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ABSTRACT

Turbulence is a prevalent phenomenon in the interstellar medium, and in particular, the environment
at the centers of galaxies. For example, detailed observations of the Milky Way’s Central Molecular
Zone (CMZ) revealed that it has a complex and turbulent structure. Turbulence on galactic scales is
often modeled using star formation and feedback. However, these effects do not appear to be sufficient
for explaining the high-velocity dispersion observed in the CMZ, indicating that additional gas-stirring
processes are likely to be operating. Here we introduce a proof-of-concept method to drive turbulence
in gas that orbits under the influence of a galactic potential. Instead of relying on a particular physical
mechanism, we have adopted a Fourier forcing module and have applied it using a Smoothed Particle
Hydrodynamics code. To test our method, we performed simulations of a simplistic model of the CMZ.
Our turbulence injection method is capable of balancing the self-gravity of the gas, which allows us
to run the simulations for long timescales and thereby follow the evolution of the CMZ. Our results
show that turbulence induces a flocculent spiral pattern in our model, analogous to that found in
galactic-scale simulations. Furthermore, we find that our turbulence injection method induces inward
migration of gas, a result consistent with previous numerical simulations. We submit that this injection

method is a promising new tool to simulate turbulence in galactic centers.

1. INTRODUCTION

Turbulence is one of the major processes that governs
the structure and evolution of the interstellar medium
(ISM, Elmegreen & Scalo 2004). For example, super-
sonic turbulence is known to be a dominant process in
regulating (both inhibiting and fostering) star formation
in molecular clouds (McKee & Ostriker 2007). However,
galactic centers show a number of interesting deviations
from the star formation behavior seen at larger galac-
tic radii. Molecular clouds in our own Galactic Cen-
ter (GC) show systematic differences in their proper-
ties from disk clouds: they appear to have thermal, tur-
bulent and magnetic pressures much higher than those
present in the large-scale Galactic disk (e.g., Spergel &
Blitz 1992).

The main gaseous feature of the GC, the Central
Molecular Zone (CMZ), has a rich and complex struc-
ture that extends over a galactocentric radius of ~ 300
pc and contains a mass of M~ 3 —7x107 Mg, (e.g., Mor-
ris & Serabyn 1996). It is largely composed of relatively
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dense (n ~ 103-10° cm~?) and warm gas (~ 70 — 100 K
on average, e.g., Giisten et al. 1981; Morris et al. 1983;
Huettemeister et al. 1993; Ao et al. 2013), mostly con-
densed into Giant Molecular Clouds (GMCs) or dense
tidal streams of molecular gas. These relatively warm
gas temperatures are one of the key properties of CMZ
clouds, and there is evidence showing that the gas is
kept warm by the dissipation of turbulence (e.g., Immer
et al. 2016; Ginsburg et al. 2016). It has also been sug-
gested that turbulence plays a role in the suppression of
star formation in this region (e.g., Kruijssen et al. 2014).
However, the driving mechanism for the turbulence in
CMZ clouds has not been conclusively identified (see
Kruijssen et al. 2014 for a discussion of possible sources
of turbulence). Furthermore, the large turbulent veloc-
ity dispersion within the CMZ must be responsible for
supporting the gas against gravitational collapse, since
the thermal pressure of the gas would be insufficient.
Interstellar turbulence decays quite rapidly, on
timescales of the order of the free-fall time of the sys-
tem (e.g., Mac Low 1999). Therefore, energy must be
injected into the system in order to maintain the tur-
bulence. Simulations of turbulence-driven gas are often
employed in studies of the interstellar medium and star
formation (e.g., Stone et al. 1998; Mac Low et al. 1998;
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Krumholz & McKee 2005; Burkhart et al. 2009; Feder-
rath et al. 2010). Typically, this is achieved by a Fourier
forcing module, which can be modeled with a spatially
static pattern in which the amplitude is adjusted in time
(Stone et al. 1998; Mac Low 1999). Other studies employ
a forcing module that can vary both in time and space
(e.g., Padoan et al. 2004; Schmidt et al. 2006; Federrath
et al. 2010).

In the case of galactic-scale simulations, driven turbu-
lence is mimicked by injecting energy due to supernovae
(SN). For example, simulations by Kim et al. (2011);
Emsellem et al. (2015); Shin et al. (2017); Seo et al.
(2019); Armillotta et al. (2019), and Tress et al. (2020)
have modeled turbulence by using star formation and
SN feedback models. In general, these models depend on
underlying assumptions regarding star formation rates,
SN energies and injection rates. Furthermore, recent
studies (e.g., Scannapieco et al. 2012; Rosdahl et al.
2017; Keller & Kruijssen 2020) have demonstrated that
the different choices of SN feedback model (including
the underlying physical processes driving the feedback)
produce significant differences in morphology, density,
etc, of the simulated galaxies.

Here we introduce a proof-of-concept method to drive
turbulence in gas that orbits under the influence of a
galactic potential. Instead of relying on a particular
physical mechanism, we adopt a Fourier forcing mod-
ule, which has the advantage of being independent of the
source of turbulence. Our turbulence treatment is based
on the method described by Mac Low (1999), in which
a turbulent velocity field is drawn from a spatially static
pattern having a power spectrum P(k) o< k=", where k
is the wavenumber. We apply our method to a smoothed
particle hydrodynamics (SPH) code, and we test its ef-
fectiveness using a simplistic model of the CMZ. Our
simulations consider self-gravity (i.e., the mutual gravi-
tational interactions between the SPH particles) and the
effects of pressure from a surrounding medium.

This paper is organized as follows: Section 2 sum-
marizes the numerical methods, with further details on
our turbulence method in Appendix A. Section 3 and
Appendix B describe the tests performed to verify the
effectiveness of our turbulence method. We present our
main results in Section 4, and conclude in Section 5.

2. NUMERICAL METHODS

We used the N-body/SPH code Gadget2 (Springel
2005), which is based on the tree-Particle Mesh method
for computing gravitational forces and on the SPH
method for solving the Euler equations of hydrodynam-
ics. The smoothing length of each particle in the gas is
fully adaptive down to a set minimum of 0.001 pc. Gad-

get2 employs an entropy formulation of SPH, as out-
lined in Springel & Hernquist (2002), with the smooth-
ing lengths defined to ensure a fixed mass (i.e., fixed
number of particles) within the smoothing kernel volume
(set for Nyeign = 64). The code adopts the Monaghan-
Balsara form of artificial viscosity (Monaghan & Gingold
1983; Balsara 1995), which is regulated by the parame-
ter apsp, set to 0.75.

We modified the standard version of Gadget2 to in-
clude turbulence driving, the gravitational potential of
a Milky Way-like galaxy, and the effects of pressure by a
surrounding medium. We describe these modifications
below.

2.1. External Pressure

The interstellar medium of the GC is modeled via an
external pressure term to approximate a constant pres-
sure boundary. Following Clark et al. (2011), we modify
Gadget2’s momentum equation (Springel & Hernquist
2002):

d’UZ'
dt

P; P;
==Y my | fimg ViWi(hi) + f;—5 ViWi;(hy)
7 Pi Pj

(1)
where v; is the velocity of particle 4, m; is the mass of
particle j, P; is the pressure, p; is the density, W;;(h;)
is the kernel function which depends on the smoothing
length h;, and f is a unitless coeflicient that depends
on p; and h;. We replace P; and P; with P; — P.;; and
P; — Py, respectively, where P, is the external pres-
sure. The pair-wise nature of the force summation over
the SPH neighbors ensures that P.,; cancels for particles
that are surrounded by other particles. At the bound-
ary, where the P,.,; term does not disappear, it mimics
the pressure contribution from a surrounding medium
(Clark et al. 2011). We set P+ equal to 10710 ergs
ecm ™3, an approximate value for the GC (Spergel & Blitz
1992; Morris & Serabyn 1996).

2.2. The galactic potential

The gravitational potential we use is adopted from
Zhao et al. (1994), which is a modified version of the
prolate bar potential introduced by Binney et al. (1991).
This potential has the form:

O(r,0,¢) = 4rGpor? <:0> P(9,¢) , (2)

where (r,0,¢) are spherical coordinates fixed on the
rotating bar (r = /22 +y?+ 22, where z,y,z are
the standard Cartesian coordinates. The supermassive
black hole would be at » = 0, the bar’s major axis is
aligned with the x-axis, and the z axis represents the
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Figure 1. Two dimensional representation of our turbulence driving method. A single turbulence cube is shown on the left,
while the combination of cubes to fill up the large simulation box is shown on the right. Note that the above schematic is
intended for illustration purposes, since the number of cubes sketched is different from what we actually used.

vertical direction, with the galactic plane at z = 0), and
P(6, ¢) is the associated Legendre function, which can
be written as:

1 Y(0, )

P(9,¢) = al+a) 2-a)B+a) 3)

Y is a linear combination of spherical harmonic func-
tions of the [ = 2, m = 0,2 modes:

Y (0, ¢) = —bagPag(cos 8) + bag Pos(cos ) cos2¢ . (4)

The parameter byy determines the degree of oblate-
ness/prolateness while bas determines the degree of non-
axisymmetry. Motivated by the previous work of Kim
et al. (2011), and more recently of Gallego & Cuadra
(2017)!, we use the parameters: a = 0.25, byy = 0.3,
byy = 0.1, pg = 40 M pc™3 and r9 = 100 pc. Given
these parameters, a bar with axis ratios of [1: 0.74:
0.65] is obtained for the isodensity surface that intersects
points [z = 0, y = £200 pc, z = 0]. Enclosed masses
inside 200 pc and 1000 pc are 10° My, and 7 x 10° Mg,
respectively.

! We note that there is a negative sign misprint in Kim et al.
(2011) (their Equation 2) and in Gallego & Cuadra (2017) (their

associated Legendre function).

In addition to the gravitational force due to the po-
tential above, we introduced the rotation of the bar by
adding centrifugal and Coriolis forces. We used the
most recent estimate for the Galactic bar’s pattern speed
(Qpar = 40 km s7! kpe™1; e.g., Bland-Hawthorn & Ger-
hard 2016; Portail et al. 2017).

2.3. Turbulence Driving

As noted above, driven turbulence is often modeled
using one of two types of Fourier forcing modules. Both
methods require Fourier transforms on a cubic grid (or
lattice) with N2 points (or a square lattice with N2 on
2D simulations, where typical values for N = 128, 256,
1024, etc). By imposing this cubic lattice onto a simu-
lation box with a physical size of L per side, we can use
the separation between adjacent lattice points (L/N) as
a proxy for the resolution of the turbulence. Hence, for
a large-scale simulation such as the CMZ environment,
e.g., L = 500 pc, and simultaneously resolving turbu-
lence on small scales, e.g., 0.01 pc, the turbulence cubic
lattice would have to contain N? = 5000° points, which
would require massive computational resources. To cir-
cumvent this limitation, we instead use many smaller
turbulence grids to fill the volume of our larger simula-
tion box, as follows:
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Figure 2. Initial conditions for our simulations, x-y plane
and edge-on view. Color bar indicates column number den-
sity in log scale (units in cm™3 pc).

First, we create a library of 10 files, which our modified
version of the Gadget2 code reads in at the start of the
simulation. Each file contains a unique realization of a
turbulent velocity field (in the form of a 3D matrix) with
power spectrum P(k) oc k=% (suitable for compressible
gas; e.g., Clark et al. 2011). Each of these 3D matrices
of turbulence is generated using the methods described
in Rogallo (1981) and Dubinski et al. (1995): via fast
Fourier transforms inside a 1282 box.

These 3D turbulence matrices can be visualized as lat-
tice cubes (or grids) with equally spaced lattice points,
containing 128 x 128 x 128 points. The parameter that
sets the physical size of these cubes is named L ype. In
the test model used in this paper, we make the simpli-
fying assumption that turbulence is injected on scales
similar to the average size of CMZ clouds, i.e., Leype =
8 pc per side. Thus, the separation between two adja-
cent lattice points along one axis is 8pc/128 = 0.0625
pc.

In some studies, the driving module only contains
power on the larger scales (e.g., Federrath et al. 2010).
This type of driving models the kinetic energy in-
put from large-scale turbulent fluctuations, which then

log column density

log column density

break up into smaller structures as the kinetic energy
cascades down to scales smaller than the turbulence in-
jection scale. However, in SPH, the artificial viscos-
ity may damp this energy cascade and prevent it from
reaching the smaller scales. Consequently, to create the
different realizations of turbulent velocity fields, we use
a discrete range of k values from ki, = 2 to kg =
128, thus effectively injecting energy on scales between
Lewbe/2 = 4 pe (for k = 2) and Leype/128 = 0.06 pc (for
k = 128). To create the initial (turbulent) velocity field
of an individual cloud (see Section 2.4), we use trilinear
interpolation to calculate the velocity components for
each SPH particle, based on that particle’s position on
a turbulence cube. This interpolation method results in
a turbulent velocity function I (z,9,2).

Next, we use 64 x 64 x 64 cubes of turbulence to fill
up the volume of our large simulation box. This gives
us a simulation box of size Lgjopar = 8pcx64 = 512 pc
per side. Thus, the spatial resolution of the turbulence
in our large simulation box is the same as the resolu-
tion of an individual turbulence lattice cube. Each of
the turbulence lattice cubes that fill up the large sim-
ulation box is randomly chosen from our library of 10
files, thereby avoiding a velocity field that is coherent
over scales greater than L.yup.. A 2D graphic represen-
tation of the method we describe here is shown in Figure
1. This method raises a concern regarding the interface
between the turbulence cubes, namely, that there will be
discontinuities in the turbulent velocity kicks through-
out the gas at the cubes’ interfaces. However, the tur-
bulent velocity added to the gas is quite small in com-
parison with the orbital velocity, and indeed, we find in
practice that there are no obvious shocks or discontinu-
ities at the interfaces that exceed those induced by the
injected velocity increments (see Section 4).

To drive the turbulence, we follow a method similar to
that described by Mac Low (1999): every N; timesteps
(we fixed the timestep in all our simulations to Aty =
1000 yrs) we add a velocity increment to every SPH
particle, given by:

Aﬁ(aj,y,z) = A\/@ f(x7y72) ) (5)

-

where I(z,y,z) is the turbulent velocity interpolated
from the turbulence field of the cube that contains the
particle in question. The amplitude A is chosen to
maintain a constant kinetic energy input rate E;,, =
AE;, /(N;Atg), and the term /Gp is added to coun-
teract gravitational collapse by ensuring that higher-
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density regions receive more kinetic energy?. Any parti-
cle outside the (512 pc)? simulation box does not receive
any turbulent energy.

For compressible gas with a time-dependent density
distribution, maintaining a constant kinetic energy in-
put rate requires solving a quadratic equation in the
amplitude A every time the driving is performed (Mac
Low 1999). For Ny, particles of mass my, each with
density p;, A is derived from (see Appendix A):

DN =

Nsph
myp Z {AQGszi I + 24/ Gp; T, Ufz}
=1

(6)
Following Mac Low (1999), we take the larger root as
the value for A.

Therefore, our methodology introduces two adjustable
parameters: AF;,, the energy input per injection, and
N, the number of timesteps between injections.

Finally, to mimic the random nature of turbulence,
we change the turbulent velocity field of each of the 643
cubes every time the driving is performed. This is done
by replacing each of the cubes with a different one, cho-
sen randomly from the 10 files in our library. See Ap-
pendix A for further details.

2.4. Initial conditions

To initiate the computations, we use a fiducial model
of the central region of the Milky Way, consisting of
a collection of 100 initially isolated, spherical GMCs.
Each cloud contains NN, = 10* particles, with mass m,,
= 30 Mg per particle. The clouds are distributed ran-
domly in an annular disk of inner radius 30 pc, outer
radius 200 pc, and a Gaussian scale height of 30 pc.
Each cloud has a radius of 4 pc, and an initial turbulent
velocity field such that |Eyyrb/Epot| = 0.5 (i.e., they are
initially in virial equilibrium). The clouds’ initial center
of mass velocities were set so that they move on circu-
lar orbits and are parallel to the galactic plane, with
their magnitudes (vg4) calculated using the potential de-
scribed in Section 2.2. In order to also give the system
a broader vertical structure, the initial v, components
of each cloud were set such that v, = 0.5vy4, with the v,
vector always pointing towards the galactic plane. Fig-
ure 2 shows the initial snapshot of our CMZ model.

All simulations were run using an isothermal equation
of state with T = 100 K. This assumption of isothermal
gas is somewhat crude, but may still provide an ade-

2 This density factor stems from the assumption that molecular
clouds are supported against gravitational collapse by turbulence,
and therefore the velocity kicks should be inversely proportional
to the free-fall time, ¢ o (Gp)~1/2,

quate physical approximation to the real thermodynam-
ics in dense molecular gas (Wolfire et al. 1995; Pavlovski
et al. 2006).

During our testing phase, we also considered an ini-
tially uniform disk as our initial condition. Except for
the time to reach a steady-state (see Section 4), the end
result was qualitatively identical to the model described
in this paper. We therefore conclude that the specific
features of the initial conditions are unimportant for our
purposes as long as the particles are initially distributed
over the same domain. We opted for a collection of
clouds as our initial conditions due to the flexibility in
setting the position, size, mass, initial turbulent velocity
field, etc, of each individual cloud.

3. CONVERGENCE AND CONSISTENCY TESTS

When the self-gravity of the gas is included, combined
with a relatively low temperature, our CMZ simulations
without injected turbulence experience runaway gravi-
tational collapse, causing the simulations to fail within a
dynamical timescale (~ 0.1 — 0.3 Myrs). This effect can
be alleviated by increasing the softening length (which
in our simulations is set equal to the smoothing length,
i.e.,, 0.001 pc). In such a case, the simulation can run
for long timescales, however the gas concentrates to un-
physically large densities, causing the simulation to slow
down to an impractical pace, and is thus an expensive
use of computing resources. This result thereby empha-
sizes the importance of the turbulence injection method
introduced in this paper. However, turbulence injected
too infrequently leads to the same result as if there was
no turbulence injection: gas collapses locally to unphys-
ically large densities (see Appendix B). Therefore, it is
important to inject turbulence relatively often.

In practice, the turbulence driving method described
in Section 2.3, adds an additional velocity “kick” to each
particle every N; timesteps. The energy AFE,, injected
per Ny timestep is kept constant. With these two free
parameters we conducted several tests using our CMZ
model to find the optimal range of values that give rise
to reasonable densities over long timescales. We varied
the energy input AFE;, from 10*6 to 10°° ergs, and N,
from 1 to 5. We describe in detail all performed tests in
Appendix B. Our tests led us to the choice of parameters
N; = 2, AE;, = 10*7 ergs (e.g., see Figure 12).

4. RESULTS

We ran the system for 250 Myrs, using the initial
conditions described in Section 2.4, the turbulence pa-
rameters described in Section 3, and including self-
gravity. The system reaches a semi-steady state after
50 — 100 Myrs regardless of the turbulence parameters
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Figure 3. Column number density at different times for the no-turbulence run (left) and turbulence run (right). The long axis

3

of the bar is oriented along the x-axis. The color map is in logarithmic scale. Units are in cm™° pc.

(as described in Appendix B), and thus the choice of
250 Myrs allows us to capture the relevant dynamics (see
below). We also ran a simulation without turbulence
(and self-gravity turned off) for comparison. We show
the face-on and edge-on views of the resulting column
density evolution of our simulations in Figures 3 and 4,
respectively. The results shown here indicate that our
turbulence injection module is capable of balancing the
self-gravity of gas concentrations, which allows us to run
the simulation for long timescales. Furthermore, discon-
tinuities due to the grids’ interfaces are unnoticeable, as
anticipated.

In both runs, the clouds are tidally stretched relatively
quickly, and the gas settles into a disk after ~ 50 Myrs.
In the simulation without turbulence, the clouds are
stretched into gas streams which comprise the disk, and
reaches steady state by ~ 50 Myrs. The inner inner cav-
ity of radius ~ 30 pc, which is a product of the initial
conditions, remains unchanged for the entire simulation.

However, there are two major differences between the
two simulations. First, the resulting streams in the sim-
ulation with turbulence coalesce into a disk with a floc-
culent spiral pattern. Second, the inner cavity fills in
slowly over time. We address each of these differences
below.

4.1. Spiral structure

After running for ~ 50 Myrs, the gas in the run with
turbulence settles into a quasi-steady state with a floc-

culent spiral pattern (because of the constantly injected
turbulence, a perfect steady state cannot occur). These
spiral segments are attributable to the dynamical re-
sponse of our self-gravitating, shearing disk to local den-
sity perturbations (e.g., Julian & Toomre 1966), which
in this case are caused by the forced turbulence. It is
a common result that turbulence promotes the devel-
opment of high-density regions due to convergent flows
(e.g., Elmegreen & Scalo 2004; McKee & Ostriker 2007).

A similar result was found on galactic scales by
D’Onghia et al. (2013). The spiral patterns in their sim-
ulations of self-gravitating disks of stars are not global
as predicted by classical static density wave theory, but
locally they appear to fluctuate in amplitude with time.
Their spirals are actually segments produced by sheared
local under-dense and over-dense regions. These under-
dense and over-dense regions act as gravitational per-
turbers, maintaining the local spiral morphology. In our
case, it is the injected turbulence that acts as the local
perturber in the gas.

Furthermore, observations of galactic centers have re-
vealed intricate dust structures that are often organized
in a clear spiral pattern. For example, the survey studies
by Regan & Mulchaey (1999); Martini & Pogge (1999);
Pogge & Martini (2002) and Martini et al. (2003a,b)
indicate that ~ 50 — 80% of galaxies in their samples
possess nuclear spirals, regardless of their nuclear activ-
ity. The pattern of some of the observed nuclear spirals
is highly organized, similar to grand-design spirals in
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Figure 4. Edge-on view of the column number density at different times for the no-turbulence run (top) and turbulence
run (bottom). The long axis of the bar is oriented along the x-axis. The color map is in log scale. Units are in cm™> pc.
The simulation without turbulence exhibits a more pronounced vertical structure than the simulation with turbulence. This
is because in the simulation with turbulence, self-gravity is included, and thus the mutual gravitational interactions between

particles compresses the disk to the galactic plane.

main galactic discs. Others display a more chaotic, or
flocculent, spiral pattern. A direct comparison between
our simulations and observations is difficult due to the
limited spatial resolution of the observations, however,
our results suggest that turbulence could be (at least
partially) responsible for the spiral pattern observed in
the gas layer in the centers of galaxies.

4.1.1. Effects of external pressure

As discussed in Section 2.1, we modified Gadget2 to
model an external pressure boundary, as opposed to the
vacuum or periodic boundary conditions that are the
only choices in the standard version of the code. We
used an observationally motivated value of P.,; = 10710
erg cm 2 for the Galactic Center. However, it is worth
investigating how varying this pressure term affects the
gas morphology. We ran two additional simulations with
P.,; = 0 (standard vacuum boundary conditions) and
P..; = 1079 erg cm ™3, which is an order of magnitude
greater than the value from our fiducial simulations. We
show the column density maps (both face-on and edge-
on) at t = 100 Myr in Figure 5. As depicted, without

the external pressure term (see left panels in Figure 5),
the gas disk has a smooth boundary at the edges, as well
as material above and below the plane. When the exter-
nal pressure term is introduced with our fiducial value,
it pushes the low density gas at the edge towards the
disk, and it increases the density contrast of the floccu-
lent spiral pattern. Similarly, when the pressure term is
large (Popr = 1079 erg cm ™3, right panels in Figure 5),
the density contrast of the spirals is increased further.
Furthermore, the material above and below the plane is
pushed towards the disk. Interestingly, this behaviour
suggests an observational test for the value of external
pressure, which may be used for systems in which the
pressure is undetermined.

4.2. Inward migration

The inner cavity closes slowly over time, as gas mi-
grates inward. This might imply a loss of angular mo-
mentum in the system due to the turbulence. In Fig-
ure 6 we show the total (specific) angular momentum
over time for both simulations. Despite our strategy for
avoiding adding a net angular momentum to the simu-
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Figure 6. Evolution of the total specific angular momentum
(1) in the simulations. In the run with turbulence, ! decreases
slightly, with a difference of ~ 3% between 50 and 250 Myrs.
However, this change is sufficiently small that the angular
momentum can be considered approximately constant.

lations (see Appendix A), we see that, in the run with
turbulence, angular momentum slightly decreases, from
~ 1.45 x 10'9 km s=! pc at 50 Myrs to ~ 1.4 x 10*°
km s~! pc at 250 Myrs, a difference of ~ 3%. Clearly,
the sign switching strategy we describe in Appendix A
does not completely ensure angular momentum conser-
vation. Furthermore, it has been shown that turbulence
can impose a nonzero angular momentum (e.g., Clark
et al. 2011). However, this change is quite small over
long timescales, and thus we do not consider this to be
the reason for the inward migration®.

Conversely, it has been shown that supersonic tur-
bulence inside accretion disks (e.g., Wang et al. 2009)
can promote accretion onto SMBHs by enhancing an-
gular momentum transfer (e.g., Collin & Zahn 2008;

3 We verified that the inward migration is indeed a feature of the
injected turbulence by considering the possibility that the inter-
action between turbulence and the rotating, non-axisymmetric
potential could have led to this angular momentum decrease. We
tested this idea by running a simulation with a rotating, axisym-
metric potential (by setting bae = 0 and Qpq, =40 km s~ kpc™1,
see Section 2.2), and another with a non-rotating, axisymmetric
potential (by setting ba2 = 0 and Q44 = 0). However, in both
cases, we recover the same negative slope as in our fiducial model
(red line in Figure 6). Thus, we conclude that this small angular
momentum reduction is a feature of the injected turbulence.
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Chen et al. 2009). In particular, Hobbs et al. (2011)
demonstrated using numerical simulations of supermas-
sive black hole accretion that turbulence can broaden
the angular momentum distribution, setting some gas
on low angular momentum orbits. We find a similar re-
sult in Figure 7, where we show the mass fraction as
a function of specific angular momentum at different
times for both simulations. We find that in the sim-
ulation without turbulence (left panel of Figure 7) the
gas settles into a triple-peaked distribution by 100 Myrs
(red curve), and the location of these peaks, as well as
the overall distribution, does not change over time. In
contrast, the simulation with turbulence exhibits an an-
gular momentum distribution with a single peak (right
panel of Figure 7). This peak then slowly moves towards
lower angular momentum values over time.

This transport of angular momentum can be explained
in terms of the elementary theory of accretion disks (e.g.,
Shakura & Sunyaev 1973; Lynden-Bell & Pringle 1974;
Pringle 1981): viscous torques between adjacent annuli
of gas in an accretion disk provokes mass to flow inwards.
While Gadget2 does contain an artificial viscosity, this
treatment is dedicated to capturing shocks in SPH, and
has no effect on the transfer of angular momentum, as
seen in our turbulence-free simulation (Figure 3). The
transport of angular momentum is due to “turbulent”
viscosity induced by our driving method. This explains
the slow inward migration of gas in our simulation.

To estimate the viscosity, V4urh, induced by our tur-
bulence method, we use the accretion rate due to a-
viscosity (Shakura & Sunyaev 1973; Pringle 1981):

M =~ 3w, (7)

where M is the mass inflow rate and ¥ is the surface
density.

To estimate M, we calculate the mass inside a radius
of 30 pc over time (see Figure 8). We approximate the
rate from 150 Myrs to 250 Myrs as a straight line, and
find a slope of M = 0.004 Mg /yr. Similarly, we adopt
the value of ¥ at r = 30 pc to be 300 M, /pc?, which is
the average value between 150 and 250 Myrs (see Figure
9). Thus, we evaluate the viscosity to be viy,n = 4.2 X
10?3 cm?/s.

Alternatively, we can use the definition of a-viscosity
Vewrb = acsH, where o < 1 is a parameter that ad-
justs the strength of the viscosity, cs is the sound speed,
H = ¢,/Q, and Q is the angular velocity due to the
gravitational potential. Assuming the gas in our simu-
lations is mainly composed of molecular hydrogen (Hs),
¢s = 0.64 km/s. The value of H at r = 30 pc is
~ 0.2 pc (see Figure 10). This results in a value for
v = 3.7 x 10?2 cm?/s (assuming o = 1). However, the

actual thickness of the disk at » = 30 pc is much larger,
~ 2 pc (see Figure 10). Using this value, we obtain
Viwrs = 3.7 x 102 cm? /s, which is comparable to the
value we calculated above using the mass inflow rate.

To understand the implications of this calculated tur-
bulent viscosity, we make a comparison similar to that
described in Sormani et al. (2018), as follows: to signifi-
cantly affect the dynamics of a gaseous disk, the viscous
timescale, ¢, ~ R?/v (where R is the radius of the disk),
must be shorter than the Hubble time (tg = 14 Gyrs).
This condition gives a lower limit to the value of the vis-
cosity, Vmin =~ RQ/tH. Using R = 200 pc (the radius of
our simulated CMZ disk) gives a minimum viscosity of
Umin = 8 x 1023 cm? /s. This value of v, is roughly a
factor of 2 higher than the value 4,4, ~ 4 x 10%3 cm? /s
calculated from our simulations. This result is consis-
tent with the findings by Sormani et al. (2018), where
they found that the viscosity used in their simulations
of galactic nuclear rings, v = 3 x 10** c¢m?/s (which
was sufficient to significantly affect the morphology of
their simulated rings) was a factor of ~ 10 smaller than
the corresponding minimum viscosity for nuclear rings,
Vmin = 8 X 10%% ¢cm? /s (for a R = 1 kpc ring). Thus, our
results support Sormani et al. (2018) conclusion that vis-
cosity may be more effective in influencing the dynam-
ics of gaseous systems than implied by generic estimates
such as the one described above.

We note that our viscosity calculations are only ap-
proximations, since the values of M , 2, and the thick-
ness of the disk, vary over radius and time. Thus, the
viscosity induced by our turbulence method will also
vary with radius and time. A more careful analysis of
the turbulent viscosity imposed by our driving method
is reserved for a future paper.

5. SUMMARY AND DISCUSSION

Supersonic turbulence occurs over a wide range of
length scales in the interstellar medium, especially
within molecular clouds. The importance of turbulence
in modulating star formation in the interstellar medium
was further highlighted recently by a combination of nu-
merical and analytical studies (e.g., Krumholz & McKee
2005; Burkhart 2018). It has also been suggested that
turbulence plays a key role in forming the very first star-
clusters and perhaps even globular cluster progenitors
(e.g., Naoz & Narayan 2014; Chiou et al. 2019). Further-
more, turbulence in the centers of galaxies, particularly
in our own CMZ, seems to greatly influence its thermal
structure and star formation rate (e.g., Kruijssen et al.
2014).

Numerical simulations have shown that turbulence de-
cays quickly, within a few dynamical timescales (e.g.,
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Figure 7. Distribution of the mass fraction of gas as a function of specific angular momentum (units of km pc s ') at different
times for the simulations without turbulence (left) and with turbulence (right). The graph was calculated using a specific angular
momentum bin size of 20 km pc s~!. In the simulation without turbulence, the shape of the distribution is relatively unchanged
after 100 Myrs. In contrast, the angular momentum settles into a single-peak distribution in the run with turbulence, and this
peaks shifts towards lower angular momentum values over time, thus accounting for the inward migration of gas.

Stone et al. 1998; Mac Low 1999). Thus, in order to
properly study the dynamics of the CMZ environment
with numerical simulations, it is necessary to include a
mechanism for turbulence driving. Typically, simulating
turbulence in gas on galactic scales is achieved by model-
ing star formation and feedback. However, we note that
despite the high densities and the large amount of avail-
able gas, there is about an order of magnitude less active
star formation in the CMZ than might be expected from
the quantity and surface density of molecular gas (e.g.,
Longmore et al. 2013; Kruijssen et al. 2014). Therefore,
other physical processes may supplement this method-
ology to explain the high-velocity dispersions observed
in the CMZ.

This prompted us to develop a more general mecha-
nism for driving turbulence. Consequently, we adapted
the Fourier forcing module described by Mac Low (1999)
in order to simulate not just the CMZ, but this method
can be applied in general to gas that orbits under the
influence of a gravitational potential. We implemented
this turbulence method to the SPH code Gadget2.

Rather than depending on a single grid of turbulence,
as is typical with this method, we create instead many

turbulent grids and use them to fill the volume of a
larger simulation box. We then use trilinear interpola-
tion to calculate and add a velocity kick to each SPH
particle. The amplitude of these velocity increments is
adjusted every injection time to maintain a constant en-
ergy input. As shown in Section 4, discontinuities in the
added velocity field to the interfaces between grids are
indistinguishable in the simulations.

Using a simplistic model of the CMZ consisting of
a collection of Giant Molecular Clouds, our turbulence
driving method allows us to study the dynamics of the
gas and turbulence over long timescales. One of the
main results in our simulations is that turbulence in-
duces inward migration of gas, a result that is consistent
with previous numerical simulations (e.g., Hobbs et al.
2011).

This paper focusses on testing this new method in the
context of a single physical scenario. However, our tur-
bulence module is flexible and can be applied to study
different physical scales. There are a number of param-
eters that can be adjusted:

e Power spectrum index: For incompressible turbu-
lence, the Kolmogorov power spectrum in three
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Figure 10. Particle position plot z vs. r of the simulation
with turbulence at t = 200 Myrs. The red lines indicate the
scale height value H = ¢,/), where ¢, is the sound speed,
and 2 is the angular velocity due to the gravitational poten-
tial. Owing to turbulence, the disk is about 10 times thicker
than the theoretical value of H.

dimensions is o« k~'/3 (Kolmogorov 1941) (for
a two-dimensional distribution, P oc k~%/3). For
compressible turbulence, the power law index has
been shown to be slightly steeper (e.g., Clark et al.
2011). Milky Way observations have found power
law slopes of -2.8 to -3.2 in 2D maps (Elmegreen &
Scalo 2004, and references therein). In our tests we
used a power spectrum index of -4, but the power
spectrum index can be modified to match obser-
vations in order to create more applicable simula-
tions.

The number of distinct realizations of turbulence
grids: in order to avoid coherence in scales larger
than Leype, each of the turbulence grids has a
different realization of velocity fields, drawn ran-
domly from a library of 10 realizations. This li-
brary can be expanded with more realizations,
which could potentially improve the “randomness”
of the turbulence. However, this library will be
limited by the memory constraints of the comput-
ing resources.

The size of the turbulence grids (Leype): in our
code, this parameter also represents the largest
scales on which turbulence is injected. Thus, mod-
ifying this allows flexibility in studying different
turbulence injection scales depending on the phys-
ical environments to be simulated. For example,
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in Salas et al. (2020), we use our driving method
to study how turbulence affects the formation of
galactic nuclear rings. There, we discuss galac-
tic scale (Lgiopar = 4 kpc) simulations using larger
grids of turbulence (L.yp. = 64 pc).

e The number of turbulence grids per side: modify-
ing this parameter (in tandem with the previous
one, L.upe), allows for adjusting the size of the
overall simulation domain, Lgiopal-

e The total energy of injection, AFE;,, and time in-
terval between injections, N;: these parameters
need to be tuned depending on the physical en-
vironment to be simulated. In Appendix B we
vary these parameters in order to find the opti-
mal values to use. However, different gas con-
figurations will require different parameters than
the ones used here. For example, we expect that
smaller values of AF;,, and larger values of N; may
be sufficient to balance self-gravity in lower density
gas.
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APPENDIX

A. CONSTANT ENERGY INPUT RATE

In this appendix we derive Equation 6.

Our algorithm adds a velocity “kick” to each particle every Ny timesteps while maintaining a constant energy input
rate Ej;, = AFEy, /(NiAt), where At is the simulation timestep (fixed to be equal to 1000 yrs), and:

Nsph

Nsph

1 N . 1 N .
AE;,, =FEy,— E; = 5 Zl V2,i " V2i — 5Mp Zl V14"Vl (A1)

where v7); is the velocity vector of a particle at time ¢ (before the kick), and

vy = 0T + AAG, = v + A/ Gpi Ti(w,y, 2) (A2)

=

is the velocity of the particle at time ¢o (after the kick). Therefore, to — t; = N;Ats. The function I(z,y,2) is the
interpolation function that represents the turbulent velocity increment based on the particle’s position (hereafter called

=

I), and A is the target variable.
Equation Al then becomes:

1 Nsph

2

ABi = smy | > (vis+ AVGpi 1) - (o1 + AVGpi ) - ZN:UL- e (A3)
=1 =1
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By simplifying Equation A3, the result is:

Nsph
AE;, = %mp 3 [A2Gpifi I 424/ Cpi T .vzi} (A4)
=1

This equation always gives both positive and negative values for A and our code always chooses the positive value.
However, to ensure that the injection of turbulence does not violate the conservation of total angular momentum of
the gas, we simply multiply A by a factor of —1 or +1, alternating between these two factors every time the driving is
performed. This ensures that, over time, the net angular momentum added to the gas particles is approximately zero
while keeping the same increase in energy AE;,.

Furthermore, we change each of the 643 cubes of turbulence every time the driving is performed. This is to mimic
the random nature of turbulence. Regardless of the source of turbulence, we expect that a parcel of gas will experience
a coherent turbulent driving force during a given time interval. We can justify changing each grid every NV; timesteps
if we consider that the crossing time of a parcel of gas traveling at an orbital speed of v/ 150 km s~—! through the
average scale of a turbulence cube, i.e., Lyye = 1 pc, i teross & 6000 yrs. Hence, we conclude that there is little need
for the velocity field to be coherent on timescales longer than 6 timesteps, thus justifying our replacement of each
turbulence cube as long as N; is more than a few.

B. DEPENDENCE ON TURBULENCE PARAMETERS

Here we describe the tests we carried out to study the performance of our turbulence algorithm in order to choose
N; and AF;, values for our CMZ model. While these parameters are better represented in form of a rate, the results
of this section indicate that the time interval at which the turbulence is injected affects the subsequent evolution of
the gas.

We tested driving the turbulence every 1 to 5 timesteps for a total of 25 tests: for each N;, we used AE;, = 106 to
10%° ergs, in a factor of 10 increments. We ran each simulation for 100 Myrs to allow the system to reach a quasi-steady
state.

As proxy for the evolution of the systems, we plot the average number density (n4,¢) as a function of time, as shown
in Figures 11 to 15. For the simulations with Ny= 2 and 3, the time evolution of nge is very similar (except for the
case with AE;,= 10%° ergs, whose 14, evolution diverges from all other runs). The average density oscillates due to
the interplay between turbulence and self-gravity, potentially reaching a steady-state by ~ 50 Myrs.

We also plot in Figures 11 to 15 the RMS number density (ngasg) from ¢ = 50 — 100 Myrs, in order to better discern
differences between runs. The runs with parameter N;= 4 and 5 show higher average densities, as expected, because in
these cases, turbulence is injected less frequently, allowing gravity more time to compress the gas to higher densities.
However, given their high density RMS peaks, these runs are less consistent and more chaotic than those with lower
values of IV;. Also, the runs with N; = 5 were only run for 50 Myrs due to the fact that the tests with AE;,, = 1046
to 10*® ergs exhibited high density clumps which slowed down the computation time. These clumps originate because
in those cases, the turbulence is not injected often enough to support the gas against local gravitational collapse.
Particles pile on top of each other, and due to the nature of the kernel used by Gadget2, once the distance between
particles approaches the smoothing length, the pressure gradient is no longer correct and the particles stick together,
creating very high density clumps.

Additionally, in Figures 11 to 15, we plot the distribution of mass fraction as a function of density (density PDF)
at t = 50 and 100 Myrs for each run. Inside a molecular cloud, the density PDF is shaped by the complex interaction
between turbulence, self-gravity, magnetic fields and stellar feedback. As a result, it is an effective tool to determine
the dynamical state of the gas (e.g. Federrath et al. 2010). In most of our test runs, the calculated density PDF
resembles a lognormal distribution, a result that several groups have found for isothermal gas (e.g., Vazquez-Semadeni
1994; Klessen 2000 and others). This gives us confidence that our new turbulence forcing module is consistent with
previous studies of turbulence. Thus, we can fit the density PDFs to Gaussian functions of z = In(n/ng) with mean
w1 and dispersion o:

r— 2
fa=Cexp {(UQMD} . (B5)
The mass-weighted median number density (half of the mass is at densities above and below this value) is proportional
to e”*. We indicate this parameter with vertical bars in both figures. For each value of N; = 1, 2 and 3, the value
mass-weighted median number density is consistent for all energies, except AE;, = 10°C.



14 SALAS ET AL.

105_llll|llll TTTTTTTTT[TTTI T I I T I T[T TTITITITITITI T [TITITITI T T
[ E E ||[||m] IIIIIﬂ'I] IIIIIITTI IIIIIm] IIIIIITI] IIIII[TI] T TTTIIm
C ] 10" & 100 Myrs —
£ 10° 10% =
c = =
c - -
kel - 7
8 L _
8 B _
I © - -
10000 B 10° E_ I I I | —E s - ]
| 5()IIIIIIIII6()IIIIIIIII7'OIIIIIII[[80IIlIIIlIIgOIIIIIIII1I00 = |
| Time [Myrs] 10* = =
c% 10°
_1 | _
' 107 E 50 Myrs E
| ‘ | - 2 ]
’ | il l‘l 2_ i
R J") i 10% & =
il ; c E E
1‘ ("N A | [ ,"1 Re] - .
W ;‘; v ‘g O 7
LA =
\HP( @ 10° = E
‘“ = 3
AE,, =10 = - .
47 - -
AE,, 0 .
_ 10 & —
AE, = 0 E E
AP n 50 C ]
1000 (— AE,, =10 - .
| 1 I | I | | L1 1 | L1 1 | 10-5 RTTIT I SR I Lol 4ol
20 40 60 80 100 10° 10" 10° 10° 10° 10° 10° 10
Time [Myrs] -3
n[cm 7]

Figure 11. Median density, RMS density and density PDF for tests with N; = 1. The mass-weighted median density is plotted
with a vertical line. The density PDF is approximately lognormal.

Finally, it is a standard result in the literature that high-density regions are created by turbulence due to supersonic
turbulent convergent flows (e.g., Elmegreen & Scalo 2004; McKee & Ostriker 2007). The increasing values of 14, with
AE;, seen in Figures 11 to 14 agrees with this result.

The tests with parameter Ny = 2 and 3 show better consistency in the range of densities in the simulations (n ~
103~* cm~2) than the other test runs. Based on their density evolution, we notice that the exact choice of of energies
in this range of injection intervals has little effect on the final results. Thus we opt for the parameters N; = 2 and
AE;, = 10*7 ergs as the standard choice for our CMZ model simulated in Section 4.

As a final note, we remind the reader that we are only testing this parameter-space of injection energies and intervals
in a specific physical scenario, namely, that of a CMZ-like environment. We expect that similar choice of parameters
will be useful in different environments, but further testing is needed. However, our goal here is to show that our proof-
of-concept method gives consistent results and agrees with previous results in the literature. A more comprehensive
analysis of the turbulence method that we introduce in this paper is left for future work.
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