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Lyapunov-Regularized Reinforcement Learning
for Power System Transient Stability

Wenqi Cui and Baosen Zhang , Member, IEEE

Abstract—Transient stability of power systems is
becoming increasingly important because of the grow-
ing integration of renewable resources. These resources
lead to a reduction in mechanical inertia but also provide
increased flexibility in frequency responses. Namely, their
power electronic interfaces can implement almost arbitrary
control laws. To design these controllers, reinforcement
learning (RL) has emerged as a powerful method in search-
ing for optimal non-linear control policy parameterized by
neural networks. A key challenge is to enforce that a
learned controller must be stabilizing. This letter proposes
a Lyapunov regularized RL approach for optimal frequency
control for transient stability in lossy networks. Because
the lack of an analytical Lyapunov function, we learn a
Lyapunov function parameterized by a neural network. The
losses are specially designed with respect to the physi-
cal power system. The learned neural Lyapunov function
is then utilized as a regularization to train the neural
network controller by penalizing actions that violate the
Lyapunov conditions. Case study shows that introducing
the Lyapunov regularization enables the controller to be
stabilizing and achieve smaller losses.

Index Terms—Power system, frequency stability, rein-
forcement learning, stability.

I. INTRODUCTION

TRANSIENT stability in power systems refers to the abil-
ity of a system to converge to an acceptable steady-state

after a disturbance [1], [2]. With the increased penetration of
renewable energy sources (RES), power systems have reduced
inertia and transient stability is becoming increasingly impor-
tant [3]. Meanwhile, RES are connected to the grid via
electronic interfaces and can be controlled freely by invert-
ers to implement almost arbitrary control laws. Therefore,
instead of linear droop frequency response found in conven-
tional generators, the response of the inverter-based RES can
be optimized [4].

Transient stability describes how frequency changes in a
system with a large deviation of operating states, and use the
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full nonlinear AC power flow equations [1]. Two challenges
emerge in controller design. Firstly, we are searching over
an infinite dimensional function space. Secondly, the con-
trollers should be stabilizing, which is a nontrivial constraint
to enforce algorithmically for nonlinear systems.

A popular way to address the first challenge is to
parameterize the controllers (e.g., using a neural network)
and training them using reinforcement learning (RL) [5].
Abundant algorithms, including Q-learning, deep direct rein-
forcement learning (DDPG), actor-critic, have been proposed
for optimal control (see, e.g., [6] and the reference within).
References [7]–[10] apply these algorithms for power system
frequency regulation. However, the stabilizing requirement of
the controllers is not considered in these works.

The challenge of ensuring controllers are stable is more
difficult to address. If a Lyapunov function is available, it
can potentially provide analytical constraints on the controller.
For lossless power systems, using a well-known energy func-
tion [2], [11], our previous work in [12] showed how to
impose structural constraints on the neural network controllers
such that they are guaranteed to be stabilizing. Unfortunately,
for lossy networks, there are no known analytic energy
functions [1].

If analytical Lyapunov functions are not available, a natural
approach would be to learn a Lyapunov function to facili-
tate controller design. For example, given input/output data
and the assumption that the underlying system is stable, [13]
learns a Lyapunov function jointly with learning the system
model to find stable system dynamics. The work in [14]
uses satisfiability modulo theories solvers to formally ver-
ify a function satisfies the Lyapunov conditions. However, it
is only currently computational tractable for small systems.
Reference [15] applies this method to distribution system by
aggregating networked microgrids as a single node. Moreover,
the above works focus on verifying a system is stable and do
not include controller design.

This letter proposes a Lyapunov regularization approach
to guide the training of neural network controller for pri-
mary frequency response in lossy power systems. We learn
a Lyapunov function parameterized by a neural network. The
loss function for training the neural Lyapunov function is
designed to satisfy the positive definiteness of its value and
the negative definiteness of its Lie derivative. Existing methods
in [13]–[15] weigh all the states equally in the loss function,
but this will cause the sub-optimum of Lyapunov function near
the equilibrium since the magnitude of states’ time derivative
shrink quickly when approaching the equilibrium. Considering
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that the states near the equilibrium are more important for con-
trol, we specially design the loss function such that the area
around the equilibrium is emphasized.

The neural Lyapunov function is utilized as a regularization
to train the neural network controller by penalizing actions
that violate the Lyapunov conditions. The regularized RL
is integrated in the recurrent neural network (RNN) based
framework in our previous work to increase its training effi-
ciency [12]. Simulation results show that the learned function
satisfies the Lyapunov conditions for almost all points in the
state space, thus making it a good tool for regularization.
Case study shows that introducing the Lyapunov regular-
ization enables the controller to achieve smaller loss. More
importantly, a controller designed without regularization can
lead to unstable behaviors. Code and data described in this
letter are available at https://github.com/Wenqi-Cui/Lyapunov-
Regularized-RL. An important future work is to verify whether
the learned function satisfies the Lyapunov conditions for all
points in a region.

II. MODEL AND PROBLEM FORMULATION

A. Frequency Dynamics

Let N be the number of buses and E be the set of trans-
mission lines connecting the buses. The susceptance and
conductance of the line (i, j) ∈ E are Bij = Bji and Gij = Gji,
respectively; and 0 if the buses are not connected. We use the
Kron reduced model to aggregate load buses into generator
buses [16]. We assume that each bus i has the conven-
tional inertia Mi and the damping from synchronous generator
and loads is denoted as Di [17], [18]. Denote the generator
power and load of bus i as Pg,i and Pl,i, respectively. Then,
Pi = Pg,i − Pl,i represents the net power injection of bus i.
We assume that the synchronous generation are set to their
nominal operating points and have some inertia and damp-
ing values. Our control comes from the inverter-connected
resources such as storage and wind turbines [19]. Without
loss of generality, we assume that each bus has an inverter-
connected resources (the actuation bounds can be set to zero
if a resource is not present).

The angle and frequency deviation of bus i are δi and
ωi, respectively. We assume that the bus voltage magnitudes
are 1 p.u. and the reactive power flows are ignored. The
dynamics of the power system is represented by the swing
equation [20]

δ̇i = ωi ,∀i = 1, . . . , N (1a)

Miω̇i = Pi − Diωi − ui(ωi)−
N∑

j=1,j �=i

Bij sin(δi − δj)

−
N∑

j=1,j �=i

Gij cos(δi − δj), ∀i = 1, . . . , N (1b)

where ui(ωi) is the controller that changes active power to pro-
vide primary frequency response. Because power systems do
not have real-time communication infrastructure, we restrict ui
to be a static feedback controller where only its local frequency
measurement ωi is available. We envision the control is pro-
vided by renewable energy resources such as batteries and
solar PV. In the primary frequency regulation timescale from

100ms to few seconds for primary frequency regulation, the
main limitation on actuation comes from power injection
constraints.

B. Optimization Problem Formulation

The objective is to minimize the cost on frequency devi-
ations and the control effort. Here we use frequency nadir,
which is the maximum of |ωi(t)| over the time horizon
from 0 to T defined as ‖ωi‖∞ = sup0≤t≤T |ωi(t)| [21].
We use a quadratic cost for the control actions defined by
‖ui‖22 = 1

T

∫ T
t=0(ui(t))2dt [16], [22]. We aim to find an optimal

stabilizing controller u(·) by solving (2).

min
u

N∑

i=1

‖ωi‖∞ + γ ‖ui‖22 (2a)

s.t. (1a)− (1b) (2b)

ui ≤ ui(ωi) ≤ ui (2c)

ui(ωi) is stabilizing (2d)

where γ is a tradeoff parameter between cost of frequency
deviation and action. The swing equations are in (2b). The
controllers are power limited within as shown in (2c). We
impose the condition that the controller should be stabilizing
in (2d). Constraints (2b)-(2d) hold for the time t from 0 to T .
Other objective functions can also be used (e.g., l1 penalty on
total frequency deviation and the rate of change of frequency)
without changing the framework.

Problem (2) is challenging to solve by conventional control
techniques and we will use RL to find u(·). The key difficulty
is to quantify the stability requirement in (2d). We mitigate
this difficulty by using a Lyapunov function, which provides
algebraic conditions for (2d). Since a Lyapunov function is
not known for lossy systems [1], we show how one can be
learned in the next section.

III. LEARNING A LYAPUNOV FUNCTION

A. Lyapunov Conditions

From standard system theory, the Lyapunov function need
to satisfy conditions on its value and its Lie derivatives [23].
Let the state space be D = {(δ, ω)|δ = (δ1, . . . , δN), ω =
(ω1, . . . , ωN)}. The state transition dynamics (1) is written
as (δ̇, ω̇) = fu(δ, ω), where fu stands for the state transition
function with respect to the controller u. Using the notation
from [14], we have

Definition 1 (Lie Derivatives): The Lie derivative of the
continuously differentiable scalar function V : D → R over
the vector field fu is defined as

∇fu V(δ, ω) =
N∑

i=1

∂V(δ, ω)

∂δi
δ̇i + ∂V(δ, ω)

∂ωi
ω̇i. (3)

It measures the rate of change of V along the direction of
system dynamics. The next proposition is standard.

Proposition 1 (Lyapunov Function and Asymptotic
Stability): Consider a controlled system described by (1) with
equilibrium at (δ∗, ω∗). Suppose there exists a continuously
differentiable function V : D→ R that satisfies:

V(δ, ω) > V(δ∗, ω∗) ∀(δ, ω) ∈ D\{(δ∗, ω∗)} (4a)
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∇fu V(δ, ω) < 0 ∀(δ, ω) ∈ D\{(δ∗, ω∗)} (4b)

∇fu V(δ∗, ω∗) = 0. (4c)

Then the system is asymptotically stable at the equilibrium.
In this letter, Lyapunov function is parameterized using neu-

ral network with weights φ, and written as Vφ(δ, ω). For
differentiability, we use Exponential Linear Unit (ELU) acti-
vation functions. Note that Vφ(δ, ω) is purely a function of
the state variable (δ, ω), while ∇fuV(δ, ω) will be affected by
the controller ui through the term ω̇i in (3). Therefore, only
∇fu V(δ, ω) will be utilized to regularize controller once it is
learned.

B. Learning the Lyapunov Function

The condition (4a) is easy to be satisfied if we explicitly
engineer the structure of Vφ(δ, ω). To name a few, Vφ(δ, ω)

can be formulated using a convex function achieving the
minimum at the equilibrium. Or, given an arbitrary function
g(δ, ω) and positive scalar ε, (4a) can be enforced by taking
Vφ(δ, ω) = (g(δ, ω) − g(δ∗, ω∗))2 + ε‖(δ, ω) − (δ∗, ω∗)‖2.
However, such parameterization may be too restrictive and
make it hard to satisfy (4b). Therefore, we do not explicitly
engineer the structure in satisfying condition (4a).

In this letter we use loss functions to penalize violations
of (4a)-(4c). Training is implemented in a batch updating
style where the number of batch is H and the state of the
h-th batch is randomly generated (δh, ωh) ∈ D for h =
1, . . . , H. The losses are designed with respect to the following
considerations:

1) Avoid overfitting when δ̇ and ω̇ are large: To satisfy (4b),
the loss term need to encourage ∇fu V(δ, ω) to be nega-
tive and penalize its positive values. A loss that weighs
all points in the space equally leads ∇fu V(δ, ω) to have
very negative values when δ and ω are far away from
the equilibrium, and may violate (4b) for points close
to the equilibrium. This contradicts the premise that the
small region around the equilibrium should be stabiliz-
ing. Therefore, we design the loss term with ∇fu V(δ, ω)

to be

l1(φ) = 1

H

H∑

h=1

tanh
(
∇fu Vφ(δh, ωh)

)

× exp

(
−‖(δ

h, ωh)− (δ∗, ω∗)‖2
μ

)
(5)

where the term tanh(∇fuVφ(δh, ωh)) avoid the overfit
of ∇fu V(δh, ωh) to be extremely negative We use tanh
function to make l1(φ) to have the same sign with
as ∇fu Vφ(δh, ωh). The term exp(−‖(δh,ωh)−(δ∗,ω∗)‖2

μ
)

emphasis the importance of (δh, ωh) closer to the equi-
librium. The hyper-parameter μ controls rate of decay.

2) Penalty term with (Vφ(δ∗, ω∗)) − Vφ(δ, ω)): In order
to satisfying condition (4a), Vφ(δh, ωh) that is smaller
than Vφ(δ∗, ω∗) need to be penalized. For points that
satisfy Vφ(δh, ωh) > Vφ(δ∗, ω∗), we do not consider
the magnitude of the difference. Therefore, we use
ReLU function (written as σ(·) ) to penalize positive

Algorithm 1 Learning Neural Lyapunov Function
Require: Learning rate α, number of episodes I, state trans-

fer function (1), hyperparameters in (5)-(8)
Input: Droop coefficient li for the i-th bus, i = 1, · · · , N

Initialisation :Initial weights φ for neural network
1: for episode = 1 to I do
2: Generate batch state samples δh, ωh for the h-th batch,

h = 1, · · · , H
3: If 
 > 
̄, add the samples violates Lyapunov condition
{(δ, ω)} ← {(δ, ω), (δ̂, ω̂)}

4: Compute fu(δ, ω) for the sample states with linear droop
control using (1)

5: Calculate Vφ(δ, ω) and ∇fuVφ(δ, ω)

6: Identify the states
(
δ̂, ω̂

)
that does not satisfy Lyapunov

condition and its percentage 


7: Calculate total loss of all the batches using (5)-(8)
8: Update weights in the neural network by passing Loss

to Adam optimizer: φ← φ − αAdam(Loss)
9: end for

(Vφ(δ∗, ω∗))− Vφ(δ, ω)). Define the loss term as:

l2(φ) = 1

H

H∑

h=1

σ
(
−Vφ(δh, ωh)+ Vφ

(
δ∗, ω∗)

))
(6)

3) Penalty term with ∇fuVφ(δ∗, ω∗): This term is employed
to mitigate numerical errors. We design a extra loss term
to penalize on the value of ∇fuVφ(δ∗, ω∗) as:

l3(φ) = (∇fu Vφ(δ∗, ω∗)
)2 + σ

(∇fu Vφ(δ∗, ω∗)
)

(7)

where (∇fuVφ(δ∗, ω∗))2 guarantee the small magni-
tude of ∇fuVφ(δ∗, ω∗). Considering that ∇fu Vφ(δh, ωh)

should never be positive, we use ReLU function
σ(∇fuVφ(δ∗, ω∗)) to guarantee that ∇fu Vφ(δ∗, ω∗) is
negative close zero. This way, the zero action at the
equilibrium is guaranteed to satisfy Lyapunov condi-
tions.

Combining (5)-(7), the total loss function is

Lq(φ) = q1l1(φ)+ q2l2(φ)+ q3l3(φ) (8)

where q1, q2, q3 are hyperparameters balancing the loss terms,
with q3 tuned to be much larger than the others. For the spe-
cific problem in this letter, we found that letting magnitude
of q1 to be slight larger than q2 (e.g., q1 to be 1.5 times of
q2) leads to most samples satisfy Lyapunov conditions. Note
that the equilibrium (δ∗, ω∗) is obtained from the steady state
in (1) and we fix the equilibrium in training. Of course the
equilibrium changes if the load or the parameters changes.
More specifically, ω∗ = 0 always while δ∗ varies. Since we
only use the learned function as a regularization to train a con-
troller, we are robust to changes in the equilibrium point. If the
learned function is used to certify stability, then the changes
in equilibrium should be carefully accounted for.

C. Algorithm With Active Sampling

The goal for training the neural Lyapunov function is to
make larger proportional of the batch samples satisfy the con-
ditions (4). The pseudo-code for our proposed method is given
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in Algorithm 1. A linear controller is used to initialize training.
Let 
 be the proportion of samples that satisfy the condi-
tions (4). After most of the samples (e.g., 
 > 95%) have
already satisfied the conditions, it would be difficult to improve
the neural Lyapunov function further since the loss func-
tion will remain almost unchanged even though 
 increases
slightly. We augment the training performance by collecting
samples violate (4) and add them to the next batch of training.
Moreover, since we care more about the region with smaller
frequency deviation, we also let 50% of the batch states to be
sampled from regions close to equilibrium. This way, the neu-
ral Lyapunov can improve efficiently and 
 can reach 99.9%
in the end for both the region close and away from the equi-
librium. Adam algorithm is adopted to update weights φ in
each episode.

IV. LEARNING NEURAL NETWORK CONTROLLER WITH

LYAPUNOV REGULARIZATION

We propose to use the learned neural Lyapunov function
to guide the training of neural network controller. We adopt
the neural Lyapunov function as an additional regularization
that is used during the training process of the neural network
controller. The real-time control policy is computed through
the feedforward neural networks where the input is the local
frequency deviation and the weights are trained offline. Note
that we may be able to achieve better performance through a
projection if the Lyapunov conditions are violated. However,
such a projection requires information of all the state variables
in real-time, which is unrealistic for the power system with
large numbers of nodes and limited communication.

A. Lyapunov Regularization

Given a Lyapunov function, Proposition 2 illustrates the
condition for locally exponentially stability [24].

Proposition 2 (Locally Exponentially Stable Condition):
For the function V : D→ R satisfying (4), if there is constant
β > 0 such that for all (δ, ω) ∈ D we have

∇fuV(δ, ω) ≤ −β
(
V(δ, ω)− V(δ∗, ω∗)

)
(9)

Then, the equilibrium is locally exponentially stable.
In order to satisfy (9) with the neural network controller,

we propose a Lyapunov regularization approach that the action
is penalized if this inequality does not hold. Compared with
traditional regularization (e.g., lasso, ridge) or penalty term
on large state magnitude, we do not add regularization uni-
formly to all the weights or actions. Instead, the action is only
penalized when (9) is violated. The regularization term is

Rφ(uθ ) = σ
(∇fu Vφ(δ, ω)+ β(Vφ(δ, ω)− Vφ(δ∗, ω∗))

)
.

B. Controller and Architecture

The formulation of controller and the training architecture
is from our previous work [12]. For completeness, we reit-
erate the key design in this subsection. The work in [12]
showed that a controller mapping frequency to active power
needs to be a function that is monotonic, increasing and goes
through the origin. To this end, we explicitly engineer the

Fig. 1. Structure of RNN for frequency control problem.

neural network controller with a stacked-ReLU structure and
represented as (10)

ui(ωi) = siσ(1ωi + bi)+ ziσ(−1ωi + ci) (10a)

where
l∑

j=1

sj
i ≥ 0,

l∑

j=1

zj
i ≤ 0, ∀l = 1, 2, . . . , m (10b)

b1
i = 0, bl

i ≤ b(l−1)
i , ∀l = 2, 3, . . . , m (10c)

c1
i = 0, cl

i ≤ c(l−1)
i , ∀l = 2, 3, . . . , m (10d)

where m is the number of hidden units and 1 ∈ R
m is

the all 1’s column vector. Variables si = [s1
i s2

i · · · sm
i ]

and zi = [z1
i z2

i · · · zm
i ] are the weight vector of bus i;

bi = [b1
i b2

i · · · bm
i ]ᵀ and ci = [c1

i c2
i · · · cm

i ]ᵀ are
the corresponding bias vector. The variables to be trained are
weights θ = {s, b, z, c} in (10).

To obtain the trajectory for training the controller, we dis-
cretize dynamics (1) with step size 
t. We use k and K to
represent the discrete time and total number of stages, respec-
tively. The neural network controller is then denoted as uθi(ωi).
From (1), ωi(k) in each timestep k is a function of ωi(k − 1)

and uθi(ωi(k− 1)), which is then a function of ωi(k− 2) and
uθi(ωi(k−2). This means that computing gradient of uθi(ωi(k)
with respect to θi needs the chain-rule from the step k all the
way to the first time step for all k = 0, . . . , K. To mitigate the
computation burden caused by the subsequent application of
chain-rule, we proposed a RNN-based framework to integrate
the state transition dynamics (1) implicitly.

As illustrated in Fig. 1, the state of RNN cell of bus i is set
to be (δi, ωi). The system dynamics (1) is set as the transition
function of RNN cell. At each time k, state of RNN cell and the
current action from neural network controller will go through
the transition dynamics to calculate the state of the time k+1.
The state ω and action u constitute the first two component
of output where Y1

i (k) = ωi(k) and Y2
i (k) = (uθi(ωi(k)))2.

The total state information and time derivative information are
simultaneously send as input into Neural Lyapunov function to
calculate the Lyapunov regularization term, written as Y3

i (k) =
σ(∇fuVφ(δ, ω)+ β(Vφ(δ, ω)− Vφ(δ∗, ω∗)))/N.

The loss function is formulated to be equivalent with the
objective function (2a) plus the Lyapunov regularization as:

Loss =
N∑

i=1

max
k
|Y1

i (k)| + 1

K

K∑

k=1

(
γ Y2

i (k)+ λY3
i (k)

)
.

C. Algorithm to Train Neural Network Controller

The pseudo-code for learning the neural network controller
is given in Algorithm 2. Training is implemented in a batch
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Algorithm 2 Reinforcement Learning With RNN
Require: Learning rate α, batch size H, total time stages K,

number of episodes I, parameters in optimal frequency
control problem (2)

Input: The neural Lyapunov function Vφ(δ, ω)

Initialisation :Initial weights θ for control network
1: for episode = 1 to I do
2: Generate initial states δh

i (0), ωh
i (0) for the i-th bus in

the h-th batch, i = 1, · · · , N, h = 1, · · · , H
3: Reset the state of cells in each batch as the initial value

xh
i ← {δh

i (0), ωh
i (0)}.

4: RNN cells compute through K stages to obtain output
{Yh,i(0), Yh,i(1), · · · , Yh,i(K)}

5: Calculate total loss of all the batches
Loss = 1

H

∑H
h=1

∑N
i=1 maxk=0,··· ,K |Y1

h,i(k)| +
γ 1

K

∑K
k=1 Y2

h,i(k)+ λ 1
K

∑K
k=1 Y3

h,i(k).
6: Update weights in the neural network by passing Loss

to Adam optimizer: θ ← θ − αAdam(Loss)
7: end for

updating style where the h-th batch initialized with randomly
generated initial states {δh

i (0), ωh
i (0)} for all i = 1, . . . , N.

The evolution of states in K stages will be computed through
structure of RNN as shown by Fig. 1. Although Algorithms 1
and 2 can be iterated to make further update, we did not see
an obvious improvement in simulation.

V. CASE STUDY

Case studies are conducted on the IEEE New England
10-machine 39-bus (NE39) power network [25] to illustrate
the effectiveness of the proposed method. We visualized the
learned Lyapunov function and its Lie derivative. Then we
show that regularization is necessary, in the sense that a con-
troller learned without it can be unstable. Lastly, we show the
training losses.

A. Simulation Setting

The step size for the discrete simulation is 0.02 (20ms) and
K is 100. Power injection Pi are at their nominal values, the
bound on action ui is uniformly distributed in [0.8Pi, Pi] and
γ is 0.005. The base power unit is 100 MVA. The detailed
parameters are given in [26].

B. Visualization Lyapunov Function and the Lie
Derivative

To visualize the Lyapunov function with a large number of
state variables, we fix all the states at their equilibrium value
and vary the state variable for one generator bus. Fig. 2 illus-
trates the value of Lyapunov function and Lie derivative with
the variation of δ and ω in generator bus 5. The Lyapunov
function V(δ, ω) achieves the minimum at the equilibrium
point and the Lie derivative ∇fu Vφ(δ, ω) is smaller than zero
for most points. After training, ∇fu Vφ(δ, ω) is slightly positive
for about 0.1% of the samples.

C. Performance Comparison

Under the same hyperparameters and RNN structure,
we train the neural network controller with Lyapunov

Fig. 2. Neural Lyapunov function (left) and Lie derivative (right)
when changing (δ, ω) in generator 5 and keep state variable of other
generators at the equilibrium value.

Fig. 3. Dynamics of control action u and frequency deviation w in
selected generator buses corresponding to (a) RNN-Lyapunov (b) linear
droop (c) RNN-w.o.-Lyapunov. The neural network controller trained with
Lyapunov regularization achieve smaller control cost than linear droop
control, and better stablizing performance than that without Lyapunov
regularization.

regularization (labeled as RNN-Lyapunov) and without
Lyapunov regularization (labeled as RNN-w.o.-Lyapunov),
respectively. We test the effect of large deviation in initial
operating points and sudden changes in topology.

At time t=0, the system starts from some initial conditions
that deviates from the equilibrium. At time t=6s, the lines
between buses 1 and 39, and 2 and 3 are disconnected. The
dynamics of the system under the controller obtained by RNN-
Lyapunov, linear droop control and RNN-w.o.-Lyapunov are
shown in Fig. 3. Both RNN-Lyapunov and linear droop control
stablize the system, while RNN-w.o.-Lyapunov leads to loss of
synchronicity in gen 9 as shown in Fig. 3(c). Compared with
dynamics of linear droop control in Fig. 3(b), RNN-Lyapunov
in Fig. 3(a) achieve similar frequency deviation while using
smaller control action.

After losing two lines at time t=6s, the system experience
frequency deviation of approximate 0.1 Hz and return to sta-
ble state within 2s for RNN-Lyapunov (Fig. 3(a)). Therefore,
the proposed RNN-Lyapunov approach is robust to topology
changes. In the longer online version [12], we show that the
weights for the previous topology can serve as warm start for
training with the new topology.

We further compare RNN-Lyapunov and RNN-w.o.-
Lyapunov with the benchmark of linear droop control, where
the droop coefficient is obtained by solving problem (2) using
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Fig. 4. Control action u of RNN-Lyapunov, RNN-w.o.-Lyapunov and
Linear droop control for generator bus 10. Lyapunov regularization leads
to different non-linear control law.

Fig. 5. Normalized cost along the episode during the training of neural
network controllers. RNN-Lyapunov and RNN-w.o.-Lyapunov reduce the
cost by 19% and 14% compared with linear droop control.

fmincon function of MATLAB [12]. Fig. 4 illustrates the
control policy obtained from the three methods. Compared
with linear droop control, the stacked-ReLU neural network
learns a highly non-linear controller. The average cost normal-
ized by the cost of linear droop control along episode is shown
in Fig. 5. Both RNN Lyapunov and RNN-w.o.-Lyapunov con-
verge in approximate 150 episodes. After convergence, RNN-
Lyapunov reduces the cost by approximate 19% compared
with linear droop control. Additional numerical validation with
power disturbance and larger test system can be found in the
longer online version [26].

VI. CONCLUSION

This letter proposes a Lyapunov regularization approach
to guide the training of neural network controller for pri-
mary frequency response. A function paramertized as a neural
network is learned to overcome the non-existence of analytical
Laypunov functions for lossy power networks. By integrating
the neural Lyapunov function as a regularization term for the
training of neural network controller in RL, control actions that
violate Lyapunov conditions are penalized. Case studies verify
introducing Lyapunov regularization enable the controller to
be stabilizing and achieve smaller losses, whereas controllers
trained without regularization can fail to stabilize the system.
An important future direction is to understand the region of
attraction better in the context of learning controllers.
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