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Abstract

In this paper, we study the problem of estimating the covariance matrix under differ-
ential privacy, where the underlying covariance matrix is assumed to be sparse and of
high dimensions. We propose a new method, called DP-Thresholding, to achieve a non-
trivial £,-norm based error bound whose dependence on the dimension drops to loga-
rithmic instead of polynomial, it is significantly better than the existing ones, which add
noise directly to the empirical covariance matrix. We also extend the £,-norm based
error bound to a general £ ,,-norm based one for any 1 < w < oo, and show that they
share the same upper bound asymptotically. Our approach can be easily extended to
local differential privacy. Experiments on the synthetic datasets show results that are
consistent with theoretical claims.

Keywords: Differential privacy, sparse covariance estimation, high dimensional
statistics

1. Introduction

In recent year, Machine Learning and Statistical Estimation have had profound im-
pact on many applied domains such as social sciences, genomics, and medicine. A
frequently encountered challenge in their applications is how to deal with the high di-
mensionality of the datasets, especially for those in genomics, educational and psycho-
logical research. A commonly adopted strategy for dealing with such an issue is to
assume that the underlying structures of parameters are sparse.
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Another often encountered challenge is how to handle sensitive data, such as those
in social science, biomedicine, and genomics. A promising approach is to use differ-
entially private mechanisms for the statistical inference and learning tasks. Differential
Privacy (DP) [1] is a widely-accepted criterion that provides provable protection against
identification and is resilient to arbitrary auxiliary information that might be available
to attackers. Since its introduction over a decade ago, a rich line of works are now avail-
able, which have made differential privacy a compelling privacy enhancing technology
for many organizations, such as Uber [2], Google [3], Apple [4].

Estimating or studying the high dimensional datasets while keeping them (locally)
differentially private could be quite challenging for many problems, such as sparse lin-
ear regression [5], sparse mean estimation [6], and selection problem [7]. However,
there are also evidences showing that the loss of some problems under the privacy con-
straints can be quite small compared with their non-private counterparts. Examples
of such nature include Empirical Risk Minimization under sparsity constraints [8, 9],
high dimensional sparse PCA [10, 11, 12], sparse inverse covariance estimation [13],
and high-dimensional distributions estimation [14]. Thus, it is desirable to determine
which high dimensional problem can be learned or estimated efficiently in a private
manner.

In this paper, we aim to give an answer to this question for a simple but fundamental
problem in machine learning and statistics, namely estimating the underlying sparse co-
variance matrix of a bounded sub-Gaussian distribution. For this problem, we propose
a simple but nontrivial (e, 6)-DP method, DP-Thresholding, and show that the squared

1 21
. 2] s2logplog =  log® &
£ ,-norm error for any 1 < w < oo is bounded by O(*—2L + ————2 + — 3 where
n n-e n-e

n is the sample size, p is the dimension of the underlying space and s is the sparsity of
each row in the underlying covariance matrix. Moreover, our method can be easily ex-
s2log plog %

tended to the local differential privacy model with an upper bound of O( —
Experiments on synthetic datasets confirm the theoretical claims. To our best knowl-
edge, this is the first paper studying the problem of estimating a high dimensional sparse
covariance matrix under (local) differential privacy.

2. Related Work

Recently, there have beeen several papers studying private distribution estimation,
such as [14, 15, 16, 17, 18]. For distribution estimation under the central differential
privacy model, [16] considers the 1-dimensional private mean estimation of a Gaussian
distribution with (un)known variance. The work that is probably most closely related
to ours is [14], which studies the problem of privately learning multivariate Gaussian
and product distributions. The following are the main differences with ours. Firstly,
our goal is to estimate the covariance of a sub-Gaussian distribution. Even though the
class of distributions considered in our paper is larger than the one in [14], it has an
additional assumption which requires the £, norm of a sample of the distribution to be
bounded by 1. This means that it does not include the general Gaussian distribution.
Secondly, although [14] also considers the high dimensional case, it does not assume
the sparsity of the underlying covariance matrix. Thus, its error bound depends on the
dimensionality p polynomially, which is large in the high dimensional case (p > n),



while the dependence in our paper is only logarithmic (i.e., log p). Thirdly, the error in
[14] is measured by the total variation distance, while it is by £,,-norm in our paper.
Thus, the two results are not comparable. Fourthly, it seems difficult to extend the
methods of [14] to the local model. Recently, [18] also studies the covariance matrix
estimation via iterative eigenvector sampling. However, their method is just for the low
dimensional case and the error is measured with respect to the Frobenious norm.

Distribution estimation under local differential privacy has been studied in [17, 15].
However, both of them study only the 1-dimensional Gaussian distribution. Thus, it is
quite different from the class of distributions in our paper.

In this paper, we mainly use Gaussian mechanism on the covariance matrix, which
has been studied in [19, 10, 13]. However, as it will be shown later, simply outputting
the perturbed covariance can incur big error and thus is insufficient for our problem.
Compared to these previous work, the problem in this paper is clearly more complicated
since here we assume it is in the high dimensional space where p > n.

3. Preliminaries

3.1. Differential Privacy

Differential privacy [1] is by now a de facto standard for statistical data privacy
which constitutes a strong standard for privacy guarantees for algorithms on aggregate
databases. DP requires that there is no significant change in the outcome distribution
under a single entry change to the dataset. We say that two datasets D, D' are neighbors
if they differ by only one entry, denoted as D ~ D’.

Definition 1 (Differential Privacy [1]). A randomized algorithm A is (¢, 6)-differentially
private (DP) if for all neighboring datasets D, D' and for all measurebale events S in
the output space of A, the following holds

P(A(D) € S) < eP(A(D") € S) +6.
When 6 = 0, A is e-differentially private.

We will use the Gaussian Mechanism [20] to guarantee (e, 6)-DP.

Definition 2 (Gaussian Mechanism [20] ). Given any function q : X" — RP, the
Gaussian Mechanism is defined as:

Ms(D,q,e) =q(D)+7Y,

where Y is drawn from Gaussian Distribution N (0, ¢
Here A, (q) is the €,-sensitivity of the function g, i.e.

21,) with ¢ > @.

Ay(q) = sup ||g(D) — g(D")|,.
D~D/

The Gaussian Mechanism preservers (€, 6)-differential privacy.



3.2. Private Sparse Covariance Estimation

Let xy, x5, -*+, x,, be n random samples from a p-variate distribution with covariance
matrix £ = (0y;) ; j<p» Where the dimensionality p is assumed to be high, i.e., p>n >

Poly(log p).
We define the parameter space of s-sparse covariance matrices as the following:

Go(s) ={X = (0;))1<ij<p * 0 Is s-sparse Vj € [p]}, (D

where o_; ; denotes the j-th column of X with the entry o;; removed. That is, a matrix
in Gy(s) has at most s non-zero off-diagonal elements in each column.

We assume that each x; is sampled from a 0-mean and sub-Gaussian distribution
with parameter o2, that is,

2
E[x;] =0,P{|vTx;| >t} <e 2?,Vt>0and ||v||, = 1. )

This means that all the one-dimensional marginals of x; have sub-Gaussian tails. We
also assume that with probability 1, ||x;||, < 1. We note that such assumptions are quite
common in the differential privacy literature, such as [10].

Let Pp(az, s) denote the set of distributions of x; satisfying all the above conditions
(r.e., (2) and ||x;||, < 1) and with the covariance matrix X € Gy(s). The goal of private
covariance estimation is to obtain an estimator PV of the underlying covariance matrix
Xbasedon {x,,x,} ~P € Pp(az, s) while preserving its privacy. In this paper, we
will focus on (e, 6)-differential privacy. We use the £, norm to measure the difference
between ZPY and I, i.e., [|ZPTY — Z||,.

Lemma 1 ([21]). Let {x,,---,x,} be n random variables sampled from a Gaussian
distribution N'(0, 62). Then

[Elmax |x;| < ov/2log2n, 3
<i<n
2
P{max |x;| >t} <2ne 27. 4)
1<i<n

2
Particularly, if n = 1, we have P{|x;| >t} <2e 27,

Lemma 2 ([22]). If {x,x;,+, X, } are sampled from a sub-Gaussian distribution in
(2) and £* = (6%)1 4 j<p = % . xixl.T is the empirical covariance matrix, then there
exist constants C; and y > 0 such that Vi, j € [p]
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for all |t| < & where Cy,& and y are constants and depend only on . Specifically,

. log p _
Pllo; — oyl > y\/——1 < Cp™ (6)



Notations:. All the constants and big-O notations throughout the paper omit the fac-
tors that are related to polynomial of ¢, which is the sub-Gaussian parameter. Many
previous papers assume the sub-Gaussian parameter as a constant, such as [22, 23].

4. Method

4.1. A First Approach

A direct way to obtain a private estimator is to perturb the empirical covariance ma-
trix by symmetric Gaussian matrices, which has been used in previous work on private
PCA, such as [19, 10]. However, as we can see bellow, this method will introduce big
error.

By [19], for any given 0 < €,6 < 1 and {x,x,,,x,} ~ P € Pp(az, s), the
following perturbation procedure is (€, §)-differentially private:

n

. i 1

L=X4N=0gj = 25 N, @)
i=1

where N is a symmetric matrix with its upper triangle ( including the diagonal) being
i.i.d. samples from N(O, o 2); here 012 %225/5) and each lower triangle entry being

copied from its upper trlangle counterpart. By ‘the Corollary 2.3.6 of [24], we know that

[N, < O(\/Eal) = O(\/—n— ,Egg) with high probability. We can easily get that, with
high probability (i.e., with probability at least 1 — pi,_, for some ¢ > 0)

\/plog(S

I£ -2l < NIZ* =2l + INl; < O(——). @®)

where the second inequality is due to a Theorem in Chapter 1.6.3 of [25]. However, we
can see that the upper bound of the error in (8) is quite large in the high dimensional
case.

Another issue of the private estimator in (7) is that it is not clear whether it is
positive-semidefinite, a property that is normally expected from an estimator.

4.2. Post-processing via Thresholding

We note that one of the reasons that the private estimator  in (7) fails is due to the
fact that some entries are quite large which make ||Z; ;= 2 l, large for some i, j. More
precisely, by (4) and (5) we can get the following, with probability at least 1 — Cp~©,
forall 1 <i,j <p,

=00\ —)- €))

lj lj|<}/

/ 1.25
/logp 44/2log ==+/logp logp

Thus, to reduce the error, a natural approach is the following. For those o;; with larger
values, we keep the corresponding 6;; in order to make their difference less than some



threshold. For those o;; with smaller values compared with (9), since the corresponding

6;; may still be large, if we threshold &;; to 0, we can lower the error on 6;; — o;;.

Following the above thinking and the thresholding methods in [22] and [26], we
propose the following DP-Thresholding method, which post-processes the perturbed

44/210g(1.25/8)/1
1"% + W %8P ' After thresh-

olding, we further threshold the eigenvalues of £ in order to make it positive semi-
definite. See Algorithm 1 for detail.

covariance matrix in (7) with the threshold y

Algorithm 1 DP-Thresholding
Input: {x,x), ., x,} ~ P € P,(c% 5),and €,5 € (0, 1)
1: Compute

n
- 1 -
2=0hsijo = D xix] +N,
i=1

where N is a symmetric matrix with its upper triangle (including the diagonal)
being i.i.d samples from N (0, o-f); here a% = %, and each lower triangle
entry being copied from its upper triangle counterpart.

2: Define the thresholding estimator & = (§; )i<ij<n 88

" . . lo 44/210g(1.25/6)+/log p
=6;; - 11|61 >7\/ §p+ \/ \/ 1. (10)

0
& ne

3: Let the eigen-decomposition of  be . = >, Aol Let A = max{4,,0} be
the positive part of 4;, then define * = 37 A*v;0].
4: return X%,

Theorem 1. Forany 0 < ¢€,6 < 1, Algorithm 1 is (e, 6)-differentially private.

Proof. By Section 3 in [19], we know that Step 1 keeps the matrix (e, 6)-differentially
private. Thus, Algorithm 1 is (e, §)-differentially private due to the post-processing
property of differential privacy [1]. g

For the matrix £ in (10) after the first step of thresholding, we have the following
key lemma.

Lemma 3. For every fixed 1 < i,j < p, there exists a constant C > 0 such that with
9
probability at least 1 — Cp™ 2, the following holds:

logp 44/210g(1.25/58)+/log p
ne

|5'ij_0','j| S4min{|6[j|s7/\/ ). an

Proof of Lemma 3. Let X* = (6],)1; j<p and N = (n;;)1<; j<,- Define the event A;; =

{5y > /82 4 DZREUB/OVIER) e haye:

6



By the triangle inequality, it is easy to see that

_ logp 44/2log(1.25/8)+/log p
Aij={|0ij_‘7ij+0ij|>7\/ p + Py

} logp 44/2log(1.25/8)+/log p
C{Ia,j—al-j|>y\/ p; + e

}

- |°'ij|}

and

- log p 4\/210g(1.25/5)\/10gp
At‘cj={|0-ij_o-ij+o-ijls}’\/ . + }

ne
logp 44/210g(1.25/5)+/log p

C {|5'ij =0yl > loy;l _(7\/ p

Depending on the value of ¢

)

ne

1j» We have the following three cases.

1 21og(1.25/6)4/1
Case 1. |oy| < 14/ 4 Y2REUB/ONoer ne/)v"g”

. For this case, we have

- 3y [logp 34/2log(1.25/6)4/logp
P(Aij)sp(lo-ij_aij|>% 5 + v s v

This is due to the following:

3y \/log v, 34/210g(1.25/6)+/log p)

[P’(l&,-j — O'l-jl >

4 n ne
<Pt — oyl > 34_y\/10§p N 3x/2log<1.j:/6>\/logp )
_p(s, ﬂ {3\/210g(1.n€5/5)\/10g1) ~nyl > 0})
(8, {3\/210g(1.n€5/5)\/10gp a1 <0})
<P} — o] > f%y 10fp)+ P(3\/210g(1.§:/5)\/10gp < In;1)

_3 _2
<Cipr+2p2,

where event B;; denotes B;; = {|a;"j -0yl >

and the last inequality is due to (4) and (5).
9

9
Thus by (12), with probability at least 1 — C;p” 2 — 2p 2, we have
|6'ij - 0'1j| = |0','j|,

which satisfies (11).

_2 -2
)SClp 2+2p 2,

13)

(14)

s)

(16)

a7

18)

19)

3y /IOﬂ " 3\/210g(1‘25/5)\/10gp) _ |n |}
n ne ijiis



| > 27/ logp + 84/21og(1.25/6)+/log p
Jt = n ne

Case 2. |o;; . For this case, we have

logp 44/210g(1.25/5)+/log p

9
)< Cp 2 +2p78,
n ne

9
where the proof is the same as (13-17). Thus, with probability at least 1 —C;p~2 —2p~%,
we have
|5'ij_°'ij| = |5'ij—°'ij|- (20)

Also, by (9), (11) also holds.

Case 3. Otherwise,

y [logp  +/210g(1.25/8)\/log p logp 8+/2log(1.25/6)\/logp
1 + <oyl <2y + .
4 n ne J n ne

For this case, we have

44/210g(1.25/6)4/1
When |aij| <y logp + 1/21og(1.25/5)+/log p

n ne

, we can see from (9) that with probability
atleast 1 —2p~0 — Clp‘g,

. logp 44/21og(1.25/8)4/logp
|6, —oil <7 , + Py

<4lo

ijl-

Thus, (11) also holds.

Otherwise when |o;;| > ¥

10% + 4@ logp, (11) also holds. Thus,

Lemma 3 is true. O
By Lemma 3, we have the following upper bound on the £,-norm error of X*.
Theorem 2. The output =* of Algorithm 1 satisfies:

1 1
s2logp S°logplogs logs

n2e? n2e4

EIZ* - 2|13 = O( ), (22)

where the expectation is taken over the coins of the Algorithm and the randomness of
{x1, x5+, x, ).

Proof of Theorem 2. We first show that ||[Zt — X, < 212 - 2||,. This is due to the
following

I=F = Zlly <UTF = 2y + 12 = Zlly < max 14,] + 12 - 2l

< max |4 — 4@+ 1 -2, <2|IE - Z|,,
i:4;<0

where the third inequality is due to the fact that X is positive semi-definite.



This means that we only need to bound Iz - Z||,. Since $-3is symmetric, we
know that || — Z||, < ||£ = Z||, [27]. Thus, it suffices to prove that the bound in (22)
holds for ||£ — 2.

We define event E;; as

logp 44/210g(1.25/5)4/log p

E,.j={|&,.j—a,.j|54min{|a,.j|,y\/ - o (23)

ne

2

Then, by Lemma 3, we have IP’(Eij) >1-2C)p 2.
Let D = (dij)lgi,jSp’ where dij = (6'ij — aij) . I(Efj). Then, we have

I£-ZIF <IIE-Z-D+D|;
<2|E£-X- DI} +2D|}

1
y*logp logplogs

n2e?

<4(sup ). 16,; — oy [ T(E;)* + 2/ D|I? + O(
Jij

) (24)

We first bound the first term of (24). By the definition of E;; and Lemma 3, we can
upper bound it by

(sup Z 6;; — 0'ij|I(Eij))2
Tt

) logp 44/2log(1.25/6)+/logp
< l6(sup2mm{|o-ij|,y\/ g + \/ \/ H?
i n ne

1 44/210g(1.25/6)/lo
516s2(y\/ ogp V/21log(1.25/8)+/ g0
n

ne

2] szlogplogl
SO(szy ng+ 5

n2e? 25

where the second inequality is due to the assumption that at most s elements of (¢;;),;
are non-zero.
For the second term in (24), we have

EIDIT < p), Ed; = pE Y6y = oy 1(Ef; () {6y, = 5;])
ij

+ (6, — oM I (EL, ({6, = 0D

= pE 2(&,, — o) I(ES) +p Z Eo? I(E, ﬂ{&ij =0}). (26)
ij ij
For the first term in (26), we have
Y E(@y — 0, PIE)} < p Y [EGy — 0,) T P3 (EE) @
ij ij
log 1 1
<Cp pznz—ejp‘3 (=)



where the first inequality is due to Holder inequality and the second inequality is due to
the fact that with some constant C; > 0,

E@,; —0;,)° < C3[E(o}; - o,)0 + [En?j].

ij
constant C, [28]. For the first term E(c}, —0;; )8, since x; is sampled from asub-Gaussian
distribution (2), by Whittle Inequality (Theorem 2 in [29] or [22]), the quadratic form
o-i*j satisfies E(o}; — o; j)6 < Cs n% for some positive constant C5 > 0.

For the second term of (26), we have

PZ[EUUI(EC m{gu =0})
1 164/210g(1.25/6)4/1o
=pZEGi2jl(|‘7ij| > 4ry/ Ofp+ V21og(1.25/6)+/ gP)

- ne
tj

. lo 44/210g(1.25/6)4/logp
XI(|Gij|SV\/ §p+ \/ \/ )

Since n;; is a Gaussian distribution, we have [En?j < C40 = O(( )3) for some

ne
logp 164/21og(1.25/6)4/logp
< p Y B I(lo | > 4y 22 4 1Y Vieer,
5 n ne
logp 44/2log(1.25/8)/logp
x I(lo;;| —16;; — oy S}’\/ \ + P )
flogp 164/210g(1.25/8)\/logp 3
<p20’2[EI(|a | > 4y " + e )I(|O-jj_o-jj|21|o—ij|)
llogp 164/210g(1.25/8)+/log p ‘ 3
SpZO'iszEI(|0'U| > 4y - + e )I(|G?j_6ij|+|nij| 2 Z|°'ij|)
ij
logp 164/210g(1.25/8)+/log p
<p26 ({155, = o1 > 2oy, 1 = In 1} () {loy 1 > 4 Vo — })
(28)
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_pZO' {lau Uu|—4 il |"U|}ﬂ{|nu |0'1,|}ﬂ
/1 164/210g(1.25/6)4/log p
{|aij|>4)/ o§p+ \/ \/ })+PZO',»ZJ-P({|U;}_UU Z%laijl_lnijl}
ij

ne

logp 164/21log(1.25/6)+/log p
() {In;1 _4|a,]|}ﬂ{|au|>4 Vot — )

z, - 1 164/210g(1.25/6)4/lo
<P L0 {IUU ojjl 2Ia,,l}| |{|a,j|>4 \/O’f:’P V/2log ne/ Vv gp})
+ P( 1 164/210g(1.25/6)4/1

PZ% {Inu |6,,|}| |{|‘7u|>4 \/ng \/ og ne/ \/ng}).

(30)
For the second term of (30), by Lemmas 1 and 2 we have

1 logp 164/210g(1.25/6)/logp
pZoij({ln,,wzz|a,»,|}ﬂ{|ai,|>4y\/f L — v N
1

logp 44/2log(1.25/8)log p 1
2
<p20' |]3’(|n \/ n + ne })I]:D(lnijl > Zo-ij)
logp A/ 2 2
<CpY o, exp( Y TIOVIR T
/ 262 3202

i 1 1

(ry/ “E2 + 40, \/log p)? 3207
)

<Cp Z al,zj exp(—

2 2
ij 20'1 Gij
2 2 Y2 logp. _g
<Coyp-p exp(———-)p~ (31)
2no-12
2 2
log? 1/6
< Co? -5( Ly = 0(=% 4/ ) (32)
gp n<e
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For the first term of (30), by Lemma 2 we have

1
p}}ﬁ(na—a|z§wm}ﬂumﬂ2®f =£2))

<? 2 26’2’ I >4 logp
_;Z‘”GijeXP(—”l?) (loj;1 = 4y T)

2 2
_P 2 %ij Oij log p
= Y [no7, eXp(—n—y2 ] GXP(—n—yz)I(Ia,»jl 247\ — )
ij

2
p Z na -— exp( 161og p) (33)
nau
2 3
<clP 16 - 0(—). (34)
n n

Thus in total we have E[|D||> = O(“51£%). This means that E||$ — |2 = O(*1£2 1°g1’ +

52 logplog 3
n2e?

1
+ ¢ b) which completes the proof. O

Corollary 1. Forany1 < w < o, the matrix 3 in (10) after the first step of thresholding

satisfies
2 s2logplog L log? 1
& 2 s”logp 5 5
I£ - 212, < O t— —). (35)
where the w-norm of any matrix A is defined as || Al|,, = sup 1 Axl,, . Specifically, for

lIxl
amatrix A = (a;))1<; j<p |All; = sup; X, a;;| is the maximum absolute column sum,

and || Al|, = sup; Zj la;;| is the maximum absolute row sum.
2
Comparing the bound in the above corollary with the optimal minimax rate &( %)
in [22] for the non-private case, we can see that the impact of the differential privacy

. .. s logplog% log 6
is an additional error of O(—57— + —=7%). Itis an open problem to determine

whether the bound in Theorem 2 is tight.

Proof of Corollary 1. By Riesz-Thorin interpolation theorem [30], we have
lAll,, < max{[lAll}, [|All2, | Al }

for any matrix A and any 1 < w < oo. Since Xt — ¥ is a symmetric matrix, we have
IZF =2, < |IZ*=Z||; and ||[Zt = Z]|; = ||t —X|| - Thus, by the proof of Theorem
2 we get this corollary. O

4.3. Extension to Local Differential Privacy

One advantage of our Algorithm 1 is that it can be easily extended to the local
differential privacy (LDP) model.

12



Differential privacy in the local model. In LDP, we have a data universe D, n players,
with each holding a private data record x; € D, and a server that is in charge of co-
ordinating the protocol. An LDP protocol proceeds in T rounds. In each round, the
server sends a message, which sometimes is called a query, to a subset of the players,
requesting them to run a particular algorithm. Based on the queries, each player i in
the subset selects an algorithm Q;, runs it on her data, and sends the output back to the
server.

Definition 3. [31] An algorithm Q is (e, 6)-locally differentially private (LDP) if for
all pairs x,x' € D, and for all events E in the output space of Q, we have

P[O(x) € E] < efP[O(x") € E] + 6.

A multi-player protocol is e-LDP if for all possible inputs and runs of the protocol, the
transcript of player i’s interaction with the server is e-LDP. If T = 1, we say that the
protocol is (e, 6) non-interactive LDP.

Algorithm 2 LDP-Thresholding
Input: {x,x), ., x,} ~ P € P,(c% 5),and€,5 € (0, 1)

1: for Eachi € [n] do
22 Denote ;%7 = x;xI + z;, where z; € RP? is a symmetric matrix with its
upper triangle ( including the diagonal) being i.i.d samples from N'(0, 62); here

52 = 2ou(125/6)

= =8 =00

- , and each lower triangle entry being copied from its upper
triangle counterpart.

3: end for

4: Compute £ = ()1 j<p = % Yo Xl

s: Define the thresholding estimator £ = (§; i<ij<n 88

log p N 44/210g(1.25/8)4/log p
h \/;e
6: Let the eigen-decomposition of £ be & = Zle Aol Let A = max{4,,0} be

the positive part of A;, then define £+ = Zle Mool
7: return X%,

Inspired by Algorithm 1, it is easy to extend our DP algorithm to the LDP model.
The idea is that each X; perturbs its covariance and aggregates the noisy version of
covariance; see Algorithm 2 for detail.

The following theorem shows that the error bound of the output of Algorithm 2 is
the same as the the bound in Theorem 2 asymptotically, whose proof is almost the same
as in Theorem 2.

Theorem 3. The output T+ of Algorithm 2 satisfies:

. 5 52 logplog%
ElIZ - 2|5 = O(————). (37)

ne?
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where the expectation is taken over the coins of the Algorithm and the randomness of

A . . A 5 slogplogé
{x1, x5, -+, x,}. Moreover, X in (36) satisfies || — Z||; = O(n—Z)‘

2 1 21
s%log p s~ log plog 5 0g” 5
n n2e? nZet

Compared with the upper bound of O( ) in the central

log plog 1
(e, 6)-DP model, we can see that the upper bound of O(Sognp%) in the local model is
much more lower. We also note that the upper bound in the local model is tight, given
by [32] recently.

5. Experiments

In this section, we evaluate the performance of Algorithm 1 and 2 in practice on
synthetic datasets.

Data Generation. We first generate a symmetric sparse matrix U with the sparsity ratio
sr, that is, there are sr X p X p non-zero entries of the matrix. Then, weletU =U + 41,

for some constant A to make U positive semi-definite and then scale it to U = % by
some constant ¢ which makes the norm of samples less than 1 (with high probability)!.

Finally, we sample {x, ---, x,,} from the multivariate Gaussian distribution N(©,U).
In this paper, we set A = 50 and ¢ = 200.

Experimental Settings. To measure the performance, we compare the #; and £, norm
IZ-Ull, . IZ*-Ul}y
U1l i,

three different settings: 1) We set p = 100, e = 1,6 = i and change the sparse ratio
sr=1{0.1,0.2,0.3,0.5}. 2) Wesete = 1,6 = %, sr = 0.2, and let the dimensionality p

vary in {50, 100, 200, 500}. 3) We fix p = 200, 6 = %, sr = 0.2 and change the privacy
level as € = {0.1,0.5,1,2}. We run each experiment 20 times and take the average
error as the final one.

of relative error, respectively. That is,

with the sample size n in

Experimental Results. Figure 1 and 2 are the results of DP-Thresholding (Algorithm
1) with £, and ¢, relative error, respectively. Figure 3 and 4 are the results of LDP-
Thresholding (Algorithm 2) with £, and £ relative error, respectively. From the figures
we can see that: 1) if the sparsity ratio is large i.e., the underlying covariance matrix
is more dense, the relative error will be larger, this is due to the fact that the error
depends on the sparsity s, as shown in Theorem 2 and 3. 2) The dimensionality only
slightly affects the relative error. That is, even if we double the value of p, the error
increases only slightly. This is consistent with our theoretical analysis in Theorem 2 and
3 which says that the error of our private estimators is only logarithmically depending
on p (i.e., log p). 3) As the privacy parameter € increases (which means stronger privacy
guarantees), the error becomes larger. This has also been showed in previous theorems.
In summary, all the experimental results support our theoretical analysis.

! Although the distribution is not bounded by 1, actually, as we see from the previous section, we can
obtain the same result as long as the £, norm of the samples is bounded by 1.
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Figure 1: Experiment results of Algorithm 1 for #,-norm relative error. The left one is for different sparsity
levels, the middle one is for different dimensionality p, and the right one is for different privacy level e.

sample size sample size sample size

Figure 2: Experiment results of Algorithm 1 for #,-norm relative error. The left one is for different sparsity
levels, the middle one is for different dimensionality p, and the right one is for different privacy level e.

‘sample size

Figure 3: Experiment results of Algorithm 2 for #,-norm relative error. The left one is for different sparsity
levels, the middle one is for different dimensionality p, and the right one is for different privacy level e.
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Figure 4: Experiment results of Algorithm 2 for #|-norm relative error. The left one is for different sparsity
levels, the middle one is for different dimensionality p, and the right one is for different privacy level e.

6. Conclusion and Discussion

In the paper, we study the problem of estimating the sparse covariance matrix of
a bounded sub-Gaussian distribution in the differential privacy model and propose a
method called DP-Thresholding, which achieves a non-trivial error bound and can be
easily extended to the local model. Experiments on synthetic datasets yield consistent
results with the theoretical analysis.

There are still some open problems for this problem. Firstly, although the thresh-
olding method can achieve non-trivial error bound for our private estimator, in practice
it is hart to find the best threshold. Thus, an open problem is how to get the best thresh-
old. Secondly, as mentioned in the related work section, there are many recent results
on private Gaussian estimation, which may make the £, norm of the samples greater
than 1. Thus, it is an interesting problem to extend our method to a general Gaussian
distribution.
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