
Influence-Based Voronoi Diagrams of ClustersI

Ziyun Huang

Department of Computer Science and Software Engineering
Penn State Erie, the Behrend College

4701 College Drive, Erie, PA 16563, 14260, USA

zxh201@psu.edu

Danny Z. Chen

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, Indiana, 46556, USA

dchen@nd.edu

Jinhui Xu

Department of Computer Science and Engineering
State University of New York at Buffalo

Buffalo, New York, 14260, USA
jinhui@buffalo.edu

Abstract

In this paper, we study a generalization of the Voronoi diagram, called the
Influence-based Voronoi Diagram (IVD). The input is a collection of possibly
overlapping point clusters C = {C1, C2, . . . , Cn} in some fixed dimensional space
Rd and an influence function F (C, q) measuring the influence from a set C of
points to any point q in Rd. The goal is to construct a Voronoi diagram for C so
that each Voronoi cell consists of all points that receive their maximum influence
from the same cluster in C. By making use of a recent work called the Clustering
Induced Voronoi Diagram (CIVD) for unclustered points, we are able to show
that it is possible to utilize CIVD’s space-partition ability and combine it with a
divide-and-conquer algorithm to simultaneously resolve the space partition and
assignment problems for a large class of influence functions. This overcomes a
major difficulty of CIVD related to its assignment problem. Our technique yields
a (1− ε)-approximate IVD of size O(|P | log|P |) in O(T2(N)N log2N + T1(N))
time, where P is the union of all points of C, N is the total size of all clusters
in C, ε > 0 is a small constant, and T1 and T2 are the functions measuring how

IThe research of the first and third authors was partially supported by NSF through grants
CCF-1422324 and IIS-1422591; the research of the second author was supported in part by
NSF through grant CCF-1617735, and the research of the third author was also supported in
part by NSF through grants CCF-1716400 and IIS-1910492.
Corresponding author: Ziyun Huang

Preprint submitted to Elsevier January 24, 2021

efficiently F (C, q) can be evaluated.

Keywords: Voronoi Diagram; Influence Based Voronoi Diagram; Clustering
Induced Voronoi Diagram; Influence Function

1. Introduction

The Voronoi diagram is a fundamental geometric structure with numerous
applications in many different areas. Given a set P of points or objects (called
sites) in Rd , the (ordinary) Voronoi diagram induced by P is a partition of
the space Rd into a set of cells, where each cell of the diagram is the union of
all points in Rd whose distances to a particular site are closer (or farther) than
to any other sites. There are many variants of Voronoi diagrams, depending
on the type of objects in P , the distance metric, etc. Voronoi diagram can be
viewed as the result of a competition among sites in P , where for any point
q ∈ Rd, the winning site for q is the one that has the largest “influence” on
q. For most of the known Voronoi diagrams, the influence from each site is
independent from the other sites in the sense that the influences from multiple
sites are not aggregated. However, as it will be shown later, many real world
applications expect that the influence from multiple objects can be combined
to form a certain type of joint influence.

To accommodate such an expectation, we generalize in this paper the con-
cept of Voronoi diagram to the Influence-based Voronoi Diagram (IVD). Let P
be a set of points in Rd for some fixed integer d > 0, and C = {C1, C2, . . . , Cn}
be a collection of (possibly overlapping) clusters of points of P (i.e. Ci ⊆ P, i =
1, 2, . . . , n). For any cluster C ⊆ P , all the points in C have a combined joint
influence on every point q ∈ Rd, which is measured by a non-negative real func-
tion F (C, q) (called influence function). The cluster Ci ∈ C that has the largest
joint influence F (Ci, q) on q is called the Maximum Influence Cluster (MIC)
of q. An IVD of C is a partition of the space Rd into regions (called Voronoi
cells) such that each Voronoi cell c is associated with a cluster (called Voronoi
site) Ci ∈ C that is shared by all points c as their common MIC. There are two
major differences between IVDs and the traditional Voronoi diagrams (VD).
One difference is that each Voronoi site of an IVD is a given point cluster, while
the Voronoi site of a traditional VD is one input point. The other difference is
that the IVD is influence based, while the traditional VDs are distance based in
general. This means that when determining the Voronoi cell for a point q, IVD
measures the joint influence from all points in a Voronoi site to q by an influ-
ence function, but the traditional VDs compute the distance (e.g., Euclidean or
Hausdorff distance) between the Voronoi site and q.

The rationales of generalizing distance-based Voronoi diagrams to influence-
based Voronoi diagrams are well justified in [5, 6], as joint influence is a rather
common phenomenon in real world (such as in physics, social networks, etc.).
Chen et al. were the first to study the influence based Voronoi diagrams in their
work on Clustering Induced Voronoi Diagrams (CIVD) [5]. They showed that for

2

any set P of n points in Rd and an influence function F (C, q) satisfying some
general conditions (i.e., Similarity Invariant, Locality, and Local Domination
properties), it is possible to partition the Rd space into O(n log n) cells so that all
points in each cell share a common subset of P as their approximate MIC. Their
CIVD technique first partitions the space into a set of cells (called partitioning)
based on a general Approximate Influence (AI) Decomposition technique, and
then determines the approximate MIC (or AMIC) for each cell by a problem-
specific assignment algorithm (called assignment).

The CIVD considers all possible subsets (i.e., the power set) of P as its
potential Voronoi sites, and the Voronoi sites, as well as the cells, are solely
induced by the influence function. This greatly increases the freedom for CIVD
to capture the domination relationships between the input points and the space.
It also elevates the challenge level of constructing such a diagram. For instance,
it is evident in [5] that although a general technique (i.e., AI decomposition,
introduced in [5]) exists for a large class of influence functions to partition the
space, it is quite unlikely to find a common assignment algorithm for such a class
of influence functions (the assignment problem was solved in [5] in a problem-
dependent manner).

To address the difficulty associated with the assignment problem, we consider
the IVD problem in this paper. In some sense, the IVD model can be viewed as
a special case of CIVD, where the Voronoi sites are restricted to be the set C of
given clusters, instead of the power set of the input point set P . We expect that
such a restriction can enable us to characterize a set of general conditions (which
might be somewhat different from those of the CIVD model) such that for any
influence function satisfying this set of conditions, its corresponding IVD can be
computed by a common algorithm efficiently, thus simultaneously solving the
space partition and the assignment problems.

The IVD model has a number of potential applications. One such appli-
cation comes from a recent interesting medical study. In [13, 14], Wang et al.
showed that by constructing the Voronoi diagram of a collection of density-
based clusters of already identified (or known) neutrophils (which are a type
of white blood cells that help the immune system defend against infections), it
is possible to significantly improve the accuracy (by about 10%) of identifying
the more difficult candidates of neutrophils (i.e., determining whether a cell
that looks somewhat likely to be a neutrophil is indeed a neutrophil) in H&E
staining histology tissue images. The ability to identify neutrophils in a large
population of immune cells of mixed types in images is critical for the diagnosis
of inflamation diseases. Their method suggests that the identification decision
for a “suspicious” neutrophil inside the IVD Voronoi cell of a cluster of already
identified neutrophils can be based on the “context” of this “suspicious” neu-
trophil (specified by its Voronoi cell and the neighboring Voronoi cells together
with their clusters of already identified neutrophils). The IVD model for neu-
trophil identification offers the first model of a context for cell studies which
allows quantitative analysis [13, 14]. This provides a new way (i.e., using the
joint influence of a set of clusters of known neutrophils to identify additional
neutrophils) to solve a challenging medical imaging problem.

3

Another interesting application of the IVD model comes from machine learn-
ing. In a recent paper [12], Polianskii et al. proposed a space partition technique
for classification using Voronoi diagram. Their technique partitions the feature
space based on the (weighted) Voronoi Boundary Rank of each class. Mathe-
matically, their space partition can be viewed as a special IVD of a set of nearby
classes of feature points, where the influence function is defined as the Voronoi
Boundary Rank.

It is worth pointing out that several distance-based Voronoi diagrams actu-
ally allow their Voronoi sites to have multiple points. These include the k-th
order Voronoi diagrams [10], the Hausdorff Voronoi diagrams [11, 4, 15], and
the two-point site Voronoi diagrams [2, 9]. The distance functions used in these
works are often defined by the closest (or farthest) point in the Voronoi sites,
not by a collective effect of all points of these sites. By studying the IVD model
we explore and extend the concept of the Voronoi Diagrams from a different
perspective by considering joint influence of a group of points. In fact, some of
these distance-based Voronoi diagrams, including the ordinary Voronoi diagram,
2-point site Voronoi diagrams and k-order Voronoi diagrams, can be formulated
as IVDs by choosing an appropriate influence function and clusters collections.

Main Results and Techniques. In this paper we show that, for any
influence function that satisfies serveral natrual properties (discussed in Sec-
tion 2), a (1 − ε)-approximate IVD with size O(|P | log|P |) can be built in
O(T2(N)N log2N+T1(N)) time, where N is total size of the clusters in C, ε > 0
is a small constant, and T1 and T2 are the functions measuring how efficiently
F (C, q) can be evaluated. The hidden constant factor in the big-O notation is
O(1/∆(ε)O(d)), where ∆(·) < 1 is a function depending on F (C, q). Our tech-
nique relies on a space partition technique called AI Decomposition from [5] and
a novel divide-and-conquer based assignment scheme. The AI Decomposition is
used to generate a space partition for the IVD. However, this technique alone
cannot solve the assignment problem. Thus, a divide-and-conquer based as-
signment scheme is proposed. To efficiently implement this assignment scheme,
we combine the AI Decomposition algorithm with a tree pruning technique.
This resultis in a new quad-tree decomposition algorithm called Assisted AI
Decomposition.

2. Problem Description and Technique Overview

In this section, we give an overview of our approach for building an approx-
imate IVD of a given set of point clusters.

Definition 1. Let P be a set of points in Rd, and C = {C1, C2, . . . , Cn} be a
set of clusters of points of P with P =

⋃
Ci∈C Ci, and F (C, q) be a nonnegative

function (called the influence function) for a point cluster C ⊂ Rd to any query
point q in Rd space. For a small constant ε > 0, the (1 − ε)-approximate IVD
of C (denoted by AIVD(C)) is a partition of Rd into cells {c1, c2, . . . , ct} such
that each cell cj is associated with a cluster C(cj) ∈ C satisfying the condition
F (C(cj), q) ≥ (1− ε)F (Ck, q) for all q ∈ cj and k ∈ {1, 2, . . . , n}.

4

Figure 1 shows an example of an approximate IVD of 3 clusters with influ-
ence function F (C, q) =

∑
p∈C 1/‖p− q‖2.

Figure 1: An example of an approximated IVD of three clusters, each of which consists of
three input points. In this example, two clusters (the red and yellow) share a input point
(marked as yellow and red). The influence function is F (C, q) =

∑
p∈C 1/‖p − q‖2 and ε is

set to be 0.1.

In the rest of this paper, we let N be the total size of all clusters in C, i.e.,
N =

∑
Ci∈C |Ci|.

In the above definition, C(cj) is called the approximate maximum influence
cluster (AMIC) of cj . The Voronoi region of a cluster may either be empty
or consist of one or more (possibly disjoint) cells. This means that the total
number of cells could be much larger (e.g., exponentially larger) than the number
of clusters (i.e., t� n). To ensure that the yielded Voronoi diagram has a small
size, we expect the influence function F (C, q) to have the following properties,
which are slight modifications from those in [5].

(P.1) Invariance Under Translation: F (C, q) remains unchanged if C and q
are translated by a same vector in Rd.

(P.2) Majority Rule: If all points in C coincide at a common location, adding
another coincident point to C does not decrease F (C, q).

(P.3) Locality: If every point p ∈ C is perturbed by a relative distance ∆(ε) to
q (i.e., ||p− new(p)|| ≤ ∆(ε)||p− q|| for some positive function ∆(·) < 1),
F (C, q) changes by a factor no more than ε.

(P.4) Local Domination: There exists a polynomially bounded function P(·)
such that for sufficiently small ε > 0, the following holds: For any C ′ ⊂ C,
if there is a point p ∈ C ′ with P(|C|)‖q−p‖ ≤ ε ·‖q−p′‖ for all p′ ∈ C \C ′,
then (1− ε)F (C, q) ≤ F (C ′, q) ≤ (1 + ε)F (C, q).

5

(P.5) Efficient Estimation: An approximate value of F (C, q) can be estimated
efficiently. A data structure of C can be built in T1(N) time and outputs
(1±ε)-approximate value of F (Ci, q) in T2(N) time for any Ci ∈ C, q ∈ Rd,
and small ε > 0.

To build the AIVD(C), our main tasks are to decompose Rd space into cells
{c1, c2, . . . , ct} and assign to each cell cj its approximate maximum influence
cluster C(cj) from C (this procedure is called the assignment of cj). For the
space decomposition, our idea is to make use of the Approximate Influence (AI)
decomposition technique developed for the CIVD problem [5], which partitions
the Rd space into O(|P | log |P |) cells for a set of unclustered points P . Since
AI decomposition considers all possible subsets of P (i.e., the power set 2P), it
certainly takes all clusters in C into consideration. Briefly speaking, the space
partition generated by the AI decomposition ensures that, for every subset C
of P (and thus for every C from C), most of generated cells c satisfies that all
points in c receives similar influence from C. This implies that the resulting cells
of AI decomposition can be used to form the partition of AIVD(C). However,
to achieve this goal, we still need to solve two main problems. (1) Identify and
merge smaller cells in the AI decomposition to form larger cells for clusters in
C (we call this the simplification of the partition of AI decomposition). This
is because a cell of AIVD(C) associated with a cluster Ci ∈ C could be further
partitioned into a number of smaller cells in the AI decomposition (due to the
fact that AI decomposition considers all subsets of Ci). (2) Assign a cluster
in C to each of these merged cells (since AI decomposition does not solve the
assignment problem). To simultaneously solve the two problems we develop a
divide-and-conquer approach, which has the following main steps.

1. Partitioning: Use an Assisted AI (i.e., a modified AI) decomposition on
all points in P =

⋃
C∈C C to partition the space into a set of cells (also

denoted as AIVD(C)) with no assignments.

2. Dividing: Divide C = {C1, C2, . . . , Cn} into two subsets,
C1 = {C11, C12, . . . , C1g} and C2 = {C21, C22, . . . , C2h}.

3. Recursing: Recursively build AIVD(C1) and AIVD(C2) with assignment.

4. Merging: Merge AIVD(C1) and AIVD(C2) to obtain AIVD(C) with assign-
ments.

To implement the above approach, one of the main difficulties is how to
control the errors within the desired range. This is because approximation
error are incurred in each Merging step and could accumulate throughout
the recursion (i.e., in the Recursing step). To overcome this difficulty, our
idea is to maintain the following Containing Condition in every Merging
step: for each cell c of AIVD(C), there exist a cell c1 ∈ AIVD(C1) and a cell
c2 ∈ AIVD(C2)) both containing c (i.e., the regions of c1 and c2 containing the
region of c). With the help of this condition, we are able to show (through a
rather involving analysis) that the accumulative error is no more than the error
tolerance.

6

Of course, to maintain the containing condition is itself a challenge. Our
strategy is to first generate a simplification of AIVD(C) for each of the two subsets
C1 and C2. Particularly, we extend the AI decomposition to an Assisted AI
Decomposition. This allows us to produce a pruned version (namely AIVD(C1)
and AIVD(C2)) of AIVD(C) satisfying the containing condition for each of the two
subsets C1 and C2, respectively(see Figure 2). The imposed containing condition
on the pruned versions of the decomposition enables us to recursively relate
cells of AIVD(C) to cells of AIVD(C1) and AIVD(C2) and simplify the assignment
process for all cells in AIVD(C).

Figure 2: An example showing two VDs and their quad-trees. The right side one is a pruned
version of the left side one. The dashed lines indicate the regions that are pruned.

To analyze the proposed approach, we provide a correctness proof and a
complexity analysis. The analysis shows that our approach yields an AIVD(C)
with size O(|P | log|P |) in O(T2(N)N log2N + T1(N)) time (recall that N is
the total size of clusters in C), where the hidden constant factor in the big-O
notation is O(1/∆(ε)O(d)), and ∆(·) < 1 is a function depending on the influence
function.

3. Assisted AI Decomposition

In this section, we show how the AI decomposition can be extended for our
AIVD problem. For the sake of completeness, we start with a brief overview of
the AI decomposition [5]. A more detailed description of AI Decomposition can
be found in See Section 6.1.

3.1. A Brief Overview of the AI Decomposition

Let P be a set of points in Rd space, and F (C, q) be an influence function
measuring the influence from any subset C of P to an arbitrary point q ∈ Rd.
AI decomposition is a recursive quad-tree decomposition scheme. It produces a
data structure called the box-tree for a set of unclustered points P , where every

7

node (called a box-node) is a region in Rd space. Each region c is either a box
(i.e., an axis-aligned hypercube) or the difference of two boxes, and all children
of every non-leaf node of the box-tree form a partition of this node’s region.
To reduce the number of subsets that need to be tracked, AI decomposition
adopts a strategy that views multiple input points as a single “heavy” point,
and relies on a key data structure called the distance-tree [5] to implement it.
(See Section 6.1 for a detailed description of distance tree.) Each node (called
a distance-node) of the binary-tree-structured distance-tree corresponds to a
subset of input points that can be viewed as a heavy point.

The regions associated with leaf nodes (called cells) of the box-tree form the
partition of Rd, where each cell c corresponds to a (possibly unknown) subset
C which is a (1 − ε)-approximate maximum influence set of all points in c. AI
decomposition generates two types of cells, type-1 and type-2 cells. A type-1
cell is a region very close to a known subset C of P (compared to points in
P \ C) and the diameter of C is small enough compared to its distance to the
cell; in this case, the cell is said to be dominated by C. A type-2 cell is a
region which is small enough compared to its distance to any point in P (see
Figure 5 in Section 6.1 for an illustration of the two types of cells). Note that
most generated cells are boxes, while some of the type-1 cells could be difference
of 2 boxes. See Algorithm 8 in Section 6.1 for more details.

The AMIC of a type-1 cell is its (known) dominating set, while the AMIC of
a type-2 cell is unknown in general and needs to be determined from the power
set of P .

Note that there were previous results on approximate Voronoi diagrams
which also use quad-tree based space decomposition schemes [7, 1]. These
methods are designed mainly for traditional Voronoi diagrams. The cells in
these diagrams are induced by approximated closest distance to input points.
While in AI decomposition, cells are generated based on influence from all pos-
sible subsets of the input points. Thus, the design of AI decomposition is very
different from these methods despite that they seem to share some similarity
(e.g. quad-tree decomposition).

To understand why the partition of AI decomposition is useful for generating
AIVD of C, recall that the influence function F (C, q) satisfies properties (P.1)–
(P.5). For a type-2 cell c, by (P.1) and (P.3), we know that we may choose an
arbitrary point qc ∈ c to represent all points in c, since F (Ci, q

′) differs from
F (Ci, qc) by a little for any q′ ∈ c. Thus, all points in c share a common AMIC
Ci. For a type-1 cell c dominated by a point set P ′ ⊆ P , by (P.2) and (P.4),
we know that Ci that has the most points in P ′ among {C1, C2, . . . , Cn} should
be an AMIC for all points in c. This means that the cells generated by AI
decomposition can be used to derive the partition of AIVD(C).

3.2. Assisted AI Decomposition for Pruning Box-Tree

In this subsection, we show how to modify AI decomposition to make the
divide and conquer approach (in Section 2) possible.

Let C′ = {C1, C2, . . . , Cm} ⊆ C be a subset of C. As mentioned in Section
2, we need to generate a box-tree T ′ for C′ by simplifying the box-tree Ta of all

8

points in C. Particularly, for every cell (i.e., leaf node) c of Ta, we expect that
there is a cell c′ in T ′ wholly containing c. Furthermore, each cell in T ′ should
be either a type-1 or type-2 cell for points in C′ = {C1, C2, . . . , Cm}.

To build the box-tree T ′, our main idea is to prune Ta. This is implemented
by recursively traversing Ta. We start with the root u of Ta, keep u as a node in
T ′, and recurse on u’s children. If u meets the criteria of being a type-1 or type-2
cell for C′ or is already a leaf node in Ta, we stop the recursion on u’s children and
make u a leaf node of T ′ (i.e., u’s descendants in Ta are all removed); otherwise,
we continue the traversal recursively on u’s children. The type of a cell is verified
by the same method used in the AI Decomposition; this means that a distance
tree is also built for P in advance (see Algorithm 7 in Section 6.1). The above
strategy is made precise in the procedure AssistedDecomposition (Algorithm 1)
which is used to determine whether a node of Ta can be a type-1 or 2 cell for C′.

Note that in the above recursive procedure, Ta is not actually changed by
pruning. Instead, each node u of the newly constructed tree T ′ is actually a
copy of the node ref(u) of Ta referring to the same region B(u) in Rd. For
convenience, we do not distinguish u and ref(u) in our discussion.

To implement the above pruning approach, a few subtle and yet important
modifications are needed to ensure the resulting pruned box-tree satisfies the
required containing condition (see Section 2). One subtle modification is on
the way of handling type-1 cells. In AI decomposition, if the region B(u) of
a box-node u is detected to be very close to a subset P (v) associated with
a distance-node v, a new box-node B′ is created to represent the region of
E(v) ∩B(u), where E(v) is a square region which is considered to be too close
to P (v) comparing to the diameter of P (v) (See Algorithm 7 in Section 6.1
for definition of E(v)); the region of B(u) \B′ becomes a type-1 cell since it is
close to P (v) (comparing to all points in P \P (v)) and yet the diameter of P (v)
is small enough comparing to its distance to the cell. Since points in B′ could
have not large enough distance to P (v) comparing to the diameter of P (v),
AI decomposition then recursively processes B′. However, in our Assisted AI
decomposition, we do not simply treat the region of B(u)\B′ as a type-1 cell, for
the purpose of making sure that the resulting T ′ satisfy the containing condition
for pruned box-tree. Instead, we treat those children of B which do not intersect
E(v)∩B(u) as type-1 cells and recursively prune all other children. See Figure 3
for an example. The details of this are given in the algorithm HandleType1Cell
(Algorithm 2), a subroutine of the recursive routine AssistedDecomposition
(Algorithm 1).

The above modification implies another subtle modification on handling
type-1 cells. The Assisted AI decomposition fully simplifies type-2 cells (i.e.,
once a box-node u is determined as a type-2 cell of C′, all its children are pruned).
However, as we discussed above, for a type-1 cell, Assisted AI decomposition
actually does not fully simplify it. We will show later that this is sufficient for
our approach.

The full Assisted AI Decomposition algorithm is given in the following Al-
gorithm 4. The core part is Algorithm 1, the procedure to recursively prune
the box-tree Ta to obtain a new box-tree. The P(·) function appears in step 4

9

Figure 3: An example showing part of a to-be-pruned tree (b) and the corresponding boxe-
nodes and input points (a). B(u) is very close to a set of three points P (v) (the three points in
the dashed circle), compared to other input points (not shown in the figure), where v is some
distance-node. Then B(u1) and B(u2) can be output as type-1 cells in the pruned tree, since
they are very close to P (v) compared to other input points, and yet also far enough (outside
E(v)) to view P (v) as one point. B(u3) and B(u4) need further examination/recursion.

of Algorithm 1 is the polynomially bounded function P in Property (P.4) of
the influence function. The parameter β, 0 < β < 1/2, is an error factor. The
subroutine, SearchTail (Algorithm 3), is designed to avoid generating long
chains in the newly constructed box-tree. For example, if for a sequence of box-
nodes u1, u2, . . . , uk, ui+1 is the only child of ui for every i, then we may simply
make uk the only child of u1 and discard u2, u3, . . . , uk−1, for space saving. The
algorithm share some similar ideas with the standard quad-tree compression
operation (see [8] for an introduction).

10

Algorithm 1 AssistedDecomposition(u, β, L, Tp, rc, Ta)

Input: A box-node u with box B(u), error tolerance β > 0, a linked list L
for storing distance-nodes that need to be examined, a value rc to measure the
estimated closest distance from B(u) to points not in L, a distance-tree Tp, and
a box tree Ta.
Output: A subtree of a pruned box-tree Tq rooted at u.

1: While ∃ v in L such that the length of at least one edge of B(u) ∩ E(v) is

no smaller than size(B(u))
2 do

• Replace v in L by its two children in Tp, if any.

2: Let D(u) be the diameter of B(u). For each node v in L do

2.1 Let rmin be the distance between B(u) and l(v), where l(v) ∈ P (v) is
a representative point of P (v). (It is generated for v when building the
distance-tree. See Algorithm 7 in Section 6.1 for more details.)

2.2 If D(u) < rminβ/2, remove v from L, and if rc > rmin, let rc = rmin.

3: If L is empty, return, and u is labeled as a type-2 cell.
4: If there is only one element v in L, let rmin be the smallest distance between
l(v) and B(u).

4.1 If rmin+D(u)
rc

< β
2P(n) ,

4.1.1 If E(v) ∩ B(u) = ∅ or v is a leaf node in Tp, u is a type-1 cell
dominated by v. Return.

4.1.2 Call HandleType1Cell(u, β, v, Tp, rc, Ta) and return.

5: For every child u′ of ref(u), do

5.1 If u′ is type-2 cell in Ta
5.1.1 Create box-node uc with corresponding box B(uc) = B(u′), and

set ref(uc) = u′.

5.1.2 uc becomes a child of u. And B(uc) is labeled as a type-2 cell.

5.2 If u′ is neither a type-1 cell nor a type-2 cell in Ta, do

5.2.1 Create box-node uc with corresponding box B(uc) = B(u′), and
set ref(uc) = u′.

5.2.2 uc becomes a child of u.

5.2.3 Call AssistedDecomposition(uc, β, L, Tp, rc, Ta)

(Note: If u′ is a type-1 cell in Ta, do nothing.)

11

Algorithm 2 HandleType1Cell(u, β, v, Tp, rc, Ta)

Input: A box-node u with box B(u), error tolerance β > 0, a distance node v
from Tp, a value rc, distance-tree Tp, and a box-tree Ta.
Output: A subtree of a pruned box-tree Tq rooted at u.
Note: u corresponds to a box-node ref(u) in Ta.

1: If ref(u) is a type-1 or type-2 cell of Ta, u is labeled as a type-1 cell domi-
nated by v or type-2 cell, respectively. Return.

2: If the length of at least one edge of B(u)∩E(v) is no smaller than size(B(u))
2

do

• Call AssistedDecomposition(u, β, {v1, v2}, Tp, rc, Ta), where v1, v2 are
the two children of v in Tp. Return.

3: If no child u′ of ref(u) in Ta satisfies that B(u′) ∩E(v) 6= ∅ and u′ is not a
type-1 cell in Ta, return and u become a type-1 cell dominated by v.

4: If more than one child of ref(u) in Ta, say u′1, u
′
2, . . . , u

′
k, satisfy that B(u′i)∩

E(v) 6= ∅ and u′i is not a type-1 cell in Ta, i = 1, 2, . . . , k, do the following
and then return.

4.1 For every u′i, i = 1, 2, . . . , k, do

4.1.1 Create box-node ui, ui becomes a child of u.

4.1.2 Set ref(ui) = u′i, B(ui) = B(u′i).

4.1.3 Call HandleType1Cell(ui, β, v, Tp, rc, Ta).

4.2 For every child u′ of ref(u) that satisfies B(u′) ∩ E(v) = ∅ or u′i is a
type-1 cell in Ta, do

4.2.1 Create box-node uc, uc becomes a child of u.

4.2.2 Set ref(uc) = u′, B(uc) = B(u′).

4.2.3 uc is labeled as a type-1 cell.

5: If exactly one child u′ of ref(u) in Ta satisfies B(u′′) ∩ E(v) 6= ∅ and u′ is
not a type-1 cell in Ta, do

5.1 Set ut = SearchTail(Ta, u′, E(v)).

5.2 Construct 2 box-nodes, u1 and u2, as the children of u.

5.3 Set ref(u1) = ut and B(u1) = B(ut).

5.4 Set B(u2) as the difference of B(u) and B(u1). u2 is labeled as a type-1
cell dominated by v.

5.5 Repeat Step 1 – Step 4 with u set to be u1.

12

Algorithm 3 SearchTail(Ta, u′, E(v))

Input: A box-tree Ta, a node u′ of Ta and a box E(v).
Output: A node of Ta which is a the end node of a chain in Ta starting at u′.

1: Repeat the following until break:

• If u′ is a type-1 or type-2 cell, break.

• If the length of at least one edge of B(u′) ∩ E(v) is no smaller than
size(B(u′))

2 , break.

• If more than one child of u′ in Ta, say u′1, u
′
2, . . . , u

′
k, satisfy that B(u′i)∩

E(v) 6= ∅ and u′i is not a type-1 cell of Ta, i = 1, 2, . . . , k, break.

• If exact one child u′′ of u′ satisfies that B(u′′) ∩ E(v) 6= ∅ and u′′ is
not a type-1 cell, set u′ = u′′.

• If no child u′′ of u′ satisfies that B(u′′) ∩ E(v) 6= ∅ and u′′ is not a
type-1 cell, break.

2: Return u′.

Algorithm 4 AssistedAIDecomposition(P, β, Ta)

Input: A set of points P , error tolerance β > 0 and a box-tree Ta.
Output: A box tree Tq which simplifies Ta.

1: Build a distance-tree Tp for P (See Algorithm 7 in Section 6.1).
2: Create box-tree node u. Set B(u) as B(ur) where ur is the root of Ta. Set

ref(u) as ur.
3: Run AssistedDecomposition(u, β, ∅, Tp,∞, Ta)

13

4. The Full Algorithm

The Assisted AI decomposition presented in last section enables us to deal
with the Partitioning step of our divide-and-conquer approach. In this sec-
tion, we focus on the Merging step, as well as the whole algorithm, since the
Dividing and Recursing steps are quite straightforward (e.g., dividing the set
of clusters into two subsets with nearly equal total cardinality and recursively
build the AIVD for each subset). Combining the Assisted AI decomposition
and the idea of maintaining an approximated value of the maximum influence
of a sub-collection of clusters, the error accumulated during the recursion can
be controlled (to be shown in next section).

Let T be the box-tree generated by the Assisted AI decomposition for the
set of clusters C = {C1, C2, . . . , Cn}. To complete the construction of AIVD(C),
we still need to assign an AMIC to each cell in T (i.e., the Merging step). As
discussed in Section 2, this is done by divide-and-conquer approach. Let T1
and T2 be the simplified box-trees (by Assisted AI decomposition) for the two
subsets C1 = {C1, C2, . . . , Cm} and C2 = {Cm+1, Cm+2, . . . , Cn}, respectively,
satisfying the containing condition. Since in our divide-and-conquer algorithm,
T1 and T2 are constructed recursively, we assume that for each cell c of T1 (or
T2), its AMIC C(c) in C1 (or C2) has already been determined. Note that this
can be recursively ensured. At the bottom level of recursion where each of C1
and C2 has only O(1) clusters, the AMIC of each cell in the corresponding box-
tree can be easily determined by computing the influence from each of the O(1)
clusters to some arbitrary query point q in the cell and choosing as AMIC the
one with the largest influence. Also for each cell c of T1 (or T2), we assume
that an approximate value f(c) of F (C(c), q) for all query points q ∈ c has been
computed if c is a type-2 cell. Note that such a value can be easily obtained
by choosing any query point q ∈ c and computing the value of F (C(c), q). By
the Locality property (P.3) and the definition of type-2 cells, we know that the
value of F (C(c), q) differs only a little for all points q in c.

To determine the AMIC for each cell c of T in C, we first consider its type.
If c is a type-1 cell dominated by P (v) for some distance-node v (which is
determined by the Assisted AI decomposition when constructing T), the AMIC
C(c) of c can be chosen as the cluster in C which has the maximum number
of points in P (v) (i.e., C(c) is the cluster maximizing the size |Ci ∩ P (v)| for
all Ci ∈ C). This is because by the definition of type-1 cell, we know that the
influence from all points in P \ P (v) to any point q ∈ c can be neglected; by
Locality property (P.3), we can view all points in P (v) as a single heavy point,
say p, (i.e., all points coincident at p); and by Majority Rule (P.2), we know
that the cluster C(c) has the largest influence on q.

If c is a type-2 cell, since T1 and T2 simplify T , we can find a cell c1 from
T1 and a cell c2 from T2 such that both c1 and c2 wholly contain c (by the
Containing Condition). If cj , for j = 1, 2, is a type-2 cell, we also have an
approximate value, say f(cj), for all q ∈ cj ; otherwise (i.e., cj is a type-1 cell),
we can pick any point q ∈ c, and compute an approximate value of F (C(cj), q)
as f(cj). By the assumption, we know that an AMIC C(cj) ∈ Cj has already

14

been obtained for cj . Thus, the AMIC C(c) of c can be chosen from C(c1)
and C(c2) by comparing their corresponding approximate values of f(c1) and
f(c2) (i.e., choose the one with a larger value). The approximate value f(c) of
F (C(c), q) in c can be chosen as the larger one of f(c1) and f(c2).

The details of the full algorithm for building AIVD(C) are given in Algo-
rithm 5. The two parameters ∆1(ε) and ∆2(ε), which depend on ε, will be
discussed in the later analysis section. Note that, if C has no more than three
clusters, we directly compute the assignment for all cells in its box-tree (see step
3 of Algorithm 5). This is the stopping condition for our recursive approach.

15

Algorithm 5 BuildAIVD(C, ε,Ta)

Input: A Collection C = {C1, C2, . . . , Cn} of set of input points in Rd. Error
tolerance parameter 0 < ε < 1. A box tree Ta from upper recursion level to
assist AI decomposition.
Output: A box-tree T which simplifies Tp. An assignment of (1 − ε)-
approximate maximum influence cluster C(c) in C for each cell c of T
A value val(c) for every type-2 cell c of T .

1: Let P =
⋃
C∈C C. Let 0 < β < 1/2 be a positive number that satisfies

1+δ
1−δ ·

1+β
1−β ≤ (1 − ∆(ε))−1, β < ∆(ε) and β < ∆(δ) for some 0 < δ < 1,

where ∆(·) is the function ensured by condition (P.3) Do the following to
build the box-tree T
1.1 If Ta is NULL, Call AIDecomposition(P, β)

1.2 If Ta is not NULL, Call AssistedAIDecomposition(P, β, Ta)

2: For every type-1 cell c of T , set the assignment C(c) = Cj for c, where
points of Cj is majority in the distance node that dominates c.

3: If n ≤ 3, do the following.

3.1 For every type-2 cell c of T , choose arbitrary point q in c.

3.1.1 Evaluate Fe(Ci, q) which is an ∆2(ε)-error estimate of F (Ci, q) for
all Ci in C. Assume Cj has the maximum Fe(Cj , q)

3.1.2 Set the assignment C(c) = Cj for c.

3.1.3 Set val(c) = Fe(Cj , q).

4: If n > 3, do the following.

4.1 Sort clusters in C = {C1, C2, . . . , Cn} in increasing order of cardinality.
letting {C1, C2, . . . , Cn} denote the result.

4.2 Let Cm ∈ C be such that
∑m
i=1 Ci ≥ M/2 and

∑m−1
i=1 Ci < M/2,

where M =
∑n
i=1 Ci. Divide C into C1 = {C1, C2, . . . , Cm} and C2 =

{Cm+1, Cm+2, . . . , Cn}.
4.3 Call BuildAIVD(C1, ε,T) and BuildAIVD(C2, ε,T) to build box-trees T1

and T2, respectively.

4.4 Call Merge(T , T1, T2). Return T as the result.

16

Algorithm 6 Merge(T , T1, T2)

Input: Box-tree T1, T2 generated by BuildAIVD, Box-tree T .
Output: An assignment of approximate maximum influence cluster C(c) in C
for each cell c of T . A value val(c) for every type-2 cell c of T which is an
estimation of the value of F (C(c), q) for any point q ∈ c.

1: For j = 1, 2 and every cell c in Tj ,
1.1 Find all the type-2 cells of T that are contained in c, i.e., type-2 cell

leaves of T that are descendant of c (if B(c) is a box) or c’s parent (if
B(c) is the difference of two boxes).

1.2 For each type-2 cell c′ found in the previous step,

1.2.1 If c is a type-1 cell of Tj , choose any point q from c′ compute
Fe(C(c), q) which is an ∆2(ε)-error estimation of F (C(c), q) and
set fj(c) as Fe(C(c), q). Let C(c, j) denote C(c).

1.2.2 If c is a type-2 cell of Tj , set fj(c) as val(c). Let C(c, j) denote
C(c).

2: For every type-2 cell c in T
2.1 If f1(c) ≥ f2(c), set C(c) = C(c, 1) and val(c) = f1(c).

2.2 Otherwise set C(c) = C(c, 2) and val(c) = f2(c).

17

5. Algorithm Analysis

5.1. Proof of Correctness

In this subsection, we show that with carefully chosen parameters, algorithm
BuildAIVD will produce an AIVD for any given set of clusters with the desired
quality.

The following lemmas from [5] reveal important geometry properties of cells
generated by AI Decomposition. They also apply to cells generated by the
Assisted AI Decomposition which is a modification to AI Decomposition. We
list them here without proof.

Definition 2. A distance-node v ∈ Tp is said to be recorded for a box-node u if
v is removed from the list L in Step 2.2 of Algorithm 1 (or Algorithm 8, the
AI Decomposition, in Section 6.1) when processing u or one of u’s ancestors.
The value of rmin in the iteration when v is removed from L is the recorded
distance of v for u. If v is recorded for u, then any point p ∈ P (v) is also
recorded for u with the same recorded distance as v.

Let β be the error controlling parameter used for Algorithm 1.

Lemma 1. If p ∈ P is recorded for a box-node u with a recorded distance x,
then for any point q ∈ B(u),

(1− β)x ≤ ‖p− q‖ ≤ (1 + β)x.

Lemma 2. For any type-2 cell c and p ∈ P , let D(c) be the diameter of c and
r be the shortest distance between c and p. Then

D(c) ≤ 2rβ

3
. (1)

Lemma 3. If c is a type-1 cell dominated by a distance-node v, then for any
q ∈ c and p′ ∈ P \ Pv,

‖q − l(v)‖
‖q − p′‖

≤ β

P(|P |)
.

Since the influence function has property (P.3) for some function ∆(·), by
properties of type-1 and type-2 cells, a bound about the approximate quality of
AssistedDecomposition can be obtained by the following theorem.

Theorem 1. Let c be any cell generated by the AsistedAIDecomposition (Algo-
rithm 4) or AIDecomposition (Algorithm 9, in Section 6.1.) with an error
tolerance 0 < β < 1/2 satisfies 1+δ

1−δ ·
1+β
1−β ≤ (1−ε)−1, β < ∆(ε) and β < ∆(δ)for

some 0 < δ < 1, where ∆ is the function ensured by property (P.3). Then the
following holds.

1. If c is a type-1 cell dominated by a distance-node v, then F (Cm, q) ≥
(1 − ε)F (Ci, q) for query point q in c and every Ci ∈ C, where Cm is the
cluster in C which has the most number of points in v, and q, in the case
that c is generated by Algorithm 4, is not contained in a type-1 cell of
Ta.

18

2. If c is a type-2 cell and q and q′ are two arbitrary points in c, then (1 −
ε)F (C, q) ≤ F (C, q′) ≤ (1 + ε)F (C, q) for any C ∈ C

Proof. For case 1 of the theorem, we define a mapping ψ1 on P as follows.

ψ1(p) =

{
p if p 6∈ P (v),

l(v) if p ∈ P (v).

Note that ψ1(P) = ψ1(P (v)) ∪ ψ1(P \ P (v)) (ψ1(·) is a multiset). By Al-

gorithm 1, q cannot be in E(v), thus ‖l(v) − q‖ ≥ 4s(v)
β . For any p ∈ P ,

clearly ‖p−ψ1(p)‖ ≤ s(v) since s(v) place an upper bound on diameter of P (v).

Therefore, ‖p−ψ1(p)‖
‖l(v)−q‖ ≤ β for any p ∈ P . Since by definition of ψ1(·) either

ψ1(p)− p = 0 or ψ1(p) = l(v). In both cases

‖p− ψ1(p)‖
‖ψ1(p)− q‖

≤ β. (2)

Let C be any cluster in C. Let C(v) = P (v) ∩ C ⊆ C. By Lemma 2,
equation (2), and the assumption β ≤ ∆(δ), we have

F (C, q) ≤ (1 + δ)F (ψ1(C), q).

By property (P.4) and Lemma 3, we get

F (ψ1(C), q) ≤ (1− β)−1F (ψ1(C(v)), q).

By property (P.2) and Algorithm 1, we obtain

F (ψ1(C(v)), q) ≤ F (ψ1(Cc(v)), q),

where Cc(v) = C(c) ∩ P (v). By property (P.4) and Lemma 3, we have

F (ψ1(Cc(v)), q) ≤ (1 + β)F (ψ1(C(c)), q).

Again by Lemma 2, equation (2), and the assumption β ≤ ∆(δ), we get

F (ψ1(C(c)), q) ≤ (1− δ)−1F (C(c), q).

Combining the above inequalities gives us

F (C, q) ≤ 1 + δ

1− δ
· 1 + β

1− β
F (C(c), q).

Case 1 of the theorem then follows from the assumption 1+δ
1−δ ·

1+β
1−β ≤ (1− ε)−1.

Now consider the second case of the theorem. Note that by property (P.1),
we have F (C ′, q) = F (C, q′), where C ′ is obtained by shifting every point p in
C by vector q − q′, i.e., to a new location ψ2(p) = p + q − q′. By Lemma 2,
we know that for any p ∈ C, ‖p− ψ2(p)‖ = ‖q − q′‖ ≤ D(c) ≤ ‖q′ − p‖β; since
β ≤ ∆(ε), by property (P.3), we have (1−ε)F (C, q) ≤ F (C ′, q) ≤ (1+ε)F (C, q).
The theorem follows from F (C ′, q) = F (C, q′). 2

19

From the algorithm and the containing condition, we know that the following
is true.

Observation 1. Let T be the box-tree generated by AssistedAIDecompositi-
on(P, β, Ta) (Algorithm 4). Then for any type-2 cell c in Ta, there exists
a cell c′ in T , such that ref(c′) is an ancestor of c in Ta. In other words, B(c′)
wholly contains B(c).

With the above results, the correctness of BuildAIVD is ensured by the
following Theorem 2. To prove the theorem, we particularly show that the
approximation error does not accumulate. Based on the property of AIVD
generated by Assisted AI Decomposition, we know that the maintained value of
approximated maximum influence from a subset of the given clusters remains
valid after a series of merging operations along the path of the recursion. The
theorem is then proved by an induction on the recursion process, in a bottom-up
manner.

Theorem 2. For any sufficient small ε > 0, the procedure BuildAIVD(C, ε,
NULL) (Algorithm 5) where parameters ∆1(ε) > 0 and ∆2(ε) > 0 satisfy
ε > 1 − (1 − ∆1(ε))2(1 + ∆1(ε))−1(1 − ∆2(ε))(1 + ∆2(ε))−1, ∆1(ε) < ε and
∆2(ε) < ε, generates a box-tree T such that for any cell c in T and any point q
in c, F (C(c), q) ≥ (1− ε)F (C, q) for any C ∈ C.

Proof. If c is a type-1 cell, then by the way that BuildAIVD handles type-1
cells (step 2 of Algorithm 5) and Theorem 1, we have F (C(c), q) ≥ (1 −
∆1(ε))F (C, q) for any C ∈ C. Thus F (C(c), q) ≥ (1 − ∆1(ε))F (C, q) ≥ (1 −
ε)F (C, q) for any q in c. Therefore the theorem holds for every type-1 cell c of
T .

Now we consider the case that c is a type-2 cell. We will prove the following:

Claim. For any call to BuildAIVD(C′, ε, Ta) which is one of the subsequent calls
to BuildAIVD resulting from the initial recursive call to BuildAIVD(C, ε,NULL),
the generated box-tree T ′ satisfies the following: for any type-2 cell c of T ′, there
exists a value FE(C, c) for every C ∈ C′, such that for any point q in c,

(1−∆1(ε))2(1−∆2(ε))F (C, q) ≤ FE(C, c) ≤ (1+∆1(ε))(1+∆2(ε))F (C, q). (3)

Furthermore, val(c) ≥ FE(C, c) for any C ∈ C′, and val(c) = FE(C(c), c).

Note that if the claim is true, then for any C ∈ C and q in c, we have
F (C(c), q) ≥ (1 + ∆1(ε))−1(1 + ∆2(ε))−1FE(C(c), c) = (1 + ∆1(ε))−1(1 +
∆2(ε))−1val(c) ≥ (1 + ∆1(ε))−1(1 + ∆2(ε))−1FE(C, c) ≥ (1 − ∆1(ε))2(1 +
∆1(ε))−1(1 −∆2(ε))(1 + ∆2(ε))−1F (C, q) ≥ (1 − ε)F (C, q). The theorem then
follows.

We prove the claim by induction. For the basis case, we assume that C′ con-
tains no more than three clusters. Then BuildAIVD (Algorithm 5) will per-
form step 3 to directly obtain C(c) and val(c). In step 3, a point q is chosen from

20

c, and for every C ∈ C′, Fe(C, q) is computed such that it satisfies the following
inequality (1−∆2(ε))F (C, q) < Fe(C, q) < (1+∆2(ε))F (C, q). For an arbitrary
point q′ from c, by Theorem 1, we know that (1−∆1(ε))F (C, q′) < F (C, q) <
(1 + ∆1(ε))F (C, q′). Therefore, we have (1 − ∆1(ε))(1 − ∆2(ε))F (C, q′) ≤
Fe(C, q) ≤ (1 + ∆1(ε))(1 + ∆2(ε))F (C, q′) for any q′ in c. By setting FE(C, c)
to be Fe(C, q), we prove the claim.

Now in the induction step, we assume that C′ contains more than three
clusters. As a result of the recursion of the divide-and-conquer approach, C′ is
divided into two subsets C1 and C2, so that T1 and T2 are built recursively by
BuildAIVD, respectively. By the induction hypothesis, we can assume that T1
and T2 satisfy the claim. We now show that the claim will also hold for T ′. Let
c be any type-2 cell of T ′. Then there exist cells c1 from T1 and c2 from T2, so
that c is contained in c1 and c2. For any C ∈ C′, without loss of generality, we
can assume that C ∈ C1 and set FE(C, c) depending on type of c1 (note that we
can argue similarly for the case of C ∈ C2).

If c1 is a type-1 cell of T1, note that in Algorithm 6 that merges T1 and T2
into T ′, Fe(C(c1), q) which is an approximate value of F (C(c1), q) for some q in
c is computed. We set FE(C(c1), c) as Fe(C(c1), q), and for C ∈ C1 other than
C(c1), FE(C, c) is set to be min(Fe(C(c1), q), F (C, q)) For C(c1), the setting
of FE(C(c1), c) satisfies the condition of Inequality (3). In fact, since c is a
type-2 cell of T ′ and C(c1) ∈ C1 ⊂ C′, by Theorem 1, we know that (1 −
∆1(ε))F (C(c1), q′) ≤ F (C(c1), q) ≤ (1+∆1(ε))F (C(c1), q′) for any q′ in c. Also
(1 − ∆2(ε))F (C(c1), q) ≤ Fe(C(c1), q) ≤ (1 + ∆2(ε))F (C(c1), q); therefore we
have

(1−∆1(ε))(1−∆2(ε))F (C(c1), q′) ≤ Fe(C(c1), q)

≤ (1 + ∆1(ε))(1 + ∆2(ε))F (C(c1), q′)
(4)

for any q′ in c. This implies Inequality (3). For C ∈ C1 other than C(c1), we can
also show that Inequality (3) holds. By definition of FE(C, c) and Theorem
1, we get FE(C, c) ≤ F (C, q) ≤ (1 + ∆1(ε))F (C, q′) for any q′ in c. Thus
the inequality on the right hand side of (3) holds, and we only need to prove
the inequality on the left hand side of (3). There are two cases to consider,
FE(C, c) = Fe(C(c1), q) and FE(C, c) = F (C, q). In the following, we let q′ be
an arbitrary point in c. We first consider the case that FE(C, c) = Fe(C(c1), q).
Note that Fe(C(c1), q) ≥ (1−∆2(ε))F (C(c1), q), and by Theorem 1 and that
the fact that c1 is a type-1 cell of T1, we have F (C(c1), q) ≥ (1−∆1(ε))F (C, q).
Again by Theorem 1, we get F (C, q) ≥ (1 − ∆1(ε))F (C, q′). This means
that FE(C, c) = Fe(C(c1), q) ≥ (1 −∆2(ε))(1 −∆1(ε))2F (C, q′). Now consider
the case that FE(C, c) = F (C, q). By Theorem 1, we know that F (C, q) ≥
(1 − ∆1(ε))F (C, q′). Thus F (C, q) ≥ (1 − ∆1(ε))F (C, q′) ≥ (1 − ∆2(ε))(1 −
∆1(ε))2F (C, q′). The inequality on the left hand side of (3) is proved for C.

If c1 is a type-2 cell of T2, then we simply set FE(C, c) to be FE(C, c1). Since
c1 wholly contains c, Inequality (3) holds for all q in c because it already holds
for all q in c1.

We now show that the claim is correct by setting the value of FE(C, c)
as above for a type-2 cell c and a cluster C ∈ C′. If we can show that in

21

Algorithm 6, FE(C(c, j), c) ≥ FE(C, c) holds for j = 1, 2 and all C ∈ Cj , then
the claim follows. In fact, assume that this is the case, note that FE(C(c, 1), c)
and FE(C(c, 2), c) (written as f1(c) and f2(c) in Algorithm 6) are compared to
obtain C(c) and val(c). If FE(C(c, 1), c) ≥ FE(C(c, 2), c), then C(c) is set to be
C(c, 1) and val(c) is set to be FE(C(c, 1), c). Therefore val(c) = FE(C(c, 1), c) ≥
FE(C, c) for all C in C1 and val(c) = FE(C(c, 1), c) ≥ FE(C(c, 2), c) ≥ FE(C, c)
for all C in C2. The correctness of the claim for any type-2 cell c of T ′ then
follows.

Finally we need to show that in Algorithm 6, FE(C(c, j), c) ≥ FE(C, c)
actually holds for j = 1, 2 and all C ∈ Cj . If cj is a type-2 cell, then FE(C, c) =
FE(C, cj) for all C ∈ Cj . In Algorithm 6, we set C(c, j) to be C(cj). There-
fore FE(C(c, j), cj) = val(cj) by induction hypothesis. Again by induction
hypothesis, we have FE(C(c, j), cj) ≥ FE(C, cj) for any C ∈ Cj . Thus, we get
FE(C(c, j), c) = FE(C(c, j), cj) ≥ FE(C, cj) = FE(C, c). If cj is a type-1 cell,
let C be a cluster in Cj other than C(cj). By the previous definition, we know
that FE(C, c) ≤ FE(C(cj), c) = FE(C(c, j), c) must hold (Note that C(c, j) is
set to be C(cj)). This completes the proof. 2

5.2. Analysis of Complexity

In this subsection, we analyze the time and space complexities of Algorithm
5. We first bound the running time and space of AssistedAIDecomposition
(Algorithm 4).

Definition 3. During the execution of AssistedAIDecomposition, a distance-
node v is said to be refered to by a box-node u, if v appears in the list L when
AssistedDecomposition(Algorithm 1) is called on u.

The following lemma is a straightforward observation of the algorithm As-
sistedAIDecomposition.

Lemma 4. The running time of AssistedAIDecomposition, excluding the time
to build the distance-tree, is

∑
v O(R(v) +H(v) + I(v)), where the sum is over

all distance-nodes v generated by AssistedAIDecomposition, R(v) is the number
of times v is referred to, H(v) is the number of times v appears as a parameter
of HandleType1Cell(Algorithm 2), and I(v) is the number of times v has ever
appeared in procedure SearchTail(Algorithm 3) as u′. The size of the box-tree
built by AssistedAIDecomposition is

∑
v O(R(v) +H(v)).

From now on, we use R(v), H(v), I(v) as described in the above lemma. The
following lemma gives a bound on R(v). This is a result from applying the
Packing Lemma in [5]. The proof is in Section 6.2.

Lemma 5. For any distance-node v generated by AssistedAIDecomposition(P ,
β, Ta), R(v) = O(log|P |).

The following lemma gives a bound on H(v).

22

Lemma 6. A call to AssistedDecomposition where v appears in the list L can
only generate a constant number of subsequent calls to HandleType1Cell with v
as a parameter from step 4.1.2. As a consequence, H(v) = O(R(v)).

I II

III IV

B(u’)

E(v)

(a)

I II

III IV

B(u’)

E(v)

(b)

I II

III IV

B(u’)

E(v)

(c)

Figure 4: An example illustrating location of box B(u′) (Divided equally into regions I to IV
by lines in it) and E(v). If Step 4.1.3 is executed, then the configuration should be like (c):
one of the edge (the bold edge) of E(v) is completely in B(u′) but cut by a line in B(u′). (a)
or (b) shows what happens if no whole edge is cut. (a): The size of E(v) exceeds half size of
B(u′). (b): only one of regions I-IV intersects E(v). Either of them prevents step 4.1.3 from
execution.

Proof. Assume that a call to AssistedDecomposition performs step 4.1.2 so
that a call to Handle-Type1Cell(u, β, v, Tp, rc, Ta) is made. Note that the ex-
ecution of HandleType1Cell can have three possible outcomes. The first is
that a type-1 cell is generated and the subroutine returns. The second is that
HandleType1Cell invokes AssistedDecomposition, with L set to have v1 and
v2, the two children of v, which means that later calls to AssistedDecompo-
sition cannot have v appear in L, and thus v cannot be a parameter of later
calls to HandleType1Cell. The third is that at least 2, and at most 2d calls
to HandleType1Cell are made. Therefore, if we want to bound the number
h of calls to HandleType1Cell that stem from the execution of HandleType1-
Cell(u, β, v, Tp, rc, Ta) with v as a parameter, we can simply count the number
h′ of calls to HandleType1Cell which have the third type of outcome. Clearly
h = O(h′). We will prove that h′ = O(1), from which the lemma follows.

We start with a few definitions. Let zi denote the edge length of E(v) along
the i-th coordinate axis. Consider a call to HandleType1Cell(u′, β, v, Tp, rc, Ta)
(which stems from the call to HandleType1Cell(u, β, v, Tp, rc, Ta); for conve-
nience, we always assume that it is the case for any call to HandleType1Cell in
this proof). Let W (u′) ⊆ {1, 2, . . . d} denote the set of integers i such that there
exist two points, q1 and q2 in B(u′) ∩ E(v) with |xi(q1) − xi(q2)| = zi, where
xi(q) denotes the i-th coordinate of a point q.

23

Note that if HandleType1Cell(u′, β, v, Tp, rc, Ta) invokes HandleType1Cell,
for any of its calls to HandleType1Cell(u′′, β, v, Tp, rc, Ta), we have W (u′′) (
W (u′). This is because if step 4.1.3 of Handle-Type1Cell(u′, β, v, Tp, rc, Ta)
is executed, the length of any edge of B(u′) ∩ E(v) should be smaller than
size(B(u′))

2 . It is clear from the algorithm that B(u′′) is one of the 2d boxes
equally decomposing B(u′) (or B(ut)), and B(u′′) ∩ E(v) 6= ∅. Note that there
must be another call to HandleType1Cell(u′′1 , β, v, Tp, rc, Ta) with B(u′′) being
another one of the 2d boxes equally decomposing B(u′) and B(u′′1) ∩ E(v) 6= ∅.
All of the above can happen only if one dimension of E(v) is split with B(u′)
decomposed equally into 2d smaller boxes, making W (u′′) (W (u′). See Figure
4 for easy understanding.

Let S(i) denote the maximum number of subsequence calls to HandleType1-
Cell that stem from the execution of HandleType1Cell(u′, β, v, Tp, rc, Ta) with
|W (u′)| = i. We first show that S(1) ≤ 2d. If |W (u′)| = 1, then for any
call to HandleType1 Cell(u′′, β, v, Tp, rc, Ta) made by HandleType1Cell(u′, β, v,
Tp, rc, Ta), we have |W (u′′)| = 0 and as a result, HandleType1Cell(u′, β, v, Tp, rc,
Ta) will not call HandleType1Cell. Since HandleType1Cell (u′, β, v, Tp, rc, Ta)
makes at most 2d calls to HandleType1Cell, we get S(1) ≤ 2d. For HandleType1-
Cell(u′, β, v, Tp, rc, Ta) with |W (u′)| = i + 1, it makes at most 2d calls to
HandleType1Cell(u′, β, v, Tp, rc, Ta), which make no more than S(W (u′′)) ≤
S(i) descendant calls to HandleType1Cell. Thus, S(i + 1) ≤ 2dS(i). This
means that S(i) ≤ (2d)i. Note by definition we have W (u) ⊂ {1, 2, . . . d} and
|W (u)| ≤ d. Therefore, h′ ≤ S(d) ≤ (2d)d, which completes the proof. 2

Due to the fact that the whole procedure of AssistedAIDecomposition is no
more than a traversal of Ta, we have the following observation.

Observation 2.
∑
v I(v) = O(sizeof(Ta)).

Then the running time of AssistedAIDecomposition is given by the following
theorem.

Theorem 3. AssistedAIDecomposition(P, β, Ta) generates a box-tree of size
O(|P | log|P |) within time O(|P | log|P |+ sizeof(Ta)).

We can now bound the running time of the divide-and-conquer approach.

Theorem 4. For a given set C of clusters, and any influence function F (C, q)
satisfying the properties (P.1) to (P.5), if a data structure described in (P.5) is
available for C, then BuildAIVD(C, ε,NULL) builds a (1 − ε)-approximate IVD
for C within O(T2(N)N log2N) time, where N is the size of the input C and
ε > 0 is a sufficiently small constant.

Proof. To prove this theorem, we first consider the running time of Build-
AIVD(C′, ε, T ′a) on a subset C′ of clusters. Obviously, BuildAIVD(C′, ε, T ′a) is
a descendant of BuildAIVD(C, ε,NULL) in the recursion tree of BuildAIVD.
Let N ′ =

∑
C∈C′ |C| and MT be the size of T ′a (0 if T ′a is NULL). Then step

24

1 takes O(N ′ logN ′) + O(MT) time to build a box-tree T ′, by the previous
analysis on the running time of Algorithm 4. The running time of step 2 is
O(T2(N) · sizeof(T ′)), which has been shown to be O(T2(N))O(N ′ logN ′) by
Theorem 3. Step 3, if executed, takes O(T2(N))O(N ′ logN ′). Step 4, if exe-
cuted, makes two calls to BuildAIVD, one for each of the subsets C1 and C2 of
C. Two box-trees are generated with sizes clearly no larger than O(N ′ logN ′),
which is the size of T ′. The merging process of the two (Algorithm 6)
takes O(T2(N))O(N ′ logN ′) time. Thus, the total running time is O(T2(N))
O(N ′ logN ′) +O(MT), plus the running time of the two possible recursive calls
on C1 and C2.

The term O(MT) is seemingly difficult to analyze, as it does not depend on
N ′. To get around this obstacle, we consider the parent BuildAIVD(C′′, ε, T ′′a)
of BuildAIVD(C′, ε, T ′a) in the recursion tree of BuildAIVD. Since MT = O(N ′′

logN ′′), where N ′′ =
∑
C∈C′′ |C|, and the running time of BuildAIVD(C′′, ε, T ′′a)

already has an term O(N ′′ logN ′′), this means that we can charge part of the
cost (i.e., O(MT)) of BuildAIVD(C′, ε, T ′a) to its parent BuildAIVD(C′′, ε, T ′′a) in
the recursion tree and let its parent absorb the additional term of O(N ′′ logN ′′).

To derive the recurrence formula of the running time of BuildAIVD on C′,
we need to know the sizes

∑
C∈Ci |C|, i = 1, 2, of the two subsets C1 and C2

of clusters. There are two possibilities: (1) Both subsets have size no more
than 5

6 of the size of C′, i.e.,
∑
C∈Ci |C| ≤

5
6

∑
C∈C′ |C|, i = 1, 2, and (2) one of

the subsets, say C2, has size larger than 5
6 of the size of C′. For case (1), the

recurrence formula can be written as

T (N ′) = T (
5

6
N ′) + T (

1

6
N ′) +O(T2(N))O(N ′ logN ′).

For case (2), let N2 =
∑
C∈C2 |C| >

5
6

∑
C∈C′ |C|. Consider step 4 of Algo-

rithm 5. Since
∑
C∈C1 |C| <

1
6

∑
C∈C′ |C|, Cm, found in step 4.2, should satisfy

inequality |Cm| > 1
3

∑
C∈C′ |C|. Since Cm ≤ Cm+1 ≤ Cm+2 ≤ . . ., C2 has no

more than three clusters, which means that the execution of Algorithm 5
on it will go to step 3. The running time will then be O(T2(N))O(N2 logN2)
(with a term absorbed by BuildAIVD(C′, ε, T ′a) as discussed above), which is
O(T2(N))O(N ′ logN ′) since N ′ ≥ N2. The recurrence formula then can be
written as,

T (N ′) = T (
1

6
N ′) +O(T2(N))O(N ′ logN ′),

which is an asymptoticly looser bound than

T (N ′) = T (
5

6
N ′) + T (

1

6
N ′) +O(T2(N))O(N ′ logN ′).

To summarize the running time of BuildAIVD(C′, ε, T ′a), with MT absorbed
by its parent, will depend on N ′. The recurrence formula can be written as

T (N ′) = T (
5

6
N ′) + T (

1

6
N ′) +O(T2(N))O(N ′ logN ′).

The Theorem follows by solving the formula. 2

25

6. Appendix

In this appendix, we give the details of AI decomposition and the proofs
of some lemmas. They are necessary for the understanding of the proposed
algorithms. Some of them are either directly from [5] or modified from similar
lemmas/theorems in [5]. We include them in this appendix for self completeness.
Throughout the appendix, let n = |P |.

6.1. More Detailed Description of AI Decomposition

(a) (b)

c

v

Figure 5: An example of type-1 cell(a) and type-2 cell(b). In (a) the cell c is very close to a
point set v compared to other input points. In (b) the diameter of c is small compared to its
distance to input points.

In this section we provide a more detailed introduction to AI decomposition.
The basic idea of AI Decomposition to build a partition induced by the input
point set P is recursion: it starts the procedure with a large enough bounding
box of P , which is also the root of the box-tree, decomposes the large box into
smaller subregions, makes the smaller subregions the children of the large box
and recursively continues the decomposition on the smaller subregions. There
are two possibility that a box B is decomposed into smaller regions during the
above described procedure. First, B can be equally decomposed into 2d smaller
boxes. Second, through a process to be discussed later, a smaller sub-box B′

within B is computed, and then B is decomposed into B′ and B \ B′. The
decomposition process ends for a box if if it meets the criteria for type-1 or
type-2 cell, i.e., if it is very close to a subset of input points (in P) or it is small
enough compared to its distance to points in P (See Figure 5 for an illustration
of the two types of cells).

The crucial part of the above method is to efficiently verify the stopping
condition for any box B. Information about distance between B and points in

26

P is necessary for such verification. However, it is very inefficient to compute the
distance between every point in P and B every time a box B is considered. To
ensure efficiency, multiple input points in P are viewed as a single “heavy” point,
thus the number of points involved in distance computations with B is reduced.
This idea is realized by a pre-computed data structure called the distance-tree.
The distance-tree is a binary tree where each node (called a distance-node) v
is associated with a subset P (v) of P (See Figure 6 for an illustration of a
distance tree). Under certain conditions, all points in P (v) can be viewed as
a single “heavy” point. During the recursion, a list L of distance nodes (or a
list of “heavy” points) is maintained. To determine whether B is a type-1 or
type-2 cell, or B needs further decomposition, only distances between B and
the “heavy” points in L are checked, instead of considering the distances to all
points in P .

p1

p2

p3

p4

p1 p2 p3 p4

Pa

Pb

(a) (b)

Figure 6: An example of distance-tree (b) built for 4 points (a). There is a leaf in the
distance-tree for every input point. Every node represents a point set. For example every leaf
represents a single point set. Pb in (b) represents set {p1, p2}, and the root Pa represents the
whole input point set {p1, p2, p3, p4}.

Below are the algorithms for building the distance-tree (the preprocessing
step) and the AI decomposition, where 0 < β < 1/2 and polynomially bounded
function P(·) (in step 4) are controlling parameters which depend on individual
problem and the desired accuracy. The most important part is the Decomposi-
tion procedure, which is used to determine whether a box-tree node is a type-1
or type-2 cell, or it needs further decomposition.

27

Algorithm 7 Preprocessing(P, β)

Input: A set P of n points in Rd, and an error tolerance 0 < β < 1/2.
Output: A tree structure Tp, in which every node v stores a value s(v), an
input point l(v), and is associated with a bounding box E(v) in Rd.

1: Compute a 12-well separated pair decomposition [3] W =
{(A1, B1), (A2, B2), . . . , (Am, Bm)} of P .

2: Construct a graph G(W) by connecting the representatives of Ai and Bi,
for every (Ai, Bi) ∈W .

3: Build a min-priority queue Q for all edges in G(W), base on their edge
lengths.

4: Build a tree Tp in the following bottom-up manner.
For each p ∈ P , there is a leaf node vp in Tp (i.e., Tp is initially a forest

of |P | single-node trees), with s(vp) = 0, l(vp) = p, and E(vp) and E′(vp)
both being 0-sized bounding boxes containing p.

While Tp is not a single tree Do

• Extract from Q the shortest edge e = (p1, p2) with edge length w(e).
If vp1 and vp2 are leaves of two different trees in Tp rooted at v1 and
v2, then create a new node v in Tp as the parent of v1 and v2, and let
s(v) = s(v1) + s(v2) + w(e), l(v) be either l(v1) or l(v2), E′(v) be the

box centered at l(v) and with size 4·s(v)
β , and E(v) be the box centered

at l(v) and with size 8·s(v)
β .

28

Algorithm 8 Decomposition(u, β, L, Tp, rc)

Input: A box-node u with box B(u), error tolerance β > 0, distance-tree Tp,
linked list L, and a value rc. Output: A subtree of Tq rooted at u.

1: While ∃ v in L such that the length of at least one edge of B(u) ∩ E(v) is

no smaller than size(B(u))
2 do

• Replace v in L by its two children in Tp, if any.

2: Let D(u) be the diameter of B(u). For each node v in L do

2.1 Let rmin be the distance between B(u) and l(v).

2.2 If D(u) < rminβ/2, remove v from L, and if rc > rmin, let rc = rmin.

3: If L is empty, return, and B(u) becomes a type-2 cell.
4: If there is only one element v in L, let rmin be the smallest distance between
l(v) and B(u).

4.1 If rmin+D(u)
rc

< β
2P(n) ,

4.1.1 If E(v) ∩B(u) = ∅ or v is a leaf node in Tp, B(u) is a type-1 cell
dominated by v. Return.

4.1.2 Let B′ be the smallest hypercube in B(u) fully containing B(u) ∩
E(v). Create two box nodes u0 and u1, with u0 corresponding to
B′ and u1 corresponding to the difference of B(u) and B′. Let u0
and u1 be children of u in Tq. In this case, u1 is a type-1 cell
dominated by v.

4.1.3 Replace v in L by its two children v1 and v2 in Tp. Call
Decomposition(u0, β, L, Tp, rc), and return.

5: Decompose B(u) into 2d smaller boxes, and make the corresponding nodes
u1, u2, . . . , u2d as the children of u in Tq. Call Decomposition(ui, β, L, Tp, rc)
for each ui. Return.

29

Algorithm 9 AI-Decomposition(P , β)

Input: A set P of n points in Rd, and a small error tolerance β > 0.
Output: A box-tree Tq.

1: Run the preprocessing algorithm on P and obtain a distance-tree Tp.
Let u be the root of Tp. View E(u) as a box-tree node. Run
Decomposition(E(u), β, {u}, Tp,∞).

2: Output the box-tree rooted at E(u) as Tq.

6.2. Proof of Lemma 5

In this section we will prove Lemma 5. These proofs are directly from the
full paper of [5] with some minor modifications, since many facts about AI
Decomposition were already discussed in [5]. Nonetheless, for completeness we
include them here because slight changes to these facts and proofs are required
for the correctness of our approach.

6.2.1. Lemmas Necessary for Proving Lemma 5

Lemma 7. Let u and up be two nodes in the box-tree T generated by Algorithm
4 such that up is the parent of u, and u is not a type-1 cell. Then B(u) is at
most half the size of B(up). Furthermore, if up has at least two non-type-1-cell
children, then B(u) is one of the boxes obtained by decomposing B(up) equally
into 2d smaller boxes.

Proof. We prove this by induction on the recursive process of Algorithm 5.
For the basis, at the top level of the recursion, Algorithm 9 is used to build a
box-tree. A node u is generated when Algorithm 8 is processing its parent up,
by either decomposing B(vp) equally using quad-tree decomposition, or in step
4, by using a minimum sub-box of B(vp) to cover B(vp)∩E(v) for some distance
node v. In the former case, the size of B(v) is exactly half the size of B(up). In
the latter case, the size of B(v) cannot exceed the maximum edge length x of
B(vp) ∩ E(v). Note that x cannot exceed half the edge length of B(vp), since
otherwise v would have been removed from L in step 1, a contradiction. In
either case, B(u) is at most half the size of B(up). The only possibility that up
have two non-type-1-cell children is that B(up) is decomposed into 2d smaller
boxes by quad-tree decomposition. Thus B(u) can only be one of the smaller
boxes.

The induction step is trivial. Say T is produced by Algorithm 4 assisted
by Ta, and the lemma holds for Ta, Then the lemma automatically holds for T ,
since T is a pruned version of Ta. 2

The following lemma shows a property of the distance-tree Tp that will be
used in the proof of Lemma 5.

Lemma 8. Let v be any node in Tp other than the root, and r be the minimum
distance between any input point in P (v) and any input point in P \ Pv. Let vp
be v’s parent, then s(vp) ≤ 2nr.

30

Proof. Let rG be the minimum length of any edge in G(W) connecting some
input point in P (v) to some input point in P \ P (v). Since G(W) is a 2-
spanner for P , rG ≤ 2r. By Algorithm 7, we know that vp (and P (vp)) is
formed by a sequence of no more than n merge operations on the nodes of
Tp. The last these operations extract an edge connecting some input point in
P (v) to some input point in P \ P (v), whose length is no larger than rG. Each
merge operation contributes to s(vp) a value no bigger than rG, since the edge e
extracted from Q by Algorithm 7 has a length w(e) no larger than rG. Hence,
s(vp) ≤ 2rG ≤ 2nr. 2

The following packing lemma has been proved in [5] and is the key to prove
Lemma 5.

Lemma 9 (Packing Lemma [5]). Let oc be any point in Rd, and Sin and
Sout be two d-dimensional boxes (i.e., axis-aligned hypercubes) co-centered at oc
and with edge lengths 2rin and 2rout, respectively, with 0 < rin < rout. Let
B be a set of mutually disjoint d-dimensional boxes such that for any B ∈ B,
B intersects the region S′ = Sout − Sin (i.e., the region sandwiched by Sin and
Sout) and its edge length L(B) ≥ C ·r, where r is the minimum distance between
B and oc and C is a positive constant. Then |B| ≤ C ′(C, d) log(rout/rin), where
C ′(C, d) is a constant depending only on C and d.

6.2.2. Proof of Lemma 5

Proof. For simplicity of our argument, we will make some small modifications
to Algorithm 1.

If a node ua generated in step 5.1, all distance node in L at step 5.1 is
considered referred to by ua. (Although we do not run Algorithm 1 recursively
on ua).

If in step 5 only one child ub of u is generated, we define Bm(ub) to be
either the a box which wholly contains B(ub), and is wholly contained in B(u),
and whose size is 1/4 the size of B(u), or simply B(ub) if the size of B(ub) is
no smaller than 1/4 the size of B(u). We then also generate a node u′b which
becomes a child of u. Bm(u′b) and B(u′b) is set to be a box wholly contained in
B(u), and Bm(u′b) is disjoint with Bm(ub), and the size Bm(u′b) is no smaller
than 1/4 the size of B(u). Note such a Bm(u′b) exists since by Lemma 7 and
the definition of Bm(ub), the size of Bm(ub) is no smaller than half the size of
B(u). All distance nodes in L at step 5 is considered referred to by ub and u′b.

Note that the modification will only increase the value of R(v), therefore if
we are able to prove the bound on R(v) for the modified algorithm, the lemma
then follows. From now on the modified version of Algorithm 1 is assumed.

We first consider the case that v is the root of Tp. In this case, v is referred
to only once, by the root of the box-tree T , and the statement is trivially true.
Thus, we assume that v is an arbitrary distance-node other than the root of Tp.

We now observe that if a box-node u refers to v, then either all or none of
u’s children refers to v (the latter case happens if v is removed from L when u
is the current box-node, or HandleType1Cell is called and as a result, v in L

31

will be replaced by its two children if later calls to AssistedDecomposition are
made). This means that we only need to count those box-nodes u which refer
to v and have v remove from L when u is the current box-node. The reason is
that although we do not count those box-nodes, say u′, which do not remove v
from their L lists when they become the current box-nodes, the number of box-
nodes (i.e., the 2d children of u′) which refer to v at the next level of recursion
increases exponentially. This implies that the total number of box-nodes which
refer to v but are not counted is no more than the total number of box-nodes
which are counted. Thus, we can safely ignore those u′. Let Uv denote the set
of u’s which are counted.

We define a mapping Φ on Uv. Let u′ be the parent of u in T (if existing). We
first define uh(u) for u generated in Algorithm 2: we assume that Algorithm
2 is called by step 4.1.2 of Algorithm 1 when processing uh(u). Φ(u) is defined
as

Φ(u) =


B(uh(u)) if u is generated in Algorithm 2,

Bm(u) if Bm(u) is defined(Recall how we modified Algorithm 1),

B(u) otherwise.

It is not hard to see that for u1, u2 ∈ Uv and u1 6= u2, Φ(u1) and Φ(u2) are either
disjoint, or they are equal. The latter case happens when a HandleType1Cell
generates multiple calls to AssistedDecomposition. By Lemma 6, there are at
most constant number of u that share the same Φ. Let B = {Φ(u) | u ∈ Uv}.
It is sufficient to show |B| = O(log n). Our strategy is to use Lemma 9 for
counting. To do this, we prove that there exist boxes Bout and Bin with sizes
sout and sin respectively and a constant c0 depending only on d and β such that
all of the following hold:

1. Bout and Bin are co-centered at l(v).

2. Every box in B intersects Bout.

3. No box in B is contained entirely in Bin.

4. sout

sin
is bounded by some polynomial of n.

5. For any B ∈ B, s ≥ c0r, where r is the shortest distance between B and
l(v), s is the size of B, and c0 is some positive constant depending on d
and β.

Clearly, if all of the above hold, then by Lemma 9, we have |B| = O(log n).
Let r′ be the minimum distance between a point in P (v) and a point in

P \ P (v).
We first determine Bout. Let v′ be the parent of v in Tp. Let s′ be the size

of E(v′). We choose sout = 7s′ and claim that for every box-node u that refers
to v, B(u) fully contained inside Bout. Let u′ be the ancestor of u such that
v′ is removed from L in Step 1 of Algorithm 1 when processing u′ , or u′ is
processed by Algorithm 1 called in step 2 of Algorithm 2 (where v′ is also
removed from L). Note that u′ must exist since these are the only two ways for
v to appear in L. If v′ is removed from L in Step 1 of Algorithm 1, we know
that B(u′) intersects E(v′) and has at most twice the size of E(v′). Therefore,

32

B(u′) is entirely contained inside B′out, where B′out is the box centered at l(v′)
and with a size 5s′. Thus B(u) ⊆ B(u′) ⊆ B′out. If v′ is removed from L in
step 2 of Algorithm 2, note the length of at least one edge of B(u′) ∩ E(v′)
should be no smaller than half the size of B(u′), again B(u′) intersects E(v′)
and has at most twice the size of E(v′), thus B(u′) is entirely contained inside
B′out. Therefore B(u) ⊆ B(u′)B′out. Thus, in either case, B(u) is contained
inside B′out. Since ‖l(v)− l(v′)‖ ≤ s(v′) ≤ βs′/8 ≤ s′, B′out is completely inside
Bout. Thus, the above claim is true.

From this claim, it is clear that every box in B intersects Bout, whose size is

sout = 7s′ = 56s(v)
β ≤ 112n

β r′.

Let β0 = 2(1+β)P(n)
β . We choose sin = r′

14
√
d(1+β0)

, and claim that for every

u that refers to v, Φ(u) cannot be completely inside Bin. Suppose this is not
the case, and there exists such a box-node u whose Φ(u) is fully contained inside
Bin.

First of all, it is easy to see that such a box-node u cannot be the root of
the box-tree T , since otherwise, B(u) should be contained inside Bin. But this
cannot be the case, as B(u) contains all input points and its size is obviously
larger than that of Bin. (Note that in this case, Φ(u) = B(u).)

Next, we show that such a u (i.e., whose Φ(u) is inside Bin) is not generated
in Algorithm 2, which stems from step 4.1.2 of Algorithm 1 when processing
u′. Suppose, for contradiction, u is generated in Algorithm 2. Let v′ be the
parent of v in Tp. Then E(v′) does not fully contain B(u′), since otherwise
it would have been deleted from L in Step 1 of Algorithm 1, instead of in
Algorithm 2, when processing u′. Note that since v′ contains at least one
input point that is not in P (v), the diameter of E(v′) must be greater than r′.
This means that E(v′) is at least 6 times larger than Bin in size. The distance
between l(v) and l(v′) (i.e., the centers of Bin and E(v′), respectively) satisfies
the inequalities ‖l(v)− l(v′)‖ ≤ s(v′) ≤ Rβ

8 ≤
R
16 , where R is the size of E(v′).

This means that Bin is fully contained in E(v′), and therefore cannot contain
B(u′), which is Φ(u). This is a contradiction, and thus u cannot be generated
in Step 4.

Finally, we show that u cannot be generated in Step 5 of Algorithm 1.
Suppose u is generated in Step 5 when processing u′, where u′ is the parent of
u in T . Since Φ(u) is contained in Bin (by assumption), we know that B(u′),
which has at most 4 times the size of Φ(u)(Recall how we modified the algorithm
in the beginning of the proof), must be contained in a box B′in centered at l(v)

and with a size r′

2
√
d(1+β0)

. This means D(u′) ≤ r′

2(1+β0)
, where D(u′) is the

diameter of B(u′). Let r′′ be the distance between l(v) and B(u′). Then, by

the fact that B′in contains B(u′), we have r′′ ≤ r′

2
√
d(1+β0)

. Combining the above

two inequalities, we get r′′+D(u′) ≤ r′

(1+β0)
. For any point p ∈ P \P (v), let rp

be the distance between p and B(u′), and q′ be the closest point on B(u′) to p.
Then by the triangle inequality, we know that the distance ‖l(v)− q′‖ between

l(v) and q′ is no larger than r′′+D(u′). Thus, we have ‖l(v)−q′‖ ≤ r′

(1+β0)
. Also,

by the definition of r′, we know that the distance ‖p− l(v)‖ between p and l(v)

33

is no smaller than r′. By the triangle inequality (in the triangle ∆l(v)pq′), we

know rp = ‖p− q′‖ ≥ ‖p− l(v)‖−‖l(v)− q′‖ ≥ r′− r′

(1+β0)
= β0r

′

(1+β0)
. Therefore,

we have r′′+D(u′)
rp

≤ 1
β0

= β
2(1+β)P(n) . This implies D(u′)

rp
≤ 1

β0
≤ β

2 . Since the

above inequality holds for every point in P \P (v), this indicates that every such
point must be recorded for u′ (see Step 2 of Algorithm 1). By Algorithm
1, we know that rc stores the minimum recorded distance. Also, note that a
point in P is recorded for u′ if and only if it is in P \ P (v). Therefore, some
p ∈ P \ P (v) gives rise to the recorded distance rc. By Lemma 1, we know

rp ≤ (1 + β)rc. Thus, we have r′′+D(u′)
rc

≤ β
2P(n) . Since each point p ∈ P \P (v)

is recorded for u′ and v is referred to by u (which is a child of u′), it must be the
case that after finishing Step 2 of Algorithm 1 in the recursion for u′, v is the

only distance-node in L. Then, by the fact of r′′+D(u′)
rc

≤ β
2P(n) , we know that

u′ will be processed in Step 4, which includes the generation of node u, instead
of Step 5. This is a contradiction.

Summarizing the above three cases, we know that every box in B is not fully
contained in Bin.

From the above discussion, we know that the sizes of Bout and Bin satisfy
the following inequality

sout
sin
≤

1568
√
dn(1 + 2(1+β)P(n)

β)

β
.

This means that the ratio of sout

sin
is bounded by a polynomial of n.

The only remaining issue is to show that for any u ∈ Uv, the size s of Φ(u)
and the distance r between Φ(u) and l(v) satisfy the relation of s ≥ c0r for some
constant c0. Note that such a relation is trivially true for any c0 if u is the root
of T , since in this case B(u) contains all input points and the distance r is 0.
Thus its distance to l(v) is 0. Hence, we assume that u is not the root of T .

For any box-node u0 ∈ T and any distance node v0 ∈ Tp, let r(u0, v0) be
the shortest distance between B(u0) and l(v0). We consider two cases.

1. u is generated in Algorithm 2 which stem from step 4.1.2 of Algorithm
1 when processing u′. In this case, Φ(u) = B(u′). Let v′ be the parent of v
in Tp. We consider two sub-cases, depending on whether E′(v′) intersects
B(u′) (see Algorithm 7 for the definition of E′(v′)).

(a) E′(v′) intersects B(u′). In this case, since v′ is not removed from L in
Step 1 of Algorithm 1 when processing u′, some part of B(u′) must
be outsides E(v′). (This is because E′(v′) is co-centered at l(v′) with
E(v′) and is of half the size of E(v′). If B(u′) is fully inside E(v′),
then an edge length of B(u′)∩E(v′) will be larger than half the size of
B(u′), and therefore v′ will be removed from L in Step 1.) This means

that the size of B(u′) is at least half the size of E′(v′), which is 2s(v′)
β .

Thus, the diameter D(u′) of B(u′) exceeds 2
√
ds(v′)
β . Furthermore,

since E′(v′) intersects B(u′), we have r(u′, v′) ≤ 2
√
ds(v′)
β (by the

34

definition of r(u′, v′) and the size of E′(v′)). Also since P (v′) contains
both l(v) and l(v′), the distance between l(v) and l(v′) is upper-
bounded by the diameter s(v′) of P (v′), i.e., ‖l(v) − l(v′)‖ ≤ s(v′).

Thus, we have r(u′, v) ≤ ‖l(v)− l(v′)‖+ r(u′, v′) ≤ s(v′) + 2
√
ds(v′)
β ≤

4
√
ds(v′)
β . Therefore, we will have size(B(u′)) ≥ c0r(u′, v) if we choose

c0 ≤ 1
2
√
d
.

(b) E′(v′) does not intersect B(u′). In this case, we have r(u′, v′) ≥
2s(v′)
β (by the fact that E′(v′) is centered at l(v′) and with a size

4s(v′)
β). Since v′ is not removed from L in Step 2 when processing

u′, the diameter D(u′) of B(u′) must exceed r(u′, v′)β2 . Note that

s(v′) ≤ 2s(v′)
β , and thus s(v′) ≤ r(u′, v′). Then r(u′, v) ≤ ‖l(v) −

l(v′)‖ + r(u′, v′) ≤ 2r(u′, v′). This means that the diameter D(u′)
of B(u′) exceeds r(u′, v′)β2 ≥ r(u′, v)β4 . From this, we immediately

know size(B(u′)) ≥ c0r(u′, v) if c0 ≤ β

4
√
d
.

2. u is generated in Step 5 in Algorithm 1 when processing u′. In this case,
Φ(u) = B(u) or Φ(u) = Bm(u). Let D denotes the diameter of Φ(u).
Note D ≥ D(u′)/4 by definition of Bm(·) and Lemma 7. Let v′ be the
distance-node in L when processing u′ which is either an ancestor of v or v
itself. For this case, we also consider two sub-cases, depending on whether
E′(v′) intersects B(u′).
(a) E′(v′) intersects B(u′). In this case, by exactly the same argument

given above for Case 1(a), we know that the diameter D(u′) of B(u′)

is at least r(u
′
,v)

2 . Then, r(u, v) ≤ D(u′) + r(u′, v) ≤ 3D(u′). Also

note that D(u′) ≤ 4D(u). Thus, D(u) ≥ r(u,v)
12 . In this case, we can

choose c0 ≤ 1
12
√
d
.

(b) E′(v′) does not intersect B(u′). By the same argument given above
for Case 1(b), we know D(u′) ≥ r(u′, v)β4 . Thus, r(u, v) ≤ D(u′) +

r(u′, v) ≤ 4+β
β D(u′). Since D(u′) ≤ 4D(u), we have D(u) ≥ β

16+4β .

This means that we can choose c0 ≤ β

(16+4β)
√
d
.

By the above discussion, we know that if we choose c0 as the minimum of the
4 possible choices, we have the desired bound s ≥ c0r for the size s of each box
in B. This means that the theorem then follows from Lemma 9. 2

[1] S. Arya, T. Malamatos, and , D. M. Mount, Space-time tradeoffs for approxi-
mate nearest neighbor searching, Journal of the ACM (JACM), 57(1)(2009),
1-54.

[2] G. Barequet, M.T. Dickerson, and R.L.S. Drysdale III, 2-Point Site Voronoi
Diagrams, Discrete Applied Mathematics, 122(1-3)(2002) 37-54.

[3] P. Callahan and R. Kosaraju, A Decomposition of Multidimensional Point
Sets with Applications to k-nearest-neighbors and n-body Potential Fields,
JACM, 42(1)(1995), 67-90.

35

[4] P. Cheilaris, E. Khramtcova, S. Langerman, and E. Papadopoulou, A Ran-
domized Incremental Approach for the Hausdorff Voronoi Diagram of Non-
crossing Clusters. LATIN 2014 (2014) pp. 96-107.

[5] D. Z. Chen, Z. Huang, Y. Liu and J. Xu, On Clustering Induced Voronoi
Diagrams, in Proc. 54th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS
2013) (2013) pp. 390-399.

[6] D. Z. Chen, Z. Huang, Y. Liu and J. Xu, On Clustering Induced Voronoi
Diagrams, SIAM Journal on Computing, 46(6): 1679-1711, 2017.

[7] S. Har-Peled, A replacement for Voronoi diagrams of near linear size, in
Proceedings of FOCS 2001 (2001), pp. 94103.

[8] S. Har-Peled, Geometric approximation algorithms. Vol. 173. Boston: Amer-
ican mathematical society (2011).

[9] D. Hodorkovsky, 2-Point Site Voronoi Diagrams, M.Sc. Thesis, Technion,
Haifa, Israel, (2005).

[10] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu, Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, 2nd Eds., (John Wiley &
Sons, 2000).

[11] E. Papadopoulou, The Hausdorff Voronoi Diagram of Point Clusters in the
Plane, Algorithmica, 40 (2004), 63-82.

[12] V. Polianskii and F.T. Pokorny, Voronoi boundary classification: A high-
dimensional geometric approach via weighted monte carlo integration. In
International Conference on Machine Learning (2019) pp. 5162–5170.

[13] J. Wang, J.D. MacKenzie, R. Ramachandran, and D.Z. Chen, Identify-
ing Neutrophils in H&E Staining Histology Tissue Images, in Proc. of the
17th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), Part I (2014) pp. 73–80.

[14] J. Wang, J.D. MacKenzie, R. Ramachandran, and D.Z. Chen, Neutrophils
Identification by Deep Learning and Voronoi Diagram of Clusters, in Proc.
18th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI), Part III (2015) pp. 226-233.

[15] J. Xu, L. Xu, and E. Papadopoulou, Computing the Map of Geometric
Minimal Cuts. Algorithmica, 68(4) (2014) 805-834.

36

