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Abstract

Stars often reside in binary configurations. The nuclear star cluster surrounding the supermassive black hole (SMBH) in
the Galactic Center (GC) is expected to include a binary population. In this dense environment, a binary frequently
encounters and interacts with neighboring stars. These interactions vary from small perturbations to violent collisions. In
the former case, weak gravitational interactions unbind a soft binary over the evaporation timescale, which depends on
the binary properties as well as the density of surrounding objects and velocity dispersion. Similarly, collisions can also
unbind a binary, and the collision rate depends on the density. Thus, the detection of a binary with known properties can
constrain the density profile in the GC with implications for the number of compact objects, which are otherwise
challenging to detect. We estimate the density necessary to unbind a binary within its lifetime for an orbit of arbitrary
eccentricity about the SMBH. We find that the eccentricity has a minimal impact on the density constraint. In this proof
of concept, we demonstrate that this procedure can probe the density in the GC using hypothetical young and old binaries
as examples. Similarly, a known density profile provides constraints on the binary orbital separation. Our results highlight
the need to consider multiple dynamical processes in tandem. In certain cases, often closer to the SMBH, the collision
timescale rather than the evaporation timescale gives the more stringent density constraint, while other binaries farther
from the SMBH provide unreliable density constraints because they migrate inward due to mass segregation.

Unified Astronomy Thesaurus concepts: Galactic center (565); Binary stars (154); Stellar dynamics (1596)

1. Introduction

Most galaxies have a 106–9 Me supermassive black hole
(SMBH) at their center (e.g., Ferrarese & Ford 2005; Kormendy
& Ho 2013). The Milky Way’s center hosts the closest known
SMBH, Sagittarius A*, surrounded by a dense nuclear star
cluster. With a mass of 4×106 Me, the SMBH dominates the
gravitational potential in the inner parsec region (Ghez et al.
2005; Gillessen et al. 2009). The proximity of this environment
presents a unique opportunity to broaden our understanding of
the physical processes unfolding in galactic centers.

The nuclear star cluster is largely dominated by a diffuse
population of old (>1 Gyr) stars (Nogueras-Lara et al. 2019;
Schödel et al. 2020), including several bright giants (e.g., Do et al.
2009). Observations have also unveiled a population of approxi-
mately 4–6 Myr old stars within the central pc of the Galactic
Center (GC) (e.g., Lu et al. 2009; Bartko et al. 2010; Do et al.
2013a, 2013b; Feldmeier-Krause et al. 2015). A subset of those
young stars, the so-called S-star cluster, have eccentric orbits that
are distributed isotropically within ∼0.04 pc of the SMBH (Ghez
et al. 2005, 2008; Schödel et al. 2003; Gillessen et al. 2009, 2017),
though a recent study suggests that the S-stars may be arranged in
two discs (Ali et al. 2020). Additionally, observations have
revealed a stellar disk structure in the inner parsec region (e.g.,
Levin & Beloborodov 2003; Paumard et al. 2006; Lu et al. 2009;
Bartko et al. 2009; Yelda et al. 2014). Throughout this paper, when
we refer to the GC, we are focusing on this inner region where the
nuclear star cluster resides. This unique environment, a stellar
cluster embedded within the gravitational potential of an SMBH,
is expected to yield several interesting phenomena such as
hypervelocity stars (e.g., Hills 1988; Yu & Tremaine 2003;
Ginsburg & Loeb 2007) and stellar binary mergers (e.g., Antonini
et al. 2010, 2011; Prodan et al. 2015; Stephan et al. 2016, 2019).

These phenomena require the existence of binaries in this dense
region.
Stars often reside in binary configurations. Approximately 50%

of KGF stars and more than 70% of OBA stars exist in binaries
(e.g., Raghavan et al. 2010). However, few binaries have been
observed in the GC. Approximately 0.05 pc from the SMBH, the
equal-mass binary IRS 16SW has a period of 19.5 days and total
mass of approximately 100Me (Ott et al. 1999; Martins et al.
2006). Pfuhl et al. (2014) confirm the existence of two additional
binaries approximately 0.1 pc from the SMBH: a short-period
(2.3 days) eclipsing Wolf-Rayet binary and a long-period
(224 days) low-eccentricity (e=0.3) binary. These confirmed
binaries are the most direct evidence of the broader binary
population expected to reside in the GC. A near-infrared variability
study has detected 10 binaries in the region of interest (Dong et al.
2017a, 2017b). Observational studies suggest that the OB binary
fraction in the GC is comparable to that in young massive stellar
clusters (e.g., Ott et al. 1999; Rafelski et al. 2007), and the
eclipsing young OB binary fraction in the GC is consistent with the
local fraction (Gautam et al. 2019). Furthermore, the theoretical
study Stephan et al. (2016) suggests a 70% binary fraction for the
population from the most recent star formation episode, 6Myr ago,
in the nuclear star cluster (e.g., Lu et al. 2013).
Few systems have been identified because the detection of

binaries in the GC stellar population faces several observational
challenges. These challenges include high extinction toward
the GC and extreme stellar crowding near the SMBH. Adaptive
optics (AO) on large ground-based telescopes, allowing deep,
diffraction-limited observations of the GC stellar populations,
can overcome some of these limitations. However, AO imaging
limits photometric precision (e.g., Schödel et al. 2010; Gautam
et al. 2019), while AO spectroscopic studies are not sensitive to
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fainter members of the GC stellar population (e.g., Do et al.
2013a). Furthermore, binary searches require large stellar
sample sizes and frequent monitoring of the stellar population
to measure sufficient photometric or spectroscopic variability.
However, not many such surveys have yet been performed for
the stellar population in the central half parsec of the GC.

However, other phenomena hint at the existence of binaries in
the GC. The abundant X-ray sources there may trace to binaries
in which a black hole accretes material from a stellar companion
(Muno et al. 2005; Cheng et al. 2018; Zhu et al. 2018; Hailey
et al. 2018), while Muno et al. (2006, 2009) and Heinke et al.
(2008) attribute these X-ray sources to cataclysmic variables, a
binary composed of a white dwarf and main-sequence star.
Hypervelocity stars likely originate from a binary that has been
disrupted by the SMBH, ejecting one of the binary members
from the GC (e.g., Hills 1988; Yu & Tremaine 2003; Ginsburg
& Loeb 2007; Perets 2009a, 2009b). More recently, a theoretical
study, Naoz et al. (2018), explains puzzling disk properties with
an abundance of binary systems.

In a dense environment like the GC, a binary system frequently
encounters other stars. Several studies have explored the complex
physics and implications of these encounters (e.g., Heggie 1975;
Hills 1975; Heggie & Hut 1993; Rasio & Heggie 1995; Heggie &
Rasio 1996; Binney & Tremaine 2008; Hopman 2009; Leigh et al.
2016, 2018; Hamers & Samsing 2019). If a passing star
approaches the binary with impact parameter on the order of the
binary separation, it interacts more strongly with the closer binary
member. This interaction imparts energy to the binary system and
causes the binary to widen. Over a long period of time, many such
encounters eventually unbind the binary. The evaporation time-
scale refers to the amount of time necessary for the binary to
undergo this process (see the derivation in Binney & Tremaine
2008). This timescale depends on the binary’s characteristics as
well as environmental properties such as the stellar number density
and velocity dispersion. Additionally, stars in the binary can collide
with passing objects with a timescale that also depends on the
density of the system’s environment (e.g., Sigurdsson & Phinney
1993; Fregeau et al. 2004; Binney & Tremaine 2008). The survival
of the binary over its lifetime therefore depends on the surrounding
density; too dense an environment results in the binary’s
destruction. Given these relations, a binary system with a known
age provides an upper limit on the local density and can constrain
the density profile in the GC.

Mass segregation is expected to concentrate the dense
remnants of massive stars in the central pc of the GC (e.g.,
Shapiro & Marchant 1978; Cohn & Kulsrud 1978; Morris 1993;
Miralda-Escudé & Gould 2000; Baumgardt et al. 2004).
Numerous studies explore the expected number of stellar mass
black holes and their influence on the density profile of the GC
(e.g., Miralda-Escudé & Gould 2000; Freitag et al. 2006;
Alexander & Hopman 2009; Merritt 2010; Aharon & Perets
2016). In particular, if the GC evolved in isolation, it should be
dynamically relaxed (e.g., Bar-Or et al. 2013), resulting in a
simple, cusp-like power-law density profile (e.g., Bahcall &
Wolf 1976; Alexander & Hopman 2009; Keshet et al. 2009;
Aharon & Perets 2016).3 However, observations indicate that
the profile may be shallower (e.g., Buchholz et al. 2009; Do
et al. 2009; Bartko et al. 2010; Gallego-Cano et al. 2018, 2020;
Schödel et al. 2014, 2018, 2020). A density constraint can

clarify the profile and the number and distribution of stellar
remnants, which are difficult to detect.
We expand upon the framework presented in Alexander &

Pfuhl (2014), the first use of a binary to constrain the density of
the GC. In particular, we derive the evaporation timescale for a
binary with an arbitrary eccentricity about the SMBH. We
consider several dynamical processes, such as collisions and
two-body relaxation, in this proof of concept of binaries as
probes of the GC density. Similarly, a known density profile
can be used to infer a binary’s orbital configuration. We begin
by outlining the equations that describe relevant dynamical
processes, including evaporation, two-body relaxation, the
Eccentric Kozai–Lidov (EKL) mechanism, and collisions, in
Section 2. Section 3 summarizes the qualitative outcomes of
binary systems subjected to competing dynamical processes.
We explore the use of binaries as a probe of the GC
environment, specifically the underlying density distribution,
and address the fates of older long-lived binaries in Section 4.
In Section 5, we constrain the parameter space for hypothetical
systems by assuming that observed S-stars reside in a binary
system5. We summarize our results in Section 6.

2. Equations

2.1. The Evaporation Process

The evaporation process describes the unbinding of a binary
due to interactions with passing neighbors.4 Derived using
diffusion physics (Binney & Tremaine 2008), the evaporation
timescale depends on several properties. Some of these
parameters pertain to the binary itself, such as the initial
semimajor axis abin and mass Mbin, while others describe the
binary’s environment. In the latter category, the density of the
scatterers, likely stars, and their velocity dispersion affect this
timescale.
The evaporation timescale is inversely proportional to the

density. The higher the density of scatterers, which are stars
and stellar remnants, the more frequent the encounters. We
assume that the density of objects is spherically symmetric and
write it as a function of r•, the distance from the SMBH:

r r=
a-

r
r

r
, 1• 0

•

0
( ) ( )

⎛
⎝⎜

⎞
⎠⎟

where ρ0 is the normalized density at r0 and α is the slope
of the power law.5 We use values 1.35×106 Me pc−3 and
0.25 pc for these parameters, respectively (Genzel et al. 2010).
These values are very similar in magnitude to those presented
in Schödel et al. (2018).
Additionally, the evaporation timescale is proportional to the

velocity dispersion since the relative speed between the binary
and passing star determines the length of each encounter. For a
low velocity dispersion, the passing star’s gravitational force
has longer to act on the binary, producing greater change in the
binary’s orbital configuration. The Jeans equation relates the

3 Certain physical processes may also modify the density profile. For
example, binary disruption by the SMBH can steepen the density cusp
(Fragione & Sari 2018).

4 Binaries can also be ionized, that is, unbound in a single interaction with a
neighbor. The associated timescale for this process is a factor of approximately
lnΛ larger than the evaporation timescale (Heggie 1975; Binney &
Tremaine 2008). We omit this process here because evaporation occurs on a
faster timescale.
5 We do not consider any broken power laws. However, in Section 4.1, the
density constraint derived from a binary’s survival depends very weakly on α,
suggesting that, despite our assumptions here, the procedure can be used even
if a broken power law describes the density profile in the GC.
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density distribution to the one-dimensional velocity dispersion.
We express the velocity dispersion as

s
a

=
+

r
GM

r 1
, 2•

•

•
( )

( )
( )

where G is the gravitational constant, α is the slope of the
density profile, and M• denotes the mass of the SMBH
(Alexander 1999; Alexander & Pfuhl 2014).
We consider a binary at distance r• from the SMBH. We

adapt the evaporation timescale equation to depend explicitly
on the distance r• (Binney & Tremaine 2008; Alexander &
Pfuhl 2014; Stephan et al. 2016):

s
p r

=
L á ñ

t
r

G r a r

M

M

3

32 ln
, 3ev

•

• bin •

bin

*

( )
( ) ( )

( )

where Mbin is the total mass of the binary and 〈M*〉 is the
average mass of a star in the GC.6 The evaporation timescale
also depends on the Coulomb logarithm lnΛ, where Λ is
the ratio of the maximum to minimum impact parameter. In the
evaporation process, =b a 2max bin for the passing star to
interact more strongly with one of the binary members.
Otherwise, the encounter will affect the center of mass. The
strongest deflection, 90◦, gives bmin. We obtain the following
expression from Alexander & Pfuhl (2014):

s
a

L = =
+v

a M

M r
2

2

1
. 4

2

bin
2

bin •

bin •( )
( )

In the last transition, we substitute Equation (2) for σ and
GMbin/abin for the orbital velocity of the binary, averaged over
the mean anomaly. This approximation assumes that the inner
binary orbital timescale is shorter than the orbital timescale
about the SMBH.

Combining these equations and assumptions, we find that the
evaporation time has r• dependence:

b
µ

a-
t

r

rln
, 5ev

•
1 2

•( )
( )

where

b
a

=
+

a M

M

2

1
. 6bin •

bin ( )
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We illustrate the dependence of the evaporation timescale as a
function of distance in Figure 1. Specifically, we plot the
evaporation time of an equal mass Mbin=2Me binary with 0.1
and 0.5au semimajor axis for α=1 to α=2 in dark blue. The
darkest line represents α=1.75, the profile for a dynamically
relaxed single-mass system (Bahcall & Wolf 1976). As the
evaporation process relies on weak encounters, the true
evaporation time of a binary system likely does not differ
substantially from the evaporation timescale (Perets et al. 2007).
We extend the axes in Figure 1 to extreme values close to the
SMBH, where our assumptions may break down, in particular
regarding a continuous distribution of objects. However, we
note that a recent analysis of S0-2 observations suggests that

low-mass objects may still reside interior to its orbit (e.g., Naoz
et al. 2020).

2.1.1. Binaries Soften with Time

The evaporation process requires that a binary begins in a
soft configuration. A soft binary has a gravitational binding
energy that is less than the kinetic energy of the neighboring
stars:

s
=

á ñ
<s

E

M
1, 7

2
*

( )

where E=Gm1m2/(2abin) and 〈M*〉 is the average stellar mass
in the GC. This configuration allows a passing star to interact
more strongly with one of the binary members. This condition
places a minimum on the semimajor axis a binary can have to
evaporate. Following Alexander & Pfuhl (2014), we refer to s
as the softness parameter.
Additionally, soft binaries tend to soften over time. The

evaporation timescale depends on abin. However, as abin increases
with time, the evaporation timescale depends on when in its

Figure 1. Two examples for the relevant timescales in the problem, as a
function of the distance of the binary from the supermassive black hole. We
consider an equal-mass binary with Mbin=2Me and semimajor axis 0.1au
and 0.5au for the top and bottom panels, respectively. For the timescales that
depend on the density, we consider a range of power laws from α=1 to
α=2. All of the timescales increase with decreasing α. Relevant timescales
include the evaporation timescale from Equation (3) (dark blue), the
evaporation timescale with the history parameter (red, labeled Max. Evap.),
the relaxation timescale (gold), the collision timescale (green), and the
Eccentric Kozai–Lidov quadrupole timescale (purple). The darkest lines have
α=1.75 (Bahcall & Wolf 1976).

6 We assume that rá ñ » á ñn M M2
* * from the evaporation timescale equation in

Alexander & Pfuhl (2014). However, an alternative is to define
= á ñ á ñM M M2

* * * such that ρM* appears in the denominator of Equation (16)
following the notation of Kocsis & Tremaine (2011).
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lifetime the binary is observed. The birth configuration, namely
the initial abin, should determine the true evaporation timescale of
the system. Assuming that the binary began harder and softened
over its lifetime places an upper limit on the evaporation time:

s
p r

= =
L á ñ

t t S
r

G r a r

M

M
S

3

32 ln
, 8ev ev h h,max

•

• bin •

bin

*

( )
( ) ( )

( )

where

=S
s

s
9h

h

0
( )

accounts for the binary’s history, the widening the binary
separation over time (Alexander & Pfuhl 2014). We refer to Sh
as the history parameter. s0 is the the softness parameter
calculated at present time, when the binary is observed. sh finds
the hardest possible initial configuration that the binary can
have in order to place the most conservative overestimate on
the evaporation time:

= = +s s a R Rmin 1, , 10h bin 1 2[ ( )] ( )

where R1,2 are the initial zero-main-sequence radii of the stars,
estimating the binary as a contact binary at the beginning of its
life (Alexander & Pfuhl 2014). In other words, sh chooses the
tightest possible initial configuration to permit evaporation at
birth, either a contact binary or at the limit for a soft binary,
given by s=1 (Equation (7)).
Assuming the star’s mass and the velocity dispersion have

not changed over the binary’s lifetime, the history parameter
reduces to the ratio of the observed present-day semimajor axis
abin to the tightest possible initial semimajor axis abin,min.
Therefore, working from Equation (8),

= = ´

» =

t t a a
a

a

t a a . 11

ev,max ev bin
bin

bin,min

ev bin,min

( )

( ) ( )

If we assume no mass loss due to stellar evolution and neglect
any changes in the Coulomb logarithm, scaling by the history
parameter is equivalent to simply calculating the evaporation
timescale using the tightest possible configuration abin,min.

We include a conservative maximum evaporation time (red)
in Figure 1 by scaling the dark blue curves by factor Sh. The
true evaporation time lies between these two curves.

2.1.2. Orbit Averaging

In the GC, the density and velocity dispersion depend on the
distance from the SMBH, around which any binaries must also
orbit. Therefore, the evaporation timescale also depends on the
eccentricity of the binary’s orbit about the SMBH. A binary on
an eccentric orbit will pass through the denser, more energetic
inner regions of the GC unlike a binary on a circular orbit with
the same semimajor axis. To account for the eccentricity’s
effect, we average the contributions of each segment of the
orbit. We weight each segment by the amount of time the
binary spends there.

We consider a stellar binary with orbital parameters abin, ebin
on an eccentric orbit about the GC. We refer to the stellar
binary as the inner orbit. We define the outer orbit, that of the
binary about the SMBH, to have orbital parameters a•, e•.
Averaging over the outer orbit, we obtain the evaporation time
as a function of orbital parameters a• and e•. Specifically, we

average over the canonical coordinate M•, the mean anomaly of
the outer orbit:

òp b
µ
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•
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However, to integrate, we make a coordinate transformation
from the mean anomaly to the eccentric anomaly, E•, using

= -r a e E1 cos 13• • • •( ) ( )

and dM•=r•/a• dE•.
We assume that the Coulomb logarithm does not depend on

r•, i.e., the logarithm changes very slowly and can be
considered constant in the integral. We arrive at the integral
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and 2F1 is the hypergeometric function. Including the other
parameters, we find that

s
p r

=
L á ñ

´t
a

G a a a
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M
f e
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32 ln
, 16ev

•

• bin •

bin
•

*

( )
( ) ( )
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where σ, ρ, and the Coulomb logarithm are all evaluated at a•.
In Section 4.1, we rearrange this equation to obtain the
maximum density at a distance a• from the SMBH. Note that
f (e) is always of order unity, indicating that the eccentricity of
an orbit about the SMBH makes little difference to the
evaporation time. We remind the reader that the maximum
evaporation timescale is achieved by multiplying Equation (16)
by the history parameter, Sh (see Equation (8)).
In Figure 2, we plot the evaporation timescale as a function

of eccentricity normalized by that of a circular orbit of the same
semimajor axis. We vary the stellar density as a function of
radius by using values of α from 0.5 to 2. Binaries on eccentric
orbits have a longer evaporation timescale, and this effect
becomes more pronounced with increasing α. This result
indicates that the evaporation timescale for a binary on an
eccentric outer orbit will have the same order of magnitude as
the circular case. This minimal change stems from the fact that
the binary will spend more time near the apoapsis of its orbit,
offsetting the effects of reaching denser, more energetic regions
closer to the SMBH. The environmental conditions at the
distance a• therefore give a good approximation of the
evaporation time.

2.2. Two-body Relaxation

The evaporation process requires that the maximum impact
parameter must be about abin/2 to ensure that the passerby
interacts more strongly with one of the binary members as
opposed to the binary center of mass. However, the interactions
that fail to meet this criterion still impact the dynamical
evolution of the binary. Interactions acting on the center of
mass change the binary’s overall trajectory. Over a relaxation
time, these interactions alter the outer orbit.
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For a single-mass system, the two-body relaxation timescale
can be written as

s
r

=
á ñ L

t
G M

0.34
ln

17relax

3

2
rlx*

( )

(Spitzer 1987; Binney & Tremaine 2008, Equation (7.106)).
We use this equation to gauge the timescale over which the
orbit of the binary about the SMBH changes as mbin∼〈M*〉 in
this case. Additionally, the timescale over which the outer orbit
changes through binary interactions with single stars is similar
to the relaxation timescale (Hopman 2009). Interactions at all
impact parameters perturb the binary’s trajectory about the
SMBH, so the Coulomb logarithm in the relaxation timescale
lnΛrlx differs from that in the evaporation timescale. The
strongest deflection still gives bmin. However, bmax becomes r•
to encompass all interactions from objects interior to the
binary’s orbit about the SMBH. In Figure 1, we plot the
relaxation timescale for a variety of α in gold with the dark line
representing α=1.75.
Perhaps more appropriate for binary systems is the mass

segregation timescale, which also derives from the relaxation
process and has a similar form to Equation (17) (e.g., Bonnell
& Davies 1998; Spitzer 1987; Merritt 2006). Binary systems
sink inward according to their masses, which are higher on
average than that of the surrounding objects (e.g., Mathieu &
Latham 1986; Geller et al. 2013; Antonini et al. 2014). The
binary migrates toward the SMBH on the mass segregation
timescale tseg≈〈M*〉/mbin×trelax (e.g., Merritt 2006). For
more massive systems, we use this equation to calculate the
timescale over which the outer orbit changes.7

2.3. Inelastic Collisions

In a dense environment like the GC, direct collisions
between objects occur frequently. Accounting for gravitational

focusing, the collision rate can be expressed as

p
r s

s
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+-t
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where =v Gm R2 j jesc is the escape speed from one of the
stars in the binary with mass (radius) mj (Rj) (Binney &
Tremaine 2008, Equation (7.195)). For a soft binary, we treat
the collision separately from the evolution of the orbit. The
primary will suffer a collision sooner than the less massive
companion because of its enhanced cross-section. Therefore,
we calculate the collision timescale using the primary star. We
plot this timescale in green in Figure 1.
To find the collision timescale for a star on an eccentric orbit

about the SMBH, we average the collision rate Equation (18)
over the mean anomaly similar to Equation (12). After a
coordinate transformation to the eccentric anomaly E•, over
which we integrate, the collision rate for an eccentric orbit
becomes
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Figure 3 shows the collision timescale as a function of
eccentricity normalized by that of a circular orbit. The density
has values of α ranging from 0.5 (red) to 2 (purple). Increasing
the eccentricity increases the average collision rate, decreasing
the collision timescale. The change becomes more pronounced
for steeper density profiles but does not exceed a factor of two.
As in Section 2.1.2, we attribute this minimal change to the
conditions near periapsis and apoapsis offsetting the other’s
impact.
Equation (18) assumes that stars of equal mass compose

the population, and its derivation involves averaging over
the velocity distribution of the stars. In later sections, we
violate this assumption by considering a massive star with less
massive surrounding objects. We can estimate the collision
timescale in this scenario using a simple s=-t n Acoll

1 calcul-
ation. The cross-section of interaction A equals π b2, where b is
the maximum impact parameter for a physical collision.
Accounting for gravitational focusing,

s
= +b r r

GM2
, 22c c
t2 2

2
( )

Figure 2. Evaporation time for a binary on an eccentric orbit with semimajor
axis 1 au normalized by that of a circular orbit. We vary the density distribution
of stars by assuming different values of α, from α=0.5 (red), which gives
constant evaporation time, to α=2 (purple).

7 We focus on changes to the energy of the outer orbit, which affects the
semimajor axis, through two-body relaxation. However, resonant relaxation
processes also take place, altering the outer orbit’s angular momentum
magnitude and orientation (e.g., Rauch & Tremaine 1996; Hopman &
Alexander 2006; Kocsis & Tremaine 2011). Since the collision and evaporation
timescales depend weakly on eccentricity (Figures 2 and 3), scalar resonant
relaxation, which changes the angular momentum vector’s magnitude, does not
impact our procedure. Similarly, vector resonant relaxation, which changes the
outer orbit’s inclination, also does not affect our procedure, although it can help
the system enter the EKL-favored regime (e.g., Hamers et al. 2018).
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where rc is the sum of the radii of the interacting stars,
Rj+〈R*〉, and Mt=mj+〈M*〉. We estimate that the
collision rate is

prs
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In the limit that all stars are identical, we set rc=2Rj to find
that Equation (18) is only a factor of two bigger than
Equation (23). This comparison suggests that averaging over
the velocity distribution introduces a small numerical factor,
increasing the collision rate. Averaging Equation (23) over the
eccentricity results in a very similar equation to Equation (19):
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2.4. Eccentric Kozai–Lidov Timescale

Any binary system in the GC forms a triple system with the
SMBH. Dynamical stability requires that this triple has a
hierarchical configuration: the binary must have a much tighter
(inner) orbit than that of its center of mass about the SMBH,
referred to as the outer orbit. The condition abin=a• allows an
expansion of the gravitational potential in terms of the small
parameter abin/a• (Kozai 1962; Lidov 1962). The SMBH
perturbs the binary’s orbit, causing the eccentricity and
inclination of the stellar binary to oscillate in the EKL
mechanism (see the review by Naoz et al. 2016). The
quadrupole term in the expansion has an associated timescale,
which represents the timescale of the oscillations:

p
=

+
-t

M M

M

P

P
e

16

30
1 , 25EKL,quad

bin •

•

•
2

bin
•
2 3 2( ) ( )

where Pbin (P•) denotes the period of the inner (outer) orbit
(e.g., Antognini 2015; Naoz et al. 2016). We plot a range of
quadrupole timescales in purple for e•=0 to e•=0.95 in
Figure 1.

These EKL oscillations can result in one of several outcomes.
The oscillations can drive the eccentricity to extreme values and
cause the inner binary to merge (e.g., Antonini & Perets 2012;
Naoz & Fabrycky 2014; Stephan et al. 2016; Hoang et al. 2018;
Rose et al. 2019; Fragione & Antonini 2019). Similarly, weak

encounters with a passing object may change the eccentricity of
the binary and result in a merger (e.g., Hamers & Samsing 2019;
Samsing et al. 2019; Michaely & Perets 2019; Young &
Hamers 2020). Stephan et al. (2016) estimate that after a few
Gyr, 30 percent of a GC binary population will have merged
through the EKL mechanism. However, if tides work efficiently
during these periods of high eccentricity, the binary orbit may
instead tighten and circularize (e.g., Naoz & Fabrycky 2014;
Rose et al. 2019). Yet another possibility is that the system
undergoes weak eccentricity oscillations (e.g., Rose et al. 2019).

3. The Outcome: Relax, Evaporate, or Collide?

Competition between several processes determines the
dynamical fate of a binary. We consider two examples in
Figure 1. Both of the binaries in the figure are equal mass with
Mbin=2Me. Their semimajor axes differ by a factor of 5 to
illustrate the relationship between these competing timescales
and the softness of the binary. These binary parameters ensure
that the systems are both long-lived and soft enough to undergo
evaporation throughout most of the inner region r�0.5 pc of
the GC.
Figure 1 indicates that most soft binaries will evaporate

before one of the binary members collides with a passerby.
However, within about 10−2 pc of the SMBH, those systems
that approach the boundary s=1, given by Equation (7), may
undergo an inelastic collision before the system has had time to
evaporate. We reserve a detailed examination of this outcome
for future study. Additionally, for most of the inner parsec of
the GC, the evaporation timescale is shorter than the relaxation
timescale, implying that the binary will evaporate before it can
migrate closer to the SMBH. However, for both of the
examples, as r• approaches 0.5 pc, the relaxation timescale
becomes shorter than the evaporation timescale. Here, a binary
migrates inward before it unbinds.
The examples in Figure 1 assume that the binary has a

circular orbit about the SMBH. The collision timescale
decreases with the eccentricity e• (Figure 3), while the
evaporation timescale increases (Figure 2). An eccentric orbit
will increase the range of distances from the SMBH over which
tcoll<tev. Additionally, eccentric orbits have a shorter
relaxation timescale than circular orbits of the same semimajor
axis (Sari & Fragione 2019). Therefore, the relaxation and
evaporation timescales will cross closer to the SMBH for
eccentric orbits, increasing the parameter space in which the
binary migrates before it evaporates.
Figure 4 illustrates the qualitative evolutionary trajectories

for a binary system depending on its initial semimajor axis abin.
This binary resides 0.3pc from the SMBH and is an equal-
mass system with Mbin=2 Me. We consider three qualitative
examples. In the case(a), the binary with abin  0.05 au has a
hard configuration. This tight binary will migrate toward the
SMBH. The hard binary becomes harder from frequent
interactions with nearby objects (e.g., Heggie 1975). The
system may harden to the point where it crosses the Roche
limit, or the EKL mechanism may drive the system to merge
(e.g., Stephan et al. 2016, 2019; Rose et al. 2019). The system
may also have an exchange interaction with another star (e.g.,
Hopman 2009). We estimate that this system’s exchange
interaction timescale is approximately 0.8×trlx or 4×109 yr
(Equation (43) from Hopman 2009).
For scenario(b), the case 0.05abin0.1 au, the binary is

marginally soft. It evaporates over a timescale longer than the

Figure 3. Collision timescale for a star on an eccentric orbit about the
supermassive black hole normalized by that of a circular orbit. We vary the
density distribution of stars by assuming different values of α, from α=0.5
(red) to α=2 (purple).
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relaxation timescale, allowing the system to move inward over
its lifetime. It will eventually evaporate at a closer distance to
the SMBH than the location of its birth. The inward migration
brings the binary into a comparatively denser region, where the
evaporation timescale is shorter. The coupling of the relaxation
and evaporation processes may therefore result in a puzzling
binary, one whose age and location suggest that it should have
already evaporated. Such a system owes its longevity to
originating in a less dense region further from the SMBH.

Finally, case(c) has 0.1 au  abin. The evaporation process
has a shorter timescale compared to other dynamical processes.
The system will unbind due to weak interactions with
neighbors. In both soft binary cases, (b) and (c), the system
may also merge through the EKL mechanism.

To assess the outcomes in a population of binaries, we
generate 70,000 stable systems in the GC using similar
parameter distributions to Stephan et al. (2016) (see
Appendix A). About 99 percent of these systems are soft.
Only about 3 percent of these soft systems experience a
collision while the binary is still bound. Using the mass
segregation timescale, we estimate that up to 10 percent of the
binaries drift inwards before they unbind (see Appendix C and
Figure C1). These systems tend to be tighter binaries that reside
further from the SMBH. These demographics suggest that mass
segregation plays a secondary role to evaporation in shaping
the distribution of binaries in the GC, in particular the binary
fraction as a function of distance from the SMBH. The vast
majority of systems are soft and unbind over shorter timescales.
As shown previously using EKL simulations with evaporation
in the GC (e.g., Stephan et al. 2016; Hoang et al. 2018), we

expect a dearth of binaries closer to the SMBH, a trend that will
become more pronounced over time.

4. Constraining the Dark Cusp and the Binary Parameters

We build upon the framework presented in Alexander &
Pfuhl (2014) which uses a binary to provide density and
relaxation time constraints on the dark cusp in the GC. The
evaporation timescale relates key binary and GC properties.
Section 3 shows that most binaries in the GC are susceptible to
evaporation. Equation (16) presents a unique opportunity to use
a set of known parameters to constrain unknown properties. A
confirmed binary can thereby be used to probe the density at
the GC. On the other hand, a constraint on the density some
distance from the SMBH informs the allowable properties of
any hypothetical binary system in that vicinity. We explore
these relations in the context of an old and a young binary.

4.1. Galactic Center Stellar Density

The evaporation timescale relates binary properties and the
density. The age of the system sets a lower limit on the
evaporation timescale: the binary would not be observed if the
evaporation timescale were shorter than the system’s age.
Therefore, a confirmed binary provides an upper limit on the
density in its vicinity. Setting tage=tev, we can rearrange
Equation (16) to find ρmax at the distance a• from the SMBH:
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Note that we do not assume a constant Coulomb logarithm.
Collisions may also unbind the binary system (e.g.,

Sigurdsson & Phinney 1993; Fregeau et al. 2004). A collision
can ionize the binary if the incoming star has velocity greater
than the critical velocity
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where Mbin=m1+m2 and m3 is the mass of the incoming
neighbor (Fregeau et al. 2004). We take m3 to be 〈M*〉. We
assume that wherever σ>vcrit, a collision will unbind the
binary. Therefore, setting tcoll=tage provides another density
constraint. We can rearrange the collision timescale
Equation (18) to obtain an upper limit on the density at a•:
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where Mt=m1+〈M*〉. We use the primary mass in this
calculation because the more massive star will undergo a
collision sooner. Above this density limit, the primary has
likely already collided with a passing star, ionizing the system.
The maximum density constraints depend on the average

mass of the objects interacting with the binary. Based on work
in Alexander & Hopman (2009), Alexander & Pfuhl (2014)
present two equations for 〈M*〉 as a function of distance from
the SMBH. One equation corresponds to a top-heavy initial
mass function (IMF), while the other derives from a universal
IMF. In the former case, 〈M*〉 is approximately 10 Me over

Figure 4. Qualitative evolutionary possibilities for a Mbin=2 Me binary
system at 0.3pc from the supermassive black hole depending on its initial
semimajor axis, depicted by the blue lines. A dashed blue line indicates a
binary that has evaporated. We explore three cases, labeled (a), (b), and (c).
Each case corresponds to a row, separated by the light gray solid lines. The
shortest timescale at the binary’s location determines its fate. The binary
migrates when trelax<tev. Note that in scenario (a), the binary is too hard to
evaporate. The collision timescale for these systems is too long to alter the
qualitative evolution. In all cases, a merger represents a possible outcome. Blue
stars symbolize a merger product. Numerical values are approximate in this
qualitative illustration.
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the range of distances we consider, while the latter equation
gives an 〈M*〉 ranging from 1 to 2 Me. At 0.15 pc, where the
known binary IRS 16NE resides, 〈M*〉 equals 1.2 Me for the
universal IMF (Alexander & Pfuhl 2014).

We present a proof of concept for hypothetical young and
old binary systems using these density constraints (Figure 5).
For these systems, we adopt a circular orbit around the SMBH,
such that f (e)→1. We consider two cases for 〈M*〉. In the first
case, we simply adopt 〈M*〉=1.2Me. In the second case, we
consider 〈M*〉=10Me to reflect Alexander & Pfuhl (2014)ʼs
top-heavy IMF. We assume that 10 Me main-sequence stars
dominate the surrounding objects and adopt a radius of
approximately 3.5 Re for these objects to calculate the collision
density constraint. However, the top-heavy IMF is most
relevant within ∼0.01 pc of the SMBH, where an abundance
of stellar mass black holes may result in an 〈M*〉 closer to
10 Me (Freitag et al. 2006; Alexander & Hopman 2009). The
collisional radius is much smaller for stellar mass black holes.

While we restrict ourselves to an 〈M*〉 that remains constant
throughout the GC, this procedure can incorporate an 〈M*〉 that
varies as a function of distance from the SMBH with the form
á ñ µ b-M r•* . This change will alter the orbit-averaged result
(Section 2.1.2). However, the result should still have the form
of a hypergeometric function. We expect that the eccentricity
dependence will remain weak.

4.1.1. The Cusp and Young Binaries

We adopt parameters Mbin=80Me and abin=3.11 for the
confirmed binary system IRS 16NE (Pfuhl et al. 2014;
Alexander & Pfuhl 2014). Like Alexander & Pfuhl (2014),
we assume an age of 6Myr for the system, consistent with
observations of the young GC stellar population (e.g., Paumard
et al. 2006; Bartko et al. 2009; Lu et al. 2013). While IRS
16NE resides at a•=0.15 pc (see Figure 5, black dashed
vertical line), we place limits on the density over a range of

Figure 5. Given a binary, the maximum density for no evaporation is plotted as a function of distance from the supermassive black hole (SMBH) with (multicolored
dashed) and without (multicolored solid) the history parameter Sh, given by Equations (8) and (9). The black curve depicts the maximum density for no collision. The
solid portion of the curve denotes the region in which the velocity dispersion is greater than the critical velocity to ionize the binary. The dashed black segment cannot
constrain the density. Solid faded lines indicate the density as a function of r assuming a power law like Equation (1) for α=1 (red) to α=2 (blue). The left (right)
column assumes 〈M*〉=1.2Me (〈M*〉=10 Me). See the note at the end of Section 2.1 about the x-axis limits, which we extend to extreme values. Upper row:
young massive binary. This binary has the parameters of IRS 16NE from Alexander & Pfuhl (2014). Lower row: old binary. This binary is identical to the system used
in the lower panel of Figure 1: a 1 Gyr old equal-mass binary with 1 Me stars and 0.5 au separation. Approaching 0.5 pc, the evaporation timescale exceeds the
relaxation timescale, allowing inward migration. These density constraints imply that the detection of an older binary close to the SMBH suggests a recent dynamical
formation scenario.
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distances from the SMBH using an IRS 16NE-like binary in the
first row of Figure 5.

In conjuction with the known binary parameters, setting
tev=tage gives an upper limit on the density in the binary’s
vicinity using Equation (26) (solid multicolored curve; see
lower right plot for labels). We scale this density limit by the
history parameter to arrive at a conservative maximum density
(dashed multicolored curve). The history parameter assumes
that the binary has been softening over its lifetime from the
tightest possible initial configuration. This density constraint is
only valid where the binary is soft enough to evaporate. A. K.
Gautam et al. (2020, in preparation) find that IRS 16NE is a
hard binary at 0.15pc. For the case 〈M*〉=1.2Me, a binary
with the parameters abin, Mbin of IRS 16NE only becomes soft
in the inner 0.01 pc, where the velocity dispersion is higher.
We shade the region where the binary is hard in gray. The left
limit of this region depends on the velocity dispersion and
therefore α. However, to avoid over-cluttering the figure, we
simply mark the region as beginning where the binary becomes
hard for α=2 (blue).

Similarly, we plot the maximum density constraint from
collisions (Equation (28)) in black. The solid segment of the
curve coincides with the region in which the neighboring stars
have sufficient energy to ionize the system; the velocity
dispersion is greater than the critical velocity. The dashed
portion indicates the density at which the primary has
undergone a collision that may alter the binary configuration
while leaving the system bound. The dashed segment therefore
cannot constrain the density.

The maximum density constraint is set by either the collision
or evaporation timescale, whichever falls lower. We can rule
out densities above this threshold. More specifically, we can
eliminate certain density power laws of the form Equation (1)
(faded solid lines) with α=1 (red) to α=2 (blue) that lie
above the ρmax curve. We shade the forbidden density region in
Figure 5. We note that if the 10 Me case is dominated by
stellar mass black holes as opposed to main-sequence stars, the
collision timescale becomes very long compared to the
evaporation timescale. In this case, the evaporation timescale
would set the density constraint in Figure 5.

4.1.2. The Cusp and Old Binaries

An older binary places a more stringent constraint on the
maximum density than the young system. Given the dearth of
confirmed binaries, we use a hypothetical older binary with the
same parameters as the lower panel of Figure 1: m1=m2=1
Me and abin=0.5 au. In the orange shaded region, the
relaxation timescale exceeds the evaporation timescale, allow-
ing the binary to migrate inward before it has evaporated and
placing a caveat on a density constraint derived from the
system.8 However, the left boundary of that region is
determined by assuming the binary has evolved from the
tightest possible initial configuration. Therefore, it likely
overestimates the true region in which a given binary migrates
more quickly than it evaporates. We plot ρmax,ev with (dashed
dark line) and without (solid dark line) the history parameter.
The black dashed curve represents ρmax,coll from Equation (28).
For this long-lived, less massive binary, collisions do not play a

significant role in its evolution. Over most of the GC, the
binary evaporates before it experiences an inelastic collision.
In Figure 5, we illustrate our interpretation of the plot by

shading the region of forbidden density in teal. The maximum
density can be compared to the density power laws of the form
Equation (1) (faded solid lines) with α=1 (red) to α=2
(blue). Within ∼0.01pc of the SMBH, all density power laws
lie above the ρmax for binary survival. We conclude that old
binaries cannot survive within ∼0.01pc of the SMBH. The
discovery of a soft, old binary in that region may indicate a
dynamical formation mechanism.

4.2. The Binary Separation

Similar to the maximum density constraint, we can solve
Equation (16) for abin to find the maximum separation a binary
can have at a certain age by setting tev=tage:
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A binary wider than abin,max would have already evaporated.
We assume that the Coulomb logarithm, which depends on
abin, is approximately constant and use a value of 5 based on
Figure B1. We also assume that 〈M*〉=1.2Me for the
remainder of this paper.
In this exercise, we are considering the maximum allowed

separation after tage years of evolution. We do not take the
history parameter into account because it assumes the tightest
possible initial separation for the binary. Evolution from this
tight state can only lead to an observed separation shorter then
the one presented in Equation (29). We also neglect collisions
because the collision rate does not depend on the binary
semimajor axis. However, a star in these hypothetical binaries
may meet the condition tcoll�tage closer to the SMBH, where
the velocity dispersion is high, unbinding the binary. While
collisions may act faster than evaporation close to the SMBH,
they do not lead to a wider maximum binary separation.

4.2.1. Young Binary Separation

In Figure 6, we consider three young binaries. Two have the
same masses as the nominal systems from Section 4.1: one with
m1=m2=1 Me and another with m1=m2=40 Me. We
also include a binary with m1=10 Me and m2=1 Me,
similar to the parameters in Section 5 where we consider
hypothetical binaries in place of S-stars. The dashed colored
lines depict the semimajor axis that these young binaries can
have as a function of distance from the SMBH for α=1 (red)
to α=2 (blue). Above this curve, the binary would have
already evaporated within its lifetime. The solid lines, also
colored by α, represent the minimum semimajor axis the binary
can have while remaining susceptible to evaporation. Below
this line, the binary is too hard to evaporate. We also plot the
limit at which the binary will succumb to tidal forces from the
SMBH and become unbound and the limit at which the binary
will cross its own Roche limit to undergo mass transfer, labeled
the binary Roche limit.

4.2.2. Old Binary Separation

Similarly, we plot the maximum a1 (dashed colored lines)
for a 1 Gyr old binary with m1=m2=1 Me using
Equation (29). Unlike the young binary examples, we omit

8 Tidal breakup of a triple or quadrupole system can also deliver binary
systems from farther out in the GC (Fragione & Gualandris 2018;
Fragione 2018). These systems would similarly provide unreliable density
constraints.
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high-mass stars because they evolve on shorter timescales. As
expected, only a narrow range of abin remains allowable for
older systems. Observing an old binary between 0.0025 pc

r•  0.07 pc may help disentangle the possible power-law
index, α, of the underlying density. Additionally, observing an
old binary within ∼0.0025 pc of the SMBH may suggest a
new, perhaps dynamically formed system.

5. The S-star Cluster

While few confirmed binaries exist in the GC, observational
evidence indicates their presence. We consider the possibility
that observed stars in the GC are embedded in a binary system.
Several S-stars have eccentric orbits about the SMBH within
0.05 pc (e.g., Ghez et al. 2005; Gillessen et al. 2009, 2017), and
observations indicate that many of these stars are young (e.g.,
Paumard et al. 2006; Lu et al. 2009; Bartko et al. 2009; Habibi
et al. 2017).9 Previous studies explore the alternative that these
stars, namely S0-2, may in fact represent binary systems and
assess their possible orbital configurations (e.g., Li et al. 2017;
Chu et al. 2018). The procedure presented here may also
constrain the parameter space of the hypothetical binary’s
orbital configuration.
In particular, we consider as a proof of concept three well-

studied S-stars, S0-1, S0-2, and S0-5, and constrain the
allowable semimajor axis and local density (Figure 8). A future
observational constraint on the density will narrow the range of
allowable binary semimajor axis, while a confirmed detection
of an S-star binary system will place limits on the density.
Radial velocity measurements in particular can provide
constraints on the semimajor axes and companion masses of
potential S-star binaries (D. Chu et al. 2020, in preparation).
We impose several conditions to ensure that each hypothe-

tical binary is dynamically stable and long-lived. These criteria
place upper and lower limits on abin. First, we consider the Hill
radius for a three-body system. This condition requires that the
stellar binary’s apoapse distance abin(1+ebin) does not exceed
the Hill radius:
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(e.g., Naoz & Silk 2014). We assume that the hypothetical
stellar binary orbit is circular. An eccentric orbit will at most
change the maximum abin by a factor of two. The vertical blue
line, labeled accordingly, marks this upper limit in Figure 8.
We also impose a hierarchical configuration: the (hypothe-

tical) stellar binary must have a much tighter configuration than
the orbit of its center of mass about the SMBH. The SMBH
gravitationally perturbs the stellar binary and alters its orbital
properties. To ensure that these changes are secular and the
system is dynamically stable, the parameter ò, which represents
the prefactor in the three-body Hamiltonian, cannot exceed 0.1:

=
-

< a

a

e

e1
0.1. 31bin

•

•

•
2

( )

(e.g., Lithwick & Naoz 2011; Naoz et al. 2016). The vertical
red line indicates this limit in Figure 8.
Additionally, for a stable binary, no mass transfer or

common envelop phase can be occurring. Therefore, the binary
cannot cross its own internal Roche limit. This condition places

Figure 6. Taking Mbin=2, 11, and 80Me from top to bottom, the maximum
separation after 6.6Myr is estimated, according to Equation (29), assuming a
constant Coulomb logarithm. This maximum semimajor axis as a function of
the binary distance form the SMBH is depicted by the multicolored dashed
lines where, as in previous figures, we vary α from 1 (red) to 2 (blue). Above
this line the binary should have evaporated (teal area). Following the same
color convention, we also plot the minimum semimajor axis the binary can
have to be considered soft and undergo evaporation. Below this line the binary
is hard (shaded with red stripes). We shade in gray the regime at which
the inner binary will cross its own Roche limit (see Equation (32)) and
the regime at which the SMBH will tidally disrupt and unbind the binary (see
Equation (30), where for simplicity we assumed e•, ebin→ 0). Note the
different limits on the y-axis due to the different masses. See the note at the end
of Section 2.1 about the x-axis limits.

9 The S-star population also contains some older stars (e.g., Habibi et al.
2019).
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a lower limit on abin:

>
+

-

a R
m

m m
, 32j

j
bin

1 2

1 3

( )
⎛
⎝⎜

⎞
⎠⎟

where Rj denotes the radius of one of the stars. We choose the
largest radius between the two stars to reach the most
conservative limit, the green vertical line in Figure 8.

Radial velocity data for S0-2 (also known as S2) indicate that
any hypothetical secondary is limited to about a solar mass (Chu
et al. 2018). Furthermore, Habibi et al. (2017) provide values of
6.6Myr old and 14Me for the age and mass of S0-2. For our
hypothetical S0-2 binary, we use a 14Me primary and 1Me
secondary. S0-1 (also known as S1) and S0-5 (also known as S9)
have approximate masses 12 and 8Me, respectively (e.g., Habibi
et al. 2017). We use values 0.88, 0.56, and 0.64 for e• and 16, 166,
and 51.3 yr for P• for S0-2, S0-1, and S0-5, respectively (Gillessen
et al. 2017). We assume that the stars formed in the same star
formation episode approximately 6Myr ago. In our proof of
concept, we adopt a secondary of 1 Me for each hypothetical
binary. For less massive stars, the radial velocity effects of a
binary may be less apparent, raising the possibility that the star has
a more massive dark companion. However, the effects of
companion mass on ρmax is relatively weak such that even
approaching an equal-mass binary, the maximum density will
change at most by a factor of 2.

A stable binary at this proximity to the SMBH will experience
EKL perturbations, which tend to increase the binary eccentricity
and may lead to merger (e.g., Naoz & Fabrycky 2014; Naoz et al.
2016; Stephan et al. 2016, 2019). For example, the quadrupole
timescale for S0-2 falls below ∼1×105 yr and may be as short
as 10yr for the range of semimajor axis shown in the figure.
Thus, it is likely that the EKL mechanism has already driven an
S-star binary to merge (e.g., Stephan et al. 2016, 2019). For a
binary to remain stable and not undergo EKL oscillations, the
general relativity precession timescale must be shorter than the
EKL-quadrupole timescale (e.g., Ford et al. 2000; Naoz et al.
2013). Following Equation (59) in Naoz et al. (2016), this limit
occurs at the black vertical line in Figure 8. To the left of this
boundary, the EKL mechanism is suppressed.

We calculate the maximum density by using the binary’s age as
a lower limit on the evaporation (Equation (26)) or collision time
(Equation (28)) . The solid black curve corresponds to the
evaporation constraint. This curve represents the maximum
density in the binary’s neighborhood as a function of the binary’s
semimajor axis a1. The dashed black curve is the ρmax, ev scaled
by the history parameter to give a very conservative upper limit.
The true density of the region must lie below this curve for the
hypothetical binary to remain bound today. Additionally, the gold
curve depicts the density at which the binary is unbound by a
physical collision. These hypothetical systems meet the criterion σ
(a•)>vcrit for all values of α. The range of α values introduces a
spread in the ρmax estimate, with the uppermost limit of ρmax, coll
corresponding to α=1. For comparison, the horizontal dashed
gray curves represent the density in the binary’s neighborhood as
given by the power law, Equation (1), for two values of α.

We note that for younger systems such as these, we expect the
true ρmax to lie closer to the solid black curve, ρmax without the
history parameter, because the system has had less time to evolve
from its initial configuration. We denote this uncertainty by
shading this density region in a lighter teal in Figure 8. However,
generally, the most conservative maximum density estimate is
given by either the collision timescale or the evaporation timescale

with the history parameter. For these massive binaries, the
collision timescale sets the upper limit on the regional density.
The plot can be interpreted in two ways, depending on the
observational constraint. For example, if observations indicate a
density of ∼8×108Me pc−3, the semimajor axis of an S0-5
binary cannot exceed about 0.1au if we assume no evolution
from a tighter initial configuration. However, if observations
determine that S0-1 is a binary with semimajor axis 0.1au, the
density must fall below ∼109Me pc−3.

6. Discussion

Recent observational and theoretical studies suggest the
presence of binaries in the GC (e.g., Ott et al. 1999; Rafelski
et al. 2007; Dong et al. 2017a, 2017b; Stephan et al. 2016, 2019;
Naoz et al. 2018; Gautam et al. 2019). These binaries may have
a soft orbital configuration, such that their binding energy is less
than the kinetic energy of the neighboring stars. In this dense
environment, interactions with neighboring stars can alter the
binary’s orbital parameters (e.g., Rasio & Heggie 1995; Heggie
& Rasio 1996). Over time, these interactions can unbind soft
binaries (e.g., see the derivation of Equation (7.173) in Binney &
Tremaine 2008). The timescale for unbinding, or evaporation,
depends on the density of the surrounding region. Similarly, a
star in a binary may undergo a direct collision with a passing
star, which may unbind the binary, and the collision rate depends
on the neighborhood density. Therefore, a detection of a soft
binary can constrain the underlying density profile in the GC.
We consider the following processes that can affect the binary:

(1) unbinding due to interactions with neighboring stars, with the
associate evaporation timescale for an arbitrary eccentric orbit
(Equation (16)); (2) collision with passing stars (Equation (18))
that may unbind the binary if the velocity dispersion exceeds the
critical velocity; (3) the two-body relaxation process by which the
binary migrates toward the center over a typical timescale
(Equation (17)); and (4) the EKL mechanism that can drive a

Figure 7. Assuming a constant Coulomb logarithm, the dashed lines indicate
the maximum semimajor axis a 1 Gyr old binary 2 Me can have to survive at a
certain distance from the SMBH. As in previous figures, we vary α from 1 (red)
to 2 (blue). We also plot the minimum semimajor axis (solid lines) the binary
can have to be considered soft and undergo evaporation. The gray regions
represent parameter space excluded either because the binary would be tidally
unbound by the SMBH or the stars would undergo mass transfer. The binary is
too hard to evaporate in the red striped region. See the note at the end of
Section 2.1 about the x-axis limits, which we extend to extreme values.
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binary to merge (e.g., Stephan et al. 2016, 2019). Figure 1 depicts
the relevant timescales. We find that some soft binaries at
approximately 0.1pc from the SMBH migrate inward before they
unbind. These binaries relocate to a region of higher density
where, had they resided over their full lifetime, they would have
already evaporated. Additionally, the eccentricity about the
SMBH has a marginal effect on the evaporation and collision
timescales, used to constrain the GC density.

We derive a density constraint to ensure the binary’s
survival over its lifetime. Given a binary’s age, we estimate

the maximum density of the surrounding region, above which
the binary would have already evaporated or undergone a
direct collision, unbinding the system. We outline this
procedure using several proofs of concept. First, we consider
the potential of a confirmed wide binary to constrain the GC
density. We focus on IRS 16NE, a young wide binary10, as a

Figure 8. With orbital parameters of S0-1, S0-2, and S0-5 and, assuming that these stars in fact represent binaries, the density–semimajor axis parameter space is
constrained. As a function of binary semimajor axis, we find the maximum density (black solid line) allowed in the region given that the binary has yet to evaporate.
We include the history parameter as the dashed black curve. The density at which the primary star has undergone an ionizing collision is given by the horizontal
dashed gold line. Criteria for the Hill radius (blue) and dynamical stability (red) place upper limits on the maximum semimajor axis of the hypothetical binary, while
the binary’s Roche limit (green) sets the lower limit. We also calculated the region in which general relativity precession suppresses the Eccentric Kozai–Lidov
mechanism. We note that in the S0-1 plot, the rmax,ev limit does not appear dashed because we plot these curves for a range of α.

10 Alexander & Pfuhl (2014) estimate IRS 16NE’s age to be consistent with
the overall young population at the GC, a fewmegayears (e.g., Paumard et al.
2006). Furthermore, IRS 16NE has an orbit of P=224days (Pfuhl et al.
2014).
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case study. While this binary is hard at its estimated position of
0.15pc, we show that an IRS 16NE-like binary can be used to
constrain the density closer to the SMBH. We also consider an
older low-mass system. Figure 5 compares the maximum
density allowed by a binary to power-law density distributions
in the GC.

Additionally, as a binary can constrain environmental
properties, environmental properties can inform the maximum
orbital separation of a hypothetical binary. Given a power-law
density distribution for the GC, Figures 6 and 7 depict the
allowable binary separation as a function of distance from the
SMBH for a hypothetical system to survive over its lifetime.
These figures correspond to a young and old binary,
respectively. Figures 5 and 7 imply that a low-mass, older
(1 Gyr �tage) binary cannot exist within 0.01pc of the
SMBH. The detection of such a system may indicate a
dynamical formation mechanism. Lastly, we combine the
approaches of Figures 5 and 6 in Figure 8. The S-star cluster
consists of several well-studied stars with constrained orbits
about the SMBH (e.g., Ghez et al. 2005; Habibi et al. 2019;
Gillessen et al. 2017). We consider the possibility that one of
these stars is embedded in a soft binary system and constrain
the binary separation and density parameter space.

We demonstrate that the density constraining procedure must
consider collisions for any system, especially those with a massive
star whose larger cross-section increases the collision rate. The
collision timescale, not the evaporation timescale, sets the upper
limit on the local density, provided that the collision has sufficient
energy to ionize the system. Future work may extend this
procedure to environments in which a SMBH does not dominate
the gravitational potential. In such environments, the velocity
dispersion will depend on the density profile. We reserve a more
comprehensive integration of collisions and their outcomes into
this framework for future study. Future work may also incorporate
other processes like tidal capture and clarify their bearing on our
ability to derive density constraints from binary systems.

We dedicate this paper to the late Tal Alexander, who served
as an inspiration for the study of dynamics in dense stellar
clusters. In particular, S.N. would like to thank Tal for
sponsoring her as a visiting student at the Weizmann Institute.
This opportunity helped her, as a young mother, to juggle new
responsibilities and pursue a PhD by reducing her commute.
Furthermore, the experience expanded her collaborations and
led to new directions. Thank you, Tal!

We thank the referee for useful comments and questions. We
thank Brad Hansen for asking an important question about
collisions, which prompted the collision section. S.R. thanks
the Alice Freeman Palmer Fellowship, awarded by Wellesley
College, for partial support. S.R. and S.N. acknowledge the
partial support of NASA grants No. 80NSSC20K0505 and
80NSSC19K0321. S.N. thanks Howard and Astrid Preston for
their generous support.

Appendix A
Velocity Dispersion Evolution

Our framework does not account for a velocity dispersion
that evolves over time. We assume a steady state. We compute
the fractional change in the nuclear star cluster’s energy from
evaporating binaries, the process that we focus on in this study.
However, we stress that this exercise does not provide an
accurate picture of the velocity dispersion’s time evolution.

Ciurlo et al. (2020) estimate a binary fraction of about
5 percent for low-mass stars. Assuming that there are approxi-
mately one million stars in the GC, we generate 72,000
dynamically stable stellar binary systems. We use the same birth
distributions as Stephan et al. (2016) except our Kroupa IMF has
the lower (upper) limit 0.5 Me (100 Me) for the primary and
secondary masses. We use S0-2ʼs period to set the lower limit on
the birth period distribution for the outer orbit (Stephan et al.
2016). Therefore, these binary systems have a•  0.003 or
10−2.5 pc. For α=1.2, 99 percent of the systems are soft. We
calculate the evaporation timescale and binding energy for each
soft binary. Massive binaries, systems with a 10Me or larger
primary star, represent ∼5 percent of the soft systems. All of the
soft binaries also meet the criterion to unbind through a collision
given by Equation (27) at their respective distance from the
SMBH; however, only about 2000 systems will undergo a direct
collision before they evaporate. Additionally, the EKL mech-
anism should drive some fraction of these systems to merge
before they evaporate (e.g., Stephan et al. 2016). In this
calculation, we assume that all soft systems evaporate.
Integrating the following over 10−4 to 0.5 pc provides an

estimate of the initial kinetic energy for the nuclear star cluster:

ò rs p= ´E r dr
1

2
4 , A1

r

r

0
2 2

inner

outer

( )

where ρ and σ are both functions of r given in Section 2. We
assume that kinetic energy from the cluster goes into unbinding
binaries through interactions with neighbor stars. The kinetic
energy of the cluster should therefore decrease with time. We
assume that all of the binary’s potential energy is released at the
evaporation time as opposed to in a gradual process. We use
these quantities to arrive at a fractional change in cluster kinetic
energy as a function of time (Figure A1). The small fractional
change in energy suggests that a similarly small change in the
velocity dispersion, allowing us to assume σ is constant over
long periods of time such as a low-mass binary’s lifetime.

Appendix B
Coulomb Logarithm

We must assume the Coulomb logarithm is constant in
Section 2.1.2 to derive the evaporation timescale as a function
of eccentricity. This assumption requires that the Coulomb

Figure A1. Fractional change in the star cluster’s kinetic energy due to
evaporating binaries. We compare the binding energy of the evaporated
binaries to the total kinetic energy of the star cluster from Equation (A1).
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logarithm varies slowly between the apoapsis and periapsis of
an orbit. Figure B1 shows the Coulomb logarithm for low-mass
and massive binaries as a function of distance from the SMBH.
Additionally, in Section 4.2, we assume a constant Coulomb
logarithm. We adopt a value of 5 based on Figure B1.

Appendix C
Mass Segregation and Comparison with Globular Clusters

Unlike globular clusters in which two-body relaxation can
cause a gradual evaporation of the cluster (e.g., Gieles et al.
2011; Gnedin et al. 2014), nuclear star clusters reside in deeper

potential wells. Here we consider a population of 70,000 stable
systems (see Appendix A). Figure C1 compares the semimajor
axis distributions for the total population of soft binaries (blue)
and those with tseg<tev (orange). The left panel shows abin,
and the right, a•. The figure indicates that systems that
segregate by mass before unbinding tend to be marginally soft,
tighter systems further out from the SMBH, where the velocity
dispersion is lower.
Binary demographics in globular clusters may provide

interesting parallels to the GC. For example, Geller et al.
(2013) and de Grijs et al. (2013) suggest that, contrary to the
effects of mass segregation, the binary fraction in the globular
cluster NGC 1818 decreases radially toward the center
because binary disruption dominates closer to the core. Cheng
et al. (2020) discuss a similar competition between mass
segregation and binary disruption in the context of the
globular cluster M28ʼs X-ray binary population. While
N-body simulations are necessary to obtain a comprehensive
picture of GC binary demographics over time, based on these
calculations we expect that mass segregation plays a
secondary role to evaporation in shaping the distribution of
binaries in the GC, in particular the binary fraction as a
function of distance from the SMBH. The vast majority of
systems are soft and unbind over shorter timescales. We
expect a dearth of binaries with decreasing distance to the
SMBH, a trend that will become more pronounced over time.
Those soft binaries which migrate inward will also eventually
evaporate.

Figure B1. The Coulomb logarithm does not vary substantially within 1 pc of
the Galactic Center. Here we plot the Coulomb logarithm for different values of
α, ranging from 1 (red) to 2 (blue). The dotted curve represents an equal-mass
2 Me binary with separation 0.5 au. The dashed (solid) curves represent an
equal-mass 80Me binary with separation 10 (3) au.
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