). To see this, in the argument for [20, Claim 3.13], replace L′ with an expansion 
L′′ such that L′′\L′ consists of a predicate pA(x) for the quantifier-free type of the increasing enumeration of 
A, for every finite substructure A ⊆ I. Then apply compactness to the type S where we replace T∀ ∪Diag(I)
with the diagram of I in L′′. It is noted in the proof of [20, Theorem 3.12] that the qfi hypothesis is used 
only in the argument for Claim 3.13. By the present argument, we see why it is not even needed there. �
3. Transfer by semi-retractions

For concrete examples, we give the definitions of the Shelah tree Istree, the strong tree Istrtree and the 
convexly ordered equivalence relation Ieq. All three structures are locally finite ordered structures. An ex-
position of the proof that Istree- and Istrtree-indexed indiscernible sequences have the modeling property 
is given in [12]. A proof that Ieq has RP is given in [11, Theorem 6.6]. This latter fact is equivalent to 
array-indiscernible sequences having the modeling property, and array-indiscernible sequences have been a 
common tool in model theory ([12, Lemma 5.6] provides a direct proof of the modeling property).

Definition 3.1.

• Define Istree to be the structure on <ωω (finite sequences from ω) in the signature {�, ∧, <lex, {Pn}n∈ω}
where for all η, ν ∈ <ωω, η � ν if and only if η is an initial segment of ν, ∧ is the meet in the partial 
order �, <lex is the lexicographic order on finite sequences, i.e. η <lex ν if and only if

η � ν ∨ η(�(η ∧ ν)) < ν(�(η ∧ ν)),

and η ∈ Pn ⇔ �(η) = n, for all n ∈ ω.
• Define Istrtree to be the structure on <ωω in the signature {�, ∧, <lex, <len} where �, ∧, <lex are inter-

preted as in Istree and <len is the preorder on μ, ν ∈ <ωω defined by the lengths of the sequences:

μ <len ν ⇔ �(μ) < �(ν)

• Define Ieq to be the structure on ω × ω in the signature {E, ≺} where for all (i, j), (s, t) ∈ ω × ω, 
(i, j)E(s, t) ⇔ i = s and (i, j) ≺ (s, t) ⇔ i < s ∨ (i = s ∧ j < t).
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Definition 3.2. Given any structures A, B, we say that an injection h : A → B is quantifier-free type 
respecting (qftp-respecting) if for all finite same-length tuples ı, j from A,

ı ∼A j ⇒ h(ı) ∼B h(j).

In the following Definition, the term “semi-retraction” is inspired by the definition of “retraction” from 
[2]. Corollary 1.4 in [2] gives an equivalent condition for a countable, ℵ0-categorical structure in a countable 
signature to be a retraction (attributed to T. Coquand): A is a retraction of B if and only if there are 
continuous homomorphisms

Aut(A) ϕ→ Aut(B) ψ→ Aut(A)

such that ψ ◦ ϕ = 1.

Definition 3.3 (semi-retractions). Let A and B be any structures. We say that A is a semi-retraction of B
if there exist qftp-respecting injections g : A → B and f : B → A such that for any complete quantifier-free 
type η in A, for any s from A,

(i) A � η(s) ⇒ A � η((f ◦ g)(s)).

Observation 3.4. If A is a semi-retraction of B, then ||A|| = ||B||, by the Schröder-Bernstein theorem.

Theorem 3.5. Let A and B be any structures. Suppose that A is a semi-retraction of B. Furthermore, 
suppose that B-indexed indiscernible sets have the modeling property. Then A-indexed indiscernible sets 
have the modeling property.

Proof. Fix structures A and B such that A is a semi-retraction of B and assume that B-indexed indiscernible 
sets have the modeling property. Fix an integer l ≥ 1 and an A-indexed set of l-tuples from some |A|+-
saturated structure M

X = (ci | i ∈ A).

We want to find an A-indexed indiscernible set of l-tuples from M

Y = (ei | i ∈ A)

such that Y � EMtp(X).
Let g : A → B and f : B → A witness that A is a semi-retraction of B. Define

X ′ = (cf(j) | j ∈ B).

By assumption, there is a B-indexed indiscernible set from M

Y ′ = (dj | j ∈ B)

such that Y ′ � EMtp(X ′) (recall that |A| = |B| by Observation 3.4, so M remains sufficiently-saturated).
Let ei = dg(i). It remains to show that Y = (ei | i ∈ A) is the desired set.
To see that Y is an A-indexed indiscernible set, fix ı1 ∼A ı2. Since g is qftp-respecting, g(ı1) ∼B g(ı2). 

By B-indexed indiscernibility of Y ′:
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dg(ı1) ≡M dg(ı2)

i.e.

eı1 ≡M eı2 .

Now fix a complete quantifier-free n-type η, and an n · l-ary formula ϕ such that

(∀ı)(A � η(ı) ⇒ M � ϕ(cı)). (1)

Also fix s so that

A � η(s). (2)

To see that Y � EMtp(X), we wish to show that M � ϕ(es).
Since f is qftp-respecting, there is an index set S and there are some quantifier-free n-types (δk | k ∈ S)

in B such that for any n-tuple j from B,

A � η(f(j)) ⇔ B �
∨

k∈S

δk(j), (3)

equivalently,

f−1(η(A)) =
⋃

k∈S

δk(B).

Thus, via assumptions (1) and (3) we get that for all k ∈ S,

(∀j)(B � δk(j) ⇒ M � ϕ(cf(j))). (4)

Since Y ′ � EMtp(X ′), by Proposition 2.8 we get that for all k ∈ S,

(∀j)(B � δk(j) ⇒ M � ϕ(dj)). (5)

By condition (i) of Definition 3.3:

A � η(s) ⇒ A � η((f ◦ g)(s)). (6)

Observe that by (3) and letting j = g(s),

A � η((f ◦ g)(s)) ⇒ B �
∨

k∈S

δk(g(s)). (7)

So we conclude by (2), (6) and (7):

B �
∨

k∈S

δk(g(s)). (8)

Apply this fact to (5) letting j = g(s) to get

M � ϕ(dg(s)) (9)
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i.e.

M � ϕ(es) (10)

as desired. �
Remark 3.6. In the proof for Theorem 3.5, Y = (dg(i) | i ∈ A) is an A-indexed indiscernible set because 
(dj | j ∈ B) is a B-indexed indiscernible set and the map g is qftp-respecting. It is only in verifying that 
Y � EMtp(X) that we use the map f and condition (i) in Definition 3.3.

Corollary 3.7. Let A and B be locally finite ordered structures. Suppose that A is a semi-retraction of B and 
B has RP. Then A has RP.

Proof. By Theorem 3.5 and Theorem 2.10. �
Corollary 3.8. If Istrtree has RP, then Ieq has RP.

Proof. Define A to be the structure on the underlying set ω × Q with the same definition as Ieq on 
ω ×ω (thus, age(A) = age(Ieq) and each equivalence class in A is densely ordered by ≺). Define B to be the 
structure on the underlying set <ωQ with the same definition as Istrtree on <ωω (thus, age(B) = age(Istrtree)
and the �-successors of any fixed node in B are densely ordered by <lex). It remains to show that A is a 
semi-retraction of B, in order to apply Corollary 3.7.

Our referee for [12] kindly suggested that we deduce RP for A from RP for B by constructing a special 
embedding g : A → B that is qftp-respecting (see [12, Theorem 5.5] for details). Given i ∈ ω, by the ith 
level in B, we mean all sequences in <ωQ of length i, and by the ith equivalence class in A, we mean 
{(i, x) | x ∈ Q}.

Let ηi = 〈0, . . . , 0〉︸ ︷︷ ︸
2i

. Let g take the ith equivalence class in A into {η�
i 〈j〉 | j ∈ Q>0} in a way that 

preserves the order. Let f : B → A be the map that takes the ith level in B into the ith equivalence class 
in A in a way that preserves the order. A is a semi-retraction of B witnessed by g and f . �
Remark 3.9. In Corollary 3.8, we have an example of f, g witnessing that A is a semi-retraction of B, such 
that f ◦ g is an embedding, but g ◦ f is not an embedding.

4. Transfer by color-homogenizing maps

We start with a technical definition.

Definition 4.1 (color-homogenizing maps). Fix ordered structures V and W, and integers m, k ≥ 1. Given 
a finite substructure B ⊆ V, a k-coloring c on increasing m-tuples from W and an increasing function 
g : B → W, we say that g is color-homogenizing for c and B if for all increasing m-tuples ı, j from B,

ı ∼V j ⇒ c(g(ı)) = c(g(j)).

Theorem 4.2. Let V and W be any ordered structures such that V is locally finite. Suppose that there is an 
increasing function f : W → V such that for any integers m, k ≥ 1, any finite substructure B ⊆ V and any 
k-coloring c on increasing m-tuples from W, there is a color-homogenizing map g for c and B such that 
f ◦ g : B → V is a σ(V)-embedding.

Then V has RP.
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Proof. Fix finite substructures A and B of V and suppose that ||A|| = m. Let c′ be a k-coloring of 
(V

A
)
. We 

may define a k-coloring c′′ of all finite increasing m-tuples from V with the property that for any A′ ∈
(V

A
)
, 

we define c′′(a′) = c′(A′), where a′ is the increasing enumeration of A′. It suffices to find a copy B′ of B in 
V that is homogeneous for c′′ on increasing copies of A, i.e. such that for all increasing copies d1, d2 of A in 
B′, c′′(d1) = c′′(d2).

Define a k-coloring c on increasing m-tuples s from W by c(s) = c′′(f(s)). By assumption, there is an 
increasing function g : B → W that is color-homogenizing for c and B.

Let B′ = (f ◦g)(B). By the assumption that f ◦g is an embedding, B′ ∼= B. To complete the argument that 
V has RP, it suffices to show that B′ is homogeneous for c′′ on increasing copies of A. Let d1, d2 be increasing 
copies of A in B′, thus, d1 ∼V d2. The embedding f ◦ g is order-preserving and surjective onto B′. Thus, we 
may define increasing tuples ı = (f ◦ g)−1(d1) and j = (f ◦ g)−1(d2) from B. Since d1 ∼V d2 and f ◦ g is an 
embedding, we have that ı ∼V j. Since ı and j are increasing tuples from B and ı ∼V j, c(g(ı)) = c(g(j)), 
by the fact that g is color-homogenizing for c and B. By definition of c, c′′(f(g(ı))) = c′′(f(g(j))), i.e., 
c′′(d1) = c′′(d2). �
5. Semi-direct product structures

In this section, we focus on ordered relational structures. In the following definition, it is convenient 
to assume that the relation symbol for order is common to the structures. If this is not the case for 
certain desired input structures, we assume that we make it the case before applying the definition (as in 
Definition 6.1). The following operation is the “disjoint sum” operation on structures, [8, p. 101] plus the 
requirement that ≺ be extended to a total order on the sum.

Definition 5.1. Given a linear order O = (|O|, ≺) and structures (Mi)i∈O on pairwise-disjoint domains |Mi|
in relational signatures Li, each linearly ordered by ≺∈ Li, define U = Ui∈O(Mi) to be the structure on ⋃

i∈O |Mi| in the signature

σ(U) = {Pα | α ∈ O} ∪
⋃
i∈O

Li

for new unary predicates Pα, where the symbols are interpreted as follows.

(i) For each n-ary relation symbol R� that is not ≺ or any of the Pα, RU
� =

⋃
i∈O Xi, where we define

Xi =
{

RMi

� , if R� ∈ Li

∅ , if R� /∈ Li

(ii) a ≺U b if and only if there exist i, j ∈ O such that a ∈ Mi, b ∈ Mj and either i ≺O j or else i = j and 
a ≺Mi b,

(iii) P U
α = |Mα|.

Observation 5.2.

(1) Ui∈O(Mi) in Definition 5.1 is linearly ordered by ≺.
(2) Given a finite substructure A ⊆ Ui∈O(Mi), there is a unique integer s ≥ 1, a unique finite sequence 

t0 ≺ . . . ≺ ts−1 from O, and unique substructures Ai ⊆ Mti
, for all i < s, such that A =

⋃
i<s Ai.

Proposition 5.3. If age(Mi) has AP, for all i ∈ O, then age(U) has AP.
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Proof. Since the language is relational, we may allow empty structures in order to simplify our argument.
Fix an amalgamation problem in age(U), f1 : A → B, f2 : A → C. We may assume that all A, B, C ⊆ U . 

Since the language is relational, structures A, B, C are finite.
By Observation 5.2(2), there exist unique increasing tuples s = (si)i<n, t = (tj)j<m from O and sub-

structures B(i) ⊆ Msi
, C(j) ⊆ Mtj

such that B =
⋃

i<n B(i), C =
⋃

j<m C(j). Let Y = ran s, Z = ran t, and 
X = Y ∪ Z. For k ∈ X, define Bk = B(i), if k = si, and otherwise Bk = ∅. Likewise, define Ck = C(j), if 
k = tj , and otherwise Ck = ∅. Define Ak = A ∩ Mk, for all k ∈ X.

For each k ∈ X, we define a structure Dk ∈ age(U) and embeddings gk
1 : Bk → Dk, gk

2 : Ck → Dk as 
follows.

If k ∈ Y \ Z, then k = si for some unique i < n, and we let gk
1 : Bk → Bk be the identity function, 

Dk = Bk and gk
2 = ∅.

If k ∈ Z \ Y , then k = tj for some unique j < m, and we let gk
2 : Ck → Ck be the identity function, 

Dk = Ck and gk
1 = ∅.

If k ∈ Y ∩Z, then k = si = tj for some unique i < n, j < m. This is the only case where Ak could possibly 
be nonempty, since embeddings must preserve the predicates Pα, for all α ∈ O. The restrictions of f1, f2, 
respectively, fk

1 : Ak → Bk, fk
2 : Ak → Ck, form an amalgamation problem in age(Mk). By assumption, 

there is a solution to the amalgamation problem gk
1 , gk

2 , Dk such that gk
1 ◦ fk

1 = gk
2 ◦ fk

2 .
Define g1 =

⋃
i<n gi

1 and g2 =
⋃

j<m gj
2. For each k ∈ X, gk

1 and gk
2 are Lk-embeddings on substructures 

of Mk, and so g1 and g2 preserve ≺ and the Pα, for all α ∈ O, and thus are σ(U)-embeddings. Let 
D =

⋃
k∈X Dk. It is not hard to check that D, g1, g2 is a solution to the amalgamation problem such that 

g1 ◦ f1 = g2 ◦ f2. �
Here we restate the product Ramsey theorem for classes. By the notation 

((Bi)i<s

(Ai)i<s

)
we mean all sequences 

(A′
i)i<s such that A′

i ⊆ Bi and A′
i

∼= Ai, for every i < s.

Theorem 5.4 ([23, Theorem 2]). Fix integers r, s ≥ 1 and let (Ki)i<s be a sequence of classes of finite 
structures with RP. Fix (Bi)i<s, (Ai)i<s such that Bi, Ai ∈ Ki, for all i < s. There exist Ci ∈ Ki for all 
i < s such that for any coloring p :

( (Ci)i<s

(Ai)i<s

)
→ r, there exists a sequence (B′

i)i<s, with B′
i

∼= Bi for all i < s

and some l ∈ r such that p restricted to 
((B′

i)i<s

(Ai)i<s

)
is the constant function l.

Corollary 5.5. If Mi has RP, for all i ∈ O, then Ui∈O(Mi) has RP.

Proof. Let U = Ui∈O(Mi). It suffices to show that U has the A-Ramsey property for all finite A ⊆ U . Fix 
two structures A ⊆ B. By Observation 5.2(2), there is a unique decomposition B =

⋃
i<s Bi where each 

Bi ⊆ Mti
, for some ti ∈ O, for all i < s. We may write A =

⋃
i<s Ai where Ai ⊆ Mti

, if we allow some of 
the Ai to be empty. Now apply Theorem 5.4 to (Kti

)i<s, (Ai)i<s and (Bi)i<s. �
We generalize Definition 5.1.

Definition 5.6 (semi-direct product structures). Given a structure N in a relational signature L2 linearly 
ordered by ≺∈ L2 and, for some relational signature L1 such that L1 ∩ L2 = {≺}, L1-structures (Mi)i∈N
on pairwise-disjoint domains |Mi|, each linearly ordered by ≺, define I = Ii∈N (Mi) to be the structure on ⋃

i∈N |Mi| in the signature

σ(I) = L1 ∪ L2 ∪ {E}

for a new binary relation E, where the symbols are interpreted as follows.
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(i) For each n-ary relation symbol S� ∈ L1 \ {≺}, define

SI
� =

⋃
i∈N

SMi

� .

(ii) For each n-ary relation symbol Rl ∈ L2 \ {≺}, define RI
l (a0, . . . , an−1) to hold if and only if there 

exist (possibly non-distinct) elements {t0, . . . , tn−1} from N such that ai ∈ Mti
for all i < n and 

N � Rl(t0, . . . , tn−1).
(iii) Define E to be an equivalence relation whose equivalence classes are exactly the |Mi|, i.e., EI(a, b) ⇔

(∃i ∈ N )(a, b ∈ Mi).
(iv) Define a ≺I b if and only if there exist i, j ∈ N such that a ∈ Mi, b ∈ Mj and either i ≺N j or else 

both i = j and a ≺Mi b.

Observation 5.7.

(1) I = Ii∈N (Mi) in Definition 5.6 is linearly ordered by ≺.
(2) Let I− be the L2-reduct of I. For Rl ∈ L2 \ {≺}, the definable sets RI

l are EI-invariant. Moreover, ≺I

is EI-invariant on pairs (a, b) /∈ EI . Thus, we may form the quotient structure (I−)/E, which is an 
L2-structure.

(3) Define a map σ : (I−)/E → N by [a]/E �→ t, if a ∈ Mt. It is clear that this map is well-defined, 
bijective, and preserves the interpretations of all symbols in L2. Thus σ is an L2-isomorphism.

Definition 5.8. Let N , L1, L2, {Mi}i∈N , I = Ii∈N (Mi) be as in Definition 5.6, and let N ′ be the {≺}-reduct 
of N . Let fE : I → (I−)/E be the map that takes a to its equivalence class [a]/E.

(1) For a substructure A ⊆ Ii∈N (Mi), define gr(A) to be the L2-substructure of N identified with fE(A)
in Observation 5.7(3).

We call gr(A) the underlying graph of A.
(2) For a tuple ν̄ from Ii∈N (Mi), by gr(ν̄) we mean gr(ran ν̄).
(3) Given two substructures A, B ⊆ I and a {≺, E}-embedding f : A → B, define f : gr(A) → gr(B)

to be the {≺}-embedding given by f(σ([a]/E)) = σ([f(a)]/E), where σ is the function named in 
Observation 5.7(3).

(4) For a substructure C ⊆ Ii∈N (Mi), by Cred we mean the (L1 ∪{E})-reduct of C. For C ⊆ Ui∈N ′(Mi), by 
Cred we mean the (L1 ∪{E})-reduct of C as it is naturally interpreted, meaning the sets P C

α , for α ∈ N ′, 
are defined to be exactly the ECred-equivalence classes.

Observation 5.9. |gr(A)| = {t ∈ |N | | |A| ∩ |Mt| �= ∅}. We use this notation to point out similarities with 
the partite construction in [16]. There are also similarities with the argument in [22, Proposition 1].

Proposition 5.10. Let N , L1, L2, {Mi}i∈N , I = Ii∈N (Mi) be as in Definition 5.6. Let N ′ be the {≺}-reduct 
of N , and let U = Ui∈N ′(Mi).

Fix a, b ∈ m|I|(= m|U|) such that

qftpIred
(a) = qftpIred

(b) (11)

and let f be the map defined by f(ai) = bi for all i < m. Then

(i) f : gr(a) → gr(b) is the identity function if and only if qftpU (a) = qftpU (b), and
(ii) f : gr(a) → gr(b) is an isomorphism if and only if qftpI(a) = qftpI(b).
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Proof. Recall that P I
t = |Mt|, for all t ∈ N ′. By assumption (11), there exist q ∈ ω and sequences 

(si)i<q, (ti)i<q such that for all j < m, for all i < q: aj ∈ |Msi
| ⇔ bj ∈ |Mti

|. In other words, aj ∈ P U
si

⇔
bj ∈ P U

ti
.

To see (i), note that under assumption (11), qftpU (a) = qftpU (b) holds if and only if si = ti, for all i < q. 
However, f : gr(a) → gr(b) is the identity function if and only if EI(aj , bj) for all j < m, which holds if and 
only if si = ti, for all i < q.

To see (ii), note that under assumption (11), f is a σ(I)-isomorphism if and only if f is an L2-embedding. 
It remains to show that f is an L2-embedding if and only if f is an L2-embedding.

Fix an n-ary relation symbol Rl ∈ L2\{≺}. By the definition of I, RI
l (ai0 , . . . , ain−1) ⇔ RN

l (si0 , . . . , sin−1), 
for all i0, . . . , in−1 < m. Similarly, RI

l (bi0 , . . . , bin−1) ⇔ RN
l (ti0 , . . . , tin−1), for all i0, . . . , in−1 < m. More-

over, f is an L2-embedding if and only if RN
l (si0 , . . . , sin−1) ⇔ RN

l (ti0 , . . . , tin−1), for all n-ary Rl ∈ L2, 
i0, . . . , in−1 < m and n ∈ ω. Thus, f is an L2-embedding if and only if f is an L2-embedding. �

We give a slight restatement of RP that we use in the proof of Theorem 5.13.

Definition 5.11. Given a finite substructure B of some structure V, define a k-coloring of 
( V

age(B)
)

to be a 

k-coloring of 
⋃

A∈age(B)
(V

A
)
.

Proposition 5.12. If V has RP, then for any finite substructure B ⊆ V, for any integer k ≥ 1 and k-coloring c
of 

( V
age(B)

)
, there is a copy B′ of B in V such that B′ is homogeneous for c on copies of A, for all A ∈ age(B). 

As a generalization of our usual convention we say that B′ is homogeneous for c.

Proof. This is well-known (see Claim 4.16 in [19]) and can also be argued for using V-indexed indiscernible 
sets. We repeat the argument here. List age(B) = {D1, . . . , Dm}. Let c be a k-coloring of 

( V
age(B)

)
. Define 

structures (Wi | 1 ≤ i ≤ m +1) such that W1 = B and Wn → (Wn−1)Dn−1
k , for all n such that 2 ≤ n ≤ m +1. 

Now define V1 = Wm+1. Having defined Vn−1, define Vn to be a copy of Wm−(n−2) in Vn−1 homogeneous 
for c on copies of Dm−(n−2), for all n such that 2 ≤ n ≤ m + 1. Thus V1 ⊇ V2 ⊇ · · · ⊇ Vm+1 and ultimately 
Vm+1 is a copy of W1 = B homogeneous for c on copies of Dm, Dm−1, . . . , D1. �
Theorem 5.13. Let N , L1, L2, {Mi}i∈N , I = Ii∈N (Mi) be as in Definition 5.6. Let N ′ be the {≺}-reduct of 
N and let U = Ui∈N ′(Mi). Assume that there is an age, K, that has RP and such that age(Mi) = K, for 
all i ∈ N .

If N has RP, then I has RP.

Proof. The structures I, U share their underlying set which we call X. Define f : |U| → |I| to be the 
identity map on underlying sets. By the interpretation of ≺ on both structures, f is an increasing function.

To simplify notation, we adopt the convention that given any finite substructures C1 ⊆ I and C2 ⊆ U
and a bijection p : C1 → C2, we say that p is a σ(I)-isomorphism if f ◦ p is truly a σ(I)-embedding.

Fix some integers m, k ≥ 1, a finite substructure B ⊆ I (which we may assume to be of cardinality 
at least m), and a k-coloring c on increasing m-tuples from U . Representatives of isomorphism types of 
cardinality-m substructures of B may be listed as:

A0, . . . , At−1

for some t ∈ ω.
Let H = gr(B), and let d = kt. By the assumption that N has RP and Proposition 5.12, there is some 

finite substructure N0 ⊆ N such that

N0 → (H)age(H) (12)
d
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For every H0 ⊆ N0 such that H0 ∼=L2 H, there exists a finite substructure B0 ⊆ U and an (L1 ∪ {E})-
isomorphism τ : Bred

0 → Bred such that gr(B0) = H0 and τ : H0 → H is an L2-isomorphism. This is because 
age(Mi) = K, for every i ∈ N , and σ(U) is relational.

Simply by being an age, age(U) has JEP, and so there exists a finite structure Bbig ⊆ U that embeds 
each of the finitely many B0 described in the paragraph immediately above. We may additionally assume 
that this structure Bbig has the property that gr(Bbig) = N0.

We may define an m-coloring c∗ of 
( U

age(Bbig)
)

with the property that for any A′ ∈
( U

age(Bbig)
)

such that 
||A′|| = m, c∗(A′) = c(a′), where a′ is the increasing enumeration of A′.

By Corollary 5.5, Ui∈N ′(Mi) has RP, so by Proposition 5.12, there is a copy B∗
big of Bbig in U such that 

B∗
big is homogeneous for c∗. By Proposition 5.10(i), gr(B∗

big) = N0 = gr(Bbig).
Making use of Observation 2.2, we define a d-coloring c′ :

( N0
age(H)

)
→ tk that maps into a set of size d as 

follows: for an L2-structure J ⊆ N0 such that J ∈ age(H), define c′(J ) = (k0, . . . , kt−1) where we define, 
for any i < t,

ki =

⎧⎪⎪⎨
⎪⎪⎩

0 , if gr(Ai) �L2 J
c∗(D) , if gr(Ai) ∼=L2 J and there exists D ⊆ B∗

big such that Dred ∼= Ai
red

and gr(D) = J

To see that c′ is well-defined, consider structures D, D̂ ⊆ B∗
big such that gr(D) = gr(D̂) and there exists 

an isomorphism h : Dred → D̂red. The map h : gr(D) → gr(D̂) is a {≺}-embedding and gr(D) is finite, so h
is the identity map. By Proposition 5.10(i), h : D → D̂ is a σ(U)-isomorphism, and so by homogeneity of 
B∗

big for c∗, c∗(D) = c∗(D̂).
By line (12), there is a copy H∗ of H in N0 such that H∗ is homogeneous for c′.
Now we refer to the construction of Bbig and the fact that B∗

big
∼= Bbig. Since H∗ ⊆ N0 has the property 

that H∗ ∼=L2 H, there exists a finite substructure B∗ ⊆ B∗
big and an (L1∪{E})-isomorphism τ : B∗red → Bred

such that gr(B∗) = H∗ and τ : H∗ → H is an L2-isomorphism.
We apply Theorem 4.2 where g is defined to be τ−1. By Proposition 5.10(ii), since τ : H∗ → H is an 

L2-isomorphism, τ : B∗ → B is a σ(I)-isomorphism. Thus,

g : B → B∗ is a σ(I)-isomorphism, (13)

which by our convention means that f ◦ g : B → I is a σ(I)-embedding.
To see that g is a color-homogenizing map for c and B, fix any increasing m-tuples a, a′ from B such that 

a ∼I a′. It remains to show that c(g(a)) = c(g(a′)).
Since a and a′ are m-tuples from B, there is some s < t such that a and a′ are increasing copies of 

As. Since a and a′ are increasing tuples and g is a {≺}-embedding, g(a), g(a′) are also increasing tuples. 
Define substructures D, D′ ⊆ U such that g(a) is the increasing enumeration of D and g(a′) is the increasing 
enumeration of D′. Since a and a′ are from B, g(a) and g(a′) are from B∗ ⊆ B∗

big. Since B∗
big

∼=σ(U) Bbig, 
both D and D′ are structures of cardinality m in 

( U
age(Bbig)

)
, and so c∗(D) = c(g(a)) and c∗(D′) = c(g(a′)), 

by definition. Thus, it remains to show that c∗(D) = c∗(D′).
Let J = gr(D) and J ′ = gr(D′). By line (13), g(a) ∼I a ∼I a′ ∼I g(a′). This yields that Dred ∼= As

red ∼=
D′red and J = gr(D) ∼= gr(As) ∼= gr(D′) = J ′, by Proposition 5.10(ii). Since H∗ is homogeneous for c′ and 
J , J ′ ⊆ gr(B∗) = H∗, c′(J ) = c′(J ′). In particular, c∗(D) = (c′(J ))s = (c′(J ′))s = c∗(D′), as desired. �
6. Applications

Theorem 5.13 yields interesting examples, some of which are familiar. First we introduce a definition that 
is well-defined up to bi-definability of structures.
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Definition 6.1. Given an ordered relational structure M and an order O = (|O|, ≺), by Ui∈O(M), we mean 
Ui∈O(Mi) where (Mi)i∈O is a sequence of isomorphic copies of M on pairwise-disjoint domains and the 
symbol ≺ has been substituted for the symbol for order in σ(M).

Given two ordered relational structures N and M, Ii∈N (M) is defined to be Ii∈N (Mi) where (Mi)i∈N
is a sequence of isomorphic copies of M on pairwise-disjoint domains, the symbol ≺ has been substituted 
for the symbols for order in both σ(N ) and σ(M), and by additional substitution of symbols, we have made 
σ(N ) ∩ σ(M) = {≺}.

Corollary 6.2. Let O = (|O|, ≺) be a linear order and N a random ordered graph. If M is an ordered 
relational structure with RP then

(1) Ii∈O(M) has RP.
(2) Ii∈N (M) has RP.

Proof. By Theorem 2.4, N has RP. That O has RP follows from Ramsey’s theorem for finite sequences. 
Thus Ii∈O(M) and Ii∈N (M) have RP, by Theorem 5.13. �
Remark 6.3. Corollary 6.2(1) is obtained by Leeb using the notation Ord(C) in [13] (see [6] for a discussion).

Corollary 6.4.

(1) Let O = (ω, <). Then Ii∈O(O) has RP.
(2) If N is the random ordered graph in the signature {R, ≺}, then Ii∈N (N ) has RP.

Proof. Note that Ii∈O(O) is isomorphic to the structure Ieq defined in Definition 3.1 (assuming {E, ≺} is 
the common signature) which structure is known to have RP. Alternatively we could use Ramsey’s theorem 
for finite sequences, which guarantees that O has RP, so that we may apply Corollary 6.2. For the second 
claim, we use Theorem 2.4 to conclude that N has RP, and thus Ii∈N (N ) has RP by Corollary 6.2(2). �
Remark 6.5. Let R = Ii∈N (N ) where N is the random ordered graph in the signature {R, ≺}. By Defi-
nition 6.1, σ(R) = {R1, R2, E, ≺} where we may assume R1 is substituted for the edge relation symbol in 
L1 and R2 is substituted for the edge relation symbol in L2, where L1 and L2 are as in Definition 5.6. 
We may define an interpretation of R on R such that RR = RR

1 ∪ RR
2 . Note that for all a, b ∈ R, 

R � R1(a, b) ⇔ R � R(a, b) ∧ E(a, b) and R � R2(a, b) ⇔ R � R(a, b) ∧ ¬E(a, b), the latter since RN

is irreflexive. Thus, in this case, R is interdefinable with an {R, E, ≺}-structure on the same underlying set.

Definition 6.6. A theory T has the independence property (IP) if there is a partitioned formula ϕ(x; y) in 
the language of the theory with the following property: for every n ∈ ω, there exist parameters (as | s < n)
and (bt | t < 2n) from some model of the theory, such that

ϕ(bt; as) ⇔ s ∈ wt

where (wt | t < 2n) enumerates the subsets of n.
If a theory fails to have the independence property, we say that the theory has NIP, or is an NIP theory.

We end with a characterization of NIP theories using the example in Corollary 6.4(2).

Corollary 6.7. Fix a random ordered graph N in the signature L = {R, ≺}.
Let R = Ri∈N (N ).
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Let W be the {E, ≺}-reduct of R.
A theory T has NIP if and only if any R-indexed indiscernible sequence in a model M of T is a W-indexed 

indiscernible sequence.

Proof. First observe that, by Remark 6.5, σ(R) = {R1, R2, E, ≺} where we may assume R1 is substituted 
for the edge relation symbol in L1 and R2 is substituted for the edge relation symbol in L2.

Let N ′ = N � {<}. We observe that W = Ii∈N ′(N ′).
The right-to-left direction follows the argument in [19, Lemma 5.2] closely, so we merely sketch it here. 

By Corollary 6.4(2), R has RP, so by Theorem 2.10, R-indexed indiscernible sequences have the modeling 
property. If T has IP, then there are parameters in a model of T witnessing this and an R-indexed indis-
cernible sequence (ai | i ∈ R) from some ℵ1-saturated elementary extension M � T locally-based on these 
parameters such that (ai | i ∈ W) is not a W-indexed indiscernible sequence.

For the left-to-right direction, we can adapt the argument in [19, Lemma 5.4]. Assume that there is an 
R-indexed indiscernible sequence (ai | i ∈ R) from some model M � T that is not a W-indexed indiscernible 
sequence. It is convenient to think of i �→ ai as a map, so that we may refer to ai as the image of i.

Since (ai | i ∈ R) is not a W-indexed indiscernible sequence, there exist n ∈ ω and n-tuples ı, j from R
such that

ı ∼W j,

but

aı �≡M aj.

Thus, there is some formula ϕ ∈ L(M) such that

M � ϕ(aı) and M � ¬ϕ(aj),

and so by R-indexed indiscernibility of the sequence,

ı �R j.

Since RN is symmetric with no loops, complete quantifier-free n-types in R are of the form

p(x0, . . . , xn−1) ∪ {R1(xi, xj) | (i, j) ∈ Y ∧ i < j} ∪ {¬R1(xi, xj) | (i, j) ∈ (n × n) \ Y ∧ i < j}
∪{R2(xi, xj) | (i, j) ∈ Z ∧ i < j} ∪ {¬R2(xi, xj) | (i, j) ∈ (n × n) \ Z ∧ i < j}

where p is a complete quantifier-free n-type in W, and Y, Z ⊆ n × n.
For any s ∈ {1, 2}, let Rs(xi, xj)0 denote Rs(xi, xj) and Rs(xi, xj)1 denote ¬Rs(xi, xj). Given a complete 

quantifier-free n-type q′ and some s ∈ {1, 2}, define ts(q′) = 0 if Rs(xi, xj) ∈ q′, and otherwise ts(q′) = 1. 
For any s ∈ {1, 2}, for every pair i < j < n and any complete quantifier-free n-type q′, define τ s

(i,j)(q′) =
(q′ \ {Rs(xi, xj)ts(q′)}) ∪ {Rs(xi, xj)1−ts(q′)} Let Γ = {τ s

(i,j) | i < j < n ∧ s ∈ {1, 2}}.
Assume that q1 is the quantifier-free type of ı in R and q2 is the quantifier-free type of j in R. Since 

ı ∼W j, the complete quantifier-free types q1, q2 agree on their restriction p∗(x0, . . . , xn−1) to the signature 
{E, ≺}. Thus, since ı �R j, there is some integer m ≥ 1 and some finite sequence (τj)j<m from Γ such that 
(τm−1 ◦ · · · ◦ τ1 ◦ τ0)(q1) = q2. We may additionally assume that for each j < m, (τj−1 ◦ · · · ◦ τ1 ◦ τ0)(q1) is a 
complete quantifier-free n-type in R. One way to do this would be get rid of any R2-edges specified by q1, 
and then add in any R2-edges specified by q2, one-by-one. Since the R2-edges are specified by q2, they only 
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hold of E-inequivalent pairs, and thus at every step we have a type consistent with the theory of R. After 
this point, R1-edges may be flipped as necessary within the E-classes.

There is a least j0 < m such that all tuples s satisfying (τj0−1 ◦ · · · ◦ τ1 ◦ τ0)(q1) in R yield an image 
as satisfying ¬ϕ in M. Replacing q1 by (τj0−2 ◦ · · · ◦ τ1 ◦ τ0)(q1) and q2 by (τj0−1 ◦ · · · ◦ τ1 ◦ τ0)(q1), we 
may assume that there is some (s, t) ∈ n × n, some l ∈ {1, 2} and some quantifier free type q∗ such that 
q∗ = q1 ∩ q2, which we shall call the common quantifier free type, and such that q1 = q∗ ∪ {Rl(xs, xt)} and 
q2 = q∗ ∪ {¬Rl(xs, xt)} (the assignment of Rl and ¬Rl is also without loss of generality, by switching ϕ
with ¬ϕ). For convenience, we write q∗ = q∗(xs, xt, u), where we define u = (xi)i∈(n\{s,t}).

In the first case, assume that l = 0. Then E(xs, xt) ∈ p∗ and q1 and q2 disagree on R1(xs, xt). Note that 
N is a Fraïssé limit, in both of its roles in R = Ii∈N (N ). Thus, there is some (n − 2)-tuple c from R such 
that we may realize arbitrary finite bipartite graphs (A, B) with edge relation R1 as induced subgraphs of 
the class [is]/E(= [it]/E) with the property that for all a ∈ A, for all b ∈ B, R � q∗(a, b, c). This allows the 
images of the tuples (a, b, c) in M to satisfy IP using ϕ partitioned as ϕ(xs; xt, u).

In the second case, assume that l = 1. Then ¬E(xs, xt) ∈ p∗ and q1 and q2 disagree on R2(xs, xt). We 
may realize arbitrary finite bipartite graphs on pairs ([a]/E, [b]/E) in the quotient structure (mentioned in 
Observation 5.7(2)) with edge relation R2 and with all the required R2-relations to some fixed (n − 2)-tuple 
[c]/E, as dictated by the common quantifier-free type. Then all R1-configurations are easily found within 
the classes [a]/E, [b]/E, [ci]/E to match the common quantifier free type, and so we may complete this 
argument as in the first case. �
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