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Abstract

We examine homogeneous solitons of the ambient obstruction flow and, in particular,
prove that any compact ambient obstruction soliton with constant scalar curvature is triv-
ial. Focusing on dimension 4, we show that any homogeneous gradient Bach soliton that
is steady must be Bach flat, and that the only non-Bach-flat shrinking gradient solitons
are product metrics on R? X §? and R? x H?. We also construct a non-Bach-flat expanding
homogeneous gradient Bach soliton. We also establish a number of results for solitons to
the geometric flow by a general tensor q.

Keywords Homogeneous manifold - Gradient soliton - Bach tensor - Bach flow - Ambient
obstruction tensor - Ambient obstruction flow
1 Introduction

The geometric flow for a general tensor g(g), the g-flow, is a one parameter family of

smooth metrics such that
0,8=q
{ 5(0) = h. o

The resulting g-soliton equation is:

1 1

— L: — + =

3 x8 =¢€8 7 q 2)
where X is a vector field. Letting X = Vf, a (normalized) gradient soliton has the form:

Hessf = cg + %q. 3
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The coefficient on g may differ from other definitions found throughout the literature. We
chose this coefficient to show that gradient solitons are self-similar solutions to the g-flow
(Theorem 3.13). It is easily shown that this definition aligns with definitions lacking the
coefficient. We will use the terms expanding, steady, and shrinking to describe when ¢ < 0,
¢ =0, and ¢ > 0, respectively. Moreover, a soliton is said to be stationary if it has constant
potential function.

The goal of our work is to generalize results for specific flows using the properties of ¢
and then show that there are examples of these generalizations. One such general result is:

Theorem 1.1 For a divergence-free, trace-free tensor q, any compact g-soliton is g-flat.

This theorem is a generalization of the well-known result for Ricci solitons that any
compact Ricci soliton with constant scalar curvature is Einstein (see [19]). By the sec-
ond Bianchi identity, the Ricci tensor is divergence-free if and only if the scalar curva-
ture is constant. Moreover, for the Ricci tensor requiring constant scalar curvature is
similar to the trace-free condition.

Two examples of divergence-free and trace-free tensors are the Bach tensor, B, in
dimension n = 4, and ambient obstruction tensor, O, in even dimension n > 4. To aid
our exposition, we provide detailed definitions of these tensors, their flows, and their
solitons in Sect. 2. Specifically, Definition 2.1 defines ambient obstruction and Bach
solitons. In applying Theorem 1.1 to the Bach tensor, we get [11, Theorem 3.2]. Moreo-
ver, applying Theorem 1.1 to the ambient obstruction tensor yields:

Theorem 1.2 Any compact ambient obstruction soliton with constant scalar curvature is O
-flat. In particular, all compact homogeneous ambient obstruction solitons are O-flat.

The following is a generalization of [19, Theorem 1.1] applied to the ambient
obstruction tensor.

Theorem 1.3 A compact gradient ambient obstruction soliton with non-positive Ricci cur-
vature must be stationary.

Our results are motivated by a recent theorem of Petersen and Wylie in [21] that
implies that non-flat homogeneous gradient solitons of the g-flow, where ¢ is diver-
gence-free, are always products of the form R¥ x N"=*, In the case of Ricci solitons, this
implies that N is an Einstein manifold [18, Theorem 1.1]. We apply this theorem to the
case of the Bach tensor and find that the possible metrics on N are more complex. How-
ever, we obtain the following classification in the steady and shrinking cases.

Theorem 1.4 Any homogeneous gradient Bach soliton that is steady must be Bach flat and
the only non-Bach-flat shrinking solitons are product metrics on R? x §? and R* x H>.

Remark 1.5 There are non-trivial homogeneous four-dimensional Bach flat metrics. For
example, Einstein metrics and (anti)self-dual metrics are Bach flat. Moreover, there is a

classification of simply connected homogeneous Bach-flat 4-manifolds. (See [1] and [7].)

Remark 1.6 There are non-Bach-flat expanding homogeneous gradient Bach soli-
tons. We find one such soliton on R x §? with metric g = g X gsy2)» Where gy is any
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left-invariant metric on Lie group SU(2). We show this is the only expanding soliton on a
manifold of the form R x N3 where N? is a unimodular Lie group.

The paper is organized as follows. In Sect. 2, we provide a brief background of the Bach
and ambient obstruction tensors, as well as a background on geometric flows in general. Next,
in Sect. 3, we establish a number of results for a general tensor g and apply them to the ambi-
ent obstruction tensor. Then, in Sect. 4, we begin to classify the gradient Bach tensors of
homogeneous 4-manifolds. The results of this partial classification are summarized in Table 1.

2 Background

In dimension 4, the Bach tensor is symmetric, divergence-free, trace-free, and conformally
invariant of weight -2. That is, for a positive, smooth function p, if § = p? g,then B = %B. The

Bach tensor is realized as the negative gradient of the conformally invariant functional given
by:
_ 2
M
where W, is the Weyl tensor and |W, |2 = girgl1ghrghs WiiggWpgrs- Since this functional is only
conformally invariant in dimension n = 4, for n # 4, the Bach tensor is not conformally
invariant either. Moreover, the Bach tensor is not divergence-free for n # 4. For this reason,

we will only consider the Bach tensor for n = 4. Though there is an explicit representation
of the Bach tensor for arbitrary n, provided in [5], the Bach tensor for n = 4 is given by:

Table 1 Summary of results

Split Manifold Type of Permissible metrics Potential function
soliton
N4 R4 Gaussian ~ Bach flat (any) Fo,y,zw) =+ + 2 +wh) +ax
+by+de+hw+k

N4 Stationary Bach flat fGx,y,z,w) =k
R3 x N! Steady Bach flat (any) fey,2)=ax+by+dz+k
RZ X N? R?xR? Steady Bach flat (any) f@,y)=ax+by+d

R? x §? Shrinking ~ See [11] Fy) = c0® +y2) +ax+by +k

R? x H? Shrinking ~ See [11] Fo,y) =c(® +y2) +ax+ by +k
RxN RxR3 Steady Bach flat (any) f=ax+b

R x Nil - None -

R x Solv - None -

RxSL2,R) ~ None -

Rx (RxH?) - None -

Rx(RxS?) — None -

R X E(2) Steady Bach flat (g, = g1) f&x)=ax+b

R x H? Steady Bach flat f@)=ax+b

R x S Steady Bach flat f@)=ax+b

(811 =82 =83)
Expanding g, = g5, = 4833 J) =2ex* +ax+b
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1
kgl ki
By = VAV Wy + SR W
To find a higher dimensional equivalent, for even n, we examine the gradient of the
functional:

Fig) = /M 0(g)dV,

where Q(g) is Branson’s Q-curvature described in [4]. Though Q lacks some of the con-
formal properties of W, the functionals f’é are conformally invariant for arbitrary even
n. Moreover, Branson uses the Chern—Gauss—Bonnet theorem to show that in dimension
n=4, ]-"é is related to YV by the equation:

1
_ 2
f‘; =8x2y(M) — ZW,

thus they have the same critical metrics.

In [9], Fefferman and Graham examine the gradient of .7-"& and introduce the resulting
symmetric 2-tensor, the ambient obstruction tensor, which is noted as O. This tensor can be
characterized as the obstruction to an n-manifold having a formal power series of asymp-
totically hyperbolic Einstein metric in dimension n + 1 [2]. Explicitly, the ambient obstruc-
tion tensor is given by the equation:

0 - 1 1

=— 1 (aAilp- ATVAS ) + T
' (—2)’2"2<2_2)v< BICE) e
2 _2)1

P:

- 1
Ric — ———§
n—2< T 2k—D g>

where P is the Schouten tensor and 7,,_; is a polynomial natural tensor of order n — 1. The
ambient obstruction tensor is only defined for even n. Like the Bach tensor in dimension 4,
the ambient obstruction tensor is symmetric, trace-free, divergence-free, and conformally
invariant of weight 2 — n. The ambient obstruction tensor can be viewed as a family of
even dimensional tensors, where the dimension 4 ambient obstruction tensor is the Bach
tensor. (See [2] and [15] for a more detailed background.)

In the last decade, Bahuaud-Helliwell, Helliwell, and Lopez have studied flowing a met-
ric by the ambient obstruction tensor. Bahuaud and Helliwell, in [2, Theorem C], consider
the flow given by:

{ 0,8 = 0, +c,(~1)} <A§_1S>g "
g0 =h

where 4 is a smooth metric on a compact manifold of even dimension n > 4 and
1
€y = — .
257 (4-2) 1= - 1)

In [2, 3], Bahuaud and Helliwell show short-time existence and uniqueness on compact
manifolds for this flow. As Lopez explains in [15], the scalar curvature term ‘“‘counteracts

@ Springer



Annals of Global Analysis and Geometry

the invariance of O under the action of the conformal group on the space of metrics on M.”
In [15], Lopez finds pointwise smoothing estimates and uses them to find an obstruction to
long-time existence and to prove a compactness theorem for the flow (4).

For n = 4, we will call flow (4) the Bach flow, which is given by:

{ 9,8 =B+ ASg
gO)=nh

Note that, this is slightly different than the definition in [11]. Since homogeneous mani-
folds have constant scalar curvature, the equations for the ambient obstruction flow and
Bach flow on homogeneous manifolds are given by:

0,8=0 0.g=8B
" and ’ ,
{ 2(0) = h 2(0) = h ©)
respectively. Helliwell uses the latter equation in [10] to study the Bach flow on homogene-

ous compact product manifolds of the form S! x K3.
The solitons of these flows are defined as follows.

Definition 2.1 An ambient obstruction soliton is a solution, (M, g), to the equation:
1 [og= 1 o nf n_y
z Xg_cg+§< n+cn(_l)2(A2 S>g)

where ¢, is defined as above. In dimension n = 4, the ambient obstruction soliton is the
Bach soliton, given by:

1 1 1
SLxg=cg+5(B+=ASg).
2 Ex8 Cg+2( TRt

These are called gradient if X = Vf, and the corresponding equations are

Hessf =cg + %(On + c,l(—l)% (Ag_lS>g> and

1 1
Hessf = cg + E(B + EASg).

For the reader who is less familiar with geometric flows, we now give a brief back-
ground that will help motivate gradient solitons.

The primary objective of a first course in differential equations is learning methods
to solve differential equations explicitly. Soon thereafter, we see that solvable differential
equations are relatively rare. To gain valuable insights about a differential equation, one
might examine the fixed points of the flow, classify them as stable or unstable, and even
construct a phase diagrams. Applying this idea to geometric flows, we know that self simi-
lar solutions to a geometric flow are solitons. As such they act as fixed points. So when
examining a new flow, it makes sense to try to find and analyze the solitons. To further
limit these unknowns, one might choose to examine gradient solitons in particular.

The choice to examine gradient solitons provides one with a more restrictive, more
familiar environment. Historically, analyzing gradient solitons has provided a lot of insight
into the Ricci flow. The work of Hamilton, Ivey, and Perelman is combined to classify
three-dimensional shrinking gradient Ricci solitons. (See, for example, [20] for further
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discussion.) Further, in [17], Perelman observes that any compact Ricci soliton is a gradi-
ent Ricci soliton. Most notably, the study of Ricci solitons was imperative in Perelman’s
proof of the Poincaré Conjecture. The study of Ricci solitons has continued to prove a
bountiful source of information and is still a very large area of research. It is reasonable
to hope that the study of gradient solitons for other flows (specifically the Bach flow and
ambient obstruction flow) would prove similarly fruitful in the understanding of the behav-
ior of the flows and consequently the behaviors of the tensors themselves.

3 Results for general tensor

In this section, we prove a number of statements for a general trace-free and/or divergence-
free tensor g. Applications of the theorem to the ambient obstruction tensor will follow
subsequent corollaries. For the sake of simplicity, full proofs of these corollaries have been
omitted, but appropriate connections will be made.

Recall from Sect. 2 that the ambient obstruction tensor, O, n even, is trace-free and
divergence-free. However, the reader should note that the tensor affiliated with the general
flow (4) does not possess all of these properties.

One fact that proves useful in examining gradient solitons is the following proposition.

Proposition 3.1 Let g be a symmetric two tensor and (M, g, f) a gradient g-soliton (3). The
potential function, f, has the property that

Ric (Vf) = divQ — %V( tr Q)
where Q is the dual (1,1)-tensor of g with respect to g.
Proof Consider a gradient soliton of the g-flow, given by
Hessf = cg; + %ql«j
Type changing into (1,1) tensor

VVf =cl + %Q

If we simply take the trace of each of the terms, we see that then Af = cn + % tr Q.
Taking the divergence of each term in our soliton equation, we see that:

divQ = div(VVf)
Ric (Vf) + V(Af)

Ric (Vf) + V(cn + %tr 0)

Ric (Vf) + %V(tr 0)

Thus:
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Ric (Vf) = divQ — %V(tr 0)

This theorem can be used to generalize [11, Theorem 3.4] as follows.

Corollary 3.2 For any constant trace, divergence-free tensor q, the gradient solitons of its
flow have that property that Ric (Vf) =

For the ambient obstruction flow on a non-homogeneous manifold, we see that a gradi-
ent soliton is given by:

Hessf =cg+ = (O +a (A%_IS)g>
where

_ (1)}
’ 2%—2(§ - 2)!(n —Dn-1)

Note that, a, simply combines constant terms in our original definition to help with nota-
tion. Examining this soliton, we get the following corollary.

Corollary 3.3 A gradient ambient obstruction soliton with potential function f satisfies
Ric (V) = a,(1 — n) V(Ai‘ls).

Proof Consider a gradient ambient obstruction soliton with potential function f. Then,
q=0,+ an<ATlS>g and consequently

divg = and(A§—15>
trg = nan(A%_lS>
Virg = nanv<A%"1S>.
Using Proposition 3.1:
Ric (Vf) = a,(1 — n)v(A%—ls)
O

Remark 3.4 For a gradient ambient obstruction sohton with constant scalar curvature (spe-
cifically for homogeneous manifolds), we see that A'S = 0, so Ric (Vf) =

The following lemma appears to be well known, but we include the proof for
completeness.

Lemma 3.5 For any symmetric (0,2)-tensor field w and vector field &:
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(L og.w) = 2divGizy) — 2(divy)é

where izy is a 1-form such that iy (-) = w(&, )

Proof Consider a symmetric (0,2)-tensor field y and a vector field &. For a (0,2)-tensor A,
we know that A(x,y) = g(A(x),y), so:

(A,.B) =) g(Ale,), Ble,) = )" Ale;, B(e,)

where B is a (1,1)-tensor.
Consider the Lie derivative as our (0,2)-tensor, and y a (1,1)-tensor. First, examining
the type change, consider y as a (0,2)-tensor:

vX,Y) =g X),Y) = y(X.E) = g(y(X),E) = y(X) = Z 8w (X), E)E;
j

Next, we know that:

l

diview) = Y (Ve 1ew)E) = X Ve (6.E) = Y Vig(v(ED.€)

(divy)(§) = Y} g6 Vi, w(E))
Then,
(Legy) =Y, LegEnw(E)
= D 8(Ve&wE) + Y 8(E Vyi6)
= D (Ve b e W EVEE) + Y 8(EVigineeg)
= D sW(E). E)g(V & E) + Y sy (E. E)g(E;. Vi)

= 28(yw(E), ENg(Vié, E)

=28(V & v (E))

= 2|V g(& W(E)) — gX, Vs (w(E)))]
= 2diVl§l[/ — 2(divy)(€)

Thus, the identity holds. O
We use this fact to prove the following lemma for compact solitons of a general g-flow.

Lemma 3.6 Let (M, g, X) be an n-dimensional compact soliton to the g-flow, (2). Then:

a. /M | £ xell? dvol, = -2 /M div(g)(X) dvol,.
b. If q is divergence-free, then X is Killing.
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c. If qis divergence-free and trace-free, then (M, g;) must be g-flat.
Proof

a. Consider the gradient g-soliton, % Lyg=cg+ %q. We know that for any vector field &
on M

(L :8.w) = 2div(isy) — 2(divy) ()

where i,y (-) = w(¢, ). Note that, the soliton can be written as g = Ly —2cg. Exam-
ining the divergence of this equation:

divg; = div( L xg8) — 2cdiv(g;) = div( L xg)
Using Lemma 3.5, we see that lettingy = £ ygand & = X:

(Lyg Lxg) =1l Lxg”z = 2div(iy £ ,8)
= 2div( £ yg)(X) = 2div(iy £ .g) — 2div(g)(X)

Integrating over M, we see that since M is compact and has no boundary:
/ || £ xgl|* dvol, = 2/ div(iy £ ) dvol,
M M
— 2/ div(¢g)(X) dvolg = —2/ div(g)(X)) dvolg
M M

b. If g is divergence-free, part (a) shows that [, || £ xg||* dvol, = 0. Thus, £ xg = 0 and
consequently X is Killing.

. Suppose that g is divergence-free and trace-free. From (b), this means that g; = cg;;.
Taking the trace of both sides, we see that 0 = nc and thus ¢ = 0. Thus, q; = 0 and
subsequently (M, g;;) is g-flat.

O

Corollary 3.7 Let (M, g, X) be an n-dimensional compact soliton to the ambient obstruction
Sflow with constant scalar curvature. Then, X is Killing, and M is O-flat.
Proof Since M has constant scalar curvature, we know that the flow is given by (5). Thus,
we consider g = O,. Since O is divergence-free and trace-free, the conclusion follows
directly from Lemma 3.6 O

In particular, Corollary 3.7 shows that any homogeneous compact ambient obstruc-
tion soliton is O-flat. In the non-homogeneous gradient case, we have the following
inequality.
Theorem 3.8 For any compact gradient ambient obstruction soliton (M, g, f)

/ Ric (Vf, Vf) dvol, > 0,
M

where the integral is zero if and only if f is constant.
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Proof Consider an n-dimensional compact gradient ambient obstruction soliton, (M, g, f).
Applying Lemma 3.6, let g = O and let X = Vf. From Corollary 3.3:

1

1—-n

a,

din=anV<A§_lS> = a —n)V(Ai—ls) = Ric (Vf).

1—n

By Lemma 3.6:

0< / || £ Vfgll2 dvolg = —2/ div(g)(Vf)) dvolg = L/ Ric (Vf, Vf) dvolg.
M M n—1Jy

Thus, /M Ric (Vf, Vf) dvolg > 0.
Suppose /M Ric (Vf, Vf) dvol, = 0.
Since

/M||£Vfg||z dvol, = n%l/M Ric (Vf, V) dvol,,

if the right hand side is zero then L y4(g) = 0 and consequently Hessf = 0. Since M is
compact, this implies that f is constant. If f is constant Vf = 0 then clearly Ric (Vf) = 0.
Therefore, the integral is zero if and only if fis constant a

Remark 3.9 Note that, a soliton is defined to be stationary if f is constant. Thus, Theo-
rem 3.8 implies Theorem 1.3.

We note that, in general, stationary gradient ambient obstruction solitons are charac-
terized by the following proposition.

Proposition 3.10 If (M, g, f) is a stationary gradient ambient obstruction soliton, then
M, g) is O-flat. If (M, g) is also compact, then S is constant.

Proof Consider a stationary gradient ambient obstruction soliton, (M, g, f). Since the
soliton is stationary, f is constant. Consequently, Hessf = 0 and thus ¢ = —2cg. Since
g=0,+ a,,<Ar‘s>,
0, = (—an<A§_lS) - 2c>g.
Taking the trace of both sides:
0= n(—an(A%—ls) - 2c)
Thus,
0= —an<A%—‘S) ~2¢

This forces O, = 0, so that soliton is O-flat. Furthermore:

n_ 2c
ATls ==
an
is constant. If M is compact, this implies that S is constant. O
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Remark 3.11 The converse of Proposition 3.10 is true in the compact case. That is, a com-
pact gradient ambient obstruction soliton that is O-flat and has constant scalar curvature
is stationary. Constant scalar curvature and O-flat imply that Hessf = cg. Compactness
forces the manifold to have a maximum and minimum so Hess f = 0. Appealing once more
to compactness, this forces f'to be constant and our soliton to be stationary.

Though the following lemma is not necessary when studying ambient obstruction
solitons (this was taken care of in Corollary 3.7), it does give another criteria for when a
g-soliton is stationary.

Proposition 3.12 For a trace-free tensor q, any compact gradient soliton to the g-flow must
be g-flat.

Proof Generalizing from [11], consider a gradient g-soliton (3). By assumption tr(g) = 0,
so taking the trace of both sides yields Af = cn. Integrating over M:

0= / cn — Af dvol, = cn Vol(M, g)
M

Thus, ¢ = 0. Further, Af = On + 0 so Af = 0, that is, f is harmonic. Since M is compact, f
must be constant.
Therefore, q; = 2Hessf — 2cg;; = 0, so any compact gradient soliton is g-flat. a

Proceeding, we will show that for a general tensor ¢ with certain scaling properties
that a gradient g-soliton is a self-similar solution to the g-flow. This observation appears
to be made first by Lauret [13]. To do so, we will follow the proof from [6, Chapter 4]
which shows that gradient Ricci solitons are self-similar solutions to the Ricci flow.
Following our proof, we will apply the theorem to the ambient obstruction flow in both
the homogeneous and non-homogeneous cases. In [14] and [13], Lauret shows that the
following theorem is true for general, non-gradient solitons can be made into an if and
only if statement. I have chosen to focus on the case of gradient solitons. Our goal in
including the following proof is to motivate our choice to modify the equation for a
soliton by including a factor of % and to show a more explicit proof of this theorem.

Theorem 3.13 Consider any tensor q with the property that when the metric is scaled by a
constant A € R:

g=ig = g=1q
Consider a complete gradient q soliton (M", h, f,, ¢), that is:
Hess ,fy = ch + %q(h).
There exists an € > 0 such that for all t € (—¢, €) there is a solution g, of the q flow with

8o = h, diffeomorphisms @, with @, = 1., and functions f(t) = f, with f(0) = f,, such that:

(1) 7 scales the metric according to the function:
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el—2ct w=2
7, 1= W\ \ 7T
1-2¢ 1—5 t) 2 w#2,

v
(2) Thevector field X, =1 V,f, exists,
3) @, : M" - M" is the 1-parameter family of diffeomorphisms generated by X,. So:

0 51
Eq’z(x) = Tzz (Vhfo)((pt(x))’
(4) g, is the pullback by @, of h up to the scale factor t,:
8 = T,<Pfh,

(5) f,is the pullback by @, of fy:
f f)OWz P, (fO)

Moreover,
H _c 1
€ss g,ft = ;tgt + E(‘I(g;))
or equivalently
2c
q(g,) = & +2Hess  f,
t
and

of w 2
E(t)=¢z|vgf, .

Proof Construct a 1- parameter family of diffeomorphisms ¢, : M" — M" generated by
vector field X, = T2” Vhfo defined for all ¢ such that t € (—¢,€). Define f, = fyoqp, and

g =7toh.
7}

_a
ol &~

9 0
1=t, E = Kigi = ( )(pfoh 23 E |t=t0 qo;kh

=1,

Using Remark 1.24 from [6], we are able to assess the derivative of the pullback:

0 X " .
Tty a_t’z:,o(p’h =1, L Y([)<got0h) =L y(t)<r,0(ptoh>

where

Y :=

b,

9 (—1 ) -1y 9
i @, (@, )()t,,n

Note that, for g = Ag:
8(Vf. X) = df(X) = §(Vof . X) = Ag(V,f. X).
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S0+ V,f = V,f. Therefore:
Ly 1
Veols = Veyounfiy = Vq,, Wy = T Van@ifo = —@, (Vifo) = @\ —Vilo |-
Tty Tty iy fo
Thus,
0 v
o= V=1 ( Vhfo) (@) (v 5,))

ot 1=t,
Using this, we are able to evaluate the desired derivative and find one term of our initial

sum:
* 2
w T, @ h)=1t>L
T i < to(pto > ng(]f,()gto

wih =1, Lyo(0h) = £ 5
0 819’10

0
Tl _—
0 at
To evaluate the derivative of 7, we must consider each case

Case 1 For w = 2, define 7, = ¢!~>*’. Then
0
<0t )(poh = —2crgot h

=l

= —2cg(ty)

-
Case 2 For w # 2, define 7, = (1 - 2c(1 - %)t) 2. We can compute the following
1
0 1 w ol w .
(Go)ein= =g (1-2:(1=F)n) ™™ (-2(1-3)) (wi1)
2
w/2
_ —2c<1 - 2c<1 - %)’0> -3 <(p;"0h>

w T, @ h
_ 2 0"ty
2ct, o (—T )

ly

v_q
= —2crtj 8(ty)

Thus, we see that for any w,
0
( ‘L't)(pt h= —2cT ety

ot

Returning to our original derivative, we see that for general #

0 51 5
agt =— ZCth &+, L V., g
2€ (1) + 2V4 Y f,)

t

w
=2 =
fy

Applying [6] Exercise 1.23 to g, we see
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q(r. o)
7 ; (q(h)
7} @} (=2ch + 2 Hess ,f;)

q(8,)

72 @} (<2ch+ Ly )

5 —2c
r <_gt + ‘Cv,ﬁg(l))
Tf 8r

5 —2c
= th <Ttgt + 2 Hess gﬁ>
_9
atgl

Il
gﬁ'

Hence, there exists a solution g, to the flow with the desired properties.
Looking at the derivative of the potential function, we see that:

9% _
ot

fo((p;(x))
mfo((PH,,(X)) —fole,(x)
0 n

(Vhf07 (P;)
(

Vil 77 Vil ) )
(Vi Vi)

|
727! ;gt(rvgf[, TVg,f,(x))
=13

‘ 2
Vg’ft’g,

a

L
Remark 3.14 If the vector field X, = 7> V,f; is complete, then the flow exists for all ¢
such that 7, > 0.

Remark 3.15 One such tensor g with the necessary weighting property is a conformally
invariant tensor of weight w. That is, a tensor T such that for § = p?g, then T = p¥'T for a

smooth positive function p.

Corollary 3.16 The gradient solitons of the ambient obstruction flow are self-similar solu-
tions to the ambient obstruction flow.

Proof Consider the tensor provided by the ambient obstruction flow:

0, +cn(-1)§<A§‘ls)g.
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We know that the ambient obstruction tensor is of conformal weight 2 — n and is conse-
quently a tensor g described by Theorem 3.13. In the homogeneous case, or more generally
the constant scalar curvature case, we are able to directly apply the theorem.

To examine the non-homogeneous case, we must also investigate the scaling properties
of the scalar curvature term. A simple calculation shows that for § = A%g:

Thus, for k = g -1,

— A*Sg = 2> AkSg.

That is, the scalar curvature term is scaled by a factor of 2 — n and consequently has the
same scaling properties as the ambient obstruction tensor.

Applying Theorem 3.13 with w = 2 — n, we see that this implies that with the appropri-
ate choice of 7 and ¢ a gradient ambient obstruction soliton is a self-similar solution to the
ambient obstruction flow. O

As Lauret shows, Corollary 3.16 is also true for non-gradient solitons. Turning
our attention to noncompact, homogeneous solitons, we consider recent theorem of
Petersen and Wylie [21]. This theorem is a key part of understanding homogeneous
gradient Bach solitons as we see in Sect. 4.

Theorem 3.17 [Petersen-Wylie] Let (M, g) be a homogeneous manifold and g an isometry
invariant symmetric two-tensor which is divergence-free. If there is a non-constant func-
tion such that Hessf = §, then (M, g) is a product metric N X R* and f is a function on the
Euclidean factor.

For a divergence-free tensor ¢, we apply this theorem to homogeneous gradient ¢
solitons by simply letting § = cg + %q. Then, g is the sum of isometry invariant sym-
metric two-tensors that are divergence-free and is itself such a tensor. Applying this
theorem to homogeneous manifolds, we are able limit the ambient obstruction flow to
the flow given by (5). Since O is a divergence-free, isometry invariant, symmetric two-
tensor, we can let ¢ = O, resulting in the following corollary.

Corollary 3.18 If (M, g) is a homogeneous gradient ambient obstruction soliton, then either
M is stationary or it splits as a product R* X N and f is a function on the Euclidean factor.

This theorem informs our approach to classifying homogeneous gradient Bach soli-
tons in the next section.
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4 Gradient bach solitons

In order to examine and classify the gradient solitons of the Bach flow on homogene-
ous 4-manifolds, we consider the four configurations of homogeneous 4-manifolds that
are found by “pulling off copies of R.” More explicitly, by Theorem 3.17, the solitons
will be of the form R*, R3 x N', RZ x N2, R x N3, or N* (where N* is necessarily homo-
geneous). The first and last case we will call non-split manifolds, the others may be
called the 3 X 1,2 x 2, and 1 X 3 cases, respectively. For each of these cases (and for the
remainder of the paper), it will be assumed that the product manifolds are equipped with
the appropriate product metric g = g, X gy. Table 1 summarizes our findings regarding
each type and thus proves the general theorem stated in the introduction. Prior to doing
so, we set up the conventions used throughout this section.

From (3), we know that for homogeneous manifolds, the equation for a gradient Bach
soliton is given by:

1
Hessf = cg + EB
and can be represented in coordinates as:

V,«fo =cg; + %BU

In order to make the following proofs more clear, we will consider how the above equation
can be given by matrices. In order to do this, we will establish conventions that will hold
for the remainder of the section unless otherwise noted. We will always choose a basis so
both the metric and the Bach tensor are diagonal. (This is always possible, per the spectral
theorem.) Since the metric and the Bach tensor are diagonal, Hess f must also be diagonal
so V,V,f =0 fori # ;. One very important statement in Theorem 3.17 is that the potential
function depends on only the Euclidean factor of the product manifold. Let V,V,f = f;,.
Thus, in general, we see that the gradient Bach solitons can be represented by the following
equality:

fo 0 0 0 g0 0 0 0 By 0 0 O
0 /iy 0 0[_ |0g; 0 0f 1]0B; 0 0
0 0f 0 0 0 gy, 0|72/ 0 0 By O
0 0 0 f 0 0 0 gy 0 0 0 By

Recall from the introduction the generalization stated as Theorem 1.4. To prove this theo-
rem, we will simply examine each type of manifold and assess the solitons. The following
table will summarize this investigation with one notable exception: in the R x N? case, we
are able to prove that non-Bach-flat gradient solitons must be expanding.

4.1 Non-split manifolds

Theorem 4.1 (R*, g,) is a Gaussian soliton.
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Proof We know from the equation for the Bach tensor that (R4, 8o) is Bach flat, that is,
Blj =0foralli,j=0,1,2,3, so Hessf = cg. By Theorem 3.17, fis a function on R*. Thus,
for any orthonormal basis, R* is a gradient Bach soliton with potential function

fxy,z,w) = %c(xz+y2+z2+w2)+ax+by+dz+hw+k

fora,b,d, h, k € R.
Since there are no restrictions on ¢, we see that this is the Gaussian soliton. O

Proposition 4.2 Consider a non-split, homogeneous 4-manifold N* # R* with metric gy.
Then, N* is a gradient Bach soliton if and only if it is Bach flat.

Proof Consider a non-split, homogeneous 4-manifold N* with metric g. By the converse
of Theorem 3.17, since N* is not a product manifold, it must have constant potential func-
tion and is therefore stationary. Since the potential function is constant, Hess f = 0. Conse-
quently, any soliton has the form —%B = cg. Taking the trace of each side, we see that

0= —%trB: treg = 4c

and so it is necessarily true that ¢ = 0 and the soliton is steady.
Since ¢ = 0 always, B = 0 always and thus the manifold must be Bach flat. O

4.2 Manifolds of the formR3 x N'

Remark 4.3 For a manifold of the form R? x N! with metric g = g, X gy, We know that
N' = R! or S'. Thus, any manifold of this form is flat and consequently Bach flat.

Proposition 4.4 Homogeneous manifolds of the form R x N' with metric g = g, X gy are
steady gradient Bach solitons with linear potential functions.

Proof Consider a homogeneous manifold of the form R3 x N!' with metric g = g, X gy-
We know from Remark 4.3 that any manifold of this form is Bach flat. So for any gra-
dient, Bach soliton Hessf = cg. By Theorem 3.17, we know that f(x,y,z) : R> - R. So
V3 Vif = 0 = cgs3. Since the metric is positive definite, ¢ = 0. Therefore, the gradient Bach
solitons are steady.
Consequently, Hessf = 0, so f,, =fyy =f,. =0.Thus, f(x,y,z) = ax+ by +cz+d.
O

4.3 Manifolds of the form R2 x N?

In his 2018 paper, [11], Ho finds homogeneous gradient solitons of the form R? x N2. Ho
proves that both R? x §? and R? x H? are a nontrivial soliton of the form:

Hessf =B+ %g
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for any function f of the form f(x,y) = %(}c2 + %) + k. Note the difference between Ho’s
definition of a gradient Bach soliton and that of this paper. Ho has chosen to place the
metric term on the right hand side of the equation switching the conventions of shrinking/
expanding. We will prove that Ho’s examples are the only examples of this type.

Theorem 4.5 If a manifold of the form R? x N* equipped with product metric g, X gy is a
non-Bach-flat gradient Bach soliton, then it is a shrinking soliton. Furthermore, the soliton
is steady if and only if it is Bach flat.

Proof Consider a homogeneous manifold of R? x N2, Using the following equations from
[8, 11]

I 1y I (e 2 ap
B =3V, V.S - 3¢l [VaVaSM — VS + 7 ((50) = (1) ] in M
I I 1 (o2 2 ©
— N .
By= 3V,VSx - 38} [vkv,cs,V = 3VaVuSu+ 7((5v)" = (5w)) ] in N

where M = R%, N = N2, S w and Sy, are the respective scalar curvatures, and g, and g are
their respective metrics. Recall that homogeneous 2-manifolds have constant scalar curva-
ture, thus we see that:

1 1 1 1
By = E(SN)zgoo B, = E(SN)zgll By, = —E(SN)zgzz By; = _E(SN)2833-

Since R? x N2 is a gradient Bach soliton, the following system must hold.

Ju8o0 0 00
0 £, 00
0 0 00
0 0 00

(L2 +¢)sm 0 0 0

) 0 (L2 +¢)an 0 0

0 0 <;_i(SN)2 + C)é’zz 0

0 0 0 (;—i(sNﬁ + c)g33

Thus, 0 = (;—J(SN)2 + c)gil- for i = 2, 3. Since the metric is positive definite, we know that
c= i(SN)z. Thus ¢ > 0 and the soliton must be steady or shrinking.

The soliton is steady if and only if Sy, = 0 which happens if and only if the manifold is
Bach flat.

If the manifold is non-Bach-flat, then ¢ > 0 and soliton must be shrinking. O

Scaling S? and H? so that S = 1 = —S;p, we see that ¢ = 2]—4 and the potential func-
tion is of the form f(x,y) = i(x +y)? + ax + by + d. Again, this differs slightly from Ho
because of our initial definition of a gradient Bach soliton. This confirms that the gradient
solitons found by Ho are in fact the only gradient solitons on R? x S? and R? x H? up to
scaling.
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Corollary 4.6 The potential function of a steady gradient Bach soliton of the form R? x N*
equipped with product metric g, X gy must be linear.

Proof Since R? x N must be steady, we know that f,, = f,y = 0. Using calculus, it is clear
that f(x,y) =ax+ by +d. O

Corollary 4.7 The manifold R* x R? with metric g = g, X gy, where gy is a flat metric,
which is a steady gradient Bach soliton with linear potential function.

Proof Consider a homogeneous manifold of R? x R2. Using (6), we know that R? x R? is
Bach flat. By Theorem 4.5, we know that the soliton is steady. By Corollary 4.6, the poten-
tial function must be linear. O

4.4 Manifolds of the formR x N3

We begin by stating and proving statements that apply to all homogeneous manifolds of the
form R x N7, then we will examine specific manifolds of this form.

A few notes before stating the theorem. We will look at a potential function f : R — R.
Since I use x in later computations to mean something else, I have chosen to make f'a func-
tion of r € R. Furthermore, note that, in this potential function, ¢ € R is the same ¢ such
that Hessf = c¢g + %B. Thus, is we have a steady soliton, the potential function necessarily
lacks that term.

Lemma 4.8 A gradient Bach soliton of the form R X N3 with metric g = g, X gy has poten-
tial function of the form f(r) = 2cr* + ar + b fora,b € R.

Proof Since the manifold is a soliton, we know that Hessf = cg + %B. By Theorem 3.17,
that fis a function on r € R and consequently tr Hessf = f”/(r). Since the Bach tensor is
trace-free:

tr Hessf = tr(cg) + tr B => f""(r) = 4c

Using calculus, we see that this implies that f(r) = 2cr? +ar + b for a,b € R. a

In order to examine specific manifolds, we will need the following theorem. This theo-
rem enables us to use algebra to determine which metrics will produce solitons.

Theorem 4.9 Consider a manifold of the form R x N* equipped with metric g = gy X gy-
The manifold is a gradient Bach soliton if and only if
B B B
“u_ T2 788 _ e forc e R @)
8 82 83
Proof Consider a manifold of the form R x N3 equipped with metric g = g, X gy. Suppose

that this manifold is a gradient Bach soliton. Then:

Hessf =cg+ %B
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where f : R — R. Examining the components of the flow:

/"800 000 8o 0 0 O By 0 0 O
0 000 _|[O g; O O + {0 By, 0 O
0 000[7°l0 0g, 0|72/ 0 0 B, 0
0 00O 0 0 0 gs3 0 0 O By
This system yields the following equalities.
1 1 1 1
1800 = 5300 = C80o - 5311 =81 - 5322 =C8» - 5333 = C833

It follows that:
B B B
¢=£=ﬁ=—zc forc € R
811 822 833

Thus, the desired equality holds.

Further, since By, = —2cggo + 2" (1) g0y = 6¢gq0> We see that ? = 6bc.
00

Suppose, on the other hand, that
B B B
2o 3o g forc e R
81t 82 833
Then, —%B” =cg —%Bzz = cg,,, and —%B33 = cg33. Taking the trace of the Bach tensor:
trB = gijBij
=8"Boy +8''Byy + g7 By, + 8By
= gOOBoo - 28”0811 - 28220822 - 28330833
= "By — 6c

Since B is trace-free, we see that By, = 6cg,- By Lemma 4.8, f”'(r) = 4c, so:

1 1
f”goo - EBoo =dcgy — 5(6‘7800) = €800

Thus, ViV}f - %Bij = cgy foralli,j=0,1,2,3,soHessf = cg + %B. Therefore, R X N3 is a
gradient Bach soliton. O

From this theorem, we are able to classify the resulting solitons of the form R x N>. To do
so, we will need the find components of the Bach tensor using the following equation from
[10] and [8].

B =<—L(A(2)S(2)) _ l [(l Ric |(2))2 —_ 1(5(2))2] >g
00 12 4 3 0
—LA0Ric@ _ Lrogo e @(Ric? @ Ric®
Bjk _EA R]Cjk - EA S 8k — gS;/.k —2tr'*(Ric*™ ® Ric )jk 8)
7 .2 3 . 5
+ gs@) Ric )+ S (I Ric |@)g; — E(S<2>)2gjk

where MV = R and M@ = N3,
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Corollary 4.10 If a manifold of the form R x N3 equipped with metric g = g, X gy is a non-
Bach-flat gradient Bach soliton, then it is an expanding soliton. The soliton is steady if and
only if it is Bach flat.

Proof Consider a manifold of the form R x N3 equipped with metric g = g, X gy-
From Theorem 4.9, we know that:

Bu _Bn _Bs

= =-2c
811 822 833
Since the Bach tensor is trace-free, we know that:
By, By, By
—Byy=—81+—8n+—8n
811 822 833

= —2c(gy, + & + 833)
Byy = 2c(gyy + 820 + 833)

Using (8), since S is constant:
1 v Lo
By, = 1 [(| Ric )" - E(S ) ]goo

By Cauchy-Schwartz, we know

tr ( Ric (2))

|Ric@|? >
3

1
= —(§@ 2’
3( )
and thus B, < 0. Since the metric is positive definite, this implies ¢ < 0, where ¢ = 0 if

and only if B, = 0. By definition, a soliton is expanding if ¢ < 0.
If c =0, By, = 0 then:

foo 000 00 0 0
0000[_ 1[0B;, 0 0O
0000[ 2(0 0 By, O
0000 0 0 0 By

Clearly, this implies that B; = 0 fori = 1,2, 3. Thus, if the soliton is steady, the manifold is
Bach flat.

If the soliton is Bach flat, then Hessf = cg, so 0 = cg; fori =1,2,3 so ¢ = 0 and the
soliton is steady. a

Remark 4.11 Recall that rescaling is a diffeomorphism of R. Consequently, shrinking and
expanding are diffeomorphic to one another. That is, contracting is the same as stretching
after diffeomorphism. Applying this to our soliton, we see that though % 800 < 0 under the
Bach flow ([10, Proposition 2.2]), R x N3 is expanding as a soliton.

In order to use this theorem to find metrics that produce solitons, we will need
explicit representations of the Bach tensor. These can be found using (8). The Bach
tensor for solitons of the form R x N° where N three-dimensional unimodular Lie
group is given in [10]. For other Lie groups, one can find the necessary information
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using the structure constants (see [16] [22] [12]) and the equations in [10] to find the
necessary information for (8). It should be noted that the calculations involved in find-
ing the components of the Bach tensor are non-trivial and require the use of math-
ematical software.

We will begin investigating manifolds of the form R x N3 by examining the covering
spaces for the nine manifolds with compact quotient. The qualitative behavior of the
compact quotients is examined in [10]. The gradient solitons of the compact quotients
themselves are easily classified by Corollary 3.7. We, however, are interested in the
solitons on the covering spaces themselves.

Proceeding, we will examine the 9 manifolds in [10] to see if there is a metric that
produces a gradient Bach solitons. The Lie groups with compact quotient are given by
the unimodular, solvable Bianchi classes. That is, Bianchi classes I, II, VI, VI, VIII,
and IX. There are three additional cases which are not Lie groups, but have compact
quotient.

By Theorem 4.9 we need only show that a metric satisfies (7). If there are no met-
rics that satisfy the string of equalities, then the manifold produces no solitons. The
general methodology is to use the explicit representation for the Bach tensor in the
above equality, then see what conditions must be placed on the metric to produce a
soliton. For ease of notation in calculations, we will let:

1

x: N — 5 Z: N = ———
81 Y= 8n g3, P 6(det )2

To clarify the consequences of each example, the metric notations will be used. These
proofs heavily rely on the fact that Reimannian metrics are positive definite. That is, g;; > 0
is a strict inequality. This allows us the use the quotients in (7) and to rule out potential
solitons. A summary of our results is as follows. The proofs will be in subsequent sections.

Theorem 4.12 For a homogeneous manifold of type M = R! x N> equipped with the metric
8 = 8o X gy the following hold:

a. IfN* =R3, then a metric g = g, X gy, where gy is a flat metric, produces a gradient

Bach soliton with linear potential function.

IfN3 = Nil, Solv, §Z(2, R), R x S2, R x H? then g is not a gradient Bach soliton

IfN? = EQ2), H?, then g produces a Bach soliton if and only if it is Bach flat.

d. If N> =S5, then a gradient Bach soliton is produced if and only if the metric is of the
from g\, = g,y = gazorifitisisometric to g,; = g,y = 48s3. These solitons are catego-
rized in Theorems 4.23 and 4.25, respectively.

2

44.1 R xR3

Proposition 4.13 The manifold R x R3 with metric g = g, X gy, where gy is a flat metric, is
a gradient Bach soliton with potential function f(r) = ar + b or some a € R.

Proof We know from (8) that B;, = 0 fori = 0, 1,2, 3. By Corollary 4.10, we know that the
soliton is steady, so ¢ = 0. So by Lemma 4.8, f(r) = ar + b fora,b € R. a
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4.4.2 R x Nil

We know from [10]

By = —B(go0)’ (1) Bip = —5P(800)*(811)°
By, = 3ﬂ(800)2(811)4822 By = 3[)’(g00)2(g1])4833~

Proposition 4.14 The manifold R X Nil with metric g = g, X gy; is not a gradient Bach
soliton.

Proof Proceeding by contradiction, suppose R X Nil with metric g = g, X gy; is a gradient
Bach soliton. Then, using (7), we see that:

B B
=2 = 58202 (81)" = 3B(800) (811"
811 822
However, this implies that —5 = 3. Thus, R X Nil is not a gradient Bach soliton. O

4.4.3 R x Solv

We know from [10]
By = _ﬁp(glh822)(800)3 By, = —ﬂCI(gu’gzz)(goo)zgll
Byy = —Bq(82: 811)(800) 822 Bz = 3Pp(g11-82)(800) 833
where

plx,y) = A+ x3y + xy3 + y4 q(x,y) = 53+ 3x3y - )cy3 - 3y4.

Proposition 4.15 The manifold R X Solv with metric g = g, X &g, IS not a gradient Bach
soliton.

Proof Proceeding by contradiction, suppose R X Solv with metric g = g, X gg,, is a gradi-
ent Bach soliton. Using (7), we see that:

By, _ Bs; 2 _ 2
—=— = —fq81182)8w0)° =38 P(811:822)(800)
g 833
Letting x = g,; and y = g,
—q(x,y) = 3p(x,y)
=5x* = 3%y + 097 + 3y = 30t + 3%y + 3% 4+ 3y*
—2x(4x® + 6x%y +y*) =0

Then, either x = 0 or 4x> + 6x%y 4+ y3 = 0. The first statement is not possible because the
metric is positive definite. The latter statement holds if and only if x = y = 0 forcing either
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g1 =0or g, =g, =0, contradicting positive definiteness. Thus, R X Solv is not a gradi-
ent Bach soliton. O

444 R x SL(2,R)

We know from [10]

By = —Bp(=811- 82+ 833)(8w0)’ By = —Bq(—g11- 82 833)(800) 811
By, = —Bq(8r: —811-833)(800) 82 Bz = —Bq(833: —&11- 822)(800) 833
where
Py, ) =x =0+ + 2y +x(—y + Y2+ vy —-D)+y =y -y + 7
q(x,y,2) = 5xt — 3x3(y +2)+ xzyz + x(y3 - yzz - yz2 + z3) - 3y4 + 3y3z + 3yz3 -3z

Proposition 4.16 The manifold R X §Z(2, R) with metric g = g, X 8sio.r) Cannot be a gra-
dient Bach soliton.

Proof Proceeding by contradiction, suppose R X §Z(2, R) with metric g = g, X 8sieR) isa
gradient Bach soliton. Using (7), we see that:

B _ By
82 833
90, —x,2) = q(z, =X, y)
S5y +3xy3 =3yl z—xy’z =Xy —xPyz 52+ 3x -3y - — ¥z —xPyz

+xy7? 4+ y22 = 3x* = 3837 — 3x7® - 374 +x7y% + y3z — 3x* = 3x%y — 3xy® — 3y*

2(y — 2)(x° + 3xy? + 2xyz + 3x7%

Y 2P A 2 AT D

The only potential real solution is that y = z. As above, because the metric is positive defi-
nite, the last term in the product is nonzero. Examining the consequences of this using the
other equations in (7), we see that the following must hold.

Bii _B»
811 822
q(=x,y,2) = q(y, =x,2)
5x* +3x%y + 383z + xPyz — xy® + xy’z 5y* + 3xy® — 3y3z — xy*z — Xy — x%yz

+xy2? —x22 = 3y* + 3y°z + 3y - 3 +ayz? + 2’ = 3xt - 3x°z - 3xg’ - 3¢

8x* + 4x3y + 6x37 + 2x%yz — 4xy?

120022+ 2% — 8yt + 6y 2 + 2y 0

However, if y = z then:
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8x* + 4x3y + 6x37 + 2x%yz — 4xy? _ 8x* + 4x3y + 6x3y 4 2x%y? — 4y’
+2xy°7 +2x23 — 8yt + 6y 7 +2y27 T +2x)° + 2xy° — 8y* + 6y* + 2y*
= 8t + 1027y + 2x%?
#0
Therefore, if y = z,, then By, / g1, % By, / 5. Thus, y # z. Therefore, R x SL(2, R) is not
a gradient Bach soliton. O

445 R x (R x §?)

Proposition 4.17 There are no gradient Bach solitons on R x (R X S?) with metric
8 =80 %X (8r X gs)-

Proof Consider the manifold R X (R x S?) with metric g = g, X (gg X g52)- Rescaling the
sphere to have scalar curvature S, = 1, from Theorem 4.5, we know:

1 1 1 1
By = Egoo B, = 5811 By, = —Egzz By; = _5833-

This contradicts Theorem 4.9. Therefore, there are no gradient Bach solitons on
R x (R x S?) with potential function on R. a

44.6 R x (R x H?)

Proposition 4.18 There are no gradient Bach solitons on R X (R X H?) with metric
8= 80X (8gr X &)

Proof Rescaling the H? to have scalar curvature S 2 = —1, from Theorem 4.5, we know:
1 1 1 1
By = Bgoo By, = 5811 By, = —Egzz By = —5833’
and thus the proof follows exactly as in the proof for R x R x S? above. a
447 R X E(2)

We know from [10]

By = —Bp(=811.822)(800)’ By, = —Pq(—811.822)(800)° 811
By, = —Bq(82, —811)(800)2822 By = 3ﬁP(—g11v822)(800)2833

where p(x, y) and g(x, y) are as above.
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Proposition 4.19 The manifold R X E(2) with metric g§ = gy X gpq) is a gradient Bach
soliton if and only if it is Bach flat.

Proof Consider the manifold R x E(2) with metric g = g, X gg()- Using (7), we see that:
Bu_B»
811 82
q(=x,y) = q(y, —x)
Sxt =33y + 09 = 3y* = 5y* = 3y x + o — 34
(@ =P+ = xy+2y) =0
The only two real, nonzero solutions are that x = y or x = —y. Since our metric is positive

definite x # —y. Thus, x = y is the only candidate. Proceeding, we will see that the equali-
ties from (7) are satisfied if and only if x = y.

Bu _Bs
811 B 833
—q(=x,y) = 3p(=x,y)
—5x* + 3%y — P + 3y* = 3t = 3%y — 3% 4+ 3y*
—2x(4x> = 3x%y -y =0
Since x # 0, 4x> — 3x2y — y> = 0. We see that x = y holds.

By _ By

82 833
—q(y, —x) = 3p(—=x,y)
=5y 4+ 3xy® — Py +3x* = 3t = 3%y — 3 + 3y*
—2y(4y? = 3xy* —x) =0
Since y # 0, 4y> — 3xy? — 2x> = 0. Again, we see that x = y holds.
Thus, g, = g,,- This condition is equivalent to being Bach flat by the following lemma.

Therefore, by Theorem 4.9 and Lemma 4.20, R X E(2) is a gradient Bach soliton if and
only if it is Bach flat. a

Lemma 4.20 The manifold R X E(2) with metric § = gy X &g, is Bach flat if and only if
811 = 822

Proof Factoring the components of the Bach tensor for R X E(2):

Boo = =B (811 — 820)° ((&11)° + 81182 + (822)7) (800)’

By, =-B(gn - 822)(5(811)3 +2(811)%(82) + 2(81)(820)* + 3(822)3)(800)2811
Byy =P (8 — 811)(3(811)3 +2(811)%(82) + 2(811)(820)* + 3(822)3)(800)2822
By =3 (g, — 822)2((811)2 +8118n+ (822)2)(800)2811

Since our metric is positive definite B; =0 if and only if g,; — g, =0 if and only if
811 = 82- O
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Proposition 4.21 The manifold R x H? with metric g = g, X gy is the trivial gradient Bach
soliton. That is, R x H is a Bach soliton if and only if it is Bach-flat.

Proof Following the explanation from [10], we know that H? is a one parameter family of
homogeneous metrics. Consequently, all metrics are Einstein since they are scalar multi-
ples of the standard metric. Thus, as Helliwell concludes, the flat metric remains flat in the
Bach flow. Therefore, the Bach flat metric produces a gradient soliton. a

449 RxS3

Before delving into this case, it is important that the reader note that I mean S° to be syn-
onymous with SU(2). That is, the manifold does NOT necessarily have the round metric,
but rather has any left-invariant metric on Lie group SU(2). My choice to call this S was
motivated by wanting to maintain consistency between the cases presented by Helliwell in
[10] and this paper.

‘We know from [10]

By = =B p(811- 82+ 833)(800)’ By, = =P q(g11- 822+ 833)(800) 811
By, = =P q(82- 833 811)(800) 822 By = —P (833 811+ 822)(800) 833

where

Py, =x' =X+ + Pz +x(—y + Yz +y?E - D) +y =y -y +
q(x,y,2) = 5x* = 3°(y + 2) + Xy +x0° = y'z -y + 2) = 3y* + 3y’z + 3y’ - 3¢*

Proposition 4.22 The manifold R x S® with metric g = g, X 8su() s a gradient Bach soliton
if and only if our metric is g1| = g,, = gz or if it is isometric to g|| = g,y = 4833

Proof Proceeding, consider R X $® with metric g = g, X 8su)- We will show that the (7)
holdsifandonlyif x=y=z,x=y=4z,x=4y=z,0ordx=y =12
We will first consider that case where x =y = z:
By By _ Bs 2
— === =——=—0q(11-811-811)(8w)
8ir 8»n 833
This clearly satisfies (7).
Proceeding to examine the equalities in general, we see that:

B _ By
811 822
qx,y,2) = q(y,2, %)
5x% = 3%y = 33z + 2yz + 0y — 0%z _ 5y* = 3y3z = 3xy? + xy?z + yz2d — xy?
—xyz2 +xz> = 3y* + 3y3z + 3yz3 — 3 —xPyz+ 3y = 32 +3x23 + 3637 - 3t
2(x — y)(Ax3 + 242y = 3x22 4+ 2002 2xyz+ 40 = 3y2z—-22) = O
)

@ Springer



Annals of Global Analysis and Geometry

Bu _ By
811 833
q(x,y,2) = q(y,z,%)
5x* = 3x%y = 3%z + Pyz+xy} — Pz 524 =3x2 = 3y +xy? + Pz —xPyz
—xyz* + x2° = 3y* + 3y*z 4+ 3y — 37 —xy?z 4+ 3z = 3x* 4+ 383y + 3x° — 3y*
2(x — 2)(4x3 — 3x2y + 2x%7 — 2xyz 0
+2x72 =y = 3y2 +47%) T
(10)
Bn _Bs
82 833
q(,z,x) = q(y,z,x)
5yt =3y’ e -3y + sy — w52t —3x2 -3y +wy + Pz — Xz
—x%yz +x%y = 37 +3x23 + 3837 - 3t —xy2z + 3z = 3x* + 3x%y + 3xy® — 3y*
2y —2)(® +3xy> + 2xyz + 3x2 4y3 —2y?7 -2y —47°) = O
(1D

Case 3 Suppose that x = y. Then, (9) is satisfied. Moreover, this means that in order for
(10) to be satisfied:

0 =4x’ — 3% + 20%z — 2X%z + 2x2% — xX° — 3xz® +47°
=72 (4z—x)
Consequently, x = 4z. We see that this equality not only holds in 11, but is forced:
0=x"+3x" +2x%z + 3xz% —4x’ — 2%z — 2x7% — 47
=7 (x—42)

Thus, x = y = 4z maintains all three equalities.
Case 4 Suppose that x = z. Then, (10) is satisfied. Moreover, this means that in order
for (9) to be satisfied:

0 =4x> +2x%y = 3x3 + 2xy” — 2%y + 4y° = 3y’ x — x°
=y’ (4y —x)
Consequently, x = 4y. We see that this equality not only holds in (11), but is forced:
0 =x°43x" + 262y + 3x° — 4y’ — 200> — 2%y — 4
=y (x—4y)

Thus, x = 4y = z maintains all three equalities.
Case 5 Suppose that y = z. Then, (11) is satisfied. Moreover, this means that in order
for (9) to be satisfied:

0 = 4x° + 2x%y = 3x%y 4+ 2xy” — 202 + 4y =3y’ —®
= P(dx—y)

Consequently, 4x = y. We see that this equality not only holds in (11), but is forced:
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0 =4x> = 3x%y + 2x%y — 2xy* + 202 —y> = 3y* + 4y°
= P(x—y)

Thus, 4x = y = z maintains all three equalities.
Case 6 Suppose that x #y, x # z, y # z. Then, only other permissible metric would
need to satisfy the system of equations:

4x3 +2x%y = 3x%z + 2xy* — 2xyz+ 4y =3y 2 -2 =0
4x3 = 3x%y + 2x%z — 2xyz + 2422 — 2 = 3y22 + 422 =0
X 4307 + 2xyz7 4 3x2 — 4y — 227 = 2972 — 477 =0

Subtracting the first equation from the second yields:

5x%y = 5x%z+ 207" — 2027 + 5y’ = 3’2+ 3y - 5 =0
(y —2)(5x% + 2xy + 2xz2 + 5> + 2y7+ 52%) = 0

Thus, y = z contradicting the original assertion. Moreover, the metric is positive definite.
Thus, this case yields no potential metrics.
Therefore, by Theorem 4.9, R x §° is a Bach soliton if and only if g;; = g5 = &35,

811 = 82 = 4833, 811 = 482 = 833, 0r 4811 = & = &33- O

Theorem 4.23 If g, = g5, = &33, then the soliton produced by R X S* is Bach flat and
steady.

Proof Suppose g,; = g, = g33- We know by Theorem 4.22 that this is the metric of a
soliton on R X S3. Then:
B _Bn _ By

= — =~ q(g11-811-811)(&0)" = —BO0)(gpp)* =0
811 822 833

Thus, ¢ = 0, so the soliton is steady.
Moreover, since

o)t (P R - - -+t =0

3

plx,x,x) = x
qx,x,x) = Sxt =320+t a0 - -+ -3t 3t 3t -3t =0

We know that B;; = O for all i = 0, 1, 2, 3. Therefore, the metric is Bach flat. a
Remark 4.24 Note that, in the previous proof, one could have referenced Corollary 4.10

instead of calculating the Bach tensor. The calculation was included to demonstrate an
alternate method in that works when you know the components of the Bach tensor.

Theorem 4.25 If g,, = g,, = 4g33. then the soliton produced by R x S* is expanding and
immortal.

Proof Without loss of generality, suppose g;; < g2, < g33. Consider g,; = g5, = 4833- We
know by Theorem 4.22 that this is the metric of a soliton on R x S°. Then:
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By, By  Bj 2
— = —==——==—Fq(811-811-4811)(800)” = —2¢
811 822 833 et HAS00

Observe that:
q(x,x, ix) =5x* - 3x3<§x> + ix“ +x(x3 — é—l‘x3 - %f + 6—14x3>
3 3 3
B A I P N
X +4x +64x 256x
4 15 1 1 1 1 3 3 3 )
= 5-——+-+4+1--=-—4+—=—=-3+=+ = - —
x( 4+4+ 4 16+64 +4+64 256
__3 4
256
Thus, ﬂ%(gu)zl(goo)z > 0. Since
3
=2¢ = free (@) (8)”

we see that ¢ < 0. Recall the soliton is of the form Hess f — %B = cg. Thus, the soliton with
the given metric is expanding.

Using Theorem 3.13, the Bach tensor is conformally invariant of weight w = =2, so
7, = V1 —4ct. Since ¢ < 0, we see that 7, is defined for ¢t € (ﬁ, oo). Thus, the soliton is
immortal. O

Remark 4.26 This result aligns with the analysis of the Bach flow of R x $3in [10].
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