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Abstract
We examine homogeneous solitons of the ambient obstruction flow and, in particular, 
prove that any compact ambient obstruction soliton with constant scalar curvature is triv-
ial. Focusing on dimension 4, we show that any homogeneous gradient Bach soliton that 
is steady must be Bach flat, and that the only non-Bach-flat shrinking gradient solitons 
are product metrics on ℝ2

× S
2 and ℝ2

× H
2 . We also construct a non-Bach-flat expanding 

homogeneous gradient Bach soliton. We also establish a number of results for solitons to 
the geometric flow by a general tensor q.

Keywords  Homogeneous manifold · Gradient soliton · Bach tensor · Bach flow · Ambient 
obstruction tensor · Ambient obstruction flow

1  Introduction

The geometric flow for a general tensor q(g), the q-flow, is a one parameter family of 
smooth metrics such that

The resulting q-soliton equation is:

where X is a vector field. Letting X = ∇f  , a (normalized) gradient soliton has the form:

(1)
{

�tg = q

g(0) = h.

(2)
1

2
L Xg = cg +

1

2
q

(3)Hess f = cg +
1

2
q.
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The coefficient on q may differ from other definitions found throughout the literature. We 
chose this coefficient to show that gradient solitons are self-similar solutions to the q-flow 
(Theorem 3.13). It is easily shown that this definition aligns with definitions lacking the 
coefficient. We will use the terms expanding, steady, and shrinking to describe when c < 0 , 
c = 0 , and c > 0, respectively. Moreover, a soliton is said to be stationary if it has constant 
potential function.

The goal of our work is to generalize results for specific flows using the properties of q 
and then show that there are examples of these generalizations. One such general result is:

Theorem 1.1  For a divergence-free, trace-free tensor q, any compact q-soliton is q-flat.

This theorem is a generalization of the well-known result for Ricci solitons that any 
compact Ricci soliton with constant scalar curvature is Einstein (see [19]). By the sec-
ond Bianchi identity, the Ricci tensor is divergence-free if and only if the scalar curva-
ture is constant. Moreover, for the Ricci tensor requiring constant scalar curvature is 
similar to the trace-free condition.

Two examples of divergence-free and trace-free tensors are the Bach tensor, B, in 
dimension n = 4 , and ambient obstruction tensor, O , in even dimension n ≥ 4 . To aid 
our exposition, we provide detailed definitions of these tensors, their flows, and their 
solitons in Sect.  2. Specifically, Definition 2.1 defines ambient obstruction and Bach 
solitons. In applying Theorem 1.1 to the Bach tensor, we get [11, Theorem 3.2]. Moreo-
ver, applying Theorem 1.1 to the ambient obstruction tensor yields:

Theorem 1.2  Any compact ambient obstruction soliton with constant scalar curvature is O
-flat. In particular, all compact homogeneous ambient obstruction solitons are O-flat.

The following is a generalization of [19, Theorem  1.1] applied to the ambient 
obstruction tensor.

Theorem 1.3  A compact gradient ambient obstruction soliton with non-positive Ricci cur-
vature must be stationary.

Our results are motivated by a recent theorem of Petersen and Wylie in [21] that 
implies that non-flat homogeneous gradient solitons of the q-flow, where q is diver-
gence-free, are always products of the form ℝk

× Nn−k . In the case of Ricci solitons, this 
implies that N is an Einstein manifold [18, Theorem 1.1]. We apply this theorem to the 
case of the Bach tensor and find that the possible metrics on N are more complex. How-
ever, we obtain the following classification in the steady and shrinking cases.

Theorem 1.4  Any homogeneous gradient Bach soliton that is steady must be Bach flat and 
the only non-Bach-flat shrinking solitons are product metrics on ℝ2

× S2 and ℝ2
× H2.

Remark 1.5  There are non-trivial homogeneous four-dimensional Bach flat metrics. For 
example, Einstein metrics and (anti)self-dual metrics are Bach flat. Moreover, there is a 
classification of simply connected homogeneous Bach-flat 4-manifolds. (See [1] and [7].)

Remark 1.6  There are non-Bach-flat expanding homogeneous gradient Bach soli-
tons. We find one such soliton on ℝ × S3 with metric g = g0 × gSU(2) , where gSU(2) is any 
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left-invariant metric on Lie group SU(2). We show this is the only expanding soliton on a 
manifold of the form ℝ × N3 where N3 is a unimodular Lie group.

The paper is organized as follows. In Sect. 2, we provide a brief background of the Bach 
and ambient obstruction tensors, as well as a background on geometric flows in general. Next, 
in Sect. 3, we establish a number of results for a general tensor q and apply them to the ambi-
ent obstruction tensor. Then, in Sect.  4, we begin to classify the gradient Bach tensors of 
homogeneous 4-manifolds. The results of this partial classification are summarized in Table 1.

2 � Background

In dimension 4, the Bach tensor is symmetric, divergence-free, trace-free, and conformally 
invariant of weight -2. That is, for a positive, smooth function � , if g̃ = 𝜌2g, then B̃ =

1

𝜌2
B . The 

Bach tensor is realized as the negative gradient of the conformally invariant functional given 
by:

where Wg is the Weyl tensor and |Wg|2 = gipgjqgkrglsWijklWpqrs . Since this functional is only 
conformally invariant in dimension n = 4 , for n ≠ 4, the Bach tensor is not conformally 
invariant either. Moreover, the Bach tensor is not divergence-free for n ≠ 4 . For this reason, 
we will only consider the Bach tensor for n = 4 . Though there is an explicit representation 
of the Bach tensor for arbitrary n, provided in [5], the Bach tensor for n = 4 is given by:

W(g) = ∫M

|Wg|2dVg

Table 1   Summary of results

Split Manifold Type of 
soliton

Permissible metrics Potential function

N4
ℝ

4 Gaussian Bach flat (any) f (x, y, z,w) = c(x2 + y2 + z2 + w2) + ax

+ by + dz + hw + k

N4 Stationary Bach flat f (x, y, z,w) = k

ℝ
3
× N1 Steady Bach flat (any) f (x, y, z) = ax + by + dz + k

ℝ
2
× N2

ℝ
2
×ℝ

2 Steady Bach flat (any) f (x, y) = ax + by + d

ℝ
2
× S2 Shrinking See [11] f (x, y) = c(x2 + y2) + ax + by + k

ℝ
2
× H2 Shrinking See [11] f (x, y) = c(x2 + y2) + ax + by + k

ℝ × N3
ℝ ×ℝ

3 Steady Bach flat (any) f (x) = ax + b

ℝ × Nil – None –
ℝ × Solv – None –

ℝ × ŜL(2,ℝ) – None –

ℝ × (ℝ × H2
) – None –

ℝ × (ℝ × S2) – None –
ℝ × E(2) Steady Bach flat ( g

11
= g

22
) f (x) = ax + b

ℝ × H3 Steady Bach flat f (x) = ax + b

 ℝ × S3 Steady Bach flat 
( g

11
= g

22
= g

33
)

f (x) = ax + b

Expanding g
11

= g
22

= 4g
33 f (x) = 2cx2 + ax + b
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To find a higher dimensional equivalent, for even n, we examine the gradient of the 
functional:

where Q(g) is Branson’s Q-curvature described in [4]. Though Q lacks some of the con-
formal properties of W, the functionals Fn

Q
 are conformally invariant for arbitrary even 

n. Moreover, Branson uses the Chern–Gauss–Bonnet theorem to show that in dimension 
n = 4 , Fn

Q
 is related to W by the equation:

thus they have the same critical metrics.
In [9], Fefferman and Graham examine the gradient of Fn

Q
 and introduce the resulting 

symmetric 2-tensor, the ambient obstruction tensor, which is noted as O . This tensor can be 
characterized as the obstruction to an n-manifold having a formal power series of asymp-
totically hyperbolic Einstein metric in dimension n + 1 [2]. Explicitly, the ambient obstruc-
tion tensor is given by the equation:

where P is the Schouten tensor and Tn−1 is a polynomial natural tensor of order n − 1 . The 
ambient obstruction tensor is only defined for even n. Like the Bach tensor in dimension 4, 
the ambient obstruction tensor is symmetric, trace-free, divergence-free, and conformally 
invariant of weight 2 − n . The ambient obstruction tensor can be viewed as a family of 
even dimensional tensors, where the dimension 4 ambient obstruction tensor is the Bach 
tensor. (See [2] and [15] for a more detailed background.)

In the last decade, Bahuaud-Helliwell, Helliwell, and Lopez have studied flowing a met-
ric by the ambient obstruction tensor. Bahuaud and Helliwell, in [2, Theorem C], consider 
the flow given by:

where h is a smooth metric on a compact manifold of even dimension n ≥ 4 and

In [2, 3], Bahuaud and Helliwell show short-time existence and uniqueness on compact 
manifolds for this flow. As Lopez explains in [15], the scalar curvature term “counteracts 

Bij = ∇
k
∇

lWikjl +
1

2
RklW

k l
i j

.

F
n
Q
(g) = ∫M

Q(g) dVg

F
4

Q
= 8�2�(M) −

1

4
W,

On =
1

(−2)
n

2
−2
(

n

2
− 2

)
!

(
Δ

n

2
−1
P −

1

2(n − 1)
Δ

n

2
−2
∇

2S

)
+ Tn−1

P =
1

n − 2

(
Ric −

1

2(k − 1)
Sg

)

(4)

{
�tg = On + cn(−1)

n

2

(
Δ

n

2
−1
S
)
g

g(0) = h

cn =
1

2
n

2
−2
(

n

2
− 2

)
!(n − 2)(n − 1)

.
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the invariance of O under the action of the conformal group on the space of metrics on M.” 
In [15], Lopez finds pointwise smoothing estimates and uses them to find an obstruction to 
long-time existence and to prove a compactness theorem for the flow (4).

For n = 4, we will call flow (4) the Bach flow, which is given by:

Note that, this is slightly different than the definition in [11]. Since homogeneous mani-
folds have constant scalar curvature, the equations for the ambient obstruction flow and 
Bach flow on homogeneous manifolds are given by:

respectively. Helliwell uses the latter equation in [10] to study the Bach flow on homogene-
ous compact product manifolds of the form S1 × K3.

The solitons of these flows are defined as follows.

Definition 2.1  An ambient obstruction soliton is a solution, (M, g), to the equation:

where cn is defined as above. In dimension n = 4 , the ambient obstruction soliton is the 
Bach soliton, given by:

These are called gradient if X = ∇f  , and the corresponding equations are

For the reader who is less familiar with geometric flows, we now give a brief back-
ground that will help motivate gradient solitons.

The primary objective of a first course in differential equations is learning methods 
to solve differential equations explicitly. Soon thereafter, we see that solvable differential 
equations are relatively rare. To gain valuable insights about a differential equation, one 
might examine the fixed points of the flow, classify them as stable or unstable, and even 
construct a phase diagrams. Applying this idea to geometric flows, we know that self simi-
lar solutions to a geometric flow are solitons. As such they act as fixed points. So when 
examining a new flow, it makes sense to try to find and analyze the solitons. To further 
limit these unknowns, one might choose to examine gradient solitons in particular.

The choice to examine gradient solitons provides one with a more restrictive, more 
familiar environment. Historically, analyzing gradient solitons has provided a lot of insight 
into the Ricci flow. The work of Hamilton, Ivey, and Perelman is combined to classify 
three-dimensional shrinking gradient Ricci solitons. (See, for example, [20] for further 

{
�tg = B +

1

12
ΔSg

g(0) = h

(5)
{

�tg = On

g(0) = h
and

{
�tg = B

g(0) = h
,

1

2
L Xg = cg +

1

2

(
On + cn(−1)

n

2

(
Δ

n

2
−1
S
)
g
)

1

2
L Xg = cg +

1

2

(
B +

1

12
ΔSg

)
.

Hess f = cg +
1

2

(
On + cn(−1)

n

2

(
Δ

n

2
−1
S
)
g
)

and

Hess f = cg +
1

2

(
B +

1

12
ΔSg

)
.
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discussion.) Further, in [17], Perelman observes that any compact Ricci soliton is a gradi-
ent Ricci soliton. Most notably, the study of Ricci solitons was imperative in Perelman’s 
proof of the Poincaré Conjecture. The study of Ricci solitons has continued to prove a 
bountiful source of information and is still a very large area of research. It is reasonable 
to hope that the study of gradient solitons for other flows (specifically the Bach flow and 
ambient obstruction flow) would prove similarly fruitful in the understanding of the behav-
ior of the flows and consequently the behaviors of the tensors themselves.

3 � Results for general tensor

In this section, we prove a number of statements for a general trace-free and/or divergence-
free tensor q. Applications of the theorem to the ambient obstruction tensor will follow 
subsequent corollaries. For the sake of simplicity, full proofs of these corollaries have been 
omitted, but appropriate connections will be made.

Recall from Sect.  2 that the ambient obstruction tensor, On n even, is trace-free and 
divergence-free. However, the reader should note that the tensor affiliated with the general 
flow (4) does not possess all of these properties.

One fact that proves useful in examining gradient solitons is the following proposition.

Proposition 3.1  Let q be a symmetric two tensor and (M, g, f) a gradient q-soliton (3). The 
potential function, f, has the property that

where Q is the dual (1,1)-tensor of q with respect to g.

Proof  Consider a gradient soliton of the q-flow, given by

Type changing into (1,1) tensor

If we simply take the trace of each of the terms, we see that then Δf = cn +
1

2
trQ.

Taking the divergence of each term in our soliton equation, we see that:

Thus:

Ric (∇f ) = divQ −
1

2
∇( trQ)

Hess f = cgij +
1

2
qij

∇∇f = cI +
1

2
Q

divQ = div(∇∇f )

= Ric (∇f ) + ∇(Δf )

= Ric (∇f ) + ∇(cn +
1

2
trQ)

= Ric (∇f ) +
1

2
∇( trQ)
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	�  ◻

This theorem can be used to generalize [11, Theorem 3.4] as follows.

Corollary 3.2  For any constant trace, divergence-free tensor q, the gradient solitons of its 
flow have that property that Ric (∇f ) = 0

For the ambient obstruction flow on a non-homogeneous manifold, we see that a gradi-
ent soliton is given by:

where

Note that, an simply combines constant terms in our original definition to help with nota-
tion. Examining this soliton, we get the following corollary.

Corollary 3.3  A gradient ambient obstruction soliton with potential function f satisfies 
Ric (∇f ) = an(1 − n) ∇

(
Δ

n

2
−1
S
)
.

Proof  Consider a gradient ambient obstruction soliton with potential function f. Then, 
q = On + an

(
Δ

n

2
−1
S
)
g and consequently

Using Proposition 3.1:

	�  ◻

Remark 3.4  For a gradient ambient obstruction soliton with constant scalar curvature (spe-
cifically for homogeneous manifolds), we see that Δ

n

2
−1
S = 0 , so Ric (∇f ) = 0.

The following lemma appears to be well known, but we include the proof for 
completeness.

Lemma 3.5  For any symmetric (0,2)-tensor field � and vector field �:

Ric (∇f ) = divQ −
1

2
∇( trQ)

Hess f = cg +
1

2

(
On + an

(
Δ

n

2
−1
S
)
g
)

an =
(−1)

n

2

2
n

2
−2
(

n

2
− 2

)
!(n − 2)(n − 1)

.

divq = and
(
Δ

n

2
−1
S
)

tr q = nan

(
Δ

n

2
−1
S
)

∇ tr q = nan∇
(
Δ

n

2
−1
S
)
.

Ric (∇f ) = an(1 − n)∇
(
Δ

n

2
−1
S
)
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where i�� is a 1-form such that i��(⋅) = �(�, ⋅)

Proof  Consider a symmetric (0,2)-tensor field � and a vector field � . For a (0,2)-tensor A, 
we know that A(x, y) = g(A(x), y) , so:

where B is a (1,1)-tensor.
Consider the Lie derivative as our (0,2)-tensor, and � a (1,1)-tensor. First, examining 

the type change, consider � as a (0,2)-tensor:

Next, we know that:

Then,

Thus, the identity holds. 	�  ◻

We use this fact to prove the following lemma for compact solitons of a general q-flow.

Lemma 3.6  Let (M, g, X) be an n-dimensional compact soliton to the q-flow, (2). Then: 

a.	 ∫
M
||L Xg||2 dvolg = −2 ∫

M
div(q)(X) dvolg.

b.	 If q is divergence-free, then X is Killing.

⟨L �g,�⟩ = 2div(i��) − 2(div�)�

⟨A,B⟩ = �
i

g(A(ei),B(ei)) =
�
i

A(ei,B(ei))

�(X, Y) = g(�(X), Y) ⟹ �(X,Ej) = g(�(X),Ej) ⟹ �(X) =
∑
j

g(�(X),Ej)Ej

div(���) =

∑
i

(∇Ei
���)(Ei) =

∑
i

∇Ei
�
(
�,Ei

)
=

∑
i

∇Ei
g
(
�(Ei), �

)

(div�)(�) =
∑
i

g(�,∇Ei
(�(Ei)))

⟨L �g,�⟩ = �
i

L �g(Ei,�(Ei))

=

�
i

g
�
∇Ei

�,�(Ei)

�
+

�
i

g
�
Ei,∇�(Ei)

�
�

=

�
i

g
�
∇Ei

�, g(�(Ei),Ej)Ej

�
+

�
i

g
�
Ei,∇g(�(Ei),Ej)Ej

�
�

=

�
i

g(�(Ei),Ej)g(∇Ei
�,Ej) +

�
i

g(�(Ei),Ej)g(Ei,∇Ej
�)

= 2g(�(Ei),Ej)g(∇Ei
�,Ej)

= 2(g(∇Ei
�,�(Ei))

= 2
�
∇Ei

g(�,�(Ei)) − g(X,∇Ei
(�(Ei)))

�

= 2div��� − 2(div�)(�)
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c.	 If q is divergence-free and trace-free, then (M, gij) must be q-flat.

Proof 

a.	 Consider the gradient q-soliton, 1
2
L Xg = cg +

1

2
q . We know that for any vector field � 

on M

 where i��(⋅) = �(�, ⋅) . Note that, the soliton can be written as q = L X − 2cg . Exam-
ining the divergence of this equation: 

 Using Lemma 3.5, we see that letting � = L Xg and � = X : 

 Integrating over M, we see that since M is compact and has no boundary: 

b.	 If q is divergence-free, part (a) shows that ∫
M
||L Xg||2 dvolg = 0 . Thus, L Xg = 0 and 

consequently X is Killing.
c.	 Suppose that q is divergence-free and trace-free. From (b), this means that qij = cgij . 

Taking the trace of both sides, we see that 0 = nc and thus c = 0 . Thus, qij = 0 and 
subsequently (M, gij) is q-flat.

 	�  ◻

Corollary 3.7  Let (M, g, X) be an n-dimensional compact soliton to the ambient obstruction 
flow with constant scalar curvature. Then, X is Killing, and M is O-flat.

Proof  Since M has constant scalar curvature, we know that the flow is given by (5). Thus, 
we consider q = On . Since O is divergence-free and trace-free, the conclusion follows 
directly from Lemma 3.6	�  ◻

In particular, Corollary 3.7 shows that any homogeneous compact ambient obstruc-
tion soliton is O-flat. In the non-homogeneous gradient case, we have the following 
inequality.

Theorem 3.8  For any compact gradient ambient obstruction soliton (M, g, f)

where the integral is zero if and only if f is constant.

⟨L �g,�⟩ = 2div(i��) − 2(div�)(�)

divqij = div(L Xg) − 2cdiv(gij) = div(L Xg)

⟨L Xg, L Xg⟩ = ��L Xg��2 = 2div(iX L xg)

− 2div(L Xg)(X) = 2div(iX L xg) − 2div(q)(X)

∫M

||L Xg||2 dvolg = 2∫M

div(iX L xg) dvolg

− 2∫M

div(q)(X) dvolg = −2∫M

div(q)(X)) dvolg

�M

Ric (∇f ,∇f ) dvolg ≥ 0,
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Proof  Consider an n-dimensional compact gradient ambient obstruction soliton, (M, g, f). 
Applying Lemma 3.6, let q = O and let X = ∇f  . From Corollary 3.3:

By Lemma 3.6:

Thus, ∫
M
Ric (∇f ,∇f ) dvolg ≥ 0.

Suppose ∫
M
Ric (∇f ,∇f ) dvolg = 0.

Since

if the right hand side is zero then L
∇f (g) = 0 and consequently Hess f = 0 . Since M is 

compact, this implies that f is constant. If f is constant ∇f = 0 then clearly Ric (∇f ) = 0 . 
Therefore, the integral is zero if and only if f is constant 	� ◻

Remark 3.9  Note that, a soliton is defined to be stationary if f is constant. Thus, Theo-
rem 3.8 implies Theorem 1.3.

We note that, in general, stationary gradient ambient obstruction solitons are charac-
terized by the following proposition.

Proposition 3.10  If (M,  g,  f) is a stationary gradient ambient obstruction soliton, then 
(M, g) is O-flat. If (M, g) is also compact, then S is constant.

Proof  Consider a stationary gradient ambient obstruction soliton, (M,  g,  f). Since the 
soliton is stationary, f is constant. Consequently, Hess f = 0 and thus q = −2cg . Since 
q = On + an

(
Δ

n

2
−1
S
)
,

Taking the trace of both sides:

Thus,

This forces On = 0 , so that soliton is O-flat. Furthermore:

is constant. If M is compact, this implies that S is constant. 	�  ◻

divQ = an∇
(
Δ

n

2
−1
S
)
=

an

1 − n
(1 − n)∇

(
Δ

n

2
−1
S
)
=

1

1 − n
Ric (∇f ).

0 ≤ �M

||L
∇f g||2 dvolg = −2�M

div(q)(∇f )) dvolg =
2

n − 1 �M

Ric (∇f ,∇f ) dvolg.

∫M

||L
∇f g||2 dvolg = 2

n − 1 ∫M

Ric (∇f ,∇f ) dvolg,

On =

(
−an

(
Δ

n

2
−1
S
)
− 2c

)
g.

0 = n
(
−an

(
Δ

n

2
−1
S
)
− 2c

)

0 = −an

(
Δ

n

2
−1
S
)
− 2c

Δ

n

2
−1
S =

2c

an
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Remark 3.11  The converse of Proposition 3.10 is true in the compact case. That is, a com-
pact gradient ambient obstruction soliton that is O-flat and has constant scalar curvature 
is stationary. Constant scalar curvature and O-flat imply that Hess f = cg . Compactness 
forces the manifold to have a maximum and minimum so Hess f = 0 . Appealing once more 
to compactness, this forces f to be constant and our soliton to be stationary.

Though the following lemma is not necessary when studying ambient obstruction 
solitons (this was taken care of in Corollary 3.7), it does give another criteria for when a 
q-soliton is stationary.

Proposition 3.12  For a trace-free tensor q, any compact gradient soliton to the q-flow must 
be q-flat.

Proof  Generalizing from [11], consider a gradient q-soliton (3). By assumption tr (q) = 0 , 
so taking the trace of both sides yields Δf = cn . Integrating over M:

Thus, c = 0 . Further, Δf = 0n + 0 so Δf = 0 , that is, f is harmonic. Since M is compact, f 
must be constant.

Therefore, qij = 2Hess f − 2cgij = 0 , so any compact gradient soliton is q-flat. 	�  ◻

Proceeding, we will show that for a general tensor q with certain scaling properties 
that a gradient q-soliton is a self-similar solution to the q-flow. This observation appears 
to be made first by Lauret [13]. To do so, we will follow the proof from [6, Chapter 4] 
which shows that gradient Ricci solitons are self-similar solutions to the Ricci flow. 
Following our proof, we will apply the theorem to the ambient obstruction flow in both 
the homogeneous and non-homogeneous cases. In [14] and [13], Lauret shows that the 
following theorem is true for general, non-gradient solitons can be made into an if and 
only if statement. I have chosen to focus on the case of gradient solitons. Our goal in 
including the following proof is to motivate our choice to modify the equation for a 
soliton by including a factor of 1

2
 and to show a more explicit proof of this theorem.

Theorem 3.13  Consider any tensor q with the property that when the metric is scaled by a 
constant � ∈ ℝ:

Consider a complete gradient q soliton (Mn, h, f0, c) , that is:

There exists an 𝜀 > 0 such that for all t ∈ (−�, �) there is a solution gt of the q flow with 
g0 = h , diffeomorphisms �t with �0 = �Mn , and functions f (t) = ft with f (0) = f0 , such that: 

(1)	 � scales the metric according to the function: 

0 = ∫M

cn − Δf dvolg = cn Vol(M, g)

g̃ = 𝜆g ⟹ q̃ = 𝜆
w

2 q.

Hess hf0 = ch +
1

2
q(h).
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(2)	 The vector field Xt ∶= �
w

2
−1

t ∇hf0 exists,
(3)	 �t ∶ Mn

→ Mn is the 1-parameter family of diffeomorphisms generated by Xt . So: 

(4)	 gt is the pullback by �t of h up to the scale factor �t : 

(5)	 ft is the pullback by �t of f0 : 

Moreover,

or equivalently

and

Proof  Construct a 1-parameter family of diffeomorphisms �t ∶ Mn
→ Mn generated by 

vector field Xt = �
w

2
−1
∇hf0 defined for all t such that t ∈ (−�, �) . Define ft = f0◦�t and 

gt = �t�
∗

t
h.

Using Remark 1.24 from [6], we are able to assess the derivative of the pullback:

where

Note that, for ĝ = 𝜆g:

�t ∶=

⎧
⎪⎨⎪⎩

e1−2ct w = 2�
1 − 2c

�
1 −

w

2

�
t
� 1

1−
w
2 w ≠ 2,

�

�t
�t(x) = �

w

2
−1

t

(
∇hf0

)
(�t(x)),

gt = �t�
∗

t
h,

ft = f0◦�t = �∗

t
(f0).

Hess gt
ft =

c

�t
gt +

1

2
(q(gt))

q(gt) = −
2c

�t
gt + 2Hess gt

ft

�f

�t
(t) = �

w

2
|||∇gt

ft
|||
2

gt

.

�

�t

||||t=t0
gt =

�

�t

||||t=t0
(�t�

∗

t
h) =

(
�

�t
�t

)
�∗

t0
h + �t0

�

�t
||t=t0�∗

t
h

�t0
�

�t

||||t=t0
�∗

t
h = �t0 L Y(t)

(
�∗

t0
h
)
= L Y(t)

(
�t0�

∗

t0
h
)

Y(t) ∶=
�

�t

||||t=t0
(
�−1

t0
◦�t

)
= (�−1

t0
)
∗

�

�t

||||t=t0
�t.

g(∇gf ,X) = df (X) = g̃(∇ĝf ,X) = 𝜆g(∇ĝf ,X).
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So 1
𝜆
∇gf = ∇ĝf  . Therefore:

Thus,

Using this, we are able to evaluate the desired derivative and find one term of our initial 
sum:

To evaluate the derivative of �, we must consider each case.
Case 1 For w = 2, define �t = e1−2ct . Then:

Case 2 For w ≠ 2, define �t =
(
1 − 2c

(
1 −

w

2

)
t
) 1

1−
w
2  . We can compute the following:

Thus, we see that for any w,

Returning to our original derivative, we see that for general t:

Applying [6] Exercise 1.23 to q, we see:

∇gt0
ft0 = ∇�t0�

∗

t0
hft0 =

1

�t0
∇�∗

t0
hft0 =

1

�t0
∇�∗

t0
h�

∗

t0
f0 =

1

�t0
�∗

t0
(∇hf0) = �∗

t0

(
1

�t0
∇hf0

)
.

�

�t

||||t=t0
�t = �

w

2
−1

t0
∇hf0 = �

w

2

t0

(
1

�t0
∇hf0

)
= �

w

2

t0

(
(�t0

)
∗

(
∇gt0

ft0

))
.

�t0
�

�t

||||t=t0
�∗

t
h = �t0 L Y(t)

(
�∗

t0
h
)
= L

�
w
2
t0
∇gt0

ft0

(
�t0�

∗

t0
h
)
= �

w

2

t0
L

∇gt0
ft0
gt0

(
�

�t
�t

)
�∗

t0
h = −2c��∗

t0
h

= −2cg(t0)

(
�

�t
�t

)
�∗

t0
h =

1

1 −
w

2

(
1 − 2c

(
1 −

w

2

)
t0

) 1

1−
w
2

−1(
−2c

(
1 −

w

2

))(
�∗

t0
h
)

= −2c
(
1 − 2c

(
1 −

w

2

)
t0

) w∕2

1−
w
2

(
�∗

t0
h
)

= −2c�
w

2

t0

(
�t0�

∗

t0
h

�t0

)

= −2c�
w

2
−1

t0
g(t0)

(
�

�t
�t

)
�∗

t0
h = −2c�

w

2
−1

t0
g(t0)

�

�t
gt = − 2c�

w

2
−1

t0
gt + �

w

2

t0
L

∇gt
ft
g(t)

=�
w

2

t0

(
−2c

�t
g(t) + 2∇gt∇

gt ft

)
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Hence, there exists a solution gt to the flow with the desired properties.
Looking at the derivative of the potential function, we see that:

	�  ◻

Remark 3.14  If the vector field Xt = �
w

2
−1

t ∇hf0 is complete, then the flow exists for all t 
such that 𝜏t > 0.

Remark 3.15  One such tensor q with the necessary weighting property is a conformally 
invariant tensor of weight w. That is, a tensor T such that for g̃ = 𝜌2g , then T̃ = 𝜌wT  for a 
smooth positive function �.

Corollary 3.16  The gradient solitons of the ambient obstruction flow are self-similar solu-
tions to the ambient obstruction flow.

Proof  Consider the tensor provided by the ambient obstruction flow:

q(gt) = q(�t�
∗

t
h)

= �
w

2

t �
∗

t
(q(h))

= �
w

2

t �
∗

t

(
−2ch + 2Hess hf0

)

= �
w

2

t �
∗

t

(
−2ch + L

∇hf0
h
)

= �
w

2

t

(
−2c

�t
gt + L

∇gt
ft
g(t)

)

= �
w

2

t

(
−2c

�t
gt + 2Hess gt

ft

)

=
�

�t
gt

�ft(x)

�t
=

�

�t
f0(�t(x))

= lim
�→0

f0(�t+�(x)) − f0(�t(x))

�

= h
(
∇hf0,

�

�t
�t

)

= h
(
∇hf0, �

w

2
−1
∇hf0(�t(x))

)

= �
w

2
−1
h
(
∇hft,∇hft(x)

)

= �
w

2
−1 1

�
gt
(
�∇gt

ft, �∇gt
ft(x)

)

= �
w

2
|||∇gt

ft
|||
2

gt

On + cn(−1)
n

2

(
Δ

n

2
−1
S
)
g.
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We know that the ambient obstruction tensor is of conformal weight 2 − n and is conse-
quently a tensor q described by Theorem 3.13. In the homogeneous case, or more generally 
the constant scalar curvature case, we are able to directly apply the theorem.

To examine the non-homogeneous case, we must also investigate the scaling properties 
of the scalar curvature term. A simple calculation shows that for g̃ = 𝜆2g:

Using induction, one can show that this generalizes to:

Thus, for k = n

2
− 1,

That is, the scalar curvature term is scaled by a factor of 2 − n and consequently has the 
same scaling properties as the ambient obstruction tensor.

Applying Theorem 3.13 with w = 2 − n , we see that this implies that with the appropri-
ate choice of � and � a gradient ambient obstruction soliton is a self-similar solution to the 
ambient obstruction flow. 	�  ◻

As Lauret shows, Corollary 3.16 is also true for non-gradient solitons. Turning 
our attention to noncompact, homogeneous solitons, we consider recent theorem of 
Petersen and Wylie [21]. This theorem is a key part of understanding homogeneous 
gradient Bach solitons as we see in Sect. 4.

Theorem 3.17  [Petersen-Wylie] Let (M, g) be a homogeneous manifold and q̂ an isometry 
invariant symmetric two-tensor which is divergence-free. If there is a non-constant func-
tion such that Hessf = q̂, then (M, g) is a product metric N ×ℝ

k and f is a function on the 
Euclidean factor.

For a divergence-free tensor q, we apply this theorem to homogeneous gradient q 
solitons by simply letting q̂ = cg +

1

2
q . Then, q̂ is the sum of isometry invariant sym-

metric two-tensors that are divergence-free and is itself such a tensor. Applying this 
theorem to homogeneous manifolds, we are able limit the ambient obstruction flow to 
the flow given by (5). Since O is a divergence-free, isometry invariant, symmetric two-
tensor, we can let q = On resulting in the following corollary.

Corollary 3.18  If (M, g) is a homogeneous gradient ambient obstruction soliton, then either 
M is stationary or it splits as a product ℝk

× N and f is a function on the Euclidean factor.

This theorem informs our approach to classifying homogeneous gradient Bach soli-
tons in the next section.

Δ̃S̃g̃ =
1

𝜆2
ΔSg.

Δ̃
kS̃g̃ =

1

𝜆2k
Δ

kSg

Δ̃

n

2
−1
S̃g̃ =

1

𝜆n−2
Δ

kSg = 𝜆2−nΔkSg.
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4 � Gradient bach solitons

In order to examine and classify the gradient solitons of the Bach flow on homogene-
ous 4-manifolds, we consider the four configurations of homogeneous 4-manifolds that 
are found by “pulling off copies of ℝ .” More explicitly, by Theorem 3.17, the solitons 
will be of the form ℝ4 , ℝ3

× N1 , ℝ2
× N2 , ℝ × N3 , or N4 (where Nk is necessarily homo-

geneous). The first and last case we will call non-split manifolds, the others may be 
called the 3 × 1 , 2 × 2 , and 1 × 3 cases, respectively. For each of these cases (and for the 
remainder of the paper), it will be assumed that the product manifolds are equipped with 
the appropriate product metric g = g0 × gN . Table 1 summarizes our findings regarding 
each type and thus proves the general theorem stated in the introduction. Prior to doing 
so, we set up the conventions used throughout this section.

From (3), we know that for homogeneous manifolds, the equation for a gradient Bach 
soliton is given by:

and can be represented in coordinates as:

In order to make the following proofs more clear, we will consider how the above equation 
can be given by matrices. In order to do this, we will establish conventions that will hold 
for the remainder of the section unless otherwise noted. We will always choose a basis so 
both the metric and the Bach tensor are diagonal. (This is always possible, per the spectral 
theorem.) Since the metric and the Bach tensor are diagonal, Hess f  must also be diagonal 
so ∇i∇jf = 0 for i ≠ j . One very important statement in Theorem 3.17 is that the potential 
function depends on only the Euclidean factor of the product manifold. Let ∇i∇if = fii . 
Thus, in general, we see that the gradient Bach solitons can be represented by the following 
equality:

Recall from the introduction the generalization stated as Theorem 1.4. To prove this theo-
rem, we will simply examine each type of manifold and assess the solitons. The following 
table will summarize this investigation with one notable exception: in the ℝ × N3 case, we 
are able to prove that non-Bach-flat gradient solitons must be expanding.

4.1 � Non‑split manifolds

Theorem 4.1  (ℝ4, g0) is a Gaussian soliton.

Hess f = cg +
1

2
B

∇i∇jf = cgij +
1

2
Bij.

⎡
⎢⎢⎢⎣

f00 0 0 0

0 f11 0 0

0 0 f22 0

0 0 0 f33

⎤⎥⎥⎥⎦
= c

⎡⎢⎢⎢⎣

g00 0 0 0

0 g11 0 0

0 0 g22 0

0 0 0 g33

⎤⎥⎥⎥⎦
+

1

2

⎡⎢⎢⎢⎣

B00 0 0 0

0 B11 0 0

0 0 B22 0

0 0 0 B33

⎤
⎥⎥⎥⎦
.
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Proof  We know from the equation for the Bach tensor that (ℝ4, g0) is Bach flat, that is, 
Bij = 0 for all i, j = 0, 1, 2, 3 , so Hess f = cg . By Theorem 3.17, f is a function on ℝ4 . Thus, 
for any orthonormal basis, ℝ4 is a gradient Bach soliton with potential function

for a, b, d, h, k ∈ ℝ.
Since there are no restrictions on c, we see that this is the Gaussian soliton. 	�  ◻

Proposition 4.2  Consider a non-split, homogeneous 4-manifold N4 ≠ ℝ
4 with metric gN . 

Then, N4 is a gradient Bach soliton if and only if it is Bach flat.

Proof  Consider a non-split, homogeneous 4-manifold N4 with metric gN . By the converse 
of Theorem 3.17, since N4 is not a product manifold, it must have constant potential func-
tion and is therefore stationary. Since the potential function is constant, Hess f = 0 . Conse-
quently, any soliton has the form − 1

2
B = cg . Taking the trace of each side, we see that

and so it is necessarily true that c = 0 and the soliton is steady.
Since c = 0 always, B = 0 always and thus the manifold must be Bach flat. 	�  ◻

4.2 � Manifolds of the form ℝ3
× N

1

Remark 4.3  For a manifold of the form ℝ3
× N1 with metric g = g0 × gN , we know that 

N1
= ℝ

1 or S1 . Thus, any manifold of this form is flat and consequently Bach flat.

Proposition 4.4  Homogeneous manifolds of the form ℝ3
× N1 with metric g = g0 × gN are 

steady gradient Bach solitons with linear potential functions.

Proof  Consider a homogeneous manifold of the form ℝ3
× N1 with metric g = g0 × gN . 

We know from Remark 4.3 that any manifold of this form is Bach flat. So for any gra-
dient, Bach soliton Hess f = cg . By Theorem 3.17, we know that f (x, y, z) ∶ ℝ

3
→ ℝ . So 

∇3∇3f = 0 = cg33 . Since the metric is positive definite, c = 0 . Therefore, the gradient Bach 
solitons are steady.

Consequently, Hess f = 0 , so fxx = fyy = fzz = 0 . Thus, f (x, y, z) = ax + by + cz + d . 	
� ◻

4.3 � Manifolds of the form ℝ2
× N

2

In his 2018 paper, [11], Ho finds homogeneous gradient solitons of the form ℝ2
× N2 . Ho 

proves that both ℝ2
× S2 and ℝ2

× H2 are a nontrivial soliton of the form:

f (x, y, z,w) =
1

2
c(x2 + y2 + z2 + w2

) + ax + by + dz + hw + k

0 = −
1

2
trB = tr cg = 4c

Hess f = B +
1

12
g
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for any function f of the form f (x, y) = 1

12
(x2 + y2) + k . Note the difference between Ho’s 

definition of a gradient Bach soliton and that of this paper. Ho has chosen to place the 
metric term on the right hand side of the equation switching the conventions of shrinking/ 
expanding. We will prove that Ho’s examples are the only examples of this type.

Theorem 4.5  If a manifold of the form ℝ2
× N2 equipped with product metric g0 × gN is a 

non-Bach-flat gradient Bach soliton, then it is a shrinking soliton. Furthermore, the soliton 
is steady if and only if it is Bach flat.

Proof  Consider a homogeneous manifold of ℝ2
× N2 . Using the following equations from 

[8, 11]

where M = ℝ
2 , N = N2 , SM and SN are the respective scalar curvatures, and g0 and gN are 

their respective metrics. Recall that homogeneous 2-manifolds have constant scalar curva-
ture, thus we see that:

Since ℝ2
× N2 is a gradient Bach soliton, the following system must hold.

Thus, 0 =

(
−1

24
(SN)

2
+ c

)
gii for i = 2, 3 . Since the metric is positive definite, we know that 

c =
1

24
(SN)

2 . Thus c ≥ 0 and the soliton must be steady or shrinking.
The soliton is steady if and only if SN = 0 which happens if and only if the manifold is 

Bach flat.
If the manifold is non-Bach-flat, then c > 0 and soliton must be shrinking. 	�  ◻

Scaling S2 and H2 so that SS2 = 1 = −SH2 , we see that c = 1

24
 and the potential func-

tion is of the form f (x, y) = 1

24
(x + y)2 + ax + by + d . Again, this differs slightly from Ho 

because of our initial definition of a gradient Bach soliton. This confirms that the gradient 
solitons found by Ho are in fact the only gradient solitons on ℝ2

× S2 and ℝ2
× H2 up to 

scaling.

(6)
B�� =

1

3
∇�∇�SM −

1

3
gM
��

[
∇�∇�SM −

1

2
∇k∇kSN +

1

4

((
SM

)2
−

(
SN

))2
]
inM

Bij =
1

3
∇i∇jSN −

1

3
gN
ij

[
∇k∇kSN −

1

2
∇�∇�SM +

1

4

((
SN

)2
−

(
SM

))2
]
in N

B00 =
1

12
(SN)

2g00 B11 =
1

12
(SN)

2g11 B22 = −
1

12
(SN)

2g22 B33 = −
1

12
(SN)

2g33.

⎡⎢⎢⎢⎣

fxxg00 0 0 0

0 fyyg11 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

�
1

24
(SN)

2
+ c

�
g
00

0 0 0

0

�
1

24
(SN)

2
+ c

�
g
11

0 0

0 0

�
−1

24
(SN)

2
+ c

�
g
22

0

0 0 0

�
−1

24
(SN)

2
+ c

�
g
33

⎤⎥⎥⎥⎥⎥⎥⎦
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Corollary 4.6  The potential function of a steady gradient Bach soliton of the form ℝ2
× N2 

equipped with product metric g0 × gN must be linear.

Proof  Since ℝ2
× N2 must be steady, we know that fxx = fyy = 0 . Using calculus, it is clear 

that f (x, y) = ax + by + d . 	�  ◻

Corollary 4.7  The manifold ℝ2
×ℝ

2 with metric g = g0 × gN , where gN is a flat metric, 
which is a steady gradient Bach soliton with linear potential function.

Proof  Consider a homogeneous manifold of ℝ2
×ℝ

2 . Using (6), we know that ℝ2
×ℝ

2 is 
Bach flat. By Theorem 4.5, we know that the soliton is steady. By Corollary 4.6, the poten-
tial function must be linear. 	� ◻

4.4 � Manifolds of the form ℝ × N
3

We begin by stating and proving statements that apply to all homogeneous manifolds of the 
form ℝ × N3 , then we will examine specific manifolds of this form.

A few notes before stating the theorem. We will look at a potential function f ∶ ℝ → ℝ . 
Since I use x in later computations to mean something else, I have chosen to make f a func-
tion of r ∈ ℝ . Furthermore, note that, in this potential function, c ∈ ℝ is the same c such 
that Hess f = cg +

1

2
B . Thus, is we have a steady soliton, the potential function necessarily 

lacks that term.

Lemma 4.8  A gradient Bach soliton of the form ℝ × N3 with metric g = g0 × gN has poten-
tial function of the form f (r) = 2cr2 + ar + b for a, b ∈ ℝ.

Proof  Since the manifold is a soliton, we know that Hess f = cg +
1

2
B . By Theorem 3.17, 

that f is a function on r ∈ ℝ and consequently tr Hess f = f ��(r) . Since the Bach tensor is 
trace-free:

Using calculus, we see that this implies that f (r) = 2cr2 + ar + b for a, b ∈ ℝ . 	�  ◻

In order to examine specific manifolds, we will need the following theorem. This theo-
rem enables us to use algebra to determine which metrics will produce solitons.

Theorem 4.9  Consider a manifold of the form ℝ × N3 equipped with metric g = g0 × gN . 
The manifold is a gradient Bach soliton if and only if

Proof  Consider a manifold of the form ℝ × N3 equipped with metric g = g0 × gN . Suppose 
that this manifold is a gradient Bach soliton. Then:

tr Hess f = tr (cg) + trB ⟹ f ��(r) = 4c

(7)
B11

g11
=

B22

g22
=

B33

g33
= −2c for c ∈ ℝ

Hess f = cg +
1

2
B
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where f ∶ ℝ → ℝ . Examining the components of the flow:

This system yields the following equalities.

It follows that:

Thus, the desired equality holds.
Further, since B00 = −2cg00 + 2f ��(r)g00 = 6cg00 , we see that B00

g00
= 6c.

Suppose, on the other hand, that

Then, − 1

2
B11 = cg11 , −

1

2
B22 = cg22 , and − 1

2
B33 = cg33 . Taking the trace of the Bach tensor:

Since B is trace-free, we see that B00 = 6cg00 . By Lemma 4.8, f ��(r) = 4c , so:

Thus, ∇i∇jf −
1

2
Bij = cgij for all i, j = 0, 1, 2, 3 , so Hess f = cg +

1

2
B . Therefore, ℝ × N3 is a 

gradient Bach soliton. 	�  ◻

From this theorem, we are able to classify the resulting solitons of the form ℝ × N3 . To do 
so, we will need the find components of the Bach tensor using the following equation from 
[10] and [8].

where M(1)
= ℝ and M(2)

= N3.

⎡
⎢⎢⎢⎣

f ��g00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦
= c

⎡
⎢⎢⎢⎣

g00 0 0 0

0 g11 0 0

0 0 g22 0

0 0 0 g33

⎤
⎥⎥⎥⎦
+

1

2

⎡
⎢⎢⎢⎣

B00 0 0 0

0 B11 0 0

0 0 B22 0

0 0 0 B33

⎤
⎥⎥⎥⎦
.

f ��g00 −
1

2
B00 = cg00 −

1

2
B11 = cg11 −

1

2
B22 = cg22 −

1

2
B33 = cg33

B11

g11
=

B22

g22
=

B33

g33
= −2c for c ∈ ℝ

B11

g11
=

B22

g22
=

B33

g33
= −2c for c ∈ ℝ

trB = gijBij

= g00B00 + g11B11 + g22B22 + g33B33

= g00B00 − 2g11cg11 − 2g22cg22 − 2g33cg33

= g00B00 − 6c

f ��g00 −
1

2
B00 = 4cg00 −

1

2
(6cg00) = cg00

(8)

B00 =

(
−

1

12
(Δ

(2)S(2)) −
1

4

[
(|Ric |(2))2 − 1

3
(S(2))2

])
g00

Bjk =
1

2
Δ

(2) Ric
(2)

jk
−

1

12
Δ

(2)S(2)gjk −
1

6
S
(2)

;jk
− 2 tr (2)(Ric

(2) ⊗ Ric
(2)
)jk

+
7

6
S(2) Ric

(2)

jk
+

3

4
(|Ric |(2))2gjk − 5

12
(S(2))2gjk
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Corollary 4.10  If a manifold of the form ℝ × N3 equipped with metric g = g0 × gN is a non-
Bach-flat gradient Bach soliton, then it is an expanding soliton. The soliton is steady if and 
only if it is Bach flat.

Proof  Consider a manifold of the form ℝ × N3 equipped with metric g = g0 × gN.
From Theorem 4.9, we know that:

Since the Bach tensor is trace-free, we know that:

Using (8), since S is constant:

By Cauchy-Schwartz, we know

and thus B00 ≤ 0 . Since the metric is positive definite, this implies c ≤ 0 , where c = 0 if 
and only if B00 = 0 . By definition, a soliton is expanding if c < 0.

If c = 0 , B00 = 0 then:

Clearly, this implies that Bii = 0 for i = 1, 2, 3 . Thus, if the soliton is steady, the manifold is 
Bach flat.

If the soliton is Bach flat, then Hess f = cg , so 0 = cgii for i = 1, 2, 3 so c = 0 and the 
soliton is steady. 	�  ◻

Remark 4.11  Recall that rescaling is a diffeomorphism of ℝ . Consequently, shrinking and 
expanding are diffeomorphic to one another. That is, contracting is the same as stretching 
after diffeomorphism. Applying this to our soliton, we see that though 𝜕

𝜕t
g00 < 0 under the 

Bach flow ([10, Proposition 2.2]), ℝ × N3 is expanding as a soliton.

In order to use this theorem to find metrics that produce solitons, we will need 
explicit representations of the Bach tensor. These can be found using (8). The Bach 
tensor for solitons of the form ℝ × N3 where N3 three-dimensional unimodular Lie 
group is given in [10]. For other Lie groups, one can find the necessary information 

B11

g11
=

B22

g22
=

B33

g33
= −2c

−B00 =

B11

g11
g11 +

B22

g22
g22 +

B33

g33
g33

= −2c(g11 + g22 + g33)

B00 = 2c(g11 + g22 + g33)

B00 = −
1

4

[
(|Ric |(2))2 − 1

3
(S(2))2

]
g00

|Ric (2)|2 ≥ tr
(
Ric

(2)
)

3
=

1

3
(S(2))2,

⎡⎢⎢⎢⎣

f00 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦
=

1

2

⎡⎢⎢⎢⎣

0 0 0 0

0 B11 0 0

0 0 B22 0

0 0 0 B33

⎤⎥⎥⎥⎦
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using the structure constants (see [16] [22] [12]) and the equations in [10] to find the 
necessary information for (8). It should be noted that the calculations involved in find-
ing the components of the Bach tensor are non-trivial and require the use of math-
ematical software.

We will begin investigating manifolds of the form ℝ × N3 by examining the covering 
spaces for the nine manifolds with compact quotient. The qualitative behavior of the 
compact quotients is examined in [10]. The gradient solitons of the compact quotients 
themselves are easily classified by Corollary 3.7. We, however, are interested in the 
solitons on the covering spaces themselves.

Proceeding, we will examine the 9 manifolds in [10] to see if there is a metric that 
produces a gradient Bach solitons. The Lie groups with compact quotient are given by 
the unimodular, solvable Bianchi classes. That is, Bianchi classes I, II, VI0 , VII0 , VIII, 
and IX. There are three additional cases which are not Lie groups, but have compact 
quotient.

By Theorem 4.9 we need only show that a metric satisfies (7). If there are no met-
rics that satisfy the string of equalities, then the manifold produces no solitons. The 
general methodology is to use the explicit representation for the Bach tensor in the 
above equality, then see what conditions must be placed on the metric to produce a 
soliton. For ease of notation in calculations, we will let:

To clarify the consequences of each example, the metric notations will be used. These 
proofs heavily rely on the fact that Reimannian metrics are positive definite. That is, gii > 0 
is a strict inequality. This allows us the use the quotients in (7) and to rule out potential 
solitons. A summary of our results is as follows. The proofs will be in subsequent sections.

Theorem 4.12  For a homogeneous manifold of type M = ℝ
1
× N3 equipped with the metric 

g = g0 × gN the following hold: 

a.	 If N3
= ℝ

3 , then a metric g = g0 × gN , where gN is a flat metric, produces a gradient 
Bach soliton with linear potential function.

b.	 If N3
= Nil, Solv, ŜL(2,ℝ),ℝ × S2,ℝ × H2 then g is not a gradient Bach soliton

c.	 If N3
= E(2),H3 , then g produces a Bach soliton if and only if it is Bach flat.

d.	 If N3
= S3 , then a gradient Bach soliton is produced if and only if the metric is of the 

from g11 = g22 = g33 or if it is isometric to g11 = g22 = 4g33 . These solitons are catego-
rized in Theorems 4.23 and 4.25, respectively.

4.4.1 � ℝ ×ℝ
3

Proposition 4.13  The manifold ℝ ×ℝ
3 with metric g = g0 × gN , where gN is a flat metric, is 

a gradient Bach soliton with potential function f (r) = ar + b or some a ∈ ℝ.

Proof  We know from (8) that Bii = 0 for i = 0, 1, 2, 3 . By Corollary 4.10, we know that the 
soliton is steady, so c = 0 . So by Lemma 4.8, f (r) = ar + b for a, b ∈ ℝ . 	�  ◻

x = g11, y = g22, z = g33, � =
1

6(det g)2
.
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4.4.2 � ℝ × Nil

We know from [10]

Proposition 4.14  The manifold ℝ × Nil with metric g = g0 × gNil is not a gradient Bach 
soliton.

Proof  Proceeding by contradiction, suppose ℝ × Nil with metric g = g0 × gNil is a gradient 
Bach soliton. Then, using (7), we see that:

However, this implies that −5 = 3 . Thus, ℝ × Nil is not a gradient Bach soliton. 	�  ◻

4.4.3 � ℝ × Solv

We know from [10]

where

Proposition 4.15  The manifold ℝ × Solv with metric g = g0 × gSolv is not a gradient Bach 
soliton.

Proof  Proceeding by contradiction, suppose ℝ × Solv with metric g = g0 × gSolv is a gradi-
ent Bach soliton. Using (7), we see that:

Letting x = g11 and y = g22:

Then, either x = 0 or 4x3 + 6x2y + y3 = 0 . The first statement is not possible because the 
metric is positive definite. The latter statement holds if and only if x = y = 0 forcing either 

B00 = −�(g00)
3
(g11)

4 B11 = −5�(g00)
2
(g11)

5

B22 = 3�(g00)
2
(g11)

4g22 B33 = 3�(g00)
2
(g11)

4g33.

B11

g11
=

B22

g22
⟹ −5�(g00)

2
(g11)

4
= 3�(g00)

2
(g11)

4.

B00 = −�p(g11, g22)(g00)
3 B11 = −�q(g11, g22)(g00)

2g11

B22 = −�q(g22, g11)(g00)
2g22 B33 = 3�p(g11, g22)(g00)

2g33

p(x, y) = x4 + x3y + xy3 + y4 q(x, y) = 5x4 + 3x3y − xy3 − 3y4.

B11

g11
=

B33

g33
⟹ −� q(g11, g22)(g00)

2
= 3� p(g11, g22)(g00)

2

−q(x, y) = 3p(x, y)

−5x4 − 3x3y + xy3 + 3y4 = 3x4 + 3x3y + 3xy3 + 3y4

−2x(4x3 + 6x2y + y3) = 0



	 Annals of Global Analysis and Geometry

1 3

g11 = 0 or g11 = g22 = 0 , contradicting positive definiteness. Thus, ℝ × Solv is not a gradi-
ent Bach soliton. 	�  ◻

4.4.4 � ℝ × ŜL(2,ℝ)

We know from [10]

where

Proposition 4.16  The manifold ℝ × ŜL(2,ℝ) with metric g = g0 × g
ŜL(2,ℝ)

 cannot be a gra-
dient Bach soliton.

Proof  Proceeding by contradiction, suppose ℝ × ŜL(2,ℝ) with metric g = g0 × g
ŜL(2,ℝ)

 is a 
gradient Bach soliton. Using (7), we see that:

The only potential real solution is that y = z . As above, because the metric is positive defi-
nite, the last term in the product is nonzero. Examining the consequences of this using the 
other equations in (7), we see that the following must hold.

However, if y = z then:

B00 = −�p(−g11, g22, g33)(g00)
3 B11 = −�q(−g11, g22, g33)(g00)

2g11

B22 = −�q(g22,−g11, g33)(g00)
2g22 B33 = −�q(g33,−g11, g22)(g00)

2g33

p(x, y, z) = x4 − x3(y + z) + x2yz + x(−y3 + y2z + yz2 − z3) + y4 − y3z − yz3 + z4

q(x, y, z) = 5x4 − 3x3(y + z) + x2yz + x(y3 − y2z − yz2 + z3) − 3y4 + 3y3z + 3yz3 − 3z4.

B22

g22
=

B33

g33

q(y,−x, z) = q(z,−x, y)

5y4 + 3xy3 − 3y3z − xy2z − x3y − x2yz

+xyz2 + yz3 − 3x4 − 3x3z − 3xz3 − 3z4
=

5z4 + 3xz3 − 3yz3 − xyz2 − x3z − x2yz

+xzy2 + y3z − 3x4 − 3x3y − 3xy3 − 3y4

2(y − z)(x3 + 3xy2 + 2xyz + 3xz2

+4y3 + 2y2z + 2yz2 + 4z3)
= 0

B11

g11
=

B22

g22

q(−x, y, z) = q(y,−x, z)

5x4 + 3x3y + 3x3z + x2yz − xy3 + xy2z

+xyz2 − xz3 − 3y4 + 3y3z + 3yz3 − 3z4
=

5y4 + 3xy3 − 3y3z − xy2z − x3y − x2yz

+xyz2 + yz3 − 3x4 − 3x3z − 3xz3 − 3z4

8x4 + 4x3y + 6x3z + 2x2yz − 4xy3

+2xy2z + 2xz3 − 8y4 + 6y3z + 2yz3
= 0
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Therefore, if y = z, , then B11 ∕ g11 ≠ B22 ∕ g22 . Thus, y ≠ z . Therefore, ℝ × ŜL(2,ℝ) is not 
a gradient Bach soliton. 	�  ◻

4.4.5 � ℝ × (ℝ × S2)

Proposition 4.17  There are no gradient Bach solitons on ℝ × (ℝ × S2) with metric 
g = g0 × (g

ℝ
× gS2 ).

Proof  Consider the manifold ℝ × (ℝ × S2) with metric g = g0 × (g
ℝ
× gS2 ) . Rescaling the 

sphere to have scalar curvature SS2 = 1 , from Theorem 4.5, we know:

This contradicts Theorem  4.9. Therefore, there are no gradient Bach solitons on 
ℝ × (ℝ × S2) with potential function on ℝ . 	�  ◻

4.4.6 � ℝ × (ℝ × H2
)

Proposition 4.18  There are no gradient Bach solitons on ℝ × (ℝ × H2
) with metric 

g = g0 × (g
ℝ
× gH2 ).

Proof  Rescaling the H2 to have scalar curvature SH2 = −1 , from Theorem 4.5, we know:

and thus the proof follows exactly as in the proof for ℝ ×ℝ × S2 above. 	�  ◻

4.4.7 � ℝ × E(2)

We know from [10]

where p(x, y) and q(x, y) are as above.

8x4 + 4x3y + 6x3z + 2x2yz − 4xy3

+2xy2z + 2xz3 − 8y4 + 6y3z + 2yz3
=

8x4 + 4x3y + 6x3y + 2x2y2 − 4xy3

+2xy3 + 2xy3 − 8y4 + 6y4 + 2y4

= 8x4 + 10x3y + 2x2y2

≠ 0

B00 =
1

12
g00 B11 =

1

12
g11 B22 = −

1

12
g22 B33 = −

1

12
g33.

B00 =
1

12
g00 B11 =

1

12
g11 B22 = −

1

12
g22 B33 = −

1

12
g33,

B00 = −�p(−g11, g22)(g00)
3 B11 = −�q(−g11, g22)(g00)

2g11

B22 = −�q(g22,−g11)(g00)
2g22 B33 = 3�p(−g11, g22)(g00)

2g33
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Proposition 4.19  The manifold ℝ × E(2) with metric g = g0 × gE(2) is a gradient Bach 
soliton if and only if it is Bach flat.

Proof  Consider the manifold ℝ × E(2) with metric g = g0 × gE(2) . Using (7), we see that:

The only two real, nonzero solutions are that x = y or x = −y . Since our metric is positive 
definite x ≠ −y . Thus, x = y is the only candidate. Proceeding, we will see that the equali-
ties from (7) are satisfied if and only if x = y.

Since x ≠ 0 , 4x3 − 3x2y − y3 = 0 . We see that x = y holds.

Since y ≠ 0 , 4y3 − 3xy2 − 2x3 = 0 . Again, we see that x = y holds.
Thus, g11 = g22 . This condition is equivalent to being Bach flat by the following lemma. 

Therefore, by Theorem 4.9 and Lemma 4.20, ℝ × E(2) is a gradient Bach soliton if and 
only if it is Bach flat. 	�  ◻

Lemma 4.20  The manifold ℝ × E(2) with metric g = g0 × gE(2) is Bach flat if and only if 
g11 = g22.

Proof  Factoring the components of the Bach tensor for ℝ × E(2):

Since our metric is positive definite Bii = 0 if and only if g11 − g22 = 0 if and only if 
g11 = g22 . 	�  ◻

B11

g11
=

B22

g22

q(−x, y) = q(y,−x)

5x4 − 3x3y + xy3 − 3y4 = 5y4 − 3y3x + yx3 − 3x4

(x − y)(x + y)(2x2 − xy + 2y2) = 0

B11

g11
=

B33

g33

−q(−x, y) = 3p(−x, y)

−5x4 + 3x3y − xy3 + 3y4 = 3x4 − 3x3y − 3xy3 + 3y4

−2x(4x3 − 3x2y − y3) = 0

B22

g22
=

B33

g33

−q(y,−x) = 3p(−x, y)

−5y4 + 3xy3 − x3y + 3x4 = 3x4 − 3x3y − 3xy3 + 3y4

−2y(4y3 − 3xy2 − x3) = 0

B00 = −� (g11 − g22)
2
(
(g11)

2
+ g11g22 + (g22)

2
)
(g00)

3

B11 = −� (g11 − g22)
(
5(g11)

3
+ 2(g11)

2
(g22) + 2(g11)(g22)

2
+ 3(g22)

3
)
(g00)

2g11

B22 = −� (g22 − g11)
(
3(g11)

3
+ 2(g11)

2
(g22) + 2(g11)(g22)

2
+ 3(g22)

3
)
(g00)

2g22

B33 = 3� (g11 − g22)
2
(
(g11)

2
+ g11g22 + (g22)

2
)
(g00)

2g11
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4.4.8 � ℝ × H3

Proposition 4.21  The manifold ℝ × H3 with metric g = g0 × gH3 is the trivial gradient Bach 
soliton. That is, ℝ × H3 is a Bach soliton if and only if it is Bach-flat.

Proof  Following the explanation from [10], we know that H3 is a one parameter family of 
homogeneous metrics. Consequently, all metrics are Einstein since they are scalar multi-
ples of the standard metric. Thus, as Helliwell concludes, the flat metric remains flat in the 
Bach flow. Therefore, the Bach flat metric produces a gradient soliton. 	�  ◻

4.4.9 � ℝ × S3

Before delving into this case, it is important that the reader note that I mean S3 to be syn-
onymous with SU(2). That is, the manifold does NOT necessarily have the round metric, 
but rather has any left-invariant metric on Lie group SU(2). My choice to call this S3 was 
motivated by wanting to maintain consistency between the cases presented by Helliwell in 
[10] and this paper.

We know from [10]

where

Proposition 4.22  The manifold ℝ × S3 with metric g = g0 × gSU(2) is a gradient Bach soliton 
if and only if our metric is g11 = g22 = g33 or if it is isometric to g11 = g22 = 4g33.

Proof  Proceeding, consider ℝ × S3 with metric g = g0 × gSU(2) . We will show that the (7) 
holds if and only if x = y = z , x = y = 4z , x = 4y = z , or 4x = y = z.

We will first consider that case where x = y = z:

This clearly satisfies (7).
Proceeding to examine the equalities in general, we see that:

B00 = −� p(g11, g22, g33)(g00)
3 B11 = −� q(g11, g22, g33)(g00)

2g11

B22 = −� q(g22, g33, g11)(g00)
2g22 B33 = −� q(g33, g11, g22)(g00)

2g33

p(x, y, z) = x4 − x3(y + z) + x2yz + x(−y3 + y2z + yz2 − z3) + y4 − y3z − yz3 + z4

q(x, y, z) = 5x4 − 3x3(y + z) + x2yz + x(y3 − y2z − yz2 + z3) − 3y4 + 3y3z + 3yz3 − 3z4

B11

g11
=

B22

g22
=

B33

g33
= −� q(g11, g11, g11)(g00)

2

(9)

B11

g11
=

B22

g22

q(x, y, z) = q(y, z, x)

5x4 − 3x3y − 3x3z + x2yz + xy3 − xy2z

−xyz2 + xz3 − 3y4 + 3y3z + 3yz3 − 3z4
=

5y4 − 3y3z − 3xy3 + xy2z + yz3 − xyz2

−x2yz + x3y − 3z4 + 3xz3 + 3x3z − 3x4

2(x − y)(4x3 + 2x2y − 3x2z + 2xy2 2xyz + 4y3 − 3y2z − z3) = 0
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Case 3 Suppose that x = y . Then, (9) is satisfied. Moreover, this means that in order for 
(10) to be satisfied:

Consequently, x = 4z . We see that this equality not only holds in 11, but is forced:

Thus, x = y = 4z maintains all three equalities.
Case 4 Suppose that x = z . Then, (10) is satisfied. Moreover, this means that in order 

for (9) to be satisfied:

Consequently, x = 4y . We see that this equality not only holds in (11), but is forced:

Thus, x = 4y = z maintains all three equalities.
Case 5 Suppose that y = z . Then, (11) is satisfied. Moreover, this means that in order 

for (9) to be satisfied:

Consequently, 4x = y . We see that this equality not only holds in (11), but is forced:

(10)

B11

g11
=

B33

g33

q(x, y, z) = q(y, z, x)

5x4 − 3x3y − 3x3z + x2yz + xy3 − xy2z

−xyz2 + xz3 − 3y4 + 3y3z + 3yz3 − 3z4
=

5z4 − 3xz3 − 3yz3 + xyz2 + x3z − x2yz

−xy2z + y3z − 3x4 + 3x3y + 3xy3 − 3y4

2(x − z)(4x3 − 3x2y + 2x2z − 2xyz

+2xz2 − y3 − 3yz2 + 4z3)
= 0

(11)

B
22

g
22

=

B
33

g
33

q(y, z, x) = q(y, z, x)

5y4 − 3y3z − 3xy3 + xy2z + yz3 − xyz2

−x2yz + x3y − 3z4 + 3xz3 + 3x3z − 3x4
=

5z4 − 3xz3 − 3yz3 + xyz2 + x3z − x2yz

−xy2z + y3z − 3x4 + 3x3y + 3xy3 − 3y4

−2(y − z)(x3 + 3xy2 + 2xyz + 3xz2 4y3 − 2y2z − 2yz2 − 4z3) = 0

0 = 4x3 − 3x3 + 2x2z − 2x2z + 2xz2 − x3 − 3xz2 + 4z3

= z2(4z − x)

0 = x3 + 3x3 + 2x2z + 3xz2 − 4x3 − 2x2z − 2xz2 − 4z3

= z2(x − 4z)

0 = 4x3 + 2x2y − 3x3 + 2xy2 − 2x2y + 4y3 − 3y2x − x3

= y2(4y − x)

0 = x3 + 3xy2 + 2x2y + 3x3 − 4y3 − 2xy2 − 2x2y − 4x3

= y2(x − 4y)

0 = 4x3 + 2x2y − 3x2y + 2xy2 − 2xy2 + 4y3 − 3y3 − y3

= x2(4x − y)
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Thus, 4x = y = z maintains all three equalities.
Case 6 Suppose that x ≠ y , x ≠ z , y ≠ z . Then, only other permissible metric would 

need to satisfy the system of equations:

Subtracting the first equation from the second yields:

Thus, y = z contradicting the original assertion. Moreover, the metric is positive definite. 
Thus, this case yields no potential metrics.

Therefore, by Theorem  4.9, ℝ × S3 is a Bach soliton if and only if g11 = g22 = g33 , 
g11 = g22 = 4g33 , g11 = 4g22 = g33 , or 4g11 = g22 = g33 . 	� ◻

Theorem  4.23  If g11 = g22 = g33, then the soliton produced by ℝ × S3 is Bach flat and 
steady.

Proof  Suppose g11 = g22 = g33 . We know by Theorem  4.22 that this is the metric of a 
soliton on ℝ × S3 . Then:

Thus, c = 0 , so the soliton is steady.
Moreover, since

We know that Bii = 0 for all i = 0, 1, 2, 3 . Therefore, the metric is Bach flat. 	�  ◻

Remark 4.24  Note that, in the previous proof, one could have referenced Corollary 4.10 
instead of calculating the Bach tensor. The calculation was included to demonstrate an 
alternate method in that works when you know the components of the Bach tensor.

Theorem 4.25  If g11 = g22 = 4g33, then the soliton produced by ℝ × S3 is expanding and 
immortal.

Proof  Without loss of generality, suppose g11 ≤ g22 ≤ g33 . Consider g11 = g22 = 4g33 . We 
know by Theorem 4.22 that this is the metric of a soliton on ℝ × S3 . Then:

0 = 4x3 − 3x2y + 2x2y − 2xy2 + 2xy2 − y3 − 3y3 + 4y3

= x2(4x − y)

⎧⎪⎨⎪⎩

4x3 + 2x2y − 3x2z + 2xy2 − 2xyz + 4y3 − 3y2z − z3 = 0

4x3 − 3x2y + 2x2z − 2xyz + 2xz2 − y3 − 3yz2 + 4z3 = 0

x3 + 3xy2 + 2xyz + 3xz2 − 4y3 − 2y2z − 2yz2 − 4z3 = 0

5x2y − 5x2z + 2xy2 − 2xz2 + 5y3 − 3y2z + 3yz2 − 5z3 = 0

(y − z)(5x2 + 2xy + 2xz + 5y2 + 2yz + 5z2) = 0

B11

g11
=

B22

g22
=

B33

g33
= −� q(g11, g11, g11)(g00)

2
= −�(0)(g00)

2
= 0

p(x, x, x) = x4 − x3(2x) + x4 + x(−x3 + x3 + x3 − x3) + x4 − x4 − x4 + x4 = 0

q(x, x, x) = 5x4 − 3x3(2x) + x4 + x(x3 − x3 − x3 + x3) − 3x4 + 3x4 + 3x4 − 3x4 = 0
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Observe that:

Thus, 𝛽 3

256
(g11)

4
(g00)

2 > 0 . Since

we see that c < 0 . Recall the soliton is of the form Hess f − 1

2
B = cg . Thus, the soliton with 

the given metric is expanding.
Using Theorem  3.13, the Bach tensor is conformally invariant of weight w = −2 , so 

�t =
√
1 − 4ct . Since c < 0 , we see that �t is defined for t ∈

(
1

4c
,∞

)
 . Thus, the soliton is 

immortal. 	�  ◻

Remark 4.26  This result aligns with the analysis of the Bach flow of ℝ × S3 in [10].
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