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Abstract—The number of daily sUAS operations in uncon-
trolled low altitude airspace is expected to reach into the millions
in a few years. Therefore, UAS density prediction has become an
emerging and challenging problem. In this paper, a deep learning-
based UAS instantaneous density prediction model is presented.
The model takes two types of data as input: 1) the historical
density generated from the historical data, and 2) the future sUAS
mission information. The architecture of our model contains
four components: Historical Density Formulation module, UAS
Mission Translation module, Mission Feature Extraction module,
and Density Map Projection module. The training and testing
data are generated by a python based simulator which is
inspired by the multi-agent air traffic resource usage simulator
(MATRUS) framework. The quality of prediction is measured by
the correlation score and the Area Under the Receiver Operating
Characteristics (AUROC) between the predicted value and sim-
ulated value. The experimental results demonstrate outstanding
performance of the deep learning-based UAS density predictor.
Compared to the baseline models, for simplified traffic scenario
where no-fly zones and safe distance among sUASs are not
considered, our model improves the prediction accuracy by up to
15.2% and its correlation score reaches 0.947. In a more realistic
scenario, where the no-fly zone avoidance and the safe distance
among sUASs are maintained using A* routing algorithm, our
model can still achieve 0.822 correlation score. Meanwhile, the
AUROC can reach 0.951 for the hot spot prediction.

Index Terms—instantaneous density prediction, UAS, mission
aware, spatio-temporal model

I. INTRODUCTION

Recently, many companies, such as DJI, Lockheed Martin
and Amazon, devote themselves to develop small Unmanned
Aircraft Systems (sUAS). Complicated and high density UAS
traffic imposes significant burden on air traffic management,
city planning and communication resource allocation. Under
this environment, the following critical questions are usually
asked: Given the list of scheduled launches in an area, do
we know in advance whether a feasible route in terms of
air space safety and energy efficiency can be found for a
specific mission at a specific time? Do we need to delay the
launch of some sUAS in advance to accommodate a mission
with higher priority scheduled at a specific time? Answering
such questions and being able to predict the traffic distribution
ahead of time will provide an opportunity for more efficient
planning and control.

UAS density prediction is a critical and challenging prob-
lem in the Unmanned Aircraft System Traffic Management
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(UTM) system. Most existing studies focus on simulation-
based approaches. Although accurate, they usually take a
long time to deliver results. Neural networks have been used
to predict the traffic density. However, most such studies
require the sampling of the traffic density from the past data
and predict the future density using past density information.
These models assume a static environment. For example, the
source (i.e. the location where the sUAS enters the air space)
and sink (i.e. the location where the sUAS leaves the air
space) of the traffic flow are assumed to remain the same,
and air space constraints, such as no-fly zones, are fixed.
Based on these assumptions, the traffic in the future will
exhibit similar pattern as the traffic in the past, and can be
predicted from the historical data. A constant environment
may be reasonable for road traffic, however, the operational
environment of sUAS features higher dynamics and flexibility.
For instance, the no-fly zones may change due to construction
or special activities/events, launching or landing zones may
be added or removed. The model based on historical data
will become obsolete as soon as the environment changes.
New data must be collected and a new model needs to be
trained, which can take days or weeks. Furthermore, most of
the existing models consider traffic distribution as a stationary
process, and focus on predicting the steady states. For resource
provisioning or safety assurance, we need to know not only
the steady state traffic but also the worst case traffic. Hence the
ability to predict the transient behavior of air traffic distribution
is highly desirable. There are a few works that utilize the long
short-term memory (LSTM) model to predict future traffic
based on recent traffic activities, however, their prediction
horizon is very limited. Accurate prediction cannot be made
beyond 4 or 5 timestamps.

In this paper, a deep learning-based prediction model is
presented for semi-transient traffic density distribution predic-
tion. The model takes the air space environment and the pre-
scheduled launch list in the next T time units as the inputs, and
predict the average traffic density of traffic distribution in this
air space during time [T-δ, T]. The parameter T controls the
prediction horizon and by reducing the value of parameter δ
, the focus of the model changes from the long-term average
behavior to transient behavior of the traffic. By taking the
flight environment and detailed launch information as part of
the inputs, the model is specific only to the type of trajectory
planning algorithms. It can be generalized to different air space
environment as long the trajectory of each UAS is routed using
the same algorithm. It will have no “down time” after the map
or the launching/landing zone has changed.



The model has high prediction accuracy. Compared with
other existing methods, our model can achieve a correlation
score of 0.947 and can improve the prediction accuracy by
up to 15.2%. In a realistic traffic scenario, where no-fly zones
avoidance and safe distance between sUASs are considered
by planning the trajectory using A* routing algorithm [1],
our model can still achieve a correlation score of 0.823. The
following summarizes the major contributions of our work:

• A novel UAS traffic density prediction model is devel-
oped that captures the information from the historical data
and the pre-scheduled sUAS launch list.

• A novel input representation of the future sUAS mission
information is proposed. The pre-scheduled missions are
categorized into 3 types according to their launching
times. Our model is designed to extract features from all
type of inputs simultaneously. The learnable parameters
are introduced to adjust the degrees affected by different
types of features.

• Compared to the baseline models, our model improves
the prediction accuracy by up to 15.2%. When doing hot
spot prediction, our model can achieve an AUROC score
of 0.951.

II. RELATED WORKS

Over the past decade, the unmanned aerial vehicles have
played an increasingly essential role in many areas [2] [3] [4]
[5]. With the rise in the popularity of sUAS, many notable is-
sues telated to UAS traffic management have been discovered.
However, most of them explored the novel applications for
the single sUAS or formulated the UAS management policies.
The study of the UAS cluster behaviors such as forecasting of
the UAS traffic density has generally not been addressed. In
our investigation, the density forecasting approaches can be
categorized into simulation based method and deep-learning
based method. In this section, we will analyze the pros and
cons of recent works in these two categories.

Many existing works study issues such as sUAS navigation,
obstacle avoidance or UAS traffic management, by developing
a corresponding simulator with fair time complexity. In [6],
the authors presented an indoor algorithm to navigate single
sUAS to avoid collisions. [7] proposed a solution to avoid
collisions in a static environment by importing geometrical
constraints. Other single sUAS classical approaches applied
rapidly-exploring random trees [8] and Voronoi graphs [9]
[10]. Multiple sUAS trajectory simulation has been studied
as a multi-agent cooperative system and solved in a rolling
horizon approach using dynamic programming [11] or mixed
integer linear programming [12]. Other strategies [1] [13]
involved real-time routing algorithms with communication
and airspace safety considerations. Recently, a very strict
and rigid airspace structure to handle dense operation in the
urban low altitude environment was suggested by the work
on Unmanned Air craft System (UAS) Traffic Management
(UTM) at NASA in [14]. The authors explored UAS operations
in non-segregated air space and managed the risk of mid-air
collision to a level deemed acceptable to regulators. In the
paper, the airspace was divided into multiple layers, and the
layers were further divided into orthogonal sky lanes. There

are no current works that solve the traffic prediction problem
from a big picture perspective within a small running time.

In this work, instead of developing a simulator, we utilize
deep learning for UAS traffic density prediction. The deep
learning based approach has shown an outstanding success
in many areas [15] [16] [17] . Similar multi-agent works are
addressed in other fields such as pedestrian density prediction
[18] and autonomous driving [19]. In [20], the author proposed
a LSTM based scene-aware model to predict trajectories
for autonomous driving. However, the prediction errors grew
exponentially as the time horizon increased. Another work
addressed pedestrian traffic flow prediction by fusing historical
information, but the prediction is limited by historical data
regardless of upcoming event information. Existing single
agent trajectory prediction works concentrated on the behavior
of a single sUAS and the impact of environment conditions,
without any sUAS cluster consideration. For example, [21]
proposed a LSTM-based flight trajectory model with weather
considerations taken into account. [22][23] aimed to solve
environment navigation problems, and developed a reinforce-
ment learning model to plan energy efficient waypoint in a
static environment.

Compared to the existing work, our model has the ability to
learn and extract the information from the historical data and
the pre-scheduled sUAS mission launch list. And the error is
restrained strictly via dynamic feature extraction. By adopting
a novel channel segmentation approach, our mission feature
extraction module can learn the density features accurately.

III. METHODS

Our density prediction model is an end-to-end model where
each module is fully differentiable. The mean square error
(MSE) loss is calculated by measuring the difference between
the predicted density map and the labeled density map. The
architecture of our model contains four components: Histor-
ical Density Formulation module, UAS Mission Translation
module, Mission Feature Extraction module, and Density Map
Projection module. The model structure is depicted in Figure
1. In this section, each component of the model will be
elaborated.

A. Historical Density Formulation
The historical density describes the pre-existing air space

environment. The size of the historical density map is 100∗100
grid units which is the same as the simulation environment.
The value at each pixel is between 0 and 1 and represents the
average density in the past m simulation cycles. The value of
m is set to be 10 in this paper. The historical density will also
be called “initial density” in this paper. Given the historical
density, we employ a convolutional neural network (CNN)
to extract the relevant features. The model is composed of 3
convolution layers, 2 pooling layers and the ReLU activation
layers. Finally, the C ∗ 32 ∗ 32 feature maps are obtained
from the feature extractor, where C is the number of feature
channels. The feature extracted from the historical density is
denoted as Xh.

B. UAS Mission Translation
This module is responsible for translating the UAS missions

to the image representation. First, the UAS future missions



Fig. 1: Mission-Aware Spatio-Temporal Model Architecture

are summarized into a mission list. The dimension of the
mission list is n ∗ 5 where n is the number of missions
in the future. Each mission is defined by a 5 dimensional
vector: {Xs, Ys, X

′
d, Y

′
d , Tn}. The {Xs, Ys} and the {X ′d, Y ′d}

represent the launching and landing locations of the mission.
The launching time is indicated by Tn. Given the mission list,
the model will first cluster the missions into different groups
based on the mission launching time. The mission translation
module follows in the same manner as the BFS algorithm
to map the trajectory into a 2D map. From each Origin-
Destination (O-D) pair, we draw a shortest path from the
launching location to the landing location. For each individual
mission, we assume that the horizontal direction movement
has a higher priority than the vertical direction movement. The
movement priority is the same as the MATRUS simulator [24].
After the UAS mission translation procedure as mentioned
above, a K channel output can be obtained. Each channel
lumps the trajectory information of the sUAS that will be
launched at the same simulation cycle. K is set to be 60 in
this paper.

Moreover, we introduce a novel sUAS trajectory represen-
tation approach, which we call as “Flow”. The “Flow” input
representation uses an ascending sequence to represent the
sUAS movement from the launching location to the landing
location. Therefore, in the 2D map, the waypoints near the
landing location are brighter than the waypoints near the
launching location. If one location is occupied by more than
one sUAS, we use the mean of all the overlapped values
to represent this location. By using this input representation,
the model can distinguish launching and landing locations. In
addition, the order of the sUAS movement is also specified.
Figure 2 shows two mission translation examples.

C. Mission Feature Extraction
The translated UAS missions are fed into the mission feature

extraction module. This module is responsible for learning
the density features from the pre-scheduled missions. Inspired
by [25], we develop a novel channel segmentation model.
First, according to the mission launching time, the translated

(a) Translation 1 (b) Translation 2

Fig. 2: UAS Mission Translation Examples

missions are categorized into 3 groups: long-term, mid-term
and short-term. In our case, the long-term group contains
the launching missions from cycle 1 to cycle 30. The mid-
term group involves the launching missions from cycle 31
to cycle 50. The rest of the launching missions, cycle 51 to
cycle 60, belong to the short-term group. Then, three types of
models with different number of input channels are employed
to extract the features from the inputs. The number of input
channels for long-term, mid-term and short-term models are
10, 5 and 2, respectively. Each individual model has the same
structure but the weight will be updated independently. The
intuition of the model architecture design is that the mission
whose launching time is close to the end should have a larger
impact on the final density. The type of convolution (2D or
3D) operation we applied in this module will be discussed in
Section V-C. Then, three types of features (long-term feature,
mid-term feature and short-term feature) can be obtained,
which are denoted as {Fl, Fm, Fs}. In the fusion module,
the learnable parameters are introduced to adjust the degrees
affected by different features. Therefore, the mission from
different times will contribute accordingly to the final density.
The fusion equation is defined as follows:

Xf = {W1 ∗ Fs 1 + ...Wk ∗ Fm 1 + ...+Wn ∗ Fl n} (1)

where W denotes the learnable parameters. The output density
feature is denoted as Xf . And, the Fs, Fm and Fl are the



features extracted from short-term input, mid-term input and
long-term input, respectively.

Consequently, a C∗32∗32 feature map is obtained from this
module, where C stands for the number of feature channels.

D. Density Map Projection
Finally, two features {Xh, Xf} are concatenated together

to construct a fused density feature representation. Then, we
apply a de-convolution module to project the density feature
into a 2D density map that has the same width and height as
the whole simulation environment. The de-convolution module
is composed of 4 2D-transpose layers, batch normalization
layers and the ReLU activation layers. The value at each
location stands for the average density at the given prediction
time T1. In this paper, T1 is set to be 10.

IV. EXPERIMENTS

A. Data Generation
Inspired by the MATRUS framework [24], we implement a

python based sUAS flight simulator. For each traffic scenario
tested in this paper, we ran the simulator to generate 3000
samples. All the data sets are divided into two subsets: training
and testing. The split ratio is 90 : 10. For each sample, the
simulator randomly generates 5 launching areas and 5 landing
areas on a 100*100 grid environment. Each area has the size
3*3. Any grid in this area can be considered as the launching
location. The minimum distance between any two areas is
5 cells. For each launching area, the simulator uses uniform
distribution to randomly generate a float number as the launch
probability. At every simulation cycle, the simulator randomly
selects 15 launching locations from all launching areas. For
each selected location, the simulator randomly decides whether
a mission should be launched from current location at current
cycle based on the launch probability.

For each sample, the simulation time horizon is defined as
T . In this paper, T is set to be 60 simulation cycles, and each
cycle lumps sUAS launching information in 10 seconds. The
time period that generates the density map will be described
as T1. The data generation procedure is depicted in Figure 3.

Sample 1

Sample 3000
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200 cycles 
Simulation

𝑇1 = 10 cycles
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Data Generation

Historical Data (10 cycles)

Fig. 3: Data Generation Procedure

B. Evaluation Metrics
Two metircs are used to measure the quality of the predic-

tion.
(1) Correlation: Correlation is calculated between the sim-

ulated traffic density (Y ), which is considered as the ground
truth, and the predicted traffic density (Ŷ ). In our experiments,

it shows whether and how strongly the predicted and labeled
variables are related. The equation of the Correlation is as
follows:

ρ(X,Y ) =
Cov(X,Y )

σXσY
(2)

where ρ(X,Y ) is Pearson’s correlation coefficient of X and
Y, σX and σY are the standard deviation of X and Y ,
respectively. Cov(X,Y ) is the covariance of variables X and
Y , which can be calculated by the following equation:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] (3)

where E[.] denotes the expected value.
(2) Area Under the Receiver Operating Characteristics

(AUROC): The ROC curve is plotted by mapping the True
Positive Rate (TPR) against the False Positive Rate (FPR)
with different thresholds. Given a ROC curve, the AUROC
evaluates the performance of the model by distinguishing
between classes. The higher the AUROC score of a model,
the better the performance is. For an uninformative model,
the AUROC is close to 0.5. The maximum AUROC is 1.

C. Comparison Models
To the best of our knowledge, there is no prior work

considers the exactly same application as this paper. For com-
parison, we selected some existing models that are potentially
promising for traffic prediction, and re-trained them using our
data set. We also compared with some modified version of
our own model to show the effectiveness of certain design
decisions of our model. The following five models are tested
and compared.
• Vanilla CNN (VCNN): This is a typical CNN based

encoder-decoder model. The model assumes that, the
location and action probability of each launching/landing
area is static and can be represented in a 2D map. It
tries to learn the relation between traffic density and
the 2D map, and makes prediction based on the static
information.

• Vanilla LSTM (VLSTM): This is a typical LSTM based
encoder-decoder model. It takes the T cycles scheduled
launching information and predict the density at the T+1
cycle. Because the traffic density of cycle (t + 1) is
determined by the density at cycle t and the current
launching information, it was expected that such temporal
dependency can be captured by an LSTM model.

• RouteNet [26]: The RouteNet model is encouraged by
the Fully Convolutional Network (FCN) architecture that
predicts the congestion in VLSI placement and route. And
the FCN allows input to be any size and produces an
output with exactly the same size as input, indicating the
density (or hotspot) at any location.

• Segmented Channel: This is our model discussed in
this paper. The inputs are categorized into 3 groups.
Then, the designated models are assigned to each group
for extracting the features. The model applies the 2D
convolution with 2 * 2 and 4 * 4 kernel size. The max
pooling is also used in the model.

• All Channel: This model has the similar structure as
presented model except that there is no input channel
segmentation. The model treats all the missions from
different launching time as the same.



D. Experiment Setup

We run our experiments on a desktop server running Ubuntu
16.04 OS with 3.60GHz Intel Xeon W-2123 CPU, 256GB
Memory and a NVIDIA 2080Ti GPU. During the training,
the Adam optimizer is applied with a 0.005 learning rate. The
weight decay is set to 0.0001. We use the ReLU to be the
activation function. Batch normalization and dropout are also
applied for preventing the overfitting. The training and testing
framework are built in PyTorch.

V. RESULTS

A. Predicted Density Accuracy Improvement

In the first experiment, we compare the accuracy of the den-
sity prediction between our model and other baseline models
from Section IV-C. The model which extracts the trajectory
features from all input channels is denoted as “channelall”.
Our presented channel segmentation model is denoted as
“channelseg”. Because the prediction model assumes a non-
empty air space, we are interested to know how close the
initial traffic density resembles the density at the target time
of prediction. The column “init” gives the correlation between
the initial density and the label density.

TABLE I: The Correlation Score of the Density Prediction

Init VCNN VLSTM RouteNet Channelall Channelseg

0.822 0.863 0.803 0.889 0.944 0.947

Table I shows the correlation score for all the models. The
LSTM model has the worst performance among all the models.
The correlation score of the “V LSTM” model is even lower
than the “init” correlation score. One reason for this is that
the 60 cycle prediction period is too long for the “V LSTM”
model. The error will accumulate and propagate from the first
cycle to the last cycle. The “V CNN” model improves the
correlation score by 5.0%. However, ignoring the information
of exactly when and where each sUAS is going to be launched
and where it is heading from now to the end of prediction
window makes the prediction much less specific. Therefore,
the “V CNN” model cannot achieve a higher accuracy. In the
“RouteNet” model, each scheduled mission will be marked
by a bounding box between the Origin-Destination (O-D) pair.
This approach gives the model a more forthright indication
of each mission and the relation between the launching and
the landing locations. Consequently, the “RouteNet” model
improves the correlation score by 8.2%. Finally, our presented
model, “channelall” and “channelseg”, outperforms all other
models. Compared to the initial traffic density, the predicted
density of these models clearly resembles the actual density at
the end of prediction window better, with 14.8% and 15.2%
improvement of the correlation score, respectively.

Between the two model architectures that we proposed,
the “channelseg” model can achieve higher correlation score
than the “channelall” model. However, the difference is very
marginal. In the next, we will show that using segmented
channel is important under the scenario when the process of
UAS launching is non-stationary.

B. The Impact of the Initial Density

In the second experiment, we study how the initial density
affects the density prediction and evaluate the robustness of
two model architecture designs. Two test scenarios have been
designed:
• Without Training (w/o training): We follow the same

training procedure in Section V-A. However, during the
testing, the initial density is not provided. Instead an all-
black image (i.e. an empty air space) is provided.

• With Training (w training): In the training phase, the
initial density is also replaced by the all black image.

TABLE II: The Impact of the Initail State

w/o training w training
init 0.822 0.822
channelall 0.885 (+7.7%) 0.894 (+8.8%)
channelseg 0.913 (+11.1%) 0.924 (+12.4%)

The results in Table II show that the model performance is
affected by the historical density. Nonetheless, compared to the
“channelall” model, the “channelseg” model is more robust.
In Section V-A, the correlation scores are 0.944 and 0.947
respectively for “channelall” model and the “channelseg”
model. Without the training, the correlation score drops to
0.895 and 0.913 respectively for “channelall” model and
the “channelseg” model. This proves that the “channelseg”
model can extract more meaningful features from the pre-
scheduled missions. Even with the training, two models can
only achieve correlation scores of 0.894 and 0.924. This proves
that the historical density map can help the model improve the
prediction accuracy. This phenomenon shows that, compared
to the “channelseg” model, the “channelall” model relies
more on the historical density.

C. The Model Sensitivity to Missions

In the third experiment, we study the model’s sensitivity to
missions. In our assumption, the most recent missions should
have a larger contribution to the predicted density than those
that took place earlier in time. And the model should be able
to capture the features from the non-stationary missions. In
order to further analyze this conjecture, we test different model
architectures and design a specific experiment. In the model
architecture design, we test both 2D convolution operation and
3D convolution operation to be the feature extractor backbone.
For the experiment, we use the normal mission list as the input
in the model training phase. The normal mission list means
that all the 60 cycles have the launching missions. However,
in the testing phase, we remove the missions from either the
first 30 cycles or last 30 cycles. Therefore, the experiments
are broken down into 2 scenarios:
• No Task Before 30 (NTB 30): No new launching mission

from cycle 1 to cycle 30.
• No Task After 30 (NTA 30): No new launching mission

from cycle 31 to cycle 60.
Table III shows the correlation score in both scenarios.

The “init” stands for the correlation score between the initial
density and the label. We take the “channelall” and the
“channelseg” to be two comparison models. The testing data



TABLE III: Experiments comparing 2D and 3D convolution

Scenario (3D) NTB 30 NTA 30
init 0.699 0.647
channelall 0.554 (-21.3%) 0.532 (-17.8%)
channelseg 0.712 (+1.9%) 0.678 (+4.8%)

Scenario (2D) NTB 30 NTA 30
init 0.699 0.647
channelall 0.765 (+9.4%) 0.751 (+16.1%)
channelseg 0.836 (+19.6%) 0.858 (+32.6%)

is the same for both 3D convolution operation and 2D convo-
lution operation. Therefore, the correlation scores between the
initial density and the label are the same for both scenarios.
Compared to the result in Section V-B, without the training,
the prediction accuracy drops for both models. However,
from the results, we can notice that the performance drop
with 2D convolution operation is less severe in comparison.
The correlation score of the “channelall” model with 3D
convolution operation is even lower than the “init”. The
reason is that the features from the most recent time and early
time periods are not distinguishable as the 3D convolution
uses the same cube filter for all cycles. However, for the 2D
convolution, each filter has a spatial extent. The number of
spatial extents is equal to the number of input channels. The
spatial extent increases the representability of the model. The
demonstrations of the 2D and 3D convolution operations are
given in Figure 4. This suggests that using 2D convolution
layers to extract features from each channel in our scenario is
a more robust approach compared to using the 3D convolution.
Consequently, we choose the 2D convolution operation to be
the backbone of the feature extractor in our final model design.

(a) 2D convolution (b) 3D convolution

Fig. 4: Convolution Operation Comparison
The second observation from the result is that, the

“channelseg” model always has a better prediction perfor-
mance than the “channelall” model. With 2D convolution
operation, compared to the “init”, the “channelseg” model
can achieve 19.6% and 32.6% correlation score improve-
ment in NTB 30 and NTA 30, respectively. However, the
“channelall” model can only achieve 9.4% and 16.1% im-
provement. This result is consistent with our hypothesis at
the beginning of the section. In our “channelseg” model, the
missions with different launching time can be distinguished.
Our model is capable of learning the meaningful features from
the non-stationary missions.

D. Density Prediction with No-Fly Zone Avoidance and Rout-
ing Algorithm

In the fourth experiment, we introduce no-fly zones into
the simulation environment. In each batch of the simulation,

the ratio of grids which are occupied by a no-fly zone is
varying from 5% to 45%. By applying the routing algorithm,
the simulated sUAS is capable of avoiding the no-fly zone and
other sUASs. Hence, the sUAS trajectory is more heuristic and
that leads to a more challenging density prediction task. In
order to reach a high prediction accuracy, we investigate three
potential input representations at the same time. The “Flow”
input representation has been presented in Section III-B, as
shown in Figure 5(a). In the second input representation,
we draw a bounding box to incorporate the launching and
landing grids of each sUAS. The launching/landing grids are
located at the two corners of the bounding box. The value
in each grid represents the needed steps to move from the
launching location, as shown in Figure 5(c). Therefore, we
call it “Ones” input representation. For the “Probability” input
representation, we use the same bounding box to incorporate
the launching and landing grids. However, the value in each
grid stands for the probability that the sUAS moves from
its previous adjacent grid to the current grid, as shown in
Figure 5(b).

(a) Flow (b) Probability (c) Ones

Fig. 5: Different Input Representation

TABLE IV: Density Prediction with No-Fly Zone Avoidance
and Routing Algorithm

Correlation Flow Probability Ones
init 0.698 0.698 0.698
channelall 0.795 (+13.9%) 0.818 (+17.2%) 0.821 (+17.6%)
channelseg 0.798 (+14.3%) 0.820 (+17.5%) 0.822 (+17.8%)

Table IV shows the correlation scores for the different
representations. From the result, we can notice that both
models can improve the correlation in all the input represen-
tation types. However, the performance of the “channelseg”
model is slightly better than all-channel model. Compared
to the correlation score of the initial density, our presented
“channelseg” model can improve the correlation score up
to 14.33% in ”Flow” input representation, up to 17.34% in
”Probability” input representation and up to 17.77% in the
”Ones” input representation. The “Ones” input representation
outperforms other two representations due to two reasons: 1)
The routing algorithm is used in the simulation, therefore,
the potential sUAS trajectories are more heuristic. Although
the “flow” representation has the ability to indicate the sUAS
movement, the flexibility of the model is also reduced by
given only one possible path. 2) Compared to the “Probability”
representation, the “Ones” representation does not only have
all the possible trajectories, but also indicate the moving order
of the sUAS.



Besides the correlation evaluation, we also apply the AU-
ROC to evaluate the performance of the “channelseg” model.
In this experiment, the pixel whose value that is not zero in
the label is considered to be the evaluation reference as we
are more interested in the high dense area on the map. The P
estimation is a popular method in financial risk assessment and
internet congestion investigation. Hence, we employ the P50,
P75, P90 and P99 to select the threshold. After the threshold
is defined, the pixel in the label whose value is larger than the
threshold is binarized to 1, and vice versa. Table V shows the
selected threshold for different P values. For the prediction,
the threshold value is sampled progressively from 0.0 to 1.0,
with the 0.01 granularity.

TABLE V: Threshold Selection in Different P Value

P50 P75 P90 P99
Threshold 0.2 0.3 0.5 0.8

Figure 6 shows the AUROC in different thresholds. As we
can see from the figure, the “Ones” input representation still
outperforms other methods. The P50 means that half of the
UAS flight areas are considered as the hot spot. In this strict
circumstance, the AUROC of the “Ones” representation can
still achieve 0.803. However, in reality, the severity is often ex-
aggerated by choosing the P50. For the P75, P90, and P99,
the AUROC of the “Ones” representation are 0.836, 0.889 and
0.951, respectively. This result further proves that our model
is capable of making an accurate hot spot prediction.

(a) AUROC @ P50 (b) AUROC @ P75

(c) AUROC @ P90 (d) AUROC @ P99

Fig. 6: AUROC at Different P Value

E. Density Prediction Visualization

In the last experiment, we visualize several UAS density
predictions to give a qualitative demonstration of our model.
We select two typical scenarios to test the performance:

a) dense traffic, b) sparse traffic. Both scenarios are tested
with/without the routing algorithm. Figure 7 shows the predic-
tion results without the routing algorithm. The left side figures
are the prediction and the right side figures are the label. The
value of each pixel varies from 0 to 1, representing the average
density in T1. The brighter area means that there are more
sUAS passing through this location. The density prediction
with the routing algorithm is shown in Figure 8.

From Figure 7 we can notice that, our predicted densities
are close to the label in both scenarios. In the dense traffic
scenario, all 6 dense areas are predicted by our model, as
shown in Figure 7(a) and Figure 7(b). Although some of the
dense areas are close with each other, the model can still
predict them clearly. In the sparse traffic scenario, there are
only two horizontal dense areas. One is in the middle of the
map, the other is at the bottom of the map. Both of them are
predicted accurately by our model.

(a) Density Prediction (Dense) (b) Density Label (Dense)

(c) Density Prediction (Sparse) (d) Density Label (Sparse)

Fig. 7: Density Prediction without Routing Visualization
After the routing algorithm is introduced, the sUAS trajec-

tory is heuristic which will lead to a more random density
distribution. Both prediction and label become blurry in this
situation. Under this circumstance, our presented model can
still predict the most obvious dense areas. In Figure 8(b),
there are four obvious dense areas which are marked by the
red dash circle. Figure 8(a) shows that all of the dense areas
are predicted successfully by our model. In the sparse traffic
scenario, there are three obvious dense areas in Figure 8(d).
Although the model fails to predict the dense area at the top
of the map, two other dense areas at the left bottom have been
predicted successfully, as shown in Figure 8(c).

VI. CONCLUSIONS

In this paper, we have proposed a novel mission-aware
spatio-temporal model, which aims at predicting the UAS
instantaneous density. The model has the ability to extract



(a) Density Prediction (Dense) (b) Density Label (Dense)

(c) Density Prediction (Sparse) (d) Density Label (Sparse)

Fig. 8: Density Prediction with Routing Visualization

meaningful features from the given historical density and
learn the information from the pre-scheduled missions. In
the experiment section, we use the correlation score and the
AUROC to evaluate the prediction accuracy of our proposed
model. Compared to the baseline models, for simplified traffic
scenario where no-fly zones and safe distance among sUASs
are not considered, our model improves the prediction accu-
racy by up to 15.2% and its correlation score reaches 0.947.
The results in Section V-C show that our model is sensitive to
the pre-scheduled missions and has the ability to predict the
transient behavior of the traffic distribution. In a more realistic
scenario, where the no-fly zone avoidance and the safe distance
among sUASs are maintained using A* routing algorithm, our
model can still achieve a correlation score of 0.822. Moreover,
the AUROC results demonstrate that the hot spot predicted by
our model is accurate. The qualitative results also show that
the presented model can generate a detailed prediction.
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