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Ramsey property if its age does. Given two locally finite ordered structures A and
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1. Introduction

Structural Ramsey theory is the study of partition properties of classes of first-order structures. We may
consider the natural numbers as a first-order structure, M = (w, <), in the signature consisting of one
binary relation symbol < for order. The finite substructures of M up to isomorphism form the age, IC, of
M, which we may call age(M) (see Section 2 for more detailed definitions). For every integer n > 1, there is
a unique linear order A4,, € K. Let (ﬁi ) denote all substructures of M isomorphic to A,,. Given an integer
k > 1, a k-coloring of (ﬁi) is a function f : (ﬁi) — k. It is clear that {f~1(i) | i € k} forms a finite
partition of (ﬁi) Ramsey’s theorem for finite sequences states that for any integers k,n,m > 1, there exists
an integer N such that for any k-coloring f of (“j"; ) there exists B C Ay such that B = A, and f | ( fn)
is a constant function [18]. The property just described is called the Ramsey property (RP) for K, and may
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be stated for any class K of finite structures in some signature. We say that a locally finite structure M
has RP if age(M) has RP. In this paper, we consider RP only for structures M that are locally finite and
ordered by some O-definable relation. To read a survey of some recent work in structural Ramsey theory,
please see [17].

We consider the following:

Question 1.1. What mechanisms transfer RP from one ordered structure to another?

It is natural to ask whether taking reducts or expansions could preserve RP, perhaps under some addi-
tional assumptions. In [14], it is shown that the age of any linearly ordered structure with RP must have
the amalgamation property (AP). Thus, if B is an ordered structure with RP and A is an ordered reduct of
B that fails to have AP, then A fails to have RP. For example, let Zy = (S“w, <, A, <jex) Where <, A, <jex
are defined as in Definition 3.1. Zj is shown to have RP in [13] but the reduct Z; = Zj | {<, <jex }, though
ordered, has an age that fails to have AP, and thus fails to have RP (see [24] or Corollary 3.19 of [20] for a
discussion).

There are many examples of ages of ordered structures that have AP but not RP, and the class of all
finite partial orders with an added linear order is one such age (see Lemma 4 in [22]). The class of all finite
equivalence relations that are linearly ordered is another example of an ordered class with AP but not RP,
though the class of all finite equivalence relations with a convex linear order does have RP [11].

Furthermore, given an age with RP, not all ordered reducts with AP have RP. Let Ky be the class of all
finite convexly ordered equivalence relations in the signature oy = {E1, <1}, and let K2 be the same in a
disjoint signature oo = {E2,<s2}. As in Definition 3.21 of [3], define the free superposition K1 % Ka, which
is the class of all finite (o1 U o2)-structures whose o;-reduct is in &;. The Fraissé limit of Ky * Ky has RP,
by Theorem 3.24 in [3], but the ordered reduct to {Fj, Fa, <1} does not, even though its age has AP. It
is worth noting that, in some cases, one may start with a class of finite structures that is not ordered and
does not have AP or RP, and achieve these properties by expanding the signature. The case of bowtie-free
graphs in [9] is one such example.

Tt is also natural to consider interpretations of one structure in another in relation to Question 1.1 (see [10,
Definitions 7.1, 7.6 in Models and Groups] for background on interpretations). Recent work has shown how
notions of interpretability of one structure in another may transfer RP: “simply bi-definable” expansions
in [11, Proposition 9.1] and Ramsey expansions of a structure interpretable in a Ramsey structure in [3,
Proposition 3.8]. By a well-known result from [11], a closed subgroup G < S is extremely amenable if
and only if G is the automorphism group of an ordered Fraissé limit with RP. Countable structures .4 and
B have homeomorphic automorphism groups if and only if A4 and B are infinitarily bi-interpretable (see
[10, Corollary 7.7 in Models and Groups] for a proof). By a combination of these results, given two linearly
ordered Fraissé limits F; and JFo, if /1 and F5 are infinitarily bi-interpretable, then F; has RP if and only
if 75 has RP.

In this paper, we introduce the notion of a semi-retraction (see Definition 3.3). A semi-retraction has
some elements in common with an infinitary interpretation. In Corollary 3.7, we show that for any locally
finite ordered structures A and B, if B has RP and A is a semi-retraction of B, then A also has RP. In
Section 2, we explain our notation as well as some background on RP, the modeling property and generalized
indiscernible sequences. In Section 4, we define color-homogenizing maps in Definition 4.1 and prove the
corresponding RP transfer result in Theorem 4.2. In Section 5, we define semi-direct product structures in
Definition 5.6 and apply Theorem 4.2 to obtain a finitary argument that the semi-direct product structure
obtained from ordered relational structures with RP has RP (Theorem 5.13). In Section 6, we deduce
examples of structures with RP as special cases of Theorem 5.13, some of which are known. We also prove
a characterization of NIP theories using a generalized indiscernible sequence indexed by the semi-direct
product structure named in Corollary 6.4(2) (see [7] for more results of this kind).
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2. Preliminaries
2.1. Notation and conventions

The notation — is reserved for the function arrow in f : A — B as well as for the Erd6s-Rado partition
arrow in C — (B){ (see Section 2.1.4 Ramsey notions). The notation = is reserved for the material

conditional.

2.1.1. Size and order

For a set X, |X| is the cardinality of X. We follow the logical convention that w is the set of non-negative
integers, and for any n € w, n = {0,1,...,n — 1}. Thus, “/ < n” and “i € n” may be used interchangeably,
for any ¢ € w. The notation < is reserved for the linear order on w, and a different symbol is used for linear
orders on other structures. An order is a linear order unless otherwise specified. For sets A, B, by AB, we
mean the set of all functions f : A — B. Tuples @ from A are finite sequences (a;);<, for some n € w and for
some a; € A, for all i < n. We define (@); = a; and rana = {a; | ¢ < n}. We reserve the notation ¢ for the
function that outputs the length of a tuple: e.g. ¢(a) = n, when @ = (a;)i<n. Given a function f: A — B
and a tuple @ = (ag, ai,...,a,—1) from A, f(@) is defined to be the tuple (f(ag), f(a1),..., f(an—1)) from
B. Given some m-tuples @;, for all i < n, by a; we mean the m - n-tuple (@;,,...,a;, ,).

2.1.2. Structures

A signature is a set of relation and function symbols with assigned arities (where 0-ary function symbols
play the role of constant symbols). Given a signature L, an L-structure A consists of an underlying set |.A|
with interpretations of all symbols in L as relations or functions on |A| of the correct arity. For example,
in the case that R € L is a relation symbol of arity n, A interprets R as some relation R C |A|™. (See [8]
as a reference for common model-theoretic terms.) As usual, a € A means that a € |A|, and we may use
the symbol R to stand for its interpretation, if the intended structure A is understood. We say that A is a
structure on |A| in the signature L. The cardinality of a structure, A, is denoted by [|.A||. The (first-order)
language of L is the set of all first-order L-formulas. Given a structure .4, we use o(A) to refer to the
signature of A and L(A) to refer to the language of A. By an ordered structure A, we mean one that is
linearly ordered by some binary relation symbol in o(A). A subset X C |B|" is 0-definable (in B) if there
exists an n-ary formula o(vg, ..., v,_1) in L(B) such that for every b € |[B|", b € X if and only if B F ¢(b).
Given two L-structures Ay, Ay and L' C L, an L'-embedding o : Ay — A, is an injection from |A;] into
| A2| such that for any L’-formula ¢, for all @ from A;, A; E p(a) < Az E ¢(f(a)). Given two L-structures
A, Az, an embedding o : A7 — As is assumed to be an L-embedding. Given two L-structures Aj, As, an
(L-)isomorphism o : Ay — As is an embedding that is surjective onto |Ag|, and thus o= ! : Ay — A; is
also an embedding. We denote that Ay, As are isomorphic by A; & A,, or Ay =, Ay, for clarity. For two
L-structures A, B, A C B means that A is a substructure of B, i.e., the identity map is an L-embedding
from A into B.

Given a relational structure A and a 0-definable subset D C |B| suppose that there exists a bijection
f + A — D such that for every n and n-ary relation symbol R € o(A), there is a set R C |B|™ that is
O-definable in B such that @ € RA if and only if f(@) € R. In this case we say that A is a reduct of B (see
[4] for a statement of the more general case). Given an L-structure B and a subset L' C L, by B | L’ we
mean the L’-structure on |B| obtained from B by restricting to the symbols in L'. We refer to B | L’ as the
L'-reduct of B.

The age, K, of a structure Z, denoted by K = age(Z), is the collection of all finitely-generated substructures
of Z, up to isomorphism. (In the case that the signature of Z is relational, age(Z) is the collection of all finite
substructures of Z, up to isomorphism.) Every age has the hereditary property and the joint embedding
property (JEP) (see [8] for a reference). We say that an age K has the amalgamation property (AP) if given
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any structures A, B,C € K and embeddings f1 : A — B, fo : A — C (what we call an amalgamation problem
in K), there exist a structure D € K and embeddings g1 : B — D, g2 : C — D (what we call a solution to the
amalgamation problem) such that gy o f1 = g2 0 fa. A structure M is ultrahomogeneous if any isomorphism
between finitely-generated substructures of M extends to an automorphism of M. The age of a countable,
ultrahomogeneous structure in a countable signature has AP, and for every nonempty countable age K with
AP in a countable signature, there is a countable ultrahomogeneous structure with age K, M, (unique, up
to isomorphism) which we refer to as the Fraissé limit of K, Flim K [5].

Given any signature L = {R, <} that consists of two binary relation symbols, the random ordered graph
in the signature L is defined to be any structure isomorphic to Flim K, where IC is the class of all finite
L-structures (up to isomorphism) that are linearly ordered by < and that interpret R as a graph edge
relation (symmetric, with no loops). The relation that plays the role of < should be clear from context.

2.1.3. Types

Given an integer n > 1 and an n-tuple @ from A, the quantifier-free type of @ in A, which is denoted by
qftpA(E), is the set of all n-ary quantifier-free formulas in L(.A) satisfied by @ in A. It is typical to write
some subtype for qftpA(H), whose closure under logical consequence in A is qftpA(E). We say that 7 is a
complete quantifier-free n-type in A if n = qftpA(a) for some length-n tuple @ from A. We say that 7 is a
complete quantifier-free type if it is a complete quantifier-free n-type for some n. We say that A F n(a) if and
only if A E 6(a), for all § € 5. The notation n(a) (similarly, 6(a)) presupposes that @ is a tuple of the correct
length, and we may sometimes specify the length of @ to aid in clarity. We define 7(.A) to be all tuples from
A that satisfy 7 in A. Given a structure A, we write @ =4 b to mean that A F ¢(a) < A F o(b), for all
formulas ¢ € L(A). We write @ ~4 b to mean that A F 0[a] < A E [b], for all quantifier-free formulas 6 in
L(A). The statement @ ~ 4 b is equivalent to the statement qftpA(a) = qftpA(E) which is equivalent to the
statement that the map a; — b; extends to an isomorphism of the structures generated by @ and b.

2.1.4. Ramsey notions

For any integer k& > 1, a k-coloring of a set X is any function ¢ : X — k. A copy of A in B is a
substructure A’ C B where A’ = A. The set of all copies of A in B is denoted by (i). Assuming that A is
a structure ordered by the relation <, for any tuple b from A, we say that b = (b;);<p is an increasing tuple
if by < b; & i < j, for all 4,j < n. Moreover, the increasing enumeration of A is the increasing tuple @ such
that ran@ = | A|. By an increasing copy of A in B we mean the increasing enumeration of A’, where A’ is
some copy of A in B. We work with the following definition of the Ramsey property (see [14,11]).

Definition 2.1. We say that an age, IC, of finite structures has the A-Ramsey property if for all B € K and
for any integer k > 2, there exists C € K such that for any k-coloring ¢ of (i), there is a structure B’ € (g)
such that for any A, A" € (li), c(A") = c(A").

We say that C is Ramsey for A, B, k and denote this property of C by the expression:

¢ — (B)i!

We say that B’ is a copy of B that is homogeneous for ¢ (on copies of A).
We say that IC has the Ramsey Property (RP) if it has the A-Ramsey property for all A4 € K.
We say that a locally finite structure Z has RP if age(Z) has RP.

Observation 2.2. Note that we obtain an equivalent definition of RP if we replace the arbitrary k-coloring

c: (f‘) — k in the definition with any function ¢’ : (i) — Y, where Y is any set of cardinality k.

We give a slight rephrasing of Theorem 4.2(i) from [14] as Theorem 2.3:
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Theorem 2.3. If K is an age of ordered structures and KC has RP, then K has AP.
Theorem 2.4 is a well-known result from [1,15]:
Theorem 2.4. The age of any random ordered graph has RP.

Remark 2.5. If a finite ordered structure Z has RP, then there are no isomorphisms between distinct subsets
of Z. This is easy to show letting Z play the role of B in Definition 2.1.

2.2. The modeling property

In the study of classification theory in model theory there has been significant use of generalized indis-
cernible sequences, named “Z-indexed indiscernible sets” in [21].

Definition 2.6. Fix a structure Z, an integer [ > 1, and [-tuples @; from some structure M, for all + € Z. We
say that (a; | i € Z) is an Z-indexed indiscernible set if for any integer n > 1, for all n-tuples 7,7 from Z,

iNIjéazzMaj

We say that (a; | ¢ € Z) is an Z-indexed indiscernible sequence if 7 is an ordered structure, or a
generalized indiscernible sequence if 7 is an ordered structure that is clear from context.

We repeat definitions from [20] as Definition 2.7 and Definition 2.9.

Definition 2.7. Given an integer [ > 1, an L’-structure Z, an L-structure M and an Z-indexed set of [-tuples
from M, X = (a; | i € I), we define the EM-type of X (EMtp(X)) to be a syntactic type in variables
(T; | i € I), where £(T;) = for each i € Z, as follows:

EMtp(X) = {¥(Tiy, ..., Ts, ,) | € L,7€"T and (Vj € "I)(j ~z 1= M EY(Gy,,..., a5, ,))}

Proposition 2.8 is a useful equivalence which follows directly from Definition 2.7 (see Proposition 2 of
[20] for more details):

Proposition 2.8. Given an L'-structure T and an L-structure M, fiz sets of l-tuples from M indexed by T,

X=(@|icI)andY = (b; |i € I). Y E EMtp(X) if and only if for any integer n > 1, for all complete
quantifier-free n-types n in T and all n - l-ary formulas ¢ € L, if

(VDT En() = ME (@)
then
(V) F n(3) = MFE o(b;))
If 7 is ordered by a O-definable relation in Z, it is trivial to produce Z-indexed indiscernible sets, by
Ramsey’s theorem for finite sequences. The following property guarantees that we can produce Z-indexed

indiscernible sets that witness additional structure.

Definition 2.9. Given a structure Z, we say that Z-indexed indiscernible sets have the modeling property if
for any integer [ > 1, any |Z|T-saturated structure M, and any Z-indexed set of I-tuples from M
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X =(a;|i€I),

there exists an Z-indexed indiscernible set of [-tuples from M
Y = (b |i€T)

such that Y F EMtp(X).
We say that Y is locally based on X.

Theorem 2.10. Suppose that T is a locally finite ordered structure. -indexed indiscernible sequences have
the modeling property if and only if age(Z) has RP.

Proof. In Theorem 3.12 of [20], this result is stated for locally finite ordered structures Z with the additional
condition qfi, which stands for “quantifier-free types are isolated by quantifier-free formulas”. Theorem 3.12
in [20] generalizes Theorem 4.31 in [19] which is stated only for ordered structures Z in a finite relational
signature. In fact, it was later pointed out to the author that the qfi assumption is not needed (see the
Acknowledgements section). To see this, in the argument for [20, Claim 3.13], replace L’ with an expansion
L such that L"\ L' consists of a predicate p 4(Z) for the quantifier-free type of the increasing enumeration of
A, for every finite substructure A C Z. Then apply compactness to the type S where we replace Ty UDiag(Z)
with the diagram of Z in L”. It is noted in the proof of [20, Theorem 3.12] that the qfi hypothesis is used
only in the argument for Claim 3.13. By the present argument, we see why it is not even needed there. O

3. Transfer by semi-retractions

For concrete examples, we give the definitions of the Shelah tree Zsiree, the strong tree Lgirtree and the
convezly ordered equivalence relation Teq. All three structures are locally finite ordered structures. An ex-
position of the proof that Zgee- and Zgiriree-indexed indiscernible sequences have the modeling property
is given in [12]. A proof that Z.q has RP is given in [11, Theorem 6.6]. This latter fact is equivalent to
array-indiscernible sequences having the modeling property, and array-indiscernible sequences have been a
common tool in model theory ([12, Lemma 5.6] provides a direct proof of the modeling property).

Definition 3.1.
o Define Zgtree t0 be the structure on <“w (finite sequences from w) in the signature {<, A, <iex, {Pn tnew}

where for all n,v € <“w, n < v if and only if 1 is an initial segment of v, A is the meet in the partial
order <, <jex is the lexicographic order on finite sequences, i.e. n <jex v if and only if

n v Van(ln Av)) <v(l(nAv)),
and n € P, & £(n) =n, for all n € w.

o Define Zg 106 t0 be the structure on <“w in the signature {<, A, <jex, <ien} Where <, A, <jox are inter-
preted as in Zgiee and <jep is the preorder on u,v € <“w defined by the lengths of the sequences:

W <len V< L(p) < L(v)

o Define Z,q to be the structure on w X w in the signature {E, <} where for all (4, ), (s,t) € w X w,
(1,7)E(s,t) @ i=sand (i,j) < (s,t) ©i<sV(i=sAj<t).
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Definition 3.2. Given any structures A, B, we say that an injection h : A — B is quantifier-free type
respecting (gftp-respecting) if for all finite same-length tuples 7,7 from A,

1~ 7= @) ~5 ().

In the following Definition, the term “semi-retraction” is inspired by the definition of “retraction” from
[2]. Corollary 1.4 in [2] gives an equivalent condition for a countable, Ry-categorical structure in a countable
signature to be a retraction (attributed to T. Coquand): A is a retraction of B if and only if there are
continuous homomorphisms

Aut(A) 5 Aut(B) 5 Aut(A)
such that 1o p = 1.

Definition 3.3 (semi-retractions). Let A and B be any structures. We say that A is a semi-retraction of B
if there exist qftp-respecting injections g : A — B and f : B — A such that for any complete quantifier-free
type n in A, for any § from A,

(i) AFn() = AEn((fo9)().
Observation 3.4. If A is a semi-retraction of B, then ||.A|| = ||B]||, by the Schroder-Bernstein theorem.

Theorem 3.5. Let A and B be any structures. Suppose that A is a semi-retraction of B. Furthermore,
suppose that B-indezxed indiscernible sets have the modeling property. Then A-indexed indiscernible sets
have the modeling property.

Proof. Fix structures A and B such that A is a semi-retraction of B and assume that B-indexed indiscernible
sets have the modeling property. Fix an integer [ > 1 and an A-indexed set of I-tuples from some |A|"-
saturated structure M

X=(l|ieA.
We want to find an A-indexed indiscernible set of I-tuples from M
Y = (Ei | XS A)

such that Y E EMtp(X).
Let g: A— Band f: B — A witness that A is a semi-retraction of . Define

X' = (Ef(j) |] € B)
By assumption, there is a B-indexed indiscernible set from M
Y'=(d;|j€B)

such that Y' E EMtp(X’) (recall that |A| = |B| by Observation 3.4, so M remains sufficiently-saturated).
Let € = dg(;. It remains to show that ¥ = (¢; | i € A) is the desired set.
To see that YV is an A-indexed indiscernible set, fix 7; ~ 4 3. Since g is qftp-respecting, g(i1) ~5 g(72).
By B-indexed indiscernibility of Y
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dyir) Em do(a)
ie.
&, =M Ea,.
Now fix a complete quantifier-free n-type 7, and an n - l-ary formula ¢ such that
(V) (AE (@) = ME @(c)). (1)
Also fix 5 so that
AFE (). (2)

To see that Y F EMtp(X), we wish to show that M E ¢(es).
Since f is qftp-respecting, there is an index set S and there are some quantifier-free n-types (0 | k € S)
in B such that for any n-tuple 7 from B,

Aen(f() < BE=\/ 6, (3)

keS

equivalently,

7 m(A) = | 6(B).

kesS

Thus, via assumptions (1) and (3) we get that for all k € S,
(VB 6,(7) = M E () (4)
Since Y’ F EMtp(X’), by Proposition 2.8 we get that for all k € S,
(V7 (B F 6:(7) = M F ¢(dy)). ()
By condition (i) of Definition 3.3:
AEn(s) = AEn((f © 9)(s))- (6)
Observe that by (3) and letting 7 = ¢(3),

AE((fog)®)=BE \/ 6(g(3)). (7)

kesS

So we conclude by (2), (6) and (7):

BE \/ dulo(s). (5)

keS

Apply this fact to (5) letting 7= ¢(3) to get

ME ¢(dyes) (9)



L. Scow / Annals of Pure and Applied Logic 172 (2021) 102891 9

ie.
ME ¢(&s) (10)
as desired. O

Remark 3.6. In the proof for Theorem 3.5, Y = (dy(; | i € A) is an A-indexed indiscernible set because
(d; | 7 € B) is a B-indexed indiscernible set and the map g is qftp-respecting. It is only in verifying that
Y E EMtp(X) that we use the map f and condition (i) in Definition 3.3.

Corollary 3.7. Let A and B be locally finite ordered structures. Suppose that A is a semi-retraction of B and
B has RP. Then A has RP.

Proof. By Theorem 3.5 and Theorem 2.10. O
Corollary 3.8. If Zsiriree has RP, then Ly has RP.

Proof. Define A to be the structure on the underlying set w x Q with the same definition as Z.q on
w X w (thus, age(A) = age(Zeq) and each equivalence class in A is densely ordered by <). Define B to be the

t <“Q with the same definition as Zytree 0n <“w (thus, age(B) = age(Zytriree)

structure on the underlying se
and the <J-successors of any fixed node in B are densely ordered by <jex). It remains to show that A is a
semi-retraction of B, in order to apply Corollary 3.7.

Our referee for [12] kindly suggested that we deduce RP for A from RP for B by constructing a special
embedding ¢ : A — B that is qftp-respecting (see [12, Theorem 5.5] for details). Given i € w, by the ith
level in B, we mean all sequences in <“Q of length 4, and by the ith equivalence class in A, we mean
{(i,2) | = € Q).

Let n; = (0,...,0). Let g take the ith equivalence class in A into {n; (j) | j € Qso} in a way that

——

2i
preserves the order. Let f : B — A be the map that takes the ith level in B into the ith equivalence class
in A in a way that preserves the order. A is a semi-retraction of B witnessed by ¢ and f. O

Remark 3.9. In Corollary 3.8, we have an example of f, g witnessing that A is a semi-retraction of B, such
that f o g is an embedding, but g o f is not an embedding.

4. Transfer by color-homogenizing maps

We start with a technical definition.

Definition 4.1 (color-homogenizing maps). Fix ordered structures V and W, and integers m, k > 1. Given
a finite substructure B C V, a k-coloring ¢ on increasing m-tuples from WV and an increasing function
g : B — W, we say that g is color-homogenizing for ¢ and B if for all increasing m-tuples 7,7 from B,

7~y 7= c(g(2) = c(9(7)).

Theorem 4.2. Let V and W be any ordered structures such that V is locally finite. Suppose that there is an
increasing function f: W — V such that for any integers m,k > 1, any finite substructure B CV and any
k-coloring ¢ on increasing m-tuples from W, there is a color-homogenizing map g for ¢ and B such that
fog:B—=YV isaoc(V)-embedding.

Then V has RP.
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Proof. Fix finite substructures A and B of V and suppose that ||A|| = m. Let ¢’ be a k-coloring of (jj‘) We
may define a k-coloring ¢” of all finite increasing m-tuples from ) with the property that for any A’ € (l}‘),
we define ¢’ (a@’) = ¢/(A’), where @ is the increasing enumeration of A’. It suffices to find a copy B’ of B in
Y that is homogeneous for ¢ on increasing copies of A, i.e. such that for all increasing copies d;, dy of A in
B, ¢"(dy) = " (dy).

Define a k-coloring ¢ on increasing m-tuples 5 from W by ¢(3) = ¢”’(f(5)). By assumption, there is an
increasing function g : B — W that is color-homogenizing for ¢ and B.

Let B’ = (fog)(B). By the assumption that fog is an embedding, B’ = B. To complete the argument that
V has RP, it suffices to show that B’ is homogeneous for ¢’ on increasing copies of A. Let dy, ds be increasing
copies of A in B’, thus, d; ~y da. The embedding f o g is order-preserving and surjective onto B’. Thus, we
may define increasing tuples 7 = (f o g)_l(al) and = (fo g)‘l@) from B. Since d; ~y dy and fo g is an
embedding, we have that 7 ~y, J. Since 7 and 7 are increasing tuples from B and 7 ~y 7, ¢(g(7)) = ¢(9(7)),
by the fact that g is color-homogenizing for ¢ and B. By definition of ¢, ¢’(f(g())) = <" (f(¢(7))), i-e.,

C//(dl) = C//(EQ). O
5. Semi-direct product structures

In this section, we focus on ordered relational structures. In the following definition, it is convenient
to assume that the relation symbol for order is common to the structures. If this is not the case for
certain desired input structures, we assume that we make it the case before applying the definition (as in
Definition 6.1). The following operation is the “disjoint sum” operation on structures, [8, p. 101] plus the
requirement that < be extended to a total order on the sum.

Definition 5.1. Given a linear order O = (|0|, <) and structures (M;);co on pairwise-disjoint domains |M,|
in relational signatures L;, each linearly ordered by <€ L;, define U = U;co(M;) to be the structure on
Uico IM;| in the signature

oU)={P,|aecO}U UL"
€O

for new unary predicates P,, where the symbols are interpreted as follows.

(i) For each n-ary relation symbol Ry that is not < or any of the P,, R%’ = U,;co Xi, where we define

X_{@“,Hmeh

0 L if Ry ¢ L
(ii) a <Y b if and only if there exist i, j € O such that a € M;,b € M; and either i <© j or else i = j and
a <Mi b,
(ii)) P4 = [ Mal.
Observation 5.2.
(1) Uieo(M;) in Definition 5.1 is linearly ordered by <.
(2) Given a finite substructure A C U;con(M;), there is a unique integer s > 1, a unique finite sequence

to < ... < ts—1 from O, and unique substructures A; C My, for all i < s, such that A = J,_, Ai.

Proposition 5.3. If age(M;) has AP, for all i € O, then age(U) has AP.



L. Scow / Annals of Pure and Applied Logic 172 (2021) 102891 11

Proof. Since the language is relational, we may allow empty structures in order to simplify our argument.

Fix an amalgamation problem in age(ld), f1 : A — B, fo : A — C. We may assume that all A, B,C CU.
Since the language is relational, structures A, B, C are finite.

By Observation 5.2(2), there exist unique increasing tuples 3 = (8;)i<n,t = (tj)j<m from O and sub-
structures B(i) C Ms,,C(j) € My, such that B =J,_, B(i), C =U,.,,C(j). Let Y =ran5, Z = rant, and
X =Y UZ. For k € X, define By, = B(i), if k = s;, and otherwise By = ). Likewise, define C, = C(j), if
k =t;, and otherwise Cy, = (. Define Ay, = AN My, for all k € X.

For each k € X, we define a structure Dy, € age(!d) and embeddings g{“ : By — Dk,g§ :Cr — Dy, as
follows.

If k € Y\ Z, then k = s; for some unique i < n, and we let g¥ : B, — By be the identity function,
Dk = Bk and gg = 0

If k€ Z\Y, then k = t; for some unique j < m, and we let g% : C,, — Ci, be the identity function,
Dk :Ck and g’f = @

If k € YNZ, then k = s; = t; for some unique ¢ < n,j < m. This is the only case where 4}, could possibly
be nonempty, since embeddings must preserve the predicates P,, for all a € O. The restrictions of fi, fa,
respectively, fF : Ay — By, f¥ : A, — Ci, form an amalgamation problem in age(Mj}). By assumption,
there is a solution to the amalgamation problem g¥, g5, Dy, such that g o fF = g& o f¥.

Define g1 = U, ., gt and go = Uj<m gg. For each k € X, g¥ and g% are L-embeddings on substructures
of My, and so g1 and go preserve < and the P,, for all @« € O, and thus are o(U)-embeddings. Let
D = Jpex Dr- It is not hard to check that D, g1, g2 is a solution to the amalgamation problem such that

g1ofi=gz20f2. O
Here we restate the product Ramsey theorem for classes. By the notation (((le))i ) we mean all sequences
(AL)i<s such that A, C B; and A, = A;, for every i < s.

Theorem 5.4 (/23, Theorem 2]). Fix integers r,s > 1 and let (K;)i<s be a sequence of classes of finite
structures with RP. Fix (B;)i<s, (Ai)i<s such that B;, A; € K;, for all i < s. There exist C; € K; for all
i < s such that for any coloring p : (((fil))is) — 1, there exists a sequence (B});<s, with B, = B; for alli <'s

and some | € r such that p restricted to (((i;))i) is the constant function .

Corollary 5.5. If M; has RP, for all i € O, then Uijco(M;) has RP.

Proof. Let U = U;co(M;). Tt suffices to show that U has the A-Ramsey property for all finite A C Y. Fix
two structures A C B. By Observation 5.2(2), there is a unique decomposition B = |J,_,
B; € My, for some t; € O, for all i < s. We may write A = J,_, A; where A; C M;,, if we allow some of
the A; to be empty. Now apply Theorem 5.4 to (K¢, )i<s, (Ai)ics and (B;)ics. O

B; where each

We generalize Definition 5.1.
Definition 5.6 (semi-direct product structures). Given a structure A in a relational signature Lo linearly
ordered by <€ Lo and, for some relational signature Ly such that Ly N Ly = {<}, Li-structures (M;);cn
on pairwise-disjoint domains | M|, each linearly ordered by <, define Z = Z;car(M;) to be the structure on
U,en M| in the signature

O'(I) :L1UL2U{E}

for a new binary relation F, where the symbols are interpreted as follows.
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(i) For each n-ary relation symbol S; € L; \ {<}, define

st=J s
ieN

(ii) For each n-ary relation symbol R, € Ly \ {<}, define RZ(ay,...,a,—1) to hold if and only if there
exist (possibly non-distinct) elements {to,...,t,—1} from A such that a; € M, for all i < n and
NER/(to,. . tn1)-

(iii) Define E to be an equivalence relation whose equivalence classes are exactly the |M;|, i.e., EZ(a,b) <
(32 S N)(a, be ./\/11)

(iv) Define a <7 b if and only if there exist i, € N such that a € M;,b € M; and either i <V j or else
both i = j and a <M b.

Observation 5.7.

(1) Z = Zien(M,) in Definition 5.6 is linearly ordered by <.

(2) Let Z~ be the Lo-reduct of Z. For R; € Ly \ {<}, the definable sets RY are EZ-invariant. Moreover, <*
is EZ-invariant on pairs (a,b) ¢ EZ. Thus, we may form the quotient structure (Z~)/E, which is an
Lo-structure.

(3) Define a map o : (Z7)/E — N by [a]/E +— t, if a € M;. Tt is clear that this map is well-defined,
bijective, and preserves the interpretations of all symbols in Ls. Thus o is an Lo-isomorphism.

Definition 5.8. Let N, L1, Lo, {M, }ienr, Z = Zienr(M;) be as in Definition 5.6, and let N/ be the {<}-reduct
of N. Let fg :Z — (Z7)/E be the map that takes a to its equivalence class [a]/E.

(1) For a substructure A C Z;cpnr(M;), define gr(A) to be the Lay-substructure of N identified with fg(.A)
in Observation 5.7(3).

We call gr(A) the underlying graph of A.

(2) For a tuple v from Z;cpr(M;), by gr(v) we mean gr(ran ).

(3) Given two substructures A,B C Z and a {<, E}-embedding f : A — B, define f : gr(A) — gr(B)
to be the {<}-embedding given by f(o([a]/E)) = o([f(a)]/E), where o is the function named in
Observation 5.7(3).

(4) For a substructure C C Z;enr(M;), by C™? we mean the (L; U{E})-reduct of C. For C C U;epn(M;), by
C*d we mean the (L; U{E})-reduct of C as it is naturally interpreted, meaning the sets PS, for a € N,
are defined to be exactly the Ecred—equivalence classes.

Observation 5.9. [gr(A)| = {t € IN|| |A] N |M,| # 0}. We use this notation to point out similarities with
the partite construction in [16]. There are also similarities with the argument in [22, Proposition 1].

Proposition 5.10. Let N, L1, Lo, {M;}ien', Z = Zienr(M;) be as in Definition 5.6. Let N” be the {<}-reduct
of N, and let U = Usepr (M;).
Fiz a,b € "|Z|(="|U|) such that

ed

aftn”" (@) = aftp” " (B) (11)

and let f be the map defined by f(a;) = b; for all i < m. Then

— gr(b) is the identity function if and only if qftp" (@) = qftp" (b), and
. gr(@) — gr(b) is an isomorphism if and only if ¢ftp™ (@) = qftp™ (D).
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Proof. Recall that PT = | M|, for all ¢t € AN’. By assumption (11), there exist ¢ € w and sequences
(8i)i<gs (ti)icq such that for all j < m, for all i < ¢: a; € [My,| < b; € [My,]. In other words, a; € PY &
bj € Pg

To see (i), note that under assumption (11), qftp” (@) = qftp”(b) holds if and only if s; = ¢;, for all i < q.
However, f : gr(@) — gr(b) is the identity function if and only if EZ(a;,b;) for all j < m, which holds if and
only if s; = t;, for all i < q.

To see (ii), note that under assumption (11), f is a o(Z)-isomorphism if and only if f is an Ly-embedding.
It remains to show that f is an Lo-embedding if and only if f is an Lo-embedding.

Fix an n-ary relation symbol R; € Ly\{<}. By the definition of Z, RF (as,, - .., ai, ,) < RN (Sigs- -+ 5i, 1),
for all 4q,...,i,_1 < m. Similarly, R (b, --.,bi,_,) < RN (tiy,...,t;i,_,), for all ig, ... i, 1 < m. More-
over, f is an Lo-embedding if and only if RN (s;y,...,si, ) < RN (tiy, ... ti,_,), for all n-ary R; € Lo,
iy ... in—1 < m and n € w. Thus, f is an Ly-embedding if and only if f is an Ly-embedding. O

We give a slight restatement of RP that we use in the proof of Theorem 5.13.

Definition 5.11. Given a finite substructure B of some structure V, define a k-coloring of ( v ) to be a

: age(B)
k-coloring of UAeagc(B) (A)'

Proposition 5.12. IfV has RP, then for any finite substructure B C V), for any integer k > 1 and k-coloring c
of (ag:(B))’ there is a copy B’ of B in'V such that B’ is homogeneous for ¢ on copies of A, for all A € age(B).
As a generalization of our usual convention we say that B’ is homogeneous for c.

Proof. This is well-known (see Claim 4.16 in [19]) and can also be argued for using V-indexed indiscernible
sets. We repeat the argument here. List age(B) = {D1,...,Dn}. Let ¢ be a k-coloring of (ageV(B)). Define

structures (W; | 1 <14 < m+1) such that Wy = Band W,, — (Wn_l)f"’l, for all n such that 2 <n < m+1.
Now define Vi = W, 11. Having defined V,,_1, define V,, to be a copy of Wy, _(,—2) in V,,_1 homogeneous
for ¢ on copies of Dy, _(,_3), for all n such that 2 <n <m+ 1. Thus V3 2 V5 2 -+ 2 Vy, 41 and ultimately
Vim+1 is a copy of Wy = B homogeneous for ¢ on copies of Dy, Dy—1,...,D1. O

Theorem 5.13. Let N, Ly, Lo, {M; }ien, Z = Zien(M;) be as in Definition 5.6. Let N7 be the {<}-reduct of
N and let U = Useprr (M;). Assume that there is an age, K, that has RP and such that age(M;) = K, for
alli e N.

If N has RP, then T has RP.

Proof. The structures Z, U share their underlying set which we call X. Define f : |U| — |Z| to be the
identity map on underlying sets. By the interpretation of < on both structures, f is an increasing function.
To simplify notation, we adopt the convention that given any finite substructures C; C Z and Co C U
and a bijection p : C; — Cq, we say that p is a o(Z)-isomorphism if f o p is truly a o(Z)-embedding.
Fix some integers m,k > 1, a finite substructure B C Z (which we may assume to be of cardinality
at least m), and a k-coloring ¢ on increasing m-tuples from U. Representatives of isomorphism types of
cardinality-m substructures of B may be listed as:

A07"'7At—1

for some t € w.
Let H = gr(B), and let d = k'. By the assumption that A" has RP and Proposition 5.12, there is some
finite substructure Ay C A such that

Ny — (H)2ee (12)
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For every Ho C Ny such that Ho =y, H, there exists a finite substructure By C U and an (L U {E})-
isomorphism 7 : B4 — B**d such that gr(By) = Ho and 7 : Ho — H is an La-isomorphism. This is because
age(M;) = K, for every i € N, and o(U) is relational.

Simply by being an age, age(i/) has JEP, and so there exists a finite structure Byi; C U that embeds
each of the finitely many By described in the paragraph immediately above. We may additionally assume
that this structure By has the property that gr(Bpig) = No.

We may define an m-coloring ¢* of (age(%b_ )) with the property that for any A’ € (age(béb_ )) such that
ig ig

[|A'|| = m, ¢*(A") = ¢(@’), where @’ is the increasing enumeration of A’.
By Corollary 5.5, U (M;) has RP, so by Proposition 5.12; there is a copy By of Buig in U such that
By, is homogeneous for ¢*. By Proposition 5.10(i), gr(Bf;,) = No = gr(Buig)-

Making use of Observation 2.2, we define a d-coloring ¢’ : (age("H)) — 'k that maps into a set of size d as

follows: for an Lo-structure J C Ny such that J € age(H), define ¢/ (J) = (ko, . .., ki—1) where we define,
for any i < t,

0 , if gr(Ai) £, I
ki=qc*(D) , if gr(A;) =1, J and there exists D C By, such that Dred = A;red
and gr(D) =J

To see that ¢ is well-defined, consider structures D, D C By, such that gr(D) = gr(D) and there exists
an isomorphism h : D' — D4, The map & : gr(D) — gr(D) is a {<}-embedding and gr(D) is finite, so &
is the identity map. By Proposition 5.10(i), h : D — D is a o(U)-isomorphism, and so by homogeneity of
By, for ¢*, ¢*(D) = ¢*(D).

By line (12), there is a copy H* of H in Ny such that H* is homogeneous for ¢'.

Now we refer to the construction of By, and the fact that B;;ig & Bhig. Since H* C N has the property
that H* =1, H, there exists a finite substructure B* C B, and an (L; U{ E'})-isomorphism 7 : Brred _ pred
such that gr(B*) = H* and 7 : H* — H is an Lg-isomorphism.

We apply Theorem 4.2 where g is defined to be 7—1. By Proposition 5.10(ii), since 7 : H* — H is an
Lo-isomorphism, 7 : B* — B is a o(Z)-isomorphism. Thus,

g: B — B*is a o(Z)-isomorphism, (13)

which by our convention means that fog: B — 7 is a 0(Z)-embedding.

To see that g is a color-homogenizing map for ¢ and B, fix any increasing m-tuples @, @’ from B such that
@ ~7 @. It remains to show that c¢(g(@)) = c(g(@)).

Since @ and @ are m-tuples from B, there is some s < t such that @ and @’ are increasing copies of
As. Since @ and @ are increasing tuples and g is a {<}-embedding, g(a), g(@’) are also increasing tuples.
Define substructures D, D’ C U such that g(@) is the increasing enumeration of D and g(@’) is the increasing
enumeration of D’. Since @ and @ are from B, g(a) and g(a’) are from B* C B, Since By, =ow) Buig,
both D and D’ are structures of cardinality m in (agc(blgb;g))’ and so ¢*(D) = ¢(g(a)) and ¢*(D’') = c(g9(@)),
by definition. Thus, it remains to show that ¢*(D) = ¢*(D').

Let J = gr(D) and J' = gr(D’). By line (13), g(a@) ~7 @ ~7 @ ~z g(@). This yields that Dred = 4, =~
D™ and J = gr(D) = gr(A,) = gr(D’) = J', by Proposition 5.10(ii). Since H* is homogeneous for ¢’ and
J,J Cgr(B*)=H* (T) = (T"). In particular, ¢*(D) = ((T))s = ((T"))s = ¢*(D’), as desired. O

6. Applications

Theorem 5.13 yields interesting examples, some of which are familiar. First we introduce a definition that
is well-defined up to bi-definability of structures.
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Definition 6.1. Given an ordered relational structure M and an order O = (|O], <), by U;co (M), we mean
Uico(M;) where (M;);co is a sequence of isomorphic copies of M on pairwise-disjoint domains and the
symbol < has been substituted for the symbol for order in o(M).

Given two ordered relational structures N and M, Z;car(M) is defined to be Zicar(M;) where (M;)ien
is a sequence of isomorphic copies of M on pairwise-disjoint domains, the symbol < has been substituted
for the symbols for order in both o(N') and o(M), and by additional substitution of symbols, we have made
oN)No(M) ={<}.

Corollary 6.2. Let O = (|O|, <) be a linear order and N a random ordered graph. If M is an ordered
relational structure with RP then

(1) Zico(M) has RP.
(2) Ziex (M) has RP.

Proof. By Theorem 2.4, A" has RP. That O has RP follows from Ramsey’s theorem for finite sequences.
Thus Z;eo (M) and Z;epr(M) have RP, by Theorem 5.13. O

Remark 6.3. Corollary 6.2(1) is obtained by Leeb using the notation Ord(C) in [13] (see [6] for a discussion).
Corollary 6.4.

(1) Let O = (w,<). Then Zyco(O) has RP.
(2) If N is the random ordered graph in the signature {R, <}, then Zienr(N') has RP.

Proof. Note that Z;c(O) is isomorphic to the structure Zoq defined in Definition 3.1 (assuming {E, <} is
the common signature) which structure is known to have RP. Alternatively we could use Ramsey’s theorem
for finite sequences, which guarantees that O has RP, so that we may apply Corollary 6.2. For the second
claim, we use Theorem 2.4 to conclude that A" has RP, and thus Z;car(NV) has RP by Corollary 6.2(2). O

Remark 6.5. Let R = Z;car(N) where N is the random ordered graph in the signature {R,<}. By Defi-
nition 6.1, 0(R) = {R1, Re, E, <} where we may assume R; is substituted for the edge relation symbol in
L1 and Rj is substituted for the edge relation symbol in Lo, where L; and Lo are as in Definition 5.6.
We may define an interpretation of R on R such that R® = RF U RF. Note that for all a,b € R,
R E Ri(a,b) & R E R(a,b) A E(a,b) and R F Ry(a,b) & R E R(a,b) A =E(a,b), the latter since RV
is irreflexive. Thus, in this case, R is interdefinable with an { R, F, <}-structure on the same underlying set.

Definition 6.6. A theory T has the independence property (IP) if there is a partitioned formula ¢(Z;7) in
the language of the theory with the following property: for every n € w, there exist parameters (as | s < n)
and (b; | t < 2") from some model of the theory, such that

(b Ts) & 5 € wy

where (w; | ¢ < 2™) enumerates the subsets of n.
If a theory fails to have the independence property, we say that the theory has NIP, or is an NIP theory.

We end with a characterization of NIP theories using the example in Corollary 6.4(2).

Corollary 6.7. Fiz a random ordered graph N in the signature L = {R, <}.
Let R = Rien(N).
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Let W be the {E, <}-reduct of R.
A theory T has NIP if and only if any R-indezxed indiscernible sequence in a model M of T is a WW-indexed
indiscernible sequence.

Proof. First observe that, by Remark 6.5, 0(R) = {R1, Re, E, <} where we may assume R; is substituted
for the edge relation symbol in L, and R is substituted for the edge relation symbol in L.

Let NV = N | {<}. We observe that W = Z;en (N7).

The right-to-left direction follows the argument in [19, Lemma 5.2] closely, so we merely sketch it here.
By Corollary 6.4(2), R has RP, so by Theorem 2.10, R-indexed indiscernible sequences have the modeling
property. If 7" has IP, then there are parameters in a model of T witnessing this and an R-indexed indis-
cernible sequence (a; | i € R) from some Nj-saturated elementary extension M E T locally-based on these
parameters such that (a; | i € W) is not a W-indexed indiscernible sequence.

For the left-to-right direction, we can adapt the argument in [19, Lemma 5.4]. Assume that there is an
R-indexed indiscernible sequence (a; | i € R) from some model M E T that is not a W-indexed indiscernible
sequence. It is convenient to think of ¢ — @; as a map, so that we may refer to a; as the image of 1.

Since (@; | ¢ € R) is not a W-indexed indiscernible sequence, there exist n € w and n-tuples 7,7 from R
such that

LW s
but
a7 £Mm G
Thus, there is some formula ¢ € L(M) such that
ME ¢(az;) and M E —p(ay),

and so by R-indexed indiscernibility of the sequence,

LR 7.

Since RV is symmetric with no loops, complete quantifier-free n-types in R are of the form

p(IL'Q,...,I‘n_l)U{Rl(ll'i,l’j) | (17]) ceY Ai <j}U{_‘R1(IEi,1'j) | (27]) € (Tl X Tl)\Y/\Z <]}
U{R2(xi,xj) | (Z,]) EZNi < j}U{_‘RQ(Ii,JZj) | (Z,j) € (n X n)\Z/\z <]}

where p is a complete quantifier-free n-type in W, and Y, Z C n x n.

For any s € {1,2}, let Ry(z;,2;)° denote Rs(z;, ;) and Rs(z;,z;)' denote =R (x4, x;). Given a complete
quantifier-free n-type ¢’ and some s € {1,2}, define t;(¢’) = 0 if R4(x;,x;) € ¢, and otherwise ¢,(¢') = 1.
For any s € {1,2}, for every pair i < j < n and any complete quantifier-free n-type ¢’, define T(SiJ)(ql ) =
(0 \ (R (i, ) }) U (R, 3) @} Let T = g, [ < j < nAs € {1,2}}

Assume that ¢; is the quantifier-free type of 7 in R and ¢, is the quantifier-free type of 7 in R. Since
7~y 7, the complete quantifier-free types ¢1, g2 agree on their restriction p*(zo,...,z,—1) to the signature
{E,<}. Thus, since 7 »5 J, there is some integer m > 1 and some finite sequence (7;);<n, from I' such that
(Tm—10---0T1079)(¢q1) = g2. We may additionally assume that for each j < m, (7,1 0-- 071 079)(q1) is a
complete quantifier-free n-type in R. One way to do this would be get rid of any Rs-edges specified by ¢,
and then add in any Rs-edges specified by ¢o, one-by-one. Since the Ro-edges are specified by ¢o, they only
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hold of E-inequivalent pairs, and thus at every step we have a type consistent with the theory of R. After
this point, R;-edges may be flipped as necessary within the E-classes.

There is a least jo < m such that all tuples § satisfying (7j,—1 0--- 071 079)(q1) in R yield an image
a5 satisfying —¢ in M. Replacing ¢1 by (j,—2 0+ 07 07)(q1) and g2 by (Tj,—10--- 071 07)(q1), we
may assume that there is some (s,t) € n x n, some [ € {1,2} and some quantifier free type ¢* such that
q* = q1 N g2, which we shall call the common quantifier free type, and such that ¢; = ¢* U {R;(zs,z¢)} and
@2 = ¢* U{=Ry(xs,z;)} (the assignment of R; and —R; is also without loss of generality, by switching ¢
with —¢). For convenience, we write ¢* = ¢* (s, z¢, %), where we define U = ()i (n\ {5,})-

In the first case, assume that [ = 0. Then E(zg,z:) € p* and ¢; and ¢o disagree on Ry (zs,x+). Note that
N is a Fraissé limit, in both of its roles in R = Z;cpr(N). Thus, there is some (n — 2)-tuple ¢ from R such
that we may realize arbitrary finite bipartite graphs (A, B) with edge relation R; as induced subgraphs of
the class [is]/E(= [it]/F) with the property that for all a € A, for all b € B, R F ¢*(a,b,¢). This allows the
images of the tuples (a,b,¢) in M to satisfy IP using ¢ partitioned as ¢ (zs; x¢, ).

In the second case, assume that [ = 1. Then —F(z,,2:) € p* and ¢; and g¢» disagree on Ry(zs,xt). We
may realize arbitrary finite bipartite graphs on pairs ([a]/E, [b]/F) in the quotient structure (mentioned in
Observation 5.7(2)) with edge relation Ry and with all the required Ra-relations to some fixed (n — 2)-tuple
[¢]/E, as dictated by the common quantifier-free type. Then all R;-configurations are easily found within
the classes [a]/FE, [b]/E, [¢;]/FE to match the common quantifier free type, and so we may complete this
argument as in the first case. 0O
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