
Multivariate Time Series Classification Using
Spiking Neural Networks

Haowen Fang, Amar Shrestha, Qinru Qiu
Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, New York

Email: {hfang02,amshrest,qiqiu}@syr.edu

Abstract—There is an increasing demand to process streams
of temporal data in energy-limited scenarios such as embedded
devices, driven by the advancement and expansion of Internet of
Things (IoT) and Cyber-Physical Systems (CPS). Spiking neural
network has drawn attention as it enables low power consumption
by encoding and processing information as sparse spike events,
which can be exploited for event-driven computation. Recent
works also show SNNs’ capability to process spatial temporal
information. Such advantages are beneficial for power-limited
devices to process real-time sensor data. However, most existing
SNN training algorithms focus on vision tasks and temporal
credit assignment is not addressed. Secondly, widely adopted rate
encoding ignores temporal information, hence it’s not suitable for
representing time series. In this work, we present an encoding
scheme to convert time series into sparse spatial temporal
spike patterns. A training algorithm to classify spatial temporal
patterns is also proposed. Proposed approach is evaluated on
multiple time series datasets in the UCR repository and achieved
comparable performance with deep neural networks.

Index Terms—Spiking neural network, neuromorphic comput-
ing

I. INTRODUCTION

The promise of Spiking Neural Networks (SNN) derives
from its inspiration, i.e. the brain, that is capable of numerous
cognitive tasks with minimal energy requirements. In general,
the brain’s capability comes from the complex dynamics of
and between the networks of spiking neurons and plastic
synapses connecting them. These dynamics is able to capture
complex spatial temporal understanding on encoded sparse
temporal spiking activity. Despite the inspiration, majority of
the implementations of SNNs are unable to replicate such dy-
namics to encode, learn and decode such temporal information.

Firstly, most SNN models and training algorithms consider
only the statistics of spike activities. A numerical value is
represented by spike counts in a time window. Though, this
type of SNN has demonstrated state-of-art performance in
various tasks [15], it suffers from high spike activities [14].
Thus, it cannot fully benefit from event-driven computation.
Secondly, directly adapting backpropagation is not feasible
because spiking neuron’s output is a Dirac delta function. One
approach to address the problem is to train an artificial neuron
network (ANN) such as multi-layer perceptron (MLP) and
map the weights to SNN. However, it suffers form accuracy
degradation, additional fine-tuning of weights and thresholds
is required to minimize the performance penalty [4]. Recently
gradient surrogate is proposed to approximate the gradient
of the spiking function [6], [13], [20]–[22]. [6] derived a

cumulative error function as gradient surrogate. [22] derived a
simplified model from Leaky Integrate and Fire neuron (LIF),
and proposed four functions as gradient surrogates of spike
function. Other approaches include replacing hard threshold
function with a differentiable soft spike [17] [12]. However, it
compromises SNN’s most distinct feature, binary spike.

While most SNN models and training algorithm use spike
counts to resemble numeral value, it is observed that in
biological neural networks, temporal structure of spike train
and timing of spikes also convey information [3]. Two spike
trains of same spike rates can have distinct patterns, hence the
represented information is different. Such temporal encoding
can efficiently encode information using extremely sparse
spikes-events [14]. There are some existing works to train
neurons to detect temporal spike patterns. Tempotron [11]
trains individual neuron to perform binary classifications for
different spatial temporal input spike patterns. Neuron generate
at least one spike for positive pattern, and remain inactive
for other patterns. Based on Tempotron, [10] proposed an
algorithm to adjust synaptic weights such that neuron can
generate desired number of spikes given a specific input
pattern. SPAN [16] trains an individual neuron to associate
a spatial temporal input pattern with a specific output spike
pattern. However, these works aim at training individual
neurons, cannot be extended to multiple layers, therefore the
performance is limited. There are also recent works utilize
backpropagation through time (BPTT) to address the temporal
dependency problems. [21] proposed a training rule to reassign
errors in time. [9] proposed a novel loss function and derived
an iterative model from Tempotron. Based on the iterative
model, network can be unrolled hence BPTT is possible. [25]
captures the temporal dependency on membrane potentials and
use membrane potential as objective function to learn temporal
patterns.

Existing works have achieved comparable performance with
DNN in vision tasks such as static image or event-based data
classification, however few SNN implementations address the
time series classification tasks. First challenge is the limitation
of rate coding, since it treats spikes statistically, hence cannot
represent temporal information. Though it is possible to flatten
the time series into 1-D array and then represent it by rate
coding, it increases the input size. In addition, in real time
applications, flattening input requires buffering which also
increases computation latency. Second, unlike images, such
as MNIST images, all pixels’ range, precision and scale



∑

...

LIF Neuron

Synapses

PSP

Spikes

Membrane potential

Output spikes

w1

w2

wN

-Vth

Reset voltage

PSP

Spikes

PSP

Spikes

Fig. 1: Spiking neuron model

are identical, multivariate time series may be collected from
different sensors, therefore precision, and range may vary.
Rate coding has to guarantee the precision for the most high-
resolution input. Therefore, new coding methods to represent
time series are required to exploit the potential of SNNs.

In this work, our contributions are summarized as follows:
• We present a coding method than can convert time series

into sparse spatial temporal spike patterns.
• We derive an iterative SNN model from Spike Response

Model, such that the Backpropagation Through Time
is possible. An event-based updating algorithm is also
proposed to reduce computation overhead for inference.

• We formulate a backpropagation rule for the iterative
SNN model and propose a training algorithm to train the
model on spatial temporal patterns.

• We evaluate the proposed method on multiple datasets,
and achieve comparable accuracy with DNN. To the best
of our knowledge, this is the first work applying SNN for
multivariate time series classification.

II. SNN MODEL

Without loss of generality, we adopt the a widely used
Leaky Integrate and Fire (LIF) neuron defined by Spike
Response Model [8], [11]. Each input spike induces a charge
in the neuron’s membrane potential, which is called a postsy-
naptic potential (PSP):

PSP (t) =

ti<t∑
ti

K(t− ti)w (1)

where ti denotes the arrival time of ith input spike. Neuron
accumulate all input PSPs, such that the membrane potential
v(t) is defined as:

v(t) =
N∑
i

wi

tij<t∑
tij

K(t− tij)− Vth
∑
tjs<t

e−
t−tjs
τ (2)

where N is the number of input synapse. tij is the arrival
time of jth spike at ith input synapse. τ is a time constant of
neuron. Each input spike causes a charge on neuron which is
called postsynaptic potential (PSP). wi is the weight associated

0 T

PSP Kernel

Time

Fig. 2: PSP kernel

with each input synapse. tjs < t is the time when the neuron
generates a spike and the rightmost term can be interpreted as
a negative voltage applied to the neuron itself such that the
membrane potential is decreased by a factor of the threshold
voltage Vth. This serves as the reset mechanism at the time
of spike. Thus, the neuron’s potential is the summation of all
weighted input PSP plus the negative voltage given by right-
most term [8]. The neuron model with N input is illustrated
in figure 1. PSP kernel K(t) is defined as:

K(t) = V0(e−
t
τm − e

−t
τs ) (3)

where τm and τs are two time constants. V0 = η
η
η−1 is a

normalization factor which scales maximum value of K(t) to
be 1, and η = τm

τs
[10]. The shape of the PSP kernel is shown

in figure 2.
At time t, PSP and membrane potential are determined by

all previous inputs. However, it is not feasible to directly
implement the SNN model defined by Equation 2. At any
given time t, v(t) has to be computed by recursively convolv-
ing input spike trains with K(t), thus, incurring significant
computation overhead. To address this issue, an incremental
can be derived from the SRM model in discrete time domain.

More formally, input spike train S[t] can be defined as a
sequence of time shifted Dirac Delta functions:

S[t] =
t∑
n

x[n]δ[t− n] (4)

where xi[t] = 1 denotes a spike is received at time t, otherwise
xi[t] = 0. Similarly, output spike train O[t] can defined as:

O[t] =
t∑
n

y[n]δ[t− n] (5)

where y[t] satisfies (v[t] < Vth → y[t] = 0) ∩ (v[t] > Vth →
y[t] > 0). To derive the incremental model, We define M [t] =∑
n e
− n
τm S[t − n], H[t] =

∑
n e
− n
τs S[t − n], such that the

PSP can be expressed as the combination of M [t] and H[t]
[24]:

PSP [t] = V0(M [t]−H[t]) (6)

M [t] and H[t] can be computed incrementally:

M(H)[t] = e
−1

τm(s)M(H)[t− 1] + S[t] (7)



Similarly, we can compute reset voltage R[t]:

R[t] = e
−1
τs R[t− 1] +O[t− 1] (8)

Such that the SNN defined in Equation 2 can be equivalently
expressed as:

V li [t] = I li [t]− VthRli[t] (9a)

I li [t] = V0

Ml−1∑
j

wli,j(M
l
i [t]−H l

i [t]) (9b)

M l
j [t] = αN l

j [t− 1] +Ol−1j [t] (9c)

H l
j [t] = βH l

j [t− 1] +Ol−1j [t] (9d)

Rli[t] = γRli[t− 1] +Oli[t− 1] (9e)

OLi [t] = U(V li [t]− Vth) (9f)

where index l, i, j denote layer index, neuron index and
input index respectively. Nl denotes the number of neurons
in lth layer. I li [t] is input current, R[t] is reset voltage, Oli[t]
is neuron output. α = e

−1
τm , β = e

−1
τs , γ = e

−1
τ are three

decay factors. More specifically, l = 0 denotes the encoding
layer, which will be discussed in section III, L is the number
of layers in the network and l = L denotes output layer. U(x)
is a Heaviside step function:

U(x) = 0, if x < 0, otherwise 1 (10)

In the above model, the temporal dependency can be clearly
seen in Equation 9a - 9f. At each time t, the PSP, membrane
potential and output can be computed based on time t − 1,
hence by unfolding the network, Backpropagation Through
Time (BPTT) can be used to train the network. Note that
the gradient of U(x) is a Dirac Delta function, therefore
backpropagation cannot be directly applied. Its approximation
will be discussed in IV.

A. Event-driven Inference

The above model provides an explicit approach to update
SNN’s states based on step-wise computation, and is suitable
for training. In inference, the model can be simulated in
an event-driven manner, i.e. computation is only necessary
when there is a spike event, hence significantly reducing the
computation overhead.

Suppose at time t, the value of M [t] or H[t] is known,
without input spike, after ∆t unit time later, i.e. at time t′ =
t+ ∆t, the M [t] and H[t] can be computed as:

M(H)[t′] =

ti<t∑
ti

e
− t+∆t−ti

τm(s)

=
∑
ti<t′

e
− t−ti
τm(s) · e−

∆t
τm(s)

= M(H)[t]e
−∆t
τm(s)

(11)

When there is an input spike at time t′ = t+ ∆t. There is
an instantaneous unit charge on M [t′] and H[t′]:

M(H)(t′) = M(H)e
−∆t
τm(s) + 1 (12)

Algorithm 1: Event-driven inference
Input spike buffer: Qspike ← ∅
Elapsed time since last input spike: Din[:]← 0
Elapsed time since last output spike: Dout[:]← 0
Time t← 0
M [:]← 0
H[:]← 0
R[:]← 0
for t < T do

if Qspike 6= ∅ then
foreach synapse j do

V ← 0
if j in Qsyn then

M [j]←M [j] · αDin[j] + 1
H[j]← H[j] · βDin[j] + 1
Din[j]← 0
V ← V + V0 · wj · (M [j]−H[j])

else
Din[i]← Din[i] + 1

if V > Vth then
Dout ← 0
R← R · γDout[j] + Vth
V ← V − Vth

else
Dout ← Dout + 1

else
Din ← Din + 1
Dout ← Dout + 1

t← t+ 1

Similar conclusion also holds for R[t]:

R(t+ ∆t) = R[t]e
−∆t
τm (13)

The event-driven computation algorithm is shown in Algo-
rithm 1. By tracking the elapsed time ∆t, computation is only
necessary when there is an input or output spike. In addition,
the kernel decays over time, and becomes effectively 0 after a
period. Therefore the decay factor for different ∆t can be pre-
computed and stored in a look-up table, so that the expensive
exponential function is avoided.

III. SPATIAL TEMPORAL POPULATION ENCODING

Rate coding represents a numerical value by the activity
of an individual neuron that fires at a particular rate. For
example, in vision tasks, to encode one pixel, a spike train’s
spike count C in a given time window T is proportional to
the pixel value. There are several drawbacks of rate coding.
1) the precision is limited because the value represented by
rate coding is quantized by bin size 1/T . Though higher
precision can be obtained by increasing T , the computational
latency increases as well; 2) it is unable to represent temporal
information as it treats spike activity statistically. Time series
have to be flattened and then converted to spike trains. In real
time scenarios, it requires data stream to be buffered, which
causes additional latency; 3) Individual neuron is too noisy
due to stochastic nature, thus it introduces additional noise;



Time series Encoder Spikes

... ... ...

Fig. 3: Coding method

4) it causes high spiking activity, as larger value has to be
represented by more spikes, which deprives the SNN energy
efficiency. 5) It is incapable of representing negative values,
which are common in sensor inputs.

To address the above issues, we employ a coding method
that is suitable for encoding time series by combining popu-
lation coding and temporal coding [7]. In population coding
the information is represented by the activity of a group of
neurons. In such a population, each neuron has its favorable
input, i.e. each neuron responds to a particular input and
remains relatively inactive for other inputs. In temporal coding,
the spike train patterns also convey information.

We utilize a population of Current-based Integrate and
Fire(CUBA) neurons as encoder. A CUBA neuron is defined
as a hybrid system [2]:

dV

dt
= −1

τ
V + g · Iext(t)

V ← 0 if V > Vth

(14)

where Iext(t) is the external time-varying input current, τ
is the membrane time constant, which determined the decay
speed of membrane potential, V (t) is the neuron membrane
potential, g is the gain. Neuron accumulates the input current
and updates the membrane potential continuously. When the
V (t) exceeds Vth, a reset is triggered, membrane potential is
forced to 0.

In practice, CUBA neuron model is simulated in discrete
time, V (t) is evaluated on a time grid and the interval of the
grid is dt [18]. Iext(t) is also sampled at each time grid. Such
that the discrete version of the model represented by Equation
14 is:

V [t+ 1] = e−
dt
τ V [t] + g · Iext[t]

V [t+ 1] = 0 if V [t] > Vth
(15)

With this coding scheme, a univariate time series, for
example sensor data is treated as input current and connected
to a population of E encoder neurons. Each neuron may have
different time constant τ and gain g, so that each encoder

responds to the input differently. In addition, by setting g to
negative, neuron can also respond to negative input, which
overcomes the drawback of rate coding. We utilize Neural
Engineering Framework (NEF) [5] to pre-train the encoder.
Using this approach, time varying signal is converted into
time varying spike patterns. For multivariate time series of
C channels, each channel can be encoded using the above
approach. Unlike vision tasks in which all input dimensions
have identical resolution and range, multivariate time series
maybe collected from different sensors, therefore the resolu-
tion, precision and range may vary. By coding method, the
population size and tuning curve can be adjusted to provide
enough precision for all the channels [23].

IV. TRAINING ALGORITHM

For the classification task, the neuron in the output layer
that fires most frequently represents the result, we use cross-
entropy loss defined as:

E = −
NL∑
i

yilog(pi) (16)

where pi is the probability of each class calculated by softmax,
pi given by:

pi =
exp (

∑T
t O

L
i [t])∑NL

j=1 exp (
∑T
t O

L
j [t])

(17)

where yi is the label, L is number of layers, OLi [t] denotes
output of last layer, and NL is the neuron number of last layer.

Equation 9a - 9f provide an explicit way to update SNN
states and outputs. By unfolding the network, BPTT can be
used for training. First, we define δli[t] = ∂L

∂Oli[t]
, εli[t] =

∂U(V li [t]−Vth)
∂V li [t]

and κli[t] =
∂Oli[t+1])

∂Oli[t]
.

κli[t] is given by:

κli[t] = −Vthγεli[t] (18)

At last layer L, δLi [t] can be computed as:

δLi [t] =
∂E

∂OLi [k]
=

∂E

∂(
∑T
k=1O

L
i [t])

∂(
∑T
k=1O

L
i [t])

∂OLi [t]

= (pi − yi)(
T∑
k=t

∂OLi [k]

∂OLi [t]
) (19)

∂OLi [k]

∂OLi [t]
is computed as:

∂OLi [k]

∂OLi [t]
=
k−t−1∏
n=0

∂OLi [t+ n+ 1]

∂OLi [t+ n]
=
k−t−1∏
n=0

(−VthγεLi [t+ n])

(20)



Time

Va
lu

e

Fig. 4: Articulary Word Recognition dataset sample

For hidden layer l < L, δli[t] can be computed recursively
from output layer L and time T to input layer and time 0:

δl,i[t] =

Nl+1∑
j

∂E

∂Ol+1
j [t+ 1]

∂Ol+1
j [t]

∂Oli[t]
+

∂E

∂Oli[t]

∂Oli[t+ 1]

∂Oli[t]

= −Vthδli[t+ 1]εli[t+ 1]

+

Nl+1∑
j

wijδ
l+1
i [t+ 1]εl+1

i [t+ 1](α− β) (21)

U(x) is non-differentiable. We employ gradient surrogate
[17] to address this issue. In forward path, the spike generation
mechanism remains unchanged, while in the backward path,
the derivative of the Heaviside step function U(x) is replaced
by the derivative of a smooth function. We use a sigmoid func-
tion as the gradient surrogate in the backward path proposed
by [22] as gradient surrogate, such that the gradient of U(x)
is approximated as:

∂U(v)

∂V
≈ eVth−v

(1 + eVth−v)2
(22)

Based on above equations, the gradient of weight can be
computed as:

∂E

∂wl
=

T∑
t=1

∂E

∂Ol[t]

∂Ol

∂V l[t]

∂V l[t]

∂I l[t]

∂I l[t]

∂wl

=
T∑
t=1

V0 · δl[t]εl[t](M l[t]−N l[t]) (23)

V. EXPERIMENTS

The proposed network model and algorithm are imple-
mented in PyTorch. We demonstrate the effectiveness of our
work in two experiments. In first experiment, we compared
the coding efficiency of rate coding and temporal population
coding in terms of spike rate and input size. In second
experiments, the proposed network and algorithm is evaluated
on various multivariate time series classification tasks.

A. Coding Efficiency

First, we study the efficiency of the proposed coding method
by utilizing the Articulary Word Recognition dataset collected
by UEA & UCR Time Series repository [1] as an example.

Algorithm 2: Training process of one iteration
Input: Time-varying input Iext[t]
Output: Optimized weights W l

// Forward
for t = 1 to T do

// Encoding

V 0 ← e
−1
τ · V 0 + Iext[t]

if V 0 > Vth then
V 0 ← 0 // Encoding
O0 ← 1 // Generate spike

else
O0 ← 0

for l = 1 to L do
// Update states Eq.9a -9e
(M l,H l,Rl,V l, I l)←

Update(M l,H l,Rl,Ol−1,Ol)
Ol ← SpikeFunction(V l) // Eq.9f

// Calculate loss
E = Loss(OL[1], ...,OL[T ]) // Eq.16-17
// Backward

for t = T to 1 do
(δL[t− 1],κL[t− 1])← BackProp(E, δL[t],κL[t])

// Eq.19-20
for l = L to 1 do

(δl−1[t− 1],κl−1[t− 1])←
BackProp(δl[t],κl[t]) // Eq.18,21

This dataset consists of multivariate sensor data recorded by
Electromagnetic Articulograph (EMA), which is a device to
track the motion of speakers’ tongue and lips. Each sample
contains 9 variates of length 144. An example of this dataset
is shown in figure 4, each line represents a time varying input.
We use both rate coding and temporal population coding to
convert the time series to spikes. The spike patterns are shown
in figure 5. Each dot in figure 5a represents a spike, and
in figure 5b a spike is represented by a vertical line. We
use an input window of 300. Due to the incapability of rate
coding to represent temporal information, the time series have
to be flattened, resulting in 1296 spike trains. For clarity,
only first 100 spike trains are shown in figure. In temporal
coding, for each variate, we use 5 neurons to encode. It is
clearly seen that the temporal population coding is sparser. In
addition, it is encoding the input with 45 spike trains, which is
significantly smaller than the number of spike trains obtained
by rate coding. This is beneficial to reduce the SNN model
size.

We tested our coding method with rate coding on four
multivariate datasets, details including average spike count,
spike rate, input size are shown in table I. Temporal in table
I refers to temporal population coding. The spike rates are
significantly lower than rate-based coding. As can be seen in
last column, the input size of our coding method also has
significant less input size. Particularly for long time series,
such as Atrial Fibrillation dataset. It consists of two variates,



and length is 640, therefore flattening operation resulting
a large input. Buffering such long time series also causes
significant latency in real time applications. While temporal
population coding can convert input on the fly, not only input
size is reduced, buffering is also no longer required.

(a) Rate coding

Sp
ik

e 
tra

in
 in

de
x

Time

(b) Temporal population coding

Fig. 5: Coding comparison

TABLE I: Coding Efficiency

Dataset Coding
Method

Spike
Count

Spike
Rate

Input
Size

Articulary Word
Recognition

Rate 65653.8 16.90 1296
Temporal 518.7 3.84 45

Basic
Motions

Rate 15061.7 8.36 600
Temporal 122.4 1.13 30

Finger
Movements

Rate 1069.0 25.45 1400
Temporal 471.3 1.12 140

Atrial
Fibrillation

Rate 23041.4 10.77 1280
Temporal 164.5 4.76 10

B. Computation Overhead

To evaluate the computation overhead of proposed coding
method and event driven inference algorithm, we build a SNN
to classify Articulary Word Recognition dataset. A vanilla
2 layer stacked LSTM and RNN of unit size 300 are also
built as reference. The network structure, number of network
parameters, and accuracy are shown in table II. Our network
achieved comparable accuracy with 11 % number of parame-
ters of LSTM. In addition, the length of this time series is 144,
LSTM and RNN have to perform computation step by step,
this introduces significant amount of operations. Our model
can benefit from the event driven nature, computations are
only necessary when there are spike events. Given the average

number of input spike is 518.7, the computation overhead is
minimal compared with LSTM/RNN.

TABLE II: Model comparison

Model Network structure Parameter number Accuracy
LSTM 9-300-300-25 1103125 98.31
RNN 9-300-300-25 281425 98.20
SNN 45-300-300-25 125880 98.27

C. Time Series Classification

TABLE III: Accuracy

Dataset ED
[1]

DTW
[1]

TapNet
[26]

WEASEL
[19]

This
work

Articulary Word
Recognition 0.97 0.98 0.987 - 0.98

FaceDetection 0.519 0.513 0.556 - 0.57
BasicMotions 0.675 1 1 - 1

Heartbeat 0.62 0.659 0.751 - 0.72
Spoken Arabic

Digits 0.967 0.96 0.983 0.992 0.986

JapaneseVowels 0.924 0.959 0.965 0.976 0.97
RacketSports 0.868 0.842 0.868 0.934 0.87

Our algorithm is evaluated on 7 multivariate time series
datasets. We build a network of size 500-500-500-X, X
indicates the size of last layer, which varies according to
different dataset class numbers. Adam optimizer is used and
the learning rate is 0.0001. The result is shown in table III.
ED and DTW refer to 1-Nearest Neighbor with Euclidean
Distance and Dynamic Time Warping respectively [1]. TapNet
is a DNN-based approach for time series classification [26].
No accuracy in SNN domain is listed, to our best knowledge,
there is no previous work that comprehensively focusing on
time series classification with SNN.

In all the 7 datasets, our method outperforms the 1-Nearest
Neighbor classifier, which is a standard classifier for time
series classification. In Spoken Arabic Digits dataset and
Racket Sport dataset, our method achieves higher accuracy
than DNN based approach. In Articulary Word Recognition
dataset, Heart Beat dataset, thought TapNet achieves better
accuracy, however the advantage is insignificant: 0.987 v.s.
0.98, 0.751 v.s. 0.72. We still achieve comparable accuracy.

VI. CONCLUSION

In this work, we presented an iterative SNN model and
training algorithm for spatial temporal spike pattern classifi-
cation. A coding method to convert continuous time series
to discrete spikes is also proposed. Our coding method is
able to represent information by sparse spike patterns, such
that the computation overhead can be significantly reduced.
We evaluate our algorithm and coding method on various
multivariate time series dataset, and outperform the standard
1-Nearest Neighbor classifiers and also show competitive
performance with DNN based approaches.



REFERENCES

[1] A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam, and E. Keogh. The uea multivariate time series classification
archive, 2018. arXiv preprint arXiv:1811.00075, 2018.

[2] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M.
Bower, M. Diesmann, A. Morrison, P. H. Goodman, F. C. Harris,
et al. Simulation of networks of spiking neurons: a review of tools
and strategies. Journal of computational neuroscience, 23(3):349–398,
2007.

[3] D. A. Butts, C. Weng, J. Jin, C.-I. Yeh, N. A. Lesica, J.-M. Alonso, and
G. B. Stanley. Temporal precision in the neural code and the timescales
of natural vision. Nature, 449(7158):92, 2007.

[4] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing. In 2015 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2015.

[5] C. Eliasmith and C. H. Anderson. Neural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT press,
2004.

[6] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S.
Modha. Backpropagation for energy-efficient neuromorphic computing.
In Advances in Neural Information Processing Systems, pages 1117–
1125, 2015.

[7] H. Fang, A. Shrestha, Z. Zhao, Y. Li, and Q. Qiu. An event-driven
neuromorphic system with biologically plausible temporal dynamics. In
38th IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 2019, page 8942083. Institute of Electrical and Electronics
Engineers Inc., 2019.

[8] W. Gerstner and W. M. Kistler. Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[9] P. Gu, R. Xiao, G. Pan, and H. Tang. Stca: spatio-temporal credit
assignment with delayed feedback in deep spiking neural networks.
In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pages 1366–1372. AAAI Press, 2019.

[10] R. Gütig. Spiking neurons can discover predictive features by aggregate-
label learning. Science, 351(6277):aab4113, 2016.

[11] R. Gütig and H. Sompolinsky. The tempotron: a neuron that learns spike
timing–based decisions. Nature neuroscience, 9(3):420, 2006.

[12] D. Huh and T. J. Sejnowski. Gradient descent for spiking neural
networks. In Advances in Neural Information Processing Systems, pages
1433–1443, 2018.

[13] J. H. Lee, T. Delbruck, and M. Pfeiffer. Training deep spiking neural
networks using backpropagation. Frontiers in neuroscience, 10:508,
2016.

[14] T. Liu, Z. Liu, F. Lin, Y. Jin, G. Quan, and W. Wen. Mt-spike: A multi-
layer time-based spiking neuromorphic architecture with temporal error
backpropagation. In Proceedings of the 36th International Conference
on Computer-Aided Design, pages 450–457. IEEE Press, 2017.

[15] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al. A
million spiking-neuron integrated circuit with a scalable communication
network and interface. Science, 345(6197):668–673, 2014.

[16] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov. Span: Spike
pattern association neuron for learning spatio-temporal spike patterns.
International journal of neural systems, 22(04):1250012, 2012.

[17] E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate gradient learning in
spiking neural networks. arXiv preprint arXiv:1901.09948, 2019.

[18] S. Rotter and M. Diesmann. Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling. Biological
cybernetics, 81(5-6):381–402, 1999.

[19] P. Schäfer and U. Leser. Multivariate time series classification with
weasel+ muse. arXiv preprint arXiv:1711.11343, 2017.

[20] A. Shrestha, H. Fang, Q. Wu, and Q. Qiu. Approximating back-
propagation for a biologically plausible local learning rule in spiking
neural networks. In Proceedings of the International Conference on
Neuromorphic Systems, page 10. ACM, 2019.

[21] S. B. Shrestha and G. Orchard. Slayer: Spike layer error reassignment
in time. In Advances in Neural Information Processing Systems, pages
1412–1421, 2018.

[22] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi. Spatio-temporal backpropa-
gation for training high-performance spiking neural networks. Frontiers
in neuroscience, 12, 2018.

[23] S. Yarrow and P. Seriès. The influence of population size, noise strength
and behavioral task on best-encoded stimulus for neurons with unimodal
or monotonic tuning curves. Frontiers in computational neuroscience,
9:18, 2015.

[24] Q. Yu, H. Li, and K. C. Tan. Spike timing or rate? neurons learn to make
decisions for both through threshold-driven plasticity. IEEE transactions
on cybernetics, 49(6):2178–2189, 2018.

[25] F. Zenke and S. Ganguli. Superspike: Supervised learning in multilayer
spiking neural networks. Neural computation, 30(6):1514–1541, 2018.

[26] X. Zhang, Y. Gao, J. Lin, and C.-T. Lu. Tapnet: Multivariate time series
classification with attentional prototypical network. 2020.


