
August 16, 2021 0:53 WSPC/Guidelines SVM

International Journal of Computational Geometry & Applications
c© World Scientific Publishing Company

Distributed and Robust Support Vector Machine∗

Yangwei Liu

Department of Computer Science and Engineering,

State University of New York at Buffalo

Buffalo, New York 14260-1660, United States
yangweil@buffalo.edu

Hu Ding

School of Computer Science and Technology,
University of Science and Technology of China

Hefei, Anhui, China

huding@ustc.edu.cn

Ziyun Huang

Department of Computer Science and Software Engineering,

Penn State Erie, the Behrend College
Erie, Pennsylvania 16563, United States

zxh201@psu.edu

Jinhui Xu

Department of Computer Science and Engineering,
State University of New York at Buffalo

Buffalo, New York 14260-1660, United States
jinhui@buffalo.edu

Received (received date)
Revised (revised date)

Communicated by (Name)

ABSTRACT

In this paper, we consider the distributed version of Support Vector Machine (SVM)
under the coordinator model, where all input data (i.e., points in Rd space) of SVM
are arbitrarily distributed among k nodes in some network with a coordinator which
can communicate with all nodes. We investigate two variants of this problem, with and

without outliers. For distributed SVM without outliers, we prove a lower bound on

the communication complexity and give a distributed (1 − ε)-approximation algorithm
to reach this lower bound, where ε is a user specified small constant. For distributed

SVM with outliers, we present a (1 − ε)-approximation algorithm to explicitly remove

∗This research was supported in part by NSF through grants CCF-1422324, IIS-1422591, CCF-
1716400 and IIS-1910492. A preliminary version of this paper has appeared in the Proceedings of

the 27th International Symposium on Algorithms and Computation (ISAAC 2016).

1

August 16, 2021 0:53 WSPC/Guidelines SVM

2 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

the influence of outliers. Our algorithm is based on a deterministic distributed top t
selection algorithm with communication complexity of O(k log (t)) in the coordinator

model.

Keywords: Distributed Algorithm; Communication Complexity; Robust Algorithm;
SVM.

1. Introduction

Training a Support Vector Machine (SVM)1 in a distributed setting is a commonly

encountered problem in the big data era. This could be due to the fact that the

data set is too large to be stored in a centralized site (e.g., bioinformatics data2), or

simply because the data set is collected in a distributed environment (e.g., wireless

sensor network data3). In many scenarios, large volume data transmission between

different sites could be rather expensive and time consuming. In some applications,

this may not even be allowed due to privacy concerns. Thus efficient distributed

SVM algorithms are needed to minimize the communication cost and meanwhile

preserve the quality of solution.

In recent years, a significant amount of effort has been devoted to this problem

(4–12), and a number of distributed SVM algorithms with different strength have

been developed. However most of them are still suffering from various limitations,

such as high communication complexity, sub-optimal quality of solution, and slow

convergence rate. For instance, one type of extensively studied algorithms in recent

years are the family of incremental construction algorithms.4,5 Such algorithms

often have good performance in practice and some other nice features related to

robustness and decentralization; but they generally do not have theoretical guar-

antee on the communication complexity, and some of them even have no quality

guarantee on their solutions. Another type of popular algorithms are those which

parallelize existing centralized algorithms (6–8). These algorithms typically focus

on enhancing the ability of dealing with extremely large size data sets, but in gen-

eral have no quality guarantee on communication complexity. There are also another

family of algorithms called distributed stochastic gradient descent algorithms;13 the

main issue of such algorithms is that their running time (or number of iteration)

is mostly sub-optimal, and they do not have a guarantee on communication cost.

Very recently, there is an interesting result14 which presents a similar lower bound

on communication cost. However their lower bound applies only to those coreset-

based algorithms, not the general algorithms, whereas the lower bound result in

this paper is applicable to any distributed SVM algorithm.

From a geometric point of view, training an SVM can be interpreted as finding

a hyperplane that separates two classes of points while maximizing the separating

margin. It is also well known to be equivalent to computing the polytope distance of

the two point sets. Recent research15 shows that we can find an (1−ε)-approximation

of the polytope distance using Gilbert algorithm with a running time linearly de-

pending on the input size. Roughly speaking, Gilbert algorithm is a gradient descent

procedure that in each step greedily computes an optimal direction along which the

August 16, 2021 0:53 WSPC/Guidelines SVM

Distributed and Robust Support Vector Machine 3

primal solution should improve.

In this paper we present a distributed SVM algorithm that is theoretically guar-

anteed to have the lowest possible communication cost together with a guaranteed

near-optimal solution, based on the classical Gilbert algorithm.16 Comparing to

previous distributed SVM algorithms, our algorithm has several advantages. (1)

Our algorithm has a communication complexity which is theoretically guaranteed

to reach the lower bound; (2) it does not make any assumption on the input data

and its distribution; (3) its running time is only linearly dependent on the input

size; and (4) it produces a (1 − ε)-approximation for the problem which is sparse

(i.e., the number of support vectors is small).

Since SVM is well known to be sensitive to outliers, we also consider the case

of distributed SVM with outliers. We show that it is possible to explicitly avoid

the influence of outliers in distributed settings by using a combinatorial tool called

Random Gradient Descent (RGD) tree17 to achieve a (1− ε)-approximation on the

quality of solution and meanwhile significantly reduce the communication cost. An

underlying technique used for reducing the communication cost is an algorithm for

the distributed selection problem (i.e., finding the t-th smallest number from a set

of numbers distributed in k sites). This problem has been extensively studied in

the past (18–20). The best result (in terms of communication cost) is a randomized

algorithm20 which has a communication complexity of O(k log (t)). The best deter-

ministic algorithm has a communication complexity of O(k log2 (t)). In this paper

we give a deterministic algorithm with communication complexity O(k log (t)) in

the coordinator model.

In subsequent sections, we will first give a lower bound on the communication

complexity of the distributed SVM, and present the algorithm that reaches this

bound. Then, we will introduce the robust version (i.e., with outliers) of the al-

gorithm and analyze its performance. We will concentrate on one-class SVM first

since it captures the main difficulty of the problem, and then extend the results to

two-class SVM. Finally, we will present experimental results of our algorithms on

some benchmark datasets.

2. Preliminaries

2.1. Equivalence between SVM and Polytope Distance

In this section, we give several definitions which will be used throughout the paper.

Definition 1. (One-class SVM): Given a point set P ⊆ Rd, find a hyperplane H

separating the origin o and P such that the separating margin (i.e., the distance

between o and H) is maximized.

It is well known that this problem is equivalent to the following problem of

computing the polytope distance:

Definition 2. (Polytope distance): Given a point set P ⊆ Rd, compute the shortest

August 16, 2021 0:53 WSPC/Guidelines SVM

4 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

distance between the origin o and a point p in the polytope conv(P) (i.e., the convex

hull of P).

Lemma 1. 15 Given a point x which realizes the polytope distance of P ⊆ Rd, the

hyperplane H passing x and orthogonal to ox is the maximum separating hyperplane

of P . In other words, the polytope distance problem is equivalent to the one-class

SVM problem.

conv(P)

H

o
ρ

Fig. 1: One-class SVM is equivalent

to the polytope distance problem. ρ is

the polytope distance, H is the sepa-

rating hyperplane, with distance to o

exactly ρ.

xi

xi+1

pi

o

Fig. 2: One step of the Gilbert Algo-

rithm, updating xi to xi+1.

Figure 1 provides an intuitive explanation of the equivalence between one-class

SVM and polytope distance. Notice that the polytope distance problem can be

formulated as a standard convex quadratic optimization problem, thus can be solved

optimally using standard techniques in O(n3) time. However this approach is mostly

impractical because of the high time complexity. Actually in many applications, a

near-optimal approximate solution is sufficient. Thus it is desirable to design efficient

approximation algorithms. A (1− ε)-approximation of the polytope distance can be

defined as follows.

Definition 3. ((1− ε)-approximation of polytope distance): x ∈ conv(P) achieves

a (1− ε)-approximation of the polytope distance problem, if

‖x‖ − p|x ≤ ε‖x‖,∀p ∈ P

where p|x := 〈p,x〉
‖x‖ is the signed length of the projection of p onto vector ox.

In the rest of this paper, we also call the point x, rather its distance to o, as the

approximation. This is only for ease of discussion, and does not affect the solution at

all (since we can get the actual distance by simply computing the distance between

x and o).

August 16, 2021 0:53 WSPC/Guidelines SVM

Distributed and Robust Support Vector Machine 5

2.2. Gilbert Algorithm

Gilbert algorithm can be used to find a (1− ε)-approximation of the polytope dis-

tance problem. Roughly speaking, Gilbert algorithm starts with an initial solution

x1 being the closest point of P to the origin. In step i, the algorithm finds the point

pi ∈ P that has the smallest projection distance to vector oxi, and picks the point

on the line segment [pi, xi] that is closest to the origin as xi+1. Figure 2 illustrates

one step of Gilbert algorithm.

Algorithm 1 Gilbert Algorithm

1: INPUT : A d dimensional point set P , the origin o.

2: OUTPUT : A (1− ε)-approximation of the polytope distance of P to o.

3: Initialize i to be 1. Find the point p1 that is closest to o, let x1 = p1
4: In step i, let pi+1 be the point that has the smallest p|xi , let xi+1 be the point

that is closest to o on line segment [xi, pi+1].

5: Return xi+1 when it is a (1 − ε)-approximation. Otherwise goto Line 4 with

i = i+ 1.

Despite its simplicity, it has been shown15 that Gilbert algorithm can actually

find such a (1 − ε)-approximation in O(1
ε) steps. Formally, we have the following

theorem.

Theorem 2. 15 Gilbert algorithm succeeds after at most O(1
ε) steps.

Since each step of the algorithm involves only computing the projection of all

points in P to a specific direction, which can be done in linear time, Gilbert algo-

rithm has a total running time linearly depending on n = |P | which is the number

of input points.

Besides the fast running time, Gilbert Algorithm (and its variants) has also

many other properties that make it a good SVM solver.

(1) The algorithm works for arbitrary kernels. Since the algorithm only requires the

computation of projection distance, which can be obtained by scalar product,

we only need one kernel evaluation at each time when a projection distance

is computed. This also implies that our proposed algorithms can be trivially

kernelized.

(2) The result is sparse, or in other words, the number of support vectors is small.

In the kernelized version, the solution xi is a linear combination of input points,

and we can easily observe that xi involves at most one more point in each step,

so the total number of support vectors is O(1
ε).

3. Communication Complexity of Distributed SVM

In a distributed setting, the point set P is arbitrarily distributed among k nodes.

Based on different modes of communication, there are different models to be con-

August 16, 2021 0:53 WSPC/Guidelines SVM

6 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

sidered. In this paper we mainly study the widely used coordinator model which

contains an extra coordinator node, and all other nodes are only allowed to com-

municate with the coordinator. The algorithm itself can be easily modified for a

more general communication model, e.g., network of general topology. Such gener-

alization will at most induce an additional O(D) (where D is the diameter of the

network)21 increase on the communication complexity.

We are interested in determining the minimum amount of communication that is

needed to find a (1− ε)-approximation of the polytope distance problem. We define

the communication cost as the number of points needed to be transfered between

nodes, where transferring one d-dimensional point (together with an optional O(d)

constants) takes O(1) communication. This way of defining the communication cost

simplifies the proof of Theorem 3. Below is our lower bound result.

Theorem 3. A (1− ε)-approximation of the distributed polytope distance problem

requires Ω(kd) communication for any ε <
√
17−4
16d .

We prove Theorem 3 by giving a reduction from the following k-OR problem.

Definition 4. (k-OR): Given k players with each holding an n-bit binary vector,

find the bitwise OR of all k vectors.

An example of the k-OR problem can be like the following: Player 1 holds vector

(1, 0, 0, 1, 0), Player 2 holds (0, 0, 0, 1, 1), and Player 3 holds (1, 1, 0, 0, 1). Then the

output should be the vector (1, 1, 0, 1, 1), where each bit is just the OR of the same

bit of all players’ vectors. For the communication complexity of this problem we

have the following result.

Lemma 4. 22 k-OR problem requires Ω(nk) communication in the coordinator

model.

Proof. (Proof of Theorem 3). We prove Theorem 3 by reducing the k-OR problem

to the problem of finding an ε-approximation of distributed polytope distance.

Given an instance of the k-OR problem with k players each holding an n-bit

binary vector, construct an instance of distributed polytope distance in d = n

dimensional space with k nodes as follows:

For player i, for j = 1, · · · , d, if the j’th bit of his vector is 0, add point

ej to node i’s point set; otherwise add point λej to its point set, where ej =

(0, · · · , 0︸ ︷︷ ︸
j-1

, 1, 0, · · · , 0︸ ︷︷ ︸
d-j

) is the d-dimensional point whose only non-zero entry is the

j’th coordinate with value 1, and λ is a constant smaller than 1 to be determined

later.

In this construction, each node holds exactly d points, and there are kd points

in total. Since for the j’th point there are only two possible positions to place it,

i.e., ej or λej , there will be points from different nodes sharing the same position.

This does not affect the proof, since we can add a small enough perturbation to

points sharing the same location.

August 16, 2021 0:53 WSPC/Guidelines SVM

Distributed and Robust Support Vector Machine 7

Definition 5. (Configuration): A configuration C of an instance of the polytope

distance problem constructed as above is a size d point set, where the i’th point is

λei if there is at least one λei in the point sets of all nodes; otherwise the i’th point

is set to be ei. The order of a configuration C is the number of λe it contains.

It is easy to see that a configuration encodes the solution of the corresponding

k-OR problem. So if we can find out the configuration based on an ε-approximation

solution of the distributed polytope distance problem, we can solve the k-OR prob-

lem, thus proving Theorem 3. The following lemma ensures that we can indeed

achieve that.

Lemma 5. If ε <
√
17−4
16d , it is possible to determine the configuration purely based

on an ε-approximation of the distributed polytope distance problem with λ satisfying
1
2 −

√
1
4 −

εd
1−ε < λ < min{

√
1− d(1− (1− ε)2), (1

2 +
√

1
4 −

εd
1−ε)}.

Notice that ε <
√
17−4
16d guarantees that 1

4 −
εd
1−ε > 0, 1− d(1− (1− ε)2) > 0, as

well as 1
2 −

√
1
4 −

εd
1−ε <

√
1− d(1− (1− ε)2). Thus such a λ always exists. Denote

the polytope distance of a configuration C as ρ(C), the order of C as order(C).

We call the set of configurations with the same order d′ as an order-d′ layer of

configurations. We prove Lemma 5 in two steps:

• (Claim 1): order(Ci) = order(Cj) =⇒ ρ(Ci) = ρ(Cj); order(Ci) >

order(Cj) =⇒ ρ(Ci) < (1− ε)ρ(Cj).

• (Claim 2): a solution x can’t be an ε-approximation for more than one config-

uration in the same layer.

proof of Claim 1 : Consider a configuration C = {p1, p2, · · · , pd} with order d′.

This means that there are d − d′ points with their only non-zero coordinate as

1, and d′ points with their non-zero coordinate as λ. Suppose that the point x =

α1p1+α2p2+· · ·+αdpd on conv(C) is the closest point to the origin. We observe that

for i ∈ [1, d], we have 0 < αi < 1. This can be proved by contradiction as follows.

First of all, since x is on conv(C), we naturally have 0 ≤ αi ≤ 1 and
∑
i αi = 1.

Suppose that there exists an αl = 0. This means that the l’th coordinate of x is

0, and thus x is on the simplex spanned by C − {pl}. Notice that in this case,

we have opl perpendicular to the simplex spanned by C − {pl}. Thus, ∠oxpl < π
2

and ∠oplx < π
2 , which means that the projection of o onto xpl is within the line

segment xpl, resulting in a point closer to o than x, contradicting the fact that x is

the closest point to o. Then α < 1 follows immediately.

The above observation guarantees that the closest point to o is always within

conv(C), instead of on the boundary. Now let us compute ρ(C).

We partition the points of C into two subsets based on their non-zero coordi-

nates. C1 contains points whose non-zero coordinates are 1, and Cλ contains the

rest. By the symmetry of the dimensions, we can safely assume that C1 contains the

first d−d′ points, and Cλ contains the latter d′ points without loss of generality. Now

August 16, 2021 0:53 WSPC/Guidelines SVM

8 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

let a = 1
(d−d′)λ+d′ 1

λ

, and consider the point x = (λa · 1, · · · , λa · 1︸ ︷︷ ︸
d−d′

,
a

λ
· λ, · · · , a

λ
· λ︸ ︷︷ ︸

d′

).

It is clear that (1) x is within the boundary of conv(C), since (d− d′)λa+ d′ aλ = 1;

and (2) the projection distance of any point in C onto ox is λa
‖x‖ . Thus ox is per-

pendicular to the subspace spanned by C. Combining the above two facts, we know

that x is the closest point to o on conv(C), and ρ(C) = ‖ox‖ =
√

1

(d−d′)+ d′
λ2

. Since

ρ(C) depends only on the order of the configuration, we have proved the first half

of Claim 1.

Since each layer of configuration has the same polytope distance, we let ρd′

denote the polytope distance for order-d′ layer. Now for the second half of Claim 1,

let us consider two consecutive layers with order d′ and d′ + 1. Then we have

ρd′+1

ρd′
=

√
d+ (1

λ2 − 1)d′

d+ (1
λ2 − 1)(d′ + 1)

≤
√
d− (1− λ2)

d
(1)

<

√
d− (1−

√
1− d(1− (1− ε)2)

2
)

d

= 1− ε (2)

in which inequality (1) holds because of 1
λ2 −1 > 0. Using (2), we immediately have

ρd′+t
ρd′

< (1− ε)t < 1− ε. Thus the second part of Claim 1 is proved.

proof of Claim 2 : In order to prove Claim 2, we first make another observation

of the ε-approximation x of configuration C = {p1, · · · , pd} of order d′. Since x is

an ε-approximation, by definition it has to be on conv(C). So x takes the form of

x =
∑
αipi, and

∑
αi = 1. Also by definition, we have pi|x > (1− ε)‖x‖. Together

with the definition of pi|x, we have

αi ≥
{

(1− ε)‖x‖2 , if pi = ei
1−ε
λ2 ‖x‖2 , otherwise.

Then we have for pi = ei,

αi = 1−
∑
j 6=i

αj

≤ 1− (
∑

j 6=i,pj=ej

(1− ε)‖x‖2 +
∑

j 6=i,pj=λej

(1− ε)
λ2

‖x‖2)

= 1− ((d− d′ − 1)(1− ε)‖x‖2 + d′
1− ε
λ2
‖x‖2)

= (
1

‖x‖2
− ((d− d′ − 1)(1− ε) + d′

1− ε
λ2

))‖x‖2. (3)

Now, suppose that x is an ε-approximation for two configurations C1 and C2 in

the same layer. Since all configurations in the same layer have the same order, this

August 16, 2021 0:53 WSPC/Guidelines SVM

Distributed and Robust Support Vector Machine 9

indicates that they have the same number of points whose non-zero coordinate is

1 and the same number of points whose non-zero coordinate is λ. This means that

C1 and C2 differs by at least two points, with different non-zero coordinate. Denote

the index of such pair of points as i and j. W.O.L.G., assume that in C1 the i’th

point p
(1)
i = ei, and the j’th point p

(1)
j = λej . Then in C2, the i’th point p

(2)
i = λei,

and the j’th point p
(2)
j = ej . Since x is an ε-approximation of C1, it has to take the

form of x =
∑
αip

(1)
i ,, and p

(1)
i = ei, following (3) we have

αi ≤ (
1

‖x‖2
− ((d− d′ − 1)(1− ε) + d′

1− ε
λ2

))‖x‖2.

Since x is also an ε-approximation of C2, it has to satisfy

λαi
‖x‖

= p
(2)
i |x ≥ (1− ε)‖x‖.

Together we have

1− ε
λ
‖x‖2 ≤ αi ≤ (

1

‖x‖2
− ((d− d′ − 1)(1− ε) + d′

1− ε
λ2

))‖x‖2,

which means that

1− ε
λ
≤ 1

‖x‖2
− ((d− d′ − 1)(1− ε) + d′

1− ε
λ2

).

However, since 1
2 −

√
1
4 −

εd
1−ε < λ < 1

2 +
√

1
4 −

εd
1−ε , and ‖x‖2 ≥ ρ2d′ = 1

(d−d′)+ d′
λ2

,

we always have

1

‖x‖2
− ((d− d′ − 1)(1− ε) + d′

1− ε
λ2

) ≤ (d− d′) +
d′

λ2
− ((d− d′ − 1)(1− ε) + d′

1− ε
λ2

)

= d− (d− 1)(1− ε) + ε(
1

λ2
− 1)d′

≤ d− (d− 1)(1− ε) + ε(
1

λ2
− 1)d

= 1− ε+
εd

λ2

<
1− ε
λ

,

which is a contradiction. Therefore x cannot be an ε-approximation for two config-

urations of the same layer.

Now we are ready to prove Lemma 5. At the coordinator, pre-compute all

possible ρd′ , with d′ = (0, 1, · · · , d). Compare the polytope distance of the ε-

approximation x to every segment [ρ, 1
1−ερ]. If ‖ox‖ falls within the segment cor-

responding to ρd′ , then Claim 1 guarantees that the configuration that we want is

in the layer with order d′; Then for all configurations C in that layer, check if x is

an ε-approximation for C by testing whether for all p ∈ C, p|x ≥ (1− ε)‖x‖. Since

x is an ε-approximation, so there is at least one configuration C that will pass the

August 16, 2021 0:53 WSPC/Guidelines SVM

10 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

test; and Claim 2 guarantees that there is only one such C. Return C as the desired

configuration. This completes the proof for Lemma 5

Lemma 5 means that if we solve the approximate version of the distributed poly-

tope distance problem, we can solve the k-OR problem. Hence the communication

complexity of the approximate distributed SVM is Ω(kd), proving Theorem 3.

Now we are ready to give the distributed version of Gilbert Algorithm (i.e.,

Algorithm 2) in the coordinator model.

Algorithm 2 Distributed Gilbert Algorithm

1: INPUT : A d dimensional point set P arbitrarily distributed among k nodes.

2: OUTPUT(by the coordinator) : A (1− ε)-approximation of the polytope dis-

tance of P to o.

3: Initialize i = 1; All nodes send to the coordinator its closest point to o; The

coordinator picks the global closest point to o as p1;

4: In step i, the coordinator sends xi to all nodes; upon receiving xi, each node

picks one of its points that has the smallest p|xi and send back to the coordi-

nator; the coordinator picks the point that has the smallest p|xi based on the

points it received; Denote this point as pi+1 and find xi+1 as in non-distributed

version.

5: Return xi+1 when it is a (1 − ε)-approximation. Otherwise go to Line 4 with

i = i+ 1.

In each step of Algorithm 2, the coordinator sends the current solution xi to all k

nodes. Upon receiving xi, each node computes the smallest projection distance onto

vector oxi based on its own share of points, and return it to the coordinator. The

coordinator picks the point that has the smallest projection distance onto vector xi
among all returned points, and uses it as pi+1. Each step of the algorithm involves

one round of communication between the coordinator and all k nodes. Thus the

communication of each step is O(k). By Theorem 2, we have the following theorem.

Theorem 6. The communication complexity of Algorithm 2 is O(kε) in the coordi-

nator model.

In the construction of the proof of Theorem 3 we can take ε = Θ(1
d), resulting

in a communication cost of Θ(kd) for Algorithm 2. Suppose that there exists an

algorithm with asymptotically smaller communication cost than Algorithm 2, it

will also solve k-OR problem using o(kd) communication, contradicting Lemma 4.

So there doesn’t exist an algorithm that computes a (1 − ε) approximation with

asymptotically smaller communication than Algorithm 2.

August 16, 2021 0:53 WSPC/Guidelines SVM

Distributed and Robust Support Vector Machine 11

4. Robust Distributed SVM

In this section we present an algorithm for explicitly avoiding the influence of outliers

in the distributed SVM problem. We first consider the following problem.

Definition 6. (Distributed One-class SVM with Outliers) : Given P as a point set

of size n in d dimensional space that is arbitrarily distributed among k nodes, and

γ as the fraction of outliers in P , find the subset P
′ ⊆ P of size (1 − γ)n so that

the margin separating the origin and P
′

is maximized.

Notice that in this problem setting, there are two factors that need to be con-

sidered when evaluating the quality of the approximation result: the width of the

margin, and the number of outliers accurately pruned out. Thus we need a new

definition of approximation.

Definition 7. For two constants ε, δ > 0, a margin M is an (ε, δ)-approximation,

if the width of M is larger than or equal to (1 − ε)ρ, and the number of outliers

identified by M is no more than (1 + δ)γ|P |.

In this problem, we aim to prune out exactly γn points (as outliers) so that the

rest of the points can be separated from the origin by the largest possible margin. In

this scenario, Gilbert algorithm may perform arbitrarily bad. This is because in each

step, Gilbert algorithm finds the point that has the minimum projection distance

and there is a possibility that this point happens to be an outlier. As a gradient

descent procedure, Gilbert algorithm does not have the ability to recover from the

negative impact of picking an outlier. To avoid this problem, a key observation is

that Gilbert algorithm does not need to always identify the point with the minimum

projection distance; it is actually sufficient to find one point (to maintain a fast

convergence rate) as long as its projection distance is one of the w smallest for some

w to be determined later. Based on this observation, Ding and Xu17 has developed

a new framework, called Random Gradient Descent (RGD) tree, to explicitly deal

with outliers using Gilbert algorithm.

4.1. RGD Tree: Explicitly Avoiding the Influence of Outliers in

SVM

Roughly speaking, RGD tree is a modified version of Gilbert algorithm. In each

step, it randomly samples w points from the t > 1 points which have the smallest

projection distances, and considers each of the w points as if it is the point with

smallest projection distance. This results in a computation tree with a branching

factor of w. The value w is chosen to have the property that there is a high prob-

ability that the w chosen points contain at least one point that is not an outlier.

Together with the fast convergence rate of Gilbert algorithm, we can have a node

in the RGD tree whose path to the root contains only points that are not outliers

with high probability. Then this path is the desired computation path of Gilbert

algorithm in an outlier-free environment.

August 16, 2021 0:53 WSPC/Guidelines SVM

12 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

The following theorem from17 guarantees the performance of the RGD tree:

Theorem 7. With high probability (larger than 1 − µ), there exists at least one

node in the resulting RGD tree which yields an (ε, δ)-approximation, with running

time linear in n and d.

4.2. Extending RGD Tree to Distributed Settings

Given the fact that RGD tree is a variant of Gilbert algorithm, it can be naturally

extended to distributed settings. One simple solution is to let the coordinator send

the current solution (xi) to each distributed node for them to compute and return its

own t points with the smallest projection distance to oxi. However such a naive ap-

proach will incur large communication cost, because now each step will need O(kt)

communication, instead of O(k) communication as in the no-outlier case. Actually

the problem of finding the t-th smallest number in a distributed setting has been

extensively studied (18–20).20 gives a randomized algorithm that has communica-

tion complexity of O(k log (t)), and a deterministic algorithm with communication

complexity O(k log2 (t)). In this paper we give a deterministic algorithm with com-

munication complexity O(k log (t)) in the coordinator model. Formally, consider the

following problem.

Definition 8. (Distributed t-selection): Given n distinct numbers distributed

among k nodes, find the t-th smallest number.

In this problem, we only consider distinct numbers, since we can use any tie-

breaker to distinguish duplicated numbers. Then we have the following result.

Lemma 8. Distributed t-selection can be solved deterministically with O(k log (t))

transfers of numbers in the coordinator model.

To prove Lemma 8, we give an algorithm (Algorithm 3) with the claimed com-

munication complexity.

Before analyzing the communication complexity of Algorithm 3, we first show

its Correctness. The algorithm acts like the classical linear-time selection algorithm.

The coordinator computes two “weighted” medians of medians (ml̂h
and ml̂h+1

) for

all distributed nodes, and tell them to discard certain portion of its numbers based

on the location of the t-th smallest number. In Line 11, case 1 means that the

t-th smallest number is smaller than the first “weighted” median ml̂h
, so it is safe

to discard all numbers no smaller than ml̂h
; case 2 means that the t-th smallest

number is between ml̂h
and ml̂h+1

, so it is safe to discard all numbers no larger

than ml̂h
and all numbers no smaller than ml̂h+1

; Similarly, we can show for Case

3. We also update the value of t if numbers smaller than the t-th smallest number

are discarded. The algorithm either finds the t-th smallest number during the loop

of Lines 6 to 12, or finds it by the coordinator in a non-distributed fashion (when

there are fewer numbers left). Thus we have the correctness of Algorithm 3.

August 16, 2021 0:53 WSPC/Guidelines SVM

Distributed and Robust Support Vector Machine 13

Algorithm 3 Deterministic distributed t-selection algorithm

1: INPUT : n distinct numbers arbitrarily distributed among k nodes, a natural

number t.

2: OUTPUT(by the coordinator) : the t-th smallest number of the n numbers.

3: (Pre-process:) For each node, if it holds more than t numbers, do a local sorting

and keep the smallest t numbers and discard the rest.

4: (Pre-process:) The coordinator sends a distinct number l ∈ [1, k] to each node

as their label.

5: REPEAT Step 6-12 UNTIL
∑
nl = O(k):

6: For each node, send to the coordinator a message containing a triple (ml, nl, l),

where ml is the median of the numbers stored in the node, nl is the # of

numbers in the node, and l is its label.

7: Upon receiving messages from all nodes, the coordinator first sorts the messages

in ascending order of their ml. Suppose in the new order we have ml̂1
< ml̂2

<

· · · < ml̂k
.

8: Let ml̂0
= −∞. The coordinator computes a value h such that

∑
l:ml≤ml̂h

nl <

1
2

∑
l nl and

∑
l:ml≤ml̂h+1

nl ≥ 1
2

∑
l nl

9: The coordinator sends a pair (ml̂h
,ml̂h+1

) to all nodes.

10: Upon receiving (ml̂h
,ml̂h+1

) from the coordinator, each node sends to the co-

ordinator a triple (al, bl, l), where al is the # of its numbers smaller than ml̂h
,

bl is the # of its numbers smaller than ml̂h+1
, l is its label.

11: After receiving all (a, b, l) messages from all nodes, the coordinator checks which

of the following cases will happen (notice that since ml̂h
< ml̂h+1

we always have∑
a <

∑
b):

(1) t− 1 <
∑
a;

(2)
∑
a < t− 1 <

∑
b;

(3) t− 1 >
∑
b;

(4) t− 1 =
∑
a;

(5) t− 1 =
∑
b.

For case 4, output ml̂h
and halt; for case 5, output ml̂h+1

and halt; otherwise,

send i to all nodes for cases i. For case 2, update t to be t −
∑
a; for case 3,

update t to be t−
∑
b.

12: For each node, if it receives a “1” from the coordinator, discard all numbers

larger than ml̂h
; if it receives a “2”, discard all numbers smaller than ml̂h

and

numbers larger than ml̂h+1
; otherwise discard all numbers smaller than ml̂h+1

13: (Step 6-12 will be repeated until
∑
nl = O(k).)

14: All nodes send their numbers to the coordinator.

15: Now the numbers are no longer distributed, and the coordinator simply outputs

the t-th smallest number.

August 16, 2021 0:53 WSPC/Guidelines SVM

14 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

For communication complexity, we have the following lemma.

Lemma 9. Each iteration of Lines 6 to 12 will discard at least a fraction of 1
4 of

the current numbers holden by all nodes.

Proof. We need to consider the first three cases in Line 11 to see how many

numbers are discarded in each round.

• If case 1 holds, it means that we discard all numbers larger than ml̂h
. Since∑

l:ml≤ml̂h
nl <

1
2

∑
l nl, we have

∑
l:ml>ml̂h

nl ≥ 1
2

∑
l nl. Consider a node

that has a median ml larger than ml̂h
. Since we are discarding all numbers

larger than ml̂h
, at least half of its numbers will be discarded. Together with

the fact that
∑
l:ml>ml̂h

nl ≥ 1
2

∑
l nl, we know that at least a 1

4 fraction of the

current numbers is discarded.

• If case 2 holds, it means that we discard all numbers no larger than ml̂h
and

all numbers no smaller than ml̂h+1
. Consider a node whose median is smaller

or equal to ml̂h
, the smaller half (including the median) of its numbers will be

discarded; similarly, for a node whose median is larger than or equal to ml̂h+1
,

the larger half (including the median) will be discarded. It is easy to see that

these two cases cover all nodes. Hence, at least half of the current numbers will

be discarded.

• Case 3 is very similar to case 1, where we have
∑
l:ml≤ml̂h+1

nl ≥ 1
2

∑
l nl by

definition, and we are discarding numbers smaller than ml̂h+1
.

Note that we aggregate all numbers if there are only O(k) left. Combining this

with Lemma 9, we know that Algorithm 3 terminates after at most log (tkk) = log (t)

rounds. It is also easy to see that each round of Lines 6 to 12 involves only O(k)

communication. Thus the communication complexity of Algorithm 3 is O(k log (t)).

Since Algorithm 3 is deterministic, this also proves Lemma 8.

Now we are ready to present the distributed version of the RGD tree algorithm

(i.e., Algorithm 4), and the analysis of its communication complexity.

The RGD tree has O(wh) nodes (which is constant w.r.t. n and d). To generate

one node, we need O(k log (t)) communication. Notice that each time we draw the

sample Sv, there are O(w) extra communication. Thus on average each node in the

sample (i.e., its associated point belongs to the sample) is only charged O(1) extra

communication, which does not change asymptotically the O(k log (t)) communica-

tion incurred by applying Algorithm 3. This leads to the following theorem.

Theorem 10. The communication complexity of Algorithm 4 is O(whk log (t)).

5. Two-class SVM

Definition 9. (Two-Class SVM.) Given two point sets P,Q ⊆ Rd, find two parallel

hyperplanes H1, H2 that separates P from Q, where the distance between H1 and

August 16, 2021 0:53 WSPC/Guidelines SVM

Distributed and Robust Support Vector Machine 15

Algorithm 4 Distributed RGD tree

1: INPUT : A d dimensional point set P arbitrarily distributed among k nodes,

with a fraction γ of it being outliers; three parameters 0 < µ, δ < 1, h =

2(1
ε (Dρ + 1))2 ln (Dρ + 1).

2: OUTPUT(by the coordinator) : An RGD tree with each node associated with

a candidate for an approximation solution to the One-class SVM with outliers

problem.

3: The coordinator randomly select a point from P as x. Initialize the tree at root

x.

4: Recursively grow the tree in the following manner:

5: For a node v associated with point xv, if its height is h, it becomes a leaf;

Otherwise, do the following:

(1) Let t = (1 + δ)γ|P |. The coordinator finds the point pt whose projection

distances to oxv are the t’th smallest using Algorithm 3;

(2) Take a random sample Sv of size w = (1 + 1
δ) ln µ

h in the following manner:

the coordinator randomly take a label of the nodes, and ask the node with

this label for a random point of its holdings whose projection distance is

smaller than the projection distance of pt. Repeat until the coordinator

has a sample Sv of size w. For each point s ∈ Sv, create a child of v in the

RGD tree and associate it with point xsv which is the point on line segment

[sxv] closest to o.

H2 are maximized.

For two-class SVM, we will again work on an equivalent problem, the polytope

distance problem of two polytopes.

Definition 10. (Polytope Distance of Two Polytopes.) Given two point sets

P,Q ⊆ Rd, compute the shortest distance pq where p ∈ conv(P), q ∈ conv(Q).

Unsurprisingly, the polytope distance of two polytope is actually equivalent to

that of one polytope and the origin.

Definition 11. 15 The Minkowski difference

MD(P,Q) = {(p− q)|p ∈ conv(P), q ∈ conv(Q)} (4)

of two polytopes conv(P) and conv(Q) is the set (which is also a polytope) consisting

of all difference vectors of conv(P) and conv(Q).

Theorem 11. 15 Computing the polytope distance of P and Q is equivalent to

computing the polytope distance of MD(P,Q) and the origin o.

Intuitively speaking, the Minkowski difference of two polytopes can be consid-

ered as taking all difference vectors of the two polytopes, and glue them together

August 16, 2021 0:53 WSPC/Guidelines SVM

16 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

by their starting points. The convex hull of the ending points of all these difference

vectors form a new polytope, which is MD(P,Q).

As we can observe from Figure 3, the polytope distance ρ of polytopes P and Q

are decided by p1, q1 and q2, where in MD(P,Q), the polytope distance is also ρ,

decided by vectors p1q1 and p1q2. Theorem 11 enables us to use a slightly modified

version of Algorithm 2 and 4 for the two-class case of our distributed SVM problem.

Below we give the main idea of algorithms for two-class SVM.

H1

H2

P

Q

ρ o
ρ

(a) (b)

H
MD(P,Q)

p1

q1

q2

Fig. 3: Minkowski difference of P (green) and Q (yellow), which is itself a polytope.

(a). Arrowed lines denote the difference vectors; (b). All difference vectors with their

left endpoint glued to the origin o forms a new polytope, with the same polytope

distance ρ (points of MD(P,Q) which are not on the convex hull are not shown).

5.1. Distributed Algorithm for Two-class SVM

Gilbert algorithm for two polytopes is very much like that for one polytope. We

need to find the difference vector x
(1)
i − x

(2)
i that has the minimum length, where

x
(1)
i ∈ conv(P1) and x

(2)
i ∈ conv(P2). The main difference from the one polytope

version is that we need to move both ends of the difference vector.

Intuitively speaking, instead of moving both ends in a single step, we only do a

Gilbert step in the polytope that makes more contribution to decreasing the primal-

dual gap. This suits the spirit of a “gradient descent” algorithm, and analysis(15)

shows that the new algorithm also terminates in O(1
ε) steps, which is asymptotically

the same as the Gilbert algorithm for one polytope.

Now consider the distributed version of the polytope distance of two polytopes,

where P1 and P2 are arbitrarily distributed among k nodes. Like the one-class

version, the coordinator sends the current solution x
(1)
i − x

(2)
i to each node; upon

receiving the current solution, each node returns its local optimum to the coordina-

tor. Each round of communication involves O(k) communication, so the distributed

algorithm for two polytopes still has a communication complexity of O(kε). Notice

that since the polytope distance problem for one polytope is a special case of the

August 16, 2021 0:53 WSPC/Guidelines SVM

Distributed and Robust Support Vector Machine 17

two-polytope version, we know that the lower bound of communication complexity

is at least Ω(kd). Thus the communication complexity of the distributed Gilbert

algorithm for two-class SVM also reaches the lower bound.

5.2. Distributed Algorithm for Two-class SVM with Outliers

The extension of distributed RGD tree algorithm follows the same pattern as for

the distributed Gilbert algorithm. The main difference to the original algorithm

is as follows: in Line 5 item 1, instead of a single t = (1 + δ)γ|P |, we need two

t1 = (1+δ)γ1|P1| and t2 = (1+δ)γ2|P2|; in Line 5 item 2, the coordinator construct

Sv in the following way: using the same method as in one-class SVM, sample a

random point p1 for Class 1 and p2 for Class 2, then add p1− p2 to Sv, until Sv has

size w.

It is easy to see that the communication complexity of the algorithm after ap-

plying the above modification does not change asymptotically.

6. Experimental Results

Since the main contribution of this paper is its theoretical results: a lower bound on

the communication of distributed SVM, and a distributed algorithm that actually

reaches this lower bound with quality guarantee, we design the experiments mainly

to demonstrate two aspects of our proposed algorithms: communication cost and ac-

curacy. We choose two popular distributed trainer for SVM, namely ADMM2324 and

HOGWILD!,13 for comparison. We perform SVM training task on several bench-

mark datasets distributed to 20 simulated nodes, and plot their communication cost

and accuracy accordingly in Figure 4 and 5. Throughout the experiments we use

RBF kernels, and use cross-validation to tune the parameters and report the best

result. Notice that the communication cost of our proposed algorithm is significantly

smaller than the algorithms compared, which is not surprising since it is proved to

reach the lower bound. The accuracy is overall comparable to the other algorithms,

making the proposed algorithm not only of theoretical interest, but also practically

useful.

For the distributed RGD algorithm, we design the experiments mainly to demon-

strate the robustness of the algorithm. We use 10 benchmark data set as in.25 We

take 70% as training data, and 30% as testing, and then flip the label of 15% points

in the training data sets as outliers. We distribute the data among k nodes where

k is set to 20. To speed up computation, we also use a boosting trick as in17 :

repeatedly build the RGD tree using the previous best result as root node. Due to

the probabilistic nature of the algorithm, we repeatedly run the algorithm 10 times

and take the best result. We compare the results with the non-distributed version of

the RGD tree algorithm, as well as three other methods, namely soft margin SVM,1

robust SVM based on CCCP,26 and homotopy algorithm.27 We use the best of the

three results as baseline. The result is shown in table 6. Notice that the performance

August 16, 2021 0:53 WSPC/Guidelines SVM

18 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

Fig. 4: Communication cost of

three compared algorithms (rela-

tive to the communication cost of

the proposed algorithm)

Fig. 5: Test accuracy of three

compared algorithms

Fig. 6: Accuracy of Distributed

RGD algorithm compared to

other algorithms when 15% of the

labels are flipped.

of the distributed RGD tree performs nearly the same as the non-distributed ver-

sion, and outperforms the other three methods on most of the data sets, proving to

be still robust in distributed setting.

References

1. C. Cortes and V. Vapnik, Support-vector networks, Machine learning 20 (1995) 273.
2. N. M. Luscombe, D. Greenbaum, M. Gerstein et al., What is bioinformatics? an

introduction and overview, Yearbook of medical informatics 1 (2001) 2.
3. J. Yick, B. Mukherjee and D. Ghosal, Wireless sensor network survey, Computer

networks 52 (2008) 2292.
4. G. Fung and O. L. Mangasarian, Incremental support vector machine classification,

in Proceedings of the 2002 SIAM International Conference on Data Mining (SIAM,
2002), pp. 247–260.

5. G. Cauwenberghs and T. Poggio, Incremental and decremental support vector machine
learning, Advances in neural information processing systems (2001) 409.

6. H. Graf, E. Cosatto, L. Bottou, I. Dourdanovic and V. Vapnik, Parallel support vector
machines: The cascade svm, Advances in neural information processing systems 17
(2004) 521.

August 16, 2021 0:53 WSPC/Guidelines SVM

Distributed and Robust Support Vector Machine 19

7. Y. Lu, V. Roychowdhury and L. Vandenberghe, Distributed parallel support vector
machines in strongly connected networks, IEEE Transactions on Neural Networks 19
(2008) 1167.

8. E. Y. Chang, Psvm: Parallelizing support vector machines on distributed computers,
in Foundations of Large-Scale Multimedia Information Management and Retrieval
(Springer, 2011), pp. 213–230.

9. A. Navia-Vázquez, D. Gutierrez-Gonzalez, E. Parrado-Hernández and J. Navarro-
Abellan, Distributed support vector machines, IEEE Transactions on Neural Networks
17 (2006) 1091.

10. P. A. Forero, A. Cano and G. B. Giannakis, Consensus-based distributed support
vector machines., Journal of Machine Learning Research 11 (2010) 1663.

11. D. Pechyony, L. Shen and R. Jones, Solving large scale linear svm with distributed
block minimization, in NIPS 2011 workshop on big learning: Algorithms, systems, and
tools for learning at scale (2011).

12. H. Daumé, J. M. Phillips, A. Saha and S. Venkatasubramanian, Efficient protocols for
distributed classification and optimization, in Proceedings of the 23rd International
Conference on Algorithmic Learning Theory (2012).

13. F. Niu, B. Recht, C. Re and S. J. Wright, Hogwild! a lock-free approach to parallelizing
stochastic gradient descent, in Proceedings of the 24th International Conference on
Neural Information Processing Systems (2011), pp. 693–701.

14. A. Bellet, Y. Liang, A. B. Garakani, M.-F. Balcan and F. Sha, Distributed Frank-
Wolfe algorithm: A unified framework for communication-efficient sparse learning,
2014, coRR, abs/1404.2644.

15. B. Gärtner and M. Jaggi, Coresets for polytope distance, in Proceedings of the twenty-
fifth annual symposium on Computational geometry (2009), pp. 33–42.

16. E. G. Gilbert, An iterative procedure for computing the minimum of a quadratic form
on a convex set, SIAM Journal on Control 4 (1966) 61.

17. H. Ding and J. Xu, Random gradient descent tree: A combinatorial approach for svm
with outliers, in Proceedings of the AAAI Conference on Artificial Intelligence (2015),
volume 29.

18. A. Negro, N. Santoro and J. Urrutia, Efficient distributed selection with bounded
messages, IEEE Transactions on Parallel and distributed systems 8 (1997) 397.

19. N. Santoro, J. B. Sidney and S. J. Sidney, A distributed selection algorithm and its
expected communication complexity, Theoretical Computer Science 100 (1992) 185.

20. F. Kuhn, T. Locher and R. Wattenhofer, Tight bounds for distributed selection, in
Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and
architectures (2007), pp. 145–153.

21. M. F. Balcan, S. Ehrlich and Y. Liang, Distributed Clustering on Graphs, 2013, arXiv
preprint arXiv:1306.0604.

22. J. M. Phillips, E. Verbin and Q. Zhang, Lower bounds for number-in-hand multi-
party communication complexity, made easy, in Proceedings of the twenty-third annual
ACM-SIAM symposium on Discrete Algorithms (SIAM, 2012), pp. 486–501.

23. S. Boyd, N. Parikh and E. Chu, Distributed optimization and statistical learning via
the alternating direction method of multipliers (Now Publishers Inc, 2011).

24. C. Zhang, H. Lee and K. Shin, Efficient distributed linear classification algorithms via
the alternating direction method of multipliers, in Artificial Intelligence and Statistics
(PMLR, 2012), pp. 1398–1406.

25. C.-C. Chang and C.-J. Lin, Libsvm: a library for support vector machines, ACM
transactions on intelligent systems and technology (TIST) 2 (2011) 1.

26. N. Krause and Y. Singer, Leveraging the margin more carefully, in Proceedings of the

August 16, 2021 0:53 WSPC/Guidelines SVM

20 Yangwei Liu, Hu Ding, Ziyun Huang and Jinhui Xu

twenty-first international conference on Machine learning (2004), p. 63.
27. S. Suzumura, K. Ogawa, M. Sugiyama and I. Takeuchi, Outlier path: A homotopy

algorithm for robust svm, in International conference on machine learning (PMLR,
2014), pp. 1098–1106.

