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A B S T R A C T   

Grid-tied solar is governed by a variety of complex regulations. Since a higher solar penetration imposes indirect 
costs on the grid, these regulations generally limit the aggregate amount of grid-tied solar, as well as the 
compensation its owners receive. These regulations are also increasingly limiting solar’s natural growth by 
preventing users from connecting it to the grid. One way to address the problem is to partially deregulate solar by 
allowing some solar generators to participate in the electricity market. However, day-ahead electricity markets 
require participants to commit to selling energy one day in advance to ensure system stability and avoid price 
volatility. Thus, to operate in the day-ahead market, solar generators must solve a solar commitment problem by 
determining how much solar energy to commit to sell each hour of the next day that maximizes their revenue 
despite the uncertainty in next-day solar generation. We present a probabilistic approach to addressing the solar 
commitment problem that combines a solar performance model with an analysis of weather measurement and 
forecast data to determine a conditional probability distribution over next-day solar generation outcomes, which 
we use to determine solar energy commitments each hour that maximize expected revenue. We show that, as the 
deviation penalty for over-committing solar increases, our probabilistic approach enables increasingly more 
savings than a deterministic approach that simply trusts weather measurements and forecasts.   

1. Introduction 

The cost of solar power is steadily declining due to both continuing 
improvements in solar cell efficiency and economies of scale in 
manufacturing. These cost decreases have made solar competitive with 
traditional fossil fuel-based generation in many areas. In addition to 
cost, solar offers numerous other benefits compared to traditional gen
eration sources, including zero carbon emissions, low operating costs, 
few maintenance requirements, and incremental scalability, which en
ables solar operators to scale up capacity by adding more modules. As a 
result, solar penetration in the grid, i.e., the fraction of grid energy that 
derives from solar, is rapidly increasing. However, this increase is being 
closely regulated by governments, utility boards, and independent sys
tem operators (ISOs), as large-scale solar adoption is altering the grid’s 
economic and operational model. 

With respect to the grid’s economic model, increased solar adoption 
is democratizing energy generation by enabling smaller-scale distrib
uted generation to compete with large-scale centralized generation. 
Unlike traditional fuel-based generators, which become significantly 

more energy- and cost-efficient at larger scales, solar costs scale more 
linearly, such that the cost per capacity of even small solar farms or 
residential deployments is competitive with larger-scale solar farms. 
High solar penetrations also alter the grid’s operational model, which 
assumes i) a highly predictable demand that primarily varies with 
temperature and ii) a controllable supply. Grid operators typically 
determine generator dispatch schedules one day in advance based on 
predictable load forecasts to ensure there is enough supply online to 
satisfy the next day’s expected demand. Since solar is treated as an 
uncontrollable supply that, as we discuss, is variable and challenging to 
forecast, it complicates such day-ahead generator dispatch scheduling 
which reduces the grid’s reliability. 

Due to the issues above, grid-tied solar is highly regulated. In the 
United States, these regulations vary widely by state and are based, in 
part, on policy objectives. For example, some states, such as California 
and Massachusetts, have generous policies that encourage, and partially 
subsidize, grid-tied solar to increase adoption, while other states have 
policies that discourage, and effectively penalize, grid-tied solar. In 
many cases, solar connection policies place limits on the solar capacity 
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that can connect to the grid, and the compensation owners receive for 
the energy it generates. Importantly, these policies generally do not 
require solar generators to compete with traditional sources in the 
electricity market. Instead, operators feed all solar energy into the grid, 
and receive some pre-determined compensation for it, e.g., the retail 
rate. Unfortunately, this approach is impeding solar’s natural 
growth—by preventing new solar connections once solar capacity hits 
its limit—and does not properly incentivize operators to address the 
unpredictability of solar. 

An alternative approach is to relax restrictions on connecting solar to 
the grid—by allowing anyone to connect—but then partially deregulate 
solar by allowing some solar generators to participate in the same 
electricity markets as other generators. Some regions are already 
experimenting with such deregulation and competition [1]. ISOs typi
cally operate a day-ahead hourly market that requires participants to 
commit to selling wholesale electricity one day in advance to ensure 
system stability and avoid price volatility. Market participants that do 
not meet their commitments must then pay a deviation penalty based on 
the difference between the energy they supplied and their commitment 
[2]. From the grid’s perspective, similar solar commitments would 
simplify operations by providing accurate knowledge of solar generation 
capacities for the following day, effectively turning uncontrollable 
generation sources into ones that appear to be controllable. From the 
solar operator’s perspective, however, due to the uncertainties in 
next-day generation, optimally committing solar energy in the 
day-ahead market is challenging, as it requires operators to determine 
their commitment level based on uncertain solar forecasts and the po
tential penalty. Of course, more accurate solar forecasts directly trans
late to more accurate energy commitments, fewer penalties, and higher 
revenue. Thus, this approach directly incentivizes more accurate solar 
forecasting, and incorporates solar’s unpredictability into the revenue it 
generates. 

Ultimately, the accuracy of day-ahead solar forecasting is based on 
weather forecast accuracy, specifically for temperature and cloud cover, 
which are the primary weather metrics that affect solar generation [3]. 
In particular, the National Weather Service (NWS) in the United States 
runs numerical weather prediction (NWP) models for every 2.5km2 area 
of the country in real-time, and releases them to the public. The National 
Digital Forecast Database (NDFD) includes archives of these forecasts 
going back over a decade.1 Unfortunately, unlike temperature mea
surements and forecasts, cloud cover measurements and forecasts are 
often much more imprecise, which limits day-ahead solar forecasting 
accuracy, even assuming a solar performance model that is otherwise 
perfect. 

To address the problem, we present a probabilistic approach that 
considers cloud cover measurement and forecast uncertainty in deter
mining day-ahead solar commitments to optimize revenue in day-ahead 
electricity markets. Our approach combines a solar performance model 
with an analysis of public cloud cover measurement and forecast data to 
determine a probability distribution over possible day-ahead generation 
outcomes, which we then use to determine day-ahead solar energy 
commitments each hour that maximize expected revenue. Our approach 
is complementary to using energy storage to reduce the variations in, 
and improve the predictability of, renewable energy fed into the grid, as 
done in prior work in the context of wind energy generation and elec
tricity markets [4]. We evaluate the potential of energy storage to in
crease the revenue of solar generators that compete in the market in 
§5.5. 

Our hypothesis is that a probabilistic approach to determining solar 
commitments that considers cloud cover measurement and forecast 
uncertainty will yield more revenue than a deterministic approach that 
simply trusts the measurements and forecasts. In evaluating our 

hypothesis, we make the following contributions. 
Cloud Cover Data Analysis. We analyze cloud cover measurements 

and forecasts from publicly-available weather data released by the NWS 
and NDFD to quantify their uncertainty. Our analysis results in proba
bility distributions of solar energy output for cloud cover measurements 
and forecasts under different conditions. 

Probabilistic Solar Commitments. We present a probabilistic 
approach to committing solar in the day-ahead market. Our approach 
leverages the probability distributions above to compute the expected 
revenue for different day-ahead solar commitments based on the day- 
ahead electricity price, the penalty for over-commitments, and the loss 
of revenue from under-commitments. We then select the solar commit
ment that maximizes expected revenue, given the uncertainty. 

Implementation and Evaluation. We implement our probabilistic 
approach by extending a publicly-available open-source solar perfor
mance model to include uncertainty in cloud cover measurements and 
forecasts [3]. We evaluate our approach using price data from a regional 
ISO’s day-ahead energy market, and show that, as the penalty for 
over-committing solar increases, our probabilistic approach enables 
increasingly more savings than a deterministic approach that simply 
trusts cloud cover measurements and forecasts. 

2. Background 

Below, we provide background on electricity markets, cloud cover 
measurements and forecasts, and solar forecasting. 

2.1. Electricity Markets 

As discussed in §1, the day-ahead electricity market requires par
ticipants to commit to provide a certain amount of energy each hour of 
the next day at a certain price. To determine the commitments and price, 
participants submit bids at a certain time, e.g., between 8am and 10am, 
one day in advance that specify an energy commitment and price for 
each hour of the next day. The market operator sets the price each hour 
using a uniform price multi-unit (or “dutch”) auction, such that all 
bidders are paid the price of the highest winning non-zero bid, where the 
number of units of energy sold each hour is based on the next day’s load 
forecast for that hour [5]. The per-hour next-day load forecasts are 
highly accurate (in the absence of behind-the-meter grid-tied solar), 
since they are largely based on accurate temperature forecasts and 
well-known societal patterns, e.g., holidays, weekends, and weekdays. 
Traditional fuel-based generators generally bid a price based on their 
fuel cost, as generating more energy burns more fuel, which increases 
cost. In contrast, since solar operators have no fuel cost and few other 
operating costs, their optimal bid is at or near $0. Thus, solar operators 
are price takers in that they are willing to sell energy for effectively any 
positive price [6]. Note that nuclear power plants and hydroelectric 
plants are also price takers in the current market, since increasing their 
energy production also does not increase their operating costs. 

Thus, when operating in the day-ahead market, solar operators only 
need to determine the energy to commit each hour of the next day, and 
not a bid price. The amount of energy that maximizes expected revenue 
is a function of the solar forecast accuracy, the day-ahead price, and the 
deviation penalty incurred for over-committing solar energy due to an 
inaccurate forecast, each of which introduce uncertainty. Note that the 
deviation penalty operators pay is in addition to the cost they incur for 
buying energy in the 5-minute spot market to make up for their energy 
deficit. However, when day-ahead load forecasts are accurate, the spot 
price and day-ahead converge to the same value. As a result, on average, 
operators do not incur a loss (or gain) from being forced to buy energy in 
the spot market to make up for over-commitments [2]. Thus, we only 
consider the deviation penalty when assessing the negative impact of 
over-committing solar energy in the market. In practice, deviation 
penalties range from as low as 2% to over 100% of the day-ahead price 
[2]. We evaluate our work for a wide range of deviation penalties in §5. 

1 The NDFD’s forecasts are slightly different, as they include adjustments by 
humans. 
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2.2. Weather Measurements and Forecasts 

Weather forecasts derive from NWP models, such as the Weather 
Research and Forecast (WRF) model [7], run on supercomputers by 
government agencies, such as the NWS in the United States, to benefit 
the public. However, imperfect models and uncertainties in initial at
mospheric conditions limit forecast accuracy. Weather forecasts include 
predictions for numerous weather metrics. Temperature and cloud cover 
are the primary weather metrics that affect solar generation and fore
casting.2 In general, temperature changes slowly based on the move
ment of weather fronts and the day/night cycle, which results in 
accurate day-ahead predictions generally within ±5C. Since solar con
version efficiency decreases by only ∼0.5% for each 1C change in 
temperature, the small inaccuracy in temperature forecasts does not 
significantly impact solar forecast accuracy. 

In contrast, cloud cover can be highly variable, changing frequently 
over a given location as clouds pass by. As a result, cloud cover mea
surements and forecasts are much less reliable. While NWP models 
generally forecast cloud cover as a percentage, these percentages are 
often mapped to five levels of cloudiness in widely-available public 
weather data and forecasts, such as from common weather sites like 
Weather Underground. These five levels include clear (CLR), few (FEW), 
scattered (SCT), broken (BKN), and overcast (OVC). Each level corre
sponds to ground-level cloud cover measurements quantified in oktas, 
where an okta represents one-eighth of the sky [8]. In NWS forecasts, 
CLR translates to <1 okta, FEW to 1-3 oktas, SCT to 3-5 oktas, BKN to 5-7 
oktas, and OVC to 8 oktas. Some sources, such as ASOS [9], define 
slightly different okta translations. In this paper, we use METAR trans
lations released by the NWS [8,10]. Note that neither the raw cloud 
cover percentage generated by NWP models nor okta measurements 
account for the effect of specific cloud characteristics, such as cloud 
type, height, or thickness, and thus both are coarse and imprecise 
measures of cloud cover. In addition, cloud cover is reported for small 
regions based on observations at a single location, yet clouds are often 
small and move fast, such that cloud cover can differ at nearby locations. 

In general, cloud cover is more difficult to measure compared to 
other weather metrics, particularly rain and snow, in part because 
remote sensing of clouds is difficult. Unlike rain and snow, weather 
radars cannot sense clouds. While cloud cover estimates are possible 
from visible satellite imagery, these images only capture the tops of 
clouds and, like ground-level measurements, do not account for cloud 
depth, height, or thickness. As a result, cloud cover estimates from 
visible satellite imagery are not necessarily better than ground-level 
observations, as at least the latter captures what is happening on the 
ground. Since existing cloud cover measurements and forecasts are 
coarse and imprecise, they introduce inherent uncertainty into fore
casting any site’s solar energy output. 

Note that the NWS processes the output of sophisticated numerical 
weather prediction models to generate a cloud cover forecast. The Na
tional Digital Forecast Database (NDFD) makes historical archives of 
these weather forecasts released every hour (with each covering the next 
168 hours) for every location in the United States for multiple decades 
[11]. These forecasts are also released in real time every hour by the 
NWS. We focus on extracting and leveraging cloud cover measurement 
and forecast uncertainty from this public archival data in determining 
solar energy commitments. 

2.3. Solar Performance Modeling and Forecasting 

There is substantial work on solar energy forecasting using different 
input data, at different time resolutions, e.g., hourly, daily, or annually, 
and for different time horizons, e.g., hour-ahead or day-ahead [12]. The 
simplest forecast model is a persistence model that predicts all future 

time periods, of any resolution, will have the same value as the present 
time period. Persistence models for solar energy forecasting perform 
well over short time periods, e.g., less than 2 hours, or long resolutions, 
e.g., annually. There has also been substantial work on analyzing sat
ellite images to estimate near-term cloud movement to forecast solar 
over short time horizons, e.g., 3-4 hours [13]. However, this approach 
does not work for day-ahead forecasting. Instead, day-ahead solar en
ergy forecasting must use the weather forecasts above as input to a solar 
performance model that estimates solar output based on the forecast, as 
well as a site’s location, physical characteristics, time-of-day, and 
day-of-year. Note there has also been work on using NWP models to 
deterministically forecast solar radiation [14]. We extend this work by 
using historical archives of these NWP forecast models to determine the 
location-specific uncertainty in these forecasts based on the current 
conditions when applied to solar energy (rather than solar radiation). 

Since we focus on solar energy forecasting, we must infer solar 
output based on current conditions. There are many solar performance 
models available that do this. We leverage a “black box” model, called 
Solar-TK, that is open-source and publicly available. This model cali
brates its parameters entirely from a small amount of historical gener
ation data from a solar site [3]. Once calibrated, the model only requires 
as input a site’s location, time-of-day, day-of-year, cloud cover, and 
temperature over some time resolution, and returns as output an esti
mate of solar energy over that time resolution. Any model’s primary 
source of inaccuracy and uncertainty is the coarse cloud cover mea
surements and forecasts described in §2.2. That is, all existing models are 
highly accurate at inferring a solar site’s generation under clear skies 
and a known temperature, time-of-day, and day-of-year. An advantage 
of using an open-source model based on publicly available data is that 
our approach can be directly applied to any solar site in the U.S. Note 
that Solar-TK’s model already generates a deterministic solar forecast. 
Our work extends this model to generate a probabilistic forecast, which 
we apply to the solar commitment problem. We compare our probabi
listic forecasting approach with a deterministic one in §5. 

3. A Probabilistic Approach 

Our work addresses the problem of determining how much solar 
energy to commit in the day-ahead electricity market each hour of the 
next day to maximize revenue. Over-committing solar energy incurs a 
financial penalty and under-committing it requires potentially wasting 
energy by actively curtailing solar output, e.g., using smart inverters and 
power optimizers [15], and losing the associated revenue. To address 
the problem, we take an empirical approach that incorporates uncer
tainty in cloud cover measurements and forecasts when determining the 
solar energy to commit to optimize revenue. 

We use historical cloud cover measurement and forecast data to 
determine an error distribution for each. The inaccuracy in cloud cover 
measurements is universal, and thus we compute it across many solar 
sites and time periods in terms of a normalized clear sky photovoltaic (PV) 
index, or Kpv, which represents the fraction of power a solar site gener
ates relative to the maximum power it could have generated at the same 
time but under clear skies [16,17]. Computing Kpv requires knowing a 
site’s maximum solar generation potential under clear skies at any point 
in time. Solar-TK [3] discussed in §2.3 accurately models this maximum 
solar generation. 

Kpv normalizes for differences between solar sites and time periods. 
As a result, Kpv is same for all solar sites operating under the exact same 
cloud cover conditions, regardless of their location, physical character
istics, time-of-day, or day-of-year. Thus, if cloud cover measurements 
were perfectly accurate then the same measurement value should result 
in the same Kpv. However, as we show, Kpv varies significantly for the 
same cloud cover measurement. These measurement errors are expected 
based on the discussion in §2. 

Note that, while Kpv is a continuous metric that can take on any value 
2 We do not consider snow, which also affects solar in some locations. 
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between 0 and 1, we only consider the 5 high-level okta-based cloud 
cover levels from the previous section. As we show, there is significant 
inaccuracy even after summarizing NWP model output, which specifies 
the percentage of cloud cover, using these coarse levels. Ultimately, for 
any measured cloud cover, the actual position of the specific clouds in 
the sky relative to the Sun’s position, as well as their characteristics, 
determines precisely how much solar irradiance reaches the ground, 
which results in different Kpv for the same cloud cover measurement To 
quantify the uncertainty in Kpv given a cloud cover measurement, we 
compute a conditional distribution from historical data that captures the 
probability of generating a specified range of Kpv’s given a particular 
cloud cover measurement, e.g., FEW, SCT, BKN, OVC, or CLR. 

Unlike measurement accuracy, forecast accuracy is specific to each 
location and its local climate. That is, some locations and climates are 
inherently easier to forecast. As a result, we estimate a forecast error 
distribution using only data from a specific solar site’s location. We 
capture the forecast error using a conditional distribution that captures 
the probability that a certain type of cloud cover occurs given that the 
forecast called for a potentially different type of cloud cover. For 
example, if the next day forecast calls for clear (CLR) skies at 9am, the 
distribution captures the probability, given a CLR forecast, of measuring 
each of the 5 types of cloud cover (FEW, SCT, BKN, OVC, and CLR) at 
9am the next day. Again, by translating the cloud cover percentage from 
NWP models into these 5 summary levels, we would expect to get more 
accurate results. 

Given distributions above, our probabilistic commitment approach 
accounts for measurement and forecast errors by computing the 
commitment amount that maximizes expected revenue. As we discuss, 
our approach balances a tradeoff between increased revenue from 
committing more solar energy, and decreased revenue from incurring 
penalties due to errors in measurements and forecasts. 

3.1. Cloud Forecast and Measurement Uncertainty 

Below, we outline how we quantify cloud cover forecast and mea
surement uncertainty, and its effect on estimating and forecasting solar 
generation, from publicly-available data. 

Cloud Cover Forecast Uncertainty. NWS weather forecasts are is
sued every hour for every location in the U.S., and include estimates of 
weather metrics every 3 hours for the next week in the future. We distill 
next-day forecasts into hour-level forecasts, such that each hour of the 3- 
hour forecast has the same value. The National Digital Forecast Database 
(NDFD) stores archives of historical NWS weather forecasts for every 
location in the United States for over a decade. We quantify the accuracy 
of historical forecasts by comparing them with ground truth hourly 
weather observations, which we take from the NWS Integrated Surface 
Database (ISD) dataset [18] and Weather Underground [19] from 
2011-2018. 

As noted above, the NDFD and weather observation datasets report 
cloud cover as a percentage from 1-100%, which we translate to one of 
five strings for cloud cover from §2.2, e.g., CLR, FEW, SCT, BKN, and 
OVC [11]. In making this translation, we convert the cloud cover per
centages in the observations to strings based on their definition, where 
CLR is 0-5.5% cloud cover, FEW is 5.5-25.5%, SCT is 25.5-50.5%, BKN is 
50.5-87.5%, and OVC is 87.5-100%. As we show, even after this trans
lation there is significant error in measurements and forecasts. For 
example, in our case, if Kpv = 51%, as long as the NWP percentage is 
between 50.5-87.5%, then the Kpv would match the measurement or 
forecast. In addition, doing this translation ensures that our historical 
cloud cover observations and forecasts have the same hourly reso
lution—equivalent to the day-ahead market’s resolution—and scale. 

Given historical traces of a location’s cloud cover observations and 
forecasts, we compute a conditional probability distribution that cap
tures the forecast’s error as shown below. 

Pr(observation = Z|forecast = Y) (1) 

The conditional probability distribution captures the probability of 
observing a particular type of cloud cover given a particular cloud cover 
forecast for that location, where Z and Y each may take one of five values 
corresponding to the cloud cover strings CLR, FEW, SCT, BKN and OVC. 
As one example, given a FEW forecast at 9am the next day, the distri
bution captures the probability that CLR, FEW, SCT, BKN, and OVC are 
actually observed at 9am. We compute this distribution for each hour of 
the next day separately. Since the day-ahead market clears at the same 
time each day, e.g., 8-10am, each hour of the next day represents a 
different forecast time horizon, and, in general, the longer the time 
horizon, the lower the forecast accuracy. We expect weather forecasts 
later the next day to be less accurate on average than forecasts near the 
beginning of the day. 

Fig. 1 shows the conditional distribution of observed cloud cover 
readings for a given forecast (in this case, for the next day at 3pm) at a 
solar site location in Massachusetts. The x-axis shows the forecasted 
cloud cover, while the y-axis shows the probability, for the given fore
casted value, that a certain cloud cover string was observed the next day 
(at 3pm). This distribution is derived from all cloud cover forecast and 
observational data over a six year period (2011-2018 excluding 2016) 
for that location. The graph includes more than 30, 000 hourly cloud 
cover observations (and corresponding day-ahead cloud cover forecasts) 
covering all daylight hours. As the graph shows, extreme conditions are 
more predictable than intermediate conditions. Clear sky and overcast 
day-ahead forecasts are highly accurate with a probability greater than 
80% and 75%, respectively, of them being correct. In contrast, forecasts 
for intermediate conditions are less accurate, since they are inherently 
more variable than the extremes. That is, clear sky and overcast days 
tend to be sunny and cloudy, respectively, throughout, while interme
diate conditions often transition more frequently between different 
states of cloudiness (as clouds pass by). Even so, the conditional prob
ability distribution follows the expected trend, as cloudier conditions 
increase in probability with an increasingly cloudy forecast. 

The forecast distribution above is for a single site and different sites 
will yield different distributions based on their local climate, since some 
sites experience more predictable weather. To illustrate this observa
tion, we used ground truth observational data to plot the probability of 
observing a certain type of cloud cover condition at three different lo
cations. We compute the probability below from observational data, 
where Z is one of the five cloud cover conditions. 

Pr(observation = Z) (2) 

Fig. 2 shows the probability distribution of measured weather at the 
3 locations in the United States: Massachusetts (the same site as above), 
Colorado, and Texas. Massachusetts has high weather variability, such 
that all cloud cover conditions have similar probability with overcast 
and broken clouds occurring >40% of the time. In contrast, Texas has a 
high probability of clear weather, while Colorado is in the middle with a 
high fraction of both clear and overcast periods. Interestingly, for all 
three sites we see that extreme conditions—clear and overcast—have 
the highest probability of occurrence. The graph indicates that cloud 
cover varies by location, which necessitates computing our forecast 

Fig. 1. Example of a site’s conditional forecast error distribution, which cap
tures the probability of observing a certain cloud cover on the y-axis given the 
forecasted cloud cover at 3pm on the x-axis. Data covers all forecasts from 
2011-2018 excluding 2016. 
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distributions separately using historical weather data from each 
location. 

Cloud Cover Measurement Uncertainty. We next compute the 
conditional probability distribution of observing a particular clear sky 
PV index (Kpv) for a given measured cloud cover. As noted earlier, the 
same measured cloud cover can yield different Kpv’s depending on cloud 
thickness, height, and position in the sky relative to the Sun, which cloud 
cover measurements do not take into account. We capture this uncer
tainty, and its resulting effect on solar generation, using a conditional 
distribution that computes the probability of observing a specific Kpv 

given a cloud cover measurement. That is, we compute the distribution 
below, where X is Kpv and Z is one of the five cloud cover conditions we 
measure. 

Pr(Kpv = X|observation = Z) (3) 

Our analysis shows that even when grouping cloud cover measure
ments into coarse levels that each include a wide range of measured 
cloud cover percentages, there is still significant inaccuracy. This 
observation is borne out by our empirical data analysis, which shows 
that the expected Kpv varies significantly for the same cloud cover 
measurement. This demonstrates the current inherent inaccuracy in 
measuring cloud cover as a coarse percentage at a single location, but 
then applying it to larger regions. 

Fig. 3 shows the conditional probability distribution of measurement 
error in Kpv, i.e., the fraction of solar output relative to a site’s maximum 
output under clear skies, for different observed cloud conditions for the 
same site as in Fig. 1. The figure shows the measured cloud cover on the 
x-axis and the probability Kpv falls in the specified range on the y-axis for 
the given measurement. We define the ranges for Kpv to be the same as 
the defined ranges for the different cloud cover conditions. Our analysis 
uses hourly cloud cover observations and solar generation over four 
years (2013-2018 excluding 2016). The graph shows that when the sky 
is clear, the site generates greater than 93% of its maximum clear sky 
solar output nearly 100% of the time, e.g., Kpv>0.93. Similarly, with 
overcast skies, the probability that solar generation is 0-5% of its 
maximum output is near 80%. As before, the intermediate cloud covers, 
especially scattered and broken clouds, are less clear with a mix of 
probabilities. 

Unlike the forecast error distribution which is specific to a site, we 
can derive our measurement error distribution using data from many 

sites, since measurement error depends on cloud conditions and not on 
the location. In particular, we leverage data from prior work that in
cludes 343 million hourly cloud cover and solar readings from over 
11,000 locations [20]. We compute this error distribution based on the 
difference between Kpv observations at the solar sites and the estimate 
from Solar-TK’s performance model. 

Finally, Fig. 4 illustrates the effect of cloud cover measurement error 
on solar generation modeling by plotting solar generation for a partic
ular site every hour over a day. The graph shows the actual solar gen
eration (the bottom red curve), the maximum solar generation (the top 
blue curve), and the normalized solar output Kpv (the middle black 
curve). On this day, while the cloud cover observations were BKN 
(broken clouds) throughout the day, the graph shows that the actual 
solar generation varied substantially between nearly 40% of the 
maximum generation for one hour in the middle of the day to less than 
10% at other hours. If the cloud cover measurement were precise and 
constant throughout the day, we would instead expect the normalized 
solar output Kpv to also be the same fraction throughout the day. The 
errors stem from the coarseness of the cloud cover measurement and the 
stochasticity of cloud cover, as clouds pass by. 

3.2. Computing the Solar Energy Commitment 

We use the two conditional probability distributions from Equations 
(1) and (3) to compute the solar energy commitment that maximizes a 
site’s expected revenue. We first combine the forecast and measurement 
error distributions above into a single conditional probability distribution 
that quantifies the probability a solar site will generate a certain Kpv for a 
forecasted cloud cover. The conditional distribution Pr(Kpv = X|

forecast = Y) is computed as shown below [21]. We compute this dis
tribution separately for each hour of the next day. 

Pr(Kpv = X|forecast = Y) =
∑

Z
[Pr(Kpv = X|observed = Z)×

Pr(observed = Z|forecast = Y)]

(4) 

Here, X takes output values from 0 − 1, while Y and Z take on one of 
the five cloud cover conditions. When computing this conditional 
probability distribution, we assume that any percentage cloud cover 
within the percentage okta range defined by the cloud cover reading is 
equally likely. For example, since the defined okta range for OVC is 7/8 
to 8/8 (or 87.5% to 100%), we assume any value between 87.5% and 
100% is equally likely. Given this assumption, we convert our coarse 
forecast error distribution into one that conveys the probability of a 
specific percentage cloud cover occurring (from 0%-100%) by drawing a 
random percentage value within the corresponding range for each 
forecasted cloud cover. Thus, for any OVC forecast, we would select a 
random percentage between 87.5% and 100%. Doing so, places the 
forecast distribution on the same scale as the cloud cover measurement 
error distribution. 

The distribution captures the probability a certain Kpv occurs based 
on a forecasted cloud cover at a specific hour. We use this conditional 
distribution to derive a cumulative distribution function (CDF) of 

Fig. 2. Observed cloud cover at three locations in the United States with 
different climates. Data covers 2013-2018. 

Fig. 3. Example of a site’s Kpv probability distribution showing the measured 
cloud cover on the x-axis, and the probability of different Kpv’s on the y-axis. 
Data covers 2013-2018 excluding 2016. 

Fig. 4. A site’s maximum solar output under clear skies, its actual solar output, 
and its normalized solar output Kpv, i.e., actual output divided by maximum 
output, on a day when broken clouds (BKN) were reported throughout the day. 
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possible solar output values Kpv for each forecasted hour of the next day, 
which we denote as Z(x). Fig. 5 shows an example CDF Z(x) for a fore
casted hour of cloud cover. The CDF quantifies the probability that the 
Kpv is less than the Kpv on the x-axis. 

Given the CDF, to compute the solar energy commitment that max
imizes expected revenue, we take each point on the x-axis of the CDF and 
assume it is our solar energy commitment, which we denote as x. We 
then calculate the expected revenue for committing this x for two cases: 
one given that our solar output is less than x and another one given that 
our solar output is greater than x. Each case results in a different revenue 
equation, as the former loses revenue by not committing enough solar 
energy, while the latter incurs a deviation penalty for committing too 
much solar energy. 

To compute expected revenue R(x) for a given solar commitment x, 
we multiply the expected revenue in each case with the probability that 
each case occurs, as shown below. 

E[R(x)] = E[R(x)|Kpv ≤ x] × P(Kpv ≤ x)+

E[R(x)|Kpv > x] × P(Kpv > x)
(5) 

The probability P(Kpv ≤ x) and P(Kpv > x) comes directly from the 
CDF. We discuss deriving E[R(x)|Kpv ≤ x] and E[R(x)|Kpv > x] in the two 
cases below. 

Over-commitment Case: Kpv≤x. In this case, we assume we over- 
committed solar energy by committing an x that is greater than the 
Kpv we actually generated. We denote L = E[Kpv|Kpv ≤ x], or the ex
pected value of Kpv given that it is less than the commitment x. We then 
compute the expected revenue in this case as shown below. 

E[R(x)|Kpv ≤ x] = (L × price × Pmax)−

((x − L) × penalty × Pmax)
(6) 

The first term represents the expected earnings from committing L at 
a certain day-ahead price. Note that we have to multiply by Pmax (the 
maximum clear sky solar output), since L (and Kpv) are in terms of the 
fraction of maximum solar output under clear skies, while price is in 
dollars per absolute kilowatt-hour generated. The second term repre
sents the expected penalty we must pay for over-committing solar en
ergy: it is the difference between the commitment x and expected 
generation L multiplied by some penalty price per kilowatt-hour of en
ergy. As before, we must multiply by Pmax to de-normalize the commit
ment fraction x. Our expected revenue when we over-commit solar 
energy is then the combination of these terms, i.e., our earnings from 
selling the energy we generated minus the penalty from over- 
committing. 

Under-commitment Case: Kpv>x. In this case, we assume we under- 
committed energy by committing an x that is less than the Kpv we 
actually generated. We denote H = E[Kpv|Kpv > x], or the expected value 
of Kpv given that it is greater than the commitment x. We compute the 
expected revenue in this case as shown below. 

E[R(x)|Kpv > x] = price × x × Pmax (7) 

Since we under-commit solar energy, our expected revenue is simply 
the price multiplied by our commitment x multiplied by Pmax (to de- 
normalize the commitment fraction x). We do not pay a penalty, since 

we satisfy our commitment. Note that, while it is not represented in the 
equation above, we lose revenue based on the difference between H and 
x, since we could have generated more revenue by increasing our 
commitment x (without paying a penalty). 

Finally, we compute this expected revenue E[R(x)] for each point on 
the CDF’s x-axis and commit the point that maximizes revenue. 

maximize
x

R(x)

We derive a separate CDF from the conditional distribution for each 
forecasted hour of the next day, and perform the method above, to 
determine the solar energy commitment each hour that maximizes ex
pected revenue. Fig. 6 summarizes the steps for our probabilistic solar 
commitment approach. 

4. Implementation 

Our implementation leverages Solar-TK [3], an open-source solar 
performance model, to estimate a site’s solar energy output based on its 
location, time, physical characteristics, cloud cover, and temperature. 
However, our approach is independent of any specific solar performance 
model, assuming it takes cloud cover as an input. We compute the 
forecast and measurement error probability distributions using archival 
forecast data from the NDFD [11], and weather data from the NWS. 
These sources report hourly cloud cover and temperature forecasts and 
measurements for many years. 

We implement our commitment strategy in Python and use NumPy 
and Pandas for weather and energy data processing. When computing 
the forecast and measurement probability distributions we exclude the 

Fig. 5. CDF of Kpv for next-day hour based on conditional distribution of cloud 
cover forecast and measurement error. 

Fig. 6. Flow of steps in our probabilistic approach for deriving a solar energy 
commitment using the next-day forecast. 
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first and last hour of sunlight as solar generation during these hours is 
low and highly variable. We also exclude days when it has snowed, as 
snow significantly degrades solar output, which can result in additional 
errors. We assume solar operators commit no solar energy when solar 
modules are covered by snow. While our probability distributions draw 
from 5-7 years of data, we evaluate our commitment strategies over one 
year (2016) using solar generation, weather, and forecast traces from 
that year. We use 2016 for evaluation as solar data for 2016 had lowest 
percentage of missing values and incorrect observations. We exclude 
2016 data when generating probability distributions. We use real day- 
ahead electricity prices during this time period for some of our experi
ments, which are publicly released and archived by ISOs. 

We plan to publicly release our implementation as open-source. The 
software automatically downloads the location’s NDFD forecasts and 
generates the CDF in Fig. 5, and then accesses real-time electricity prices 
from regional ISO to determine next-day solar commitments using our 
probabilistic approach from §3. 

5. Evaluation 

We evaluate our approach by comparing the revenue it produces 
with multiple other solar commitment strategies, as well as the theo
retical optimal. In addition to total revenue, we also evaluate these 
approaches based on the total solar energy they over- and under- 
commit. Over-commitments impact grid stability, especially if solar 
generators over-commit en masse, while under-commitments result in a 
loss of revenue. Since our results are a function of day-ahead and penalty 
prices, we first discuss their characteristics. 

5.1. Electricity Price Characteristics 

The magnitude, pattern, and predictability of day-ahead and penalty 
prices affect the revenue of any solar commitment strategy, including 
our probabilistic approach, which requires them as input (see Equations 
(6) and (7)). The characteristics of these prices in the market differ 
substantially by location and over time. However, in this paper, our goal 
is to isolate and quantify the effect of inaccurate cloud cover measure
ments and forecasts on solar commitments and revenue independent of 
any specific set of price characteristics. As a result, our evaluation covers 
a wide range of price characteristics. 

In the simplest case, we experiment with a fixed day-ahead price 
(equal to the average day-ahead price of $40.7/MWh at our location 
over 2016) and a range of fixed penalty prices. We also experiment with 
variable day-ahead prices (based on the real day-ahead prices over 
2016) for a range of fixed penalty prices. We assume accurate day-ahead 
price forecasts, since our focus is on the impact of inaccurate cloud cover 
measurements and forecasts. In addition, while day-ahead prices are not 
known a priori, they are highly predictable in the current market, and 
vary primarily with slow and predictable changes in temperature that 
affect the heating and cooling load [22]. 

We evaluate our approach over a wide range of fixed penalty prices 
to understand how the magnitude of the penalty relative to day-ahead 
prices affects solar’s revenue. Specifically, our penalties range from 
0% of the day-ahead price to 250% of the day-ahead price. These penalty 
levels are consistent with prior work on solar commitment which uses 
150% [23] and 200% [24]. Our results confirm this prior work which 
suggests that penalties must reach ∼200% to strongly incentive accurate 
predictions [23,24]. Note that lower penalties or the absence of pen
alties are subject to gaming, and encourages over-committing energy. 
We expect our probabilistic approach to improve relative to others as the 
penalty price increases relative to the day-ahead price, since this in
centivizes making more accurate commitments. 

5.2. Baseline Solar Commitment Strategies 

We compare with multiple baseline commitment strategies, 

including two deterministic solar commitment strategies, as well as the 
optimal strategy, which assumes perfect solar forecasts. 

Max Solar. The Max Solar commitment strategy commits a solar 
site’s maximum expected solar generation under clear skies (Pmax) esti
mated by Solar-TK each hour of the next day. This maximum clear sky 
generation varies as a function of location, time, physical characteristics, 
and the temperature. This approach assumes clear skies at all times. We 
use this strategy to demonstrate the impact of over-committing solar on 
revenue, as it always over-commits. 

Trust Forecast. The Trust Forecast commitment strategy assumes 
cloud cover measurements and forecasts are correct and forecasts solar 
energy each hour of the next day using Solar-TK directly. For this 
approach, we use the fine-grained cloud cover percentage from 0-100% 
provided by the NDFD. We translate the cloud cover forecast readings 
into a corresponding expected Kpv due to the cloud clover. Prior work 
has proposed the simple empirically-derived function below for doing 
this based on an analysis of weather and solar data across thousands of 
sites [14,25]. 

Kpv = (0.985 − 0.984n3.4) (8) 

Here, n represents the cloud cover reading from 0.0-1.0. Note that 
these forecasts and the model used to convert cloud cover into power 
represent the state-of-the-art in solar power forecasting [26,27,14]. 

This strategy is deterministic in that it directly translates cloud cover 
forecasts into solar energy forecasts. The approach does not consider the 
deviation penalty as it trusts forecasts are correct. 

Optimal. The Optimal commitment strategy has perfect knowledge 
of future solar generation. This approach maximizes revenue, as it al
ways commits the maximum possible energy and never incurs a penalty. 
Since the optimal represents the best we could expect to do, we 
normalize all our results with respect to optimal. 

5.3. Revenue Comparison 

We compare our probabilistic approach with the baseline approaches 
above in terms of the total revenue they generate. Our evaluation uses 
generation data from the Massachusetts solar site shown in Fig. 2, which 
has highly variable cloud cover and temperature variations throughout 
the year. Note that this site is more challenging than the other sites in 
Fig. 2, since it experiences the intermediate cloud cover conditions for 
more time (FEW, SCT, and BKN). The solar site has a 10kW capacity and 
generates ∼11.1MWh of energy per year, which corresponds to a large 
residential deployment. 

Fig. 7 compares the revenue on the y-axis for our different solar 
commitment strategies as the fixed deviation penalty price increases on 
the x-axis. This experiment uses a fixed day-ahead price equal to $40.7/ 
MWh. We normalize revenue on the y-axis with respect to the revenue 
earned by the optimal strategy, and we normalize the penalty price with 
respect to the average day-ahead price. Thus, a 100% penalty translates 
to a deviation penalty price of $40.7/MWh, which represents the point 
where the penalty for over-committing a kilowatt-hour of solar energy is 
equal to the revenue earned from committing and delivering a kilowatt- 
hour in the day-ahead market. As expected, the graph shows that with a 
0% penalty, all approaches produce at or near the optimal revenue. Even 
though Max Solar always over-commits solar energy, when it incurs no 
penalty, it produces 100% of the optimal revenue. Similarly, since our 
Probabilistic approach takes into account the penalty, it determines that 
over-committing is the optimal strategy and also achieves 100% of the 
optimal revenue. However, since Trust Forecast does not consider the 
penalty when determining commitments, it sometimes under-commits 
solar energy (when the forecast is cloudier than in reality) and thus 
only achieves ∼90% of the optimal revenue. 

As the penalty increases on the x-axis, Max Solar’s revenue rapidly 
decreases, since it blindly over-commits by assuming cloudless skies and 
incurs increasingly larger penalties. At a 100% penalty (where the 
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penalty and day-ahead price are equal), Max Solar generates only ∼20% 
of the optimal revenue. With a 250% penalty, Max Solar generates no 
revenue but instead incurs a net penalty equal to 25% of the optimal 
revenue. In contrast, the other approaches are more robust to higher 
penalties with our Probabilistic approach being the most robust. At 100% 
penalty, the Probabilistic approach generates the most revenue at 49% of 
optimal, while Trust Forecast generates nearly 10% less revenue (at 
∼45% of optimal). The advantage of the Probabilistic approach continues 
to increase further as the penalty rises. At a 200% penalty, the Proba
bilistic approach still generates over 25% of the optimal revenue, while 
the other approaches generate no revenue and start to incur a net 
penalty. 

Fig. 8 shows the same experiment, but using real day-ahead prices 
from 2016, rather than fixed day-ahead prices, where the average day- 
ahead price is the same in both cases ($40.7/MWh). The graph ex
hibits the same trends as before, with only very slight differences in the 
magnitude of revenue. This experiment shows that the variability in the 
day-ahead price does not have a significant impact on revenue. As a 
result, our probabilistic approach is not biased to under-committing 
when day-ahead prices are high, and over-committing when day- 
ahead prices are low. Both cases would decrease our revenue relative 
to a fixed day-ahead price. 

Figs. 7 and 8 quantify the discounted (or risk-adjusted) value of solar 
energy in the market (for different deviation penalties) due to its lack of 
predictability. Since solar generators cannot dispatch or predict the 
energy they will generate, their commitments impose some risk, which 
reduces the revenue they earn from the energy they ultimately generate. 
Based on Figs. 7 and 8, this solar discount is equal to 49% and 47.3% of 
the optimal value, respectively, when the penalty price increases to be 
equal to the average day-ahead price. Of course, solar may be worth 
more in locations with more predictable weather patterns. An important 
motivation for our approach is to encourage better solar forecasting 
methods that can increase the value of solar in the market, which can 
also enable less solar regulation and a higher grid solar penetration. 

Our probabilistic approach leverages both cloud cover forecast error 
distribution and cloud cover measurement error distribution. In our 
analysis, we observe the effect of both error distributions on different 
metrics individually. Fig. 7 shows only the combined effect of both 
distributions. At 100% penalty, accounting for only forecast error gen
erates 46.8% (roughly 4% more revenue than the Trust Forecast 
approach). In energy commitment, accounting for only the forecast error 
shows the same trend as the complete probabilistic approach and 
undercommits energy. Finally, the probabilistic approach with forecast 
error results in 58% frequency of overcommitment (compared with 71% 

for Trust Forecast). It also yields a MAPE of 33%, 13% lower than Trust 
Forecast approach. Our analysis shows that while an approach that ac
counts for only forecast error improves performance, a probabilistic 
approach that accounts for both forecast and measurement error has a 
clear advantage. 

In addition, our approach compares favorably to prior work on the 
solar commitment problem that uses deterministic forecasts [23]. Spe
cifically, this work produced 59% of the optimal revenue at a 150% 
penalty (averaged across 63 sites in California) with much more 
generous market assumptions that enabled sites to earn additional rev
enue by selling surplus solar energy (from under-commitments) in the 
real-time market. In contrast, our approach, which does not include 
additional revenue from surplus solar, and produces 42% of the optimal 
revenue at the same penalty level for a site in Massachusetts with much 
more variable (and thus difficult to predict) weather. As we show in the 
next section, our probabilistic approach becomes more conservative as 
the penalty increases, which results in a high under-commitment levels. 
For example, we show that at 150% penalty, we under-commit nearly 
50% of the energy produced, which, if sold, would significantly increase 
revenue. 

5.4. Energy Commitment Comparison 

We also evaluate the the amount of energy each approach over- and 
under-commits as the penalty price increases. In general, the grid prefers 
under-commitments rather than over-commitments, since solar sites 
that under-commit satisfy their commitments. Numerous and frequent 
over-commitments can lead to price volatility in the spot market (where 
generators must make up their deficit in over-commitment) and grid 
instability (if there is not enough supply in the spot market to meet the 
demand). This graph uses the same variable day-ahead prices as in 
Fig. 8. For these experiments, we omit Optimal, since it never over- or 
under-commits. 

Fig. 9(a) shows the amount of excess energy over-committed as a 
percentage of the total solar energy generated during over-commitment 
periods. Since Max Solar and Trust Forecast do not vary based on the 
penalty price, their percentage over-commitment is the same in all cases. 
However, as expected, our probabilistic approach becomes more con
servative (and over-commits less) as the penalty increases. With a low 
penalty it over-commits closer to Max Solar, but with a high penalty it 
over-commits the least, which promotes less price volatility and a more 
stable grid. Similarly, Fig. 9(b) shows the amount of deficit energy 
under-committed as a percentage of the total solar energy generated 
during under-commitment periods. The trend is the opposite of (a) with 

Fig. 7. Revenue for each solar commitment strategy for fixed day-ahead price of $40.7/MWh as the fixed penalty price increases.  

Fig. 8. Revenue for each solar commitment strategy for variable day-ahead prices as the fixed penalty price increases.  

N. Bashir et al.                                                                                                                                                                                                                                  



Sustainable Computing: Informatics and Systems 29 (2021) 100477

9

the percentage of energy under-committed increasing as the penalty 
price increases. Fig. 9(c) shows the balance of the two, with the amount 
of energy over-committed and under-committed being roughly equal (i. 
e., crossing x=0) at a 100% penalty. 

Finally, Fig. 10 plots i) the Mean Absolute Percentage Error (MAPE) 
between our day-ahead solar commitments and our actual generation 
and ii) the percentage of periods where our strategy over-commits. This 
graph is for a 100% deviation penalty (equal to the day-ahead price), 
and shows that our probabilistic approach has the most accurate solar 
energy forecasts (higher than Trust Forecast) due to its lower MAPE and 
over-commits with the lowest frequency. 

5.5. Increasing Revenue using Energy Storage 

While our probabilistic approach produces more revenue than the 
other approaches as the penalty increases, its revenue still decreases due 
to inherent inaccuracy in cloud cover measurements and forecasts. In 
addition, at high penalty prices, our approach loses a significant amount 
of revenue from under-committing a large fraction of its energy gener
ation. Energy storage is a potentially useful tool in making up the dif
ference between our committed solar energy and our actual solar 
generation. Energy storage both enables sites to store excess solar energy 
when they under-commit energy in the market, and release stored en
ergy to make up the deficit when they over-commit energy in the mar
ket. To better understand the benefits of energy storage, we implement a 
policy that stores any excess solar not committed when using our 
probabilistic approach (when the energy storage is not full), and uses 
any stored energy (until the stored energy runs out) to make up for 
deficits when over-committing. 

Fig. 11 plots the usable battery capacity on the x-axis and the per
centage of the optimal solar revenue when using a battery of that ca
pacity on the y-axis for two different penalty prices (100% and 200% of 
the day-ahead price). The graph incorporates battery costs based on the 
cost of the Tesla Powerwall 2, which costs $6500 and has a capacity of 
13.5kWh. We assume a battery lifetime of 7 years and amortize the cost 
over its lifetime. As expected, the battery capacity enables us to partially 
correct for inaccuracies in cloud cover forecasts and measurements, 
which has a greater impact at high penalties. The graph shows that the 
revenue increases as we add more battery capacity up to a point, after 
which the battery costs being to dominate and the revenue increases. 
Even so, the graph shows that battery-based energy storage can result in 
significant revenue increases. Interestingly, for this residential solar site, 
the optimal battery capacity is near the 13.5kWh capacity of the Tesla 

Powerwall 2. Specifically, in the case of a 100% penalty price, the 
optimal capacity is 12kWh, which yields over 80% of the optimal rev
enue or a 60% increase compared to not using a battery. Similarly, in the 
case of a 200% penalty price, the optimal capacity is 16kWh and yields 
50% of the optimal revenue, which is 2× more compared to not using a 
battery. 

Note that, in this example, we only use the battery capacity to make 
up for inaccuracies in our solar energy commitments. As a result, the 
presence of energy storage would not alter the revenue of the optimal 
strategy that assumes perfect solar forecasts. Our results above show 
that, even after incorporating their cost, batteries can make up a sig
nificant portion of the lost revenue due to inaccurate solar forecasting. 
More generally, our work shows that, with a battery, even small-scale 
residential solar sites could compete in the market and retain much of 
the revenue they receive today without requiring arbitrary restrictions 
on grid-tied solar connections. The revenue can potentially be increased 
further by incorporating the batteries in the solar commitment problem. 
The availability of storage enables the commitment approach to favor 
undercommitment or overcommitment based on the stored energy and 
the expected energy price. However, in this work, we want to isolate the 
effect of probabilistic forecast approach from the effect of storage and 
leave the analysis of commitment approach with storage to the future 
work. In addition, batteries may also provide other valuable services to 
users, including as a source of backup power or for grid peak shaving. 
For example, Massachusetts recently introduced a program for 
compensating residential batteries owners in exchange for using them to 
reduce grid peaks a few times a year [28]. We defer a full cost-benefit 
analysis of batteries in the context of these programs to future work. 

6. Related Work 

Our work is related to prior work on solar forecasting [12]. However, 
we do not propose a new forecasting technique, but instead examine the 
impact of inaccurate forecasts on solar commitments. We use an 
open-source forecasting model to derive forecast and measurement error 
distributions using publicly-available forecast and weather data. We 
could apply our techniques to any solar forecasting model. Our under
lying model for generating a solar energy forecast from weather and 
cloud cover data is also similar to prior work [14] and represents the 
state-of-the-art in terms of both input data and solar modeling, both of 
which are publicly available. 

There has also been significant prior work on bidding strategies for 
wind and solar energy in electricity markets based on both forecast and 

Fig. 9. Fraction of solar energy each policy over-commits (a), under-commits (b), and net over/under-commits (c).  

Fig. 10. MAPE between day-ahead solar energy commitments and solar gen
eration with our probabilistic approach, and the percentage of periods where 
our strategy over-commits. 

Fig. 11. Revenue on the y-axis from using the battery-based energy storage 
capacity on the x-axis. 
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price uncertainties. For example, Jiang et al. provide a survey of ap
proaches for integrating solar into energy markets, and the potential 
impact of solar on the market [29]. Prior work includes proposals for 
bidding strategies for wind [30–33], solar [34,35], or both [36,37]. The 
precise problems these approaches focus on are different. In some cases, 
the work assumes the use of energy storage, while others assume hybrid 
solar/wind systems. Similarly, some work focuses on the variations and 
predictability in energy prices. In many cases, the strategies are evalu
ated on data drawn from idealized distributions that do not take into 
account the coarse granularities of measurement and their imprecision. 
Our approach instead focuses on a more specific problem by focusing 
only on the uncertainty due to cloud cover forecasts and measurements. 
We show that considering both results in greater revenue. 

7. Conclusions 

Currently, complex regulations govern who can connect solar to the 
grid, and how much compensation they receive for it. Ultimately, 
however, for solar to expand, it must compete on equal footing with 
other energy sources. Thus, an alternative approach is to have solar 
generators compete with traditional sources in existing energy markets. 
However, a key problem for solar operators is determining how much 
energy to commit in day-ahead markets, especially given uncertain 
forecast and cloud cover measurements. We address this problem by 
developing a probabilistic approach to forecasting and committing solar 
energy in day-ahead markets that accounts for the uncertainty in cloud 
cover measurements and forecasts. 

Our approach determines a joint probability distribution over next- 
day solar generation outcomes, which we then use to determine solar 
energy commitments each hour that maximize expected revenue. We 
show that, as the penalty for over-committing solar increases, our 
probabilistic approach enables increasingly more savings than a deter
ministic approach that trusts cloud cover measurements and forecasts. 
Since solar’s unpredictability decreases its revenue in the market, we 
then evaluate the impact of using energy storage to recoup the lost 
revenue. We show that batteries can make up a significant fraction of 
lost revenue, and enable even small-scale solar sites to effectively 
compete in the market. 
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