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Abstract

The number of daily small Unmanned Aircraft
Systems (sUAS) operations in uncontrolled low
altitude airspace is expected to reach into the millions
in the future. This makes UAS traffic density
prediction a critical and challenging problem. In an
Unmanned Aircraft System Traffic Management
(UTM) framework, an accurate traffic prediction
model is the key to manage congestion in very dense
areas and allow us to evaluate different mission and
resource provision plans in search for the best solution.
In our previous work, a deep neural network (DNN)
model has been proposed that predicts the
instantaneous traffic density based on mission
schedule information. However, one of the main
drawbacks of the DNN is the high computational cost,
which prevents us from applying the model to search
for the best mission plan or best locations of launching
and landing zones, because it requires exponentially
large numbers of predictions based on different input
combinations. In this paper, we aim to reduce the
complexity of the neural network model. A neural
architecture optimization framework that searches for
the best compression ratio for each layer is developed.
Overall, we are able to reduce the size of the traffic
prediction model by 50%. Furthermore, because the
pruning adds more regularization on the model and
reduces the potential of overfitting, the compressed
model also achieves small improvements in the
prediction accuracy.

Introduction

New applications and services based on small
Unmanned Aircraft Systems (sUAS) have gradually
been introduced into urban city environments. The
number of daily SUAS operations in uncontrolled low
altitude airspace is expected to reach into the millions
in the future. Complicated and high density UAS
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traffic imposes a significant burden on air traffic
management, city planning and communication
resource allocation. Fast and accurate UAS traffic
density prediction is necessary for centralized
management to coordinate and control UAS missions
to avoid potential conflicts, ensure timely completion
of missions and enhance operational safety through
guaranteed connectivity to communication networks.

The UAS traffic density at a future time T can be
considered as a function of the current UAS traffic
density distribution, the flight environment (e.g. the
location of the no-fly-zones), and the schedule of the
future UAS missions within the target air space up to
time T. Recent research showed that conventional
neural networks with at least one hidden layer satisfy
the universal approximation property [1] in that they
can approximate an arbitrary continuous or
measurable function given enough number of neurons
in the hidden layer. In our previous work [2] a DNN
model has been developed to predict the traffic
density. Compared to previous machine learning based
traffic predictors, our DNN takes the flight
environment and detailed UAS mission launch
information as the inputs, hence it can be generalized
to different air spaces as long as the trajectory of each
UAS is routed using the same algorithm. In other
words, it will need no “down time” after a change of
the no-fly-zone or the launching/landing zone
information. The predicted traffic has high correlation
to the actual traffic.

However, the complexity of the DNN model
increases when more environment dynamics are
considered. The traffic predictor is used in the inner
loop of many dynamic traffic management
applications, such as selecting the landing and
launching area, scheduling a mission request, and
allocating frequency band resources for UAV
communications. Each of such tasks is a combinatorial
optimization problem, where the optimal solution



cannot be found analytically. To efficiently explore
the design space to search for the optimal
configuration, the traffic predictor must be able to
process many potential traffic scenarios in a short
period of time. Therefore, in addition to accuracy, low
complexity and low cost are other critical
requirements for the traffic predictor.

The goal of this work is to compress the traffic
prediction model to a smaller size without sacrificing
the prediction accuracy. A network architecture search
(NAS) method is developed to find the optimal DNN
architecture in the spatial-temporal domain for better
prediction performance and robustness. The overall
framework is based on an architecture prediction
model that predicts the accuracy of a compressed
traffic density predictor. With the architecture search
framework, we have reduced the size of the original
traffic prediction model by 50% without losing
accuracy.

Background and Related Works

Unmanned aerial vehicles have played an
increasingly important role in many areas [3][4][5][6].
As one of the key factors in the design of UTM system,
UAS traffic density prediction based on
implementations that use deep learning methods has
attracted great interest. [7][8][9][10].

In our previous work, a DNN model has been
trained to predict the UAV traffic density with a
correlation up to 0.945 and to predict traffic hot-spots
with the Area Under the Receiver Operating
Characteristics (AUROC) score up to 0.95. In order to
consider the long, medium and short-term impact of
the scheduled UAV missions, the model architecture
shown in Fig. 1, with each term contains two
convolutional neural networks (CNNs) in total six was
used to extract features from the future mission plans
for up to 6 cycles. And each cycle represents 10
simulation cycles which is 10 seconds for real time.
Another CNN is needed to process the current traffic
density map. Finally, a multi-layer fully connected
network is used to fuse the information from different
channels to form a vector embedding and a de-
convolutional neural network is used to transform the
vector into a 2D traffic map. The model has 10.6MB
weight parameters and requires 7.85GOP (Giga
Operation) computations for each prediction.
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Fig. 1. Mission-Aware Spatio-Temporal Model
Architecture.

Recent works have shown that weight pruning
techniques [11][12][13] can significantly reduce the
size of DNNs without loss of accuracy. [14] proposes
a Structured Sparsity Learning (SSL) method to
regularize the structures (i.e., filters, channels, filter
shapes, and layer depth) of DNNs, and learn a compact
structure from a bigger DNN to reduce computation
cost. [15][16] proposed methods to overcome pruning
ratio limitations. Other model compression methods,
such as connection pruning [17][18] and low rank
approximation [19][20], have also been proposed.

Most of the previous works aim at removing links
and neurons in the given network until the pre-
specified prune ratio is reached. How much can be
pruned without affecting the performance of the model
is unknown in advance. Different prune ratios must be
tried until the right one is found. As each DNN layer
can be pruned with a different ratio, the possible
number of combinations increases exponentially with
the size of the network. While pruning a network
requires iterative training and fine tuning, it obviously
is not feasible to try each possible prune configuration.

Our solution in this work is to train an
architecture prediction model that predicts the
performance of the compressed model based on the
combination of its layer-wise compression ratio. The
architecture prediction model allows us to quickly
estimate the performance (e.g., traffic prediction
accuracy) of any compressed model without lengthy
pruning, and consequently narrows down the search
space. The predictor allows us to find a good
combination of prune ratios of different layers that
reduces the size of the traffic predictor while
maintaining its accuracy.



Model Reduction and Architecture
Search

Motivations

Our traffic prediction network extracts mission
information using 6 convolutional neural networks
(CNNs) as shown in Fig. 1. Each network processes
the set of missions scheduled to launch in a certain
time period. All of them have the structure that is given
in TABLE I. The missions scheduled to launch in the
near future and far future play different roles in
shaping the traffic density, therefore, although
initialized with the same architecture, the weight
parameters of the 6 CNNs diverge after training.

TABLE I. Architecture information of the original
traffic predictor

Layer Filter size | #of filters Stride
1 4x4 64 2
2 2x2 128 1
3 2x2 256 1

Although the model gives high quality traffic
density prediction, the complexity is also extremely
high. Most of the computation is on the 6 CNNs for
mission feature extraction. Our goal is to reduce the
size of the CNNs to lower the model complexity and
accelerate the prediction without sacrificing its
prediction accuracy. This is achieved by pruning
(unnecessary) filters in the CNN layers. Filter pruning
is chosen here because it results in a dense weight
matrix, thereby facilitating GPU acceleration.
Furthermore, pruning a filter in layer i results in the
removal of a channel in layer i +1 without creating
sparsity.

Because their input has different importance to
the prediction, it is natural to expect that the 6 CNNs
should be compressed in different ways. Moreover, the
layers in the CNNs must be pruned differently. For
example, some layers play a dominant role in the
prediction process. When the number of filters of these
layers is relatively low, the model's final performance
will become extremely poor. The overall complexity
of the compressed model is determined by the prune
ratios of each of the 3 layers in those 6 CNNs. Fig. 2
shows the relation between the prediction accuracy of
the compressed model and its actual model size.
Generally, a smaller size indicates a higher

compression ratio. As we can see that a smaller model
does not always have worse accuracy and vice versa.
This is because the same compression ratio may
correspond to different neural architectures,
depending on how those 18 layers in Fig. 1 are pruned.
To find the best architecture is to find the optimal
combination of the 18 prune ratio variables. We also
need to point out that, the accuracy of the compressed
model is not necessarily lower than the original model.
As we will show in the experimental results, the
compressed model may slightly outperform the
original model, as the highly regulated structure helps
it to avoid overfitting.

correlation: -0.6242349051520563

9000

8000

7000

size

6000

5000 -

4000

o
) *
v oMt gy,
T T T T T T
36 38 40 a2 a4 46
loss

Fig. 2. Prediction accuracy versus compression
ratio.

Exhaustively  evaluating  each  possible
compressed architecture to find its accuracy is not
realistic as pruning a DNN is extremely time
consuming. In this work we develop another DNN that
predicts the accuracy of the compressed architecture to
accelerate the design space exploration. We refer to it
as the architecture predictor to distinguish from the
traffic prediction model to be pruned.

Architecture Prediction Model

We expect that the prediction accuracy is a
function of the combination of layer-wise prune ratios.
A 5-layer DNN is trained to approximate this
relationship. The structure of the DNN is shown in Fig.
3, where N is the batch size. The size of each layer is
labeled in the figure. The input of the model is the
vector of 18 prune ratios, and the output is the



accuracy of the compressed traffic predictor, measured
by the mean square error of the traffic prediction.
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Fig. 3. Architecture prediction model.

The architecture predictor is trained using
supervised training. To generate the training data,
different prune ratio combinations are sampled and the
original traffic predictor is pruned/trained accordingly.
The resulting compressed model is tested and its mean
square prediction error is used as the target value for
the training. As we can see, generating each data point
for the training set requires us to train a compressed
model, hence is time-consuming. However, as we will
show in the experimental results, the DNN can
generalize the relation between the architecture and
the model performance, and extend it to other prune
ratio combinations that is not in the training set. While
the training set is just a subset of the architecture
space, the model can be used to explore the entire
architecture space, which is much larger than the
training set.

Training of the architecture predictor

The architecture predictor is slightly different
from a regular regression model. The goal of the
conventional regression models is to maximize the
prediction accuracy; hence they usually use mean
square error as the loss function. The architecture
predictor is used to compare different compressed
architectures (that have similar size) to find the one
with the best accuracy. The absolute value of those
architectures’ accuracy is not important, as long as
their relative order is predicted correctly. In other
words, it is more important to maintain a high
correlation between the predicted accuracy and target
accuracy than minimizing the absolute difference
between these two. Therefore, during the training, the
following three techniques were adopted to improve
the correlation between the predicted and the target
accuracy.

Adding correlation to the loss function

For each training batch, after the forward pass,
the correlation between the model's predicted value y
and the target value y is calculated using the following
equation.

cov(P,y)
Jvar(@)*var(y) (1)

corr =

The loss function of the training is a weighted
combination of the mean square error (MSE) loss and
the correlation loss as specified in Equation (2):

loss = a* MSE + B * (1 —corr), 2)

where o and B are hyper-parameters. Smaller a and
larger  would cause the model to focus on increasing
the overall correlation, while larger a and smaller
would cause the model to focus on reducing the overall
loss.

Using the new loss function, the correlation
between the prediction and the target value is
improved. Although the model may lose some
prediction accuracy, this is acceptable in our
application.

Adjusting training data distribution

We found that adding data with different features
as much as possible helps to improve the quality of the
model. For instance, in some extreme cases, the
randomly sampled compressed architecture has
convolutional layers that have only one filter left. The
accuracy of such traffic prediction network is
obviously very poor. Although these architectures do
not have real application significance, including them
in the training set can help the model better understand
the role of different convolutional layers in the training
process.

Training with mixed batch size

In the training process, the architecture predictor
be optimized one time in one epoch and the batch size
is a crucial factor. We dynamically change the batch
size as the epoch increases during training. The batch
size increases sequentially. For example, the first
epoch's batch size is 4, the batch size of the second
epoch is 10, and the batch size of the third epoch is 90.

We use partial correlation to refer to the
prediction and target value correlation in the same
batch and use overall correlation to refer to the



correlation in the entire training set. We found that
using a fixed batch size, no matter how large or small,
it is hard to balance the overall and partial correlation.
When the batch size is small, we get very high partial
correlation. However, the model does not give
consistent prediction from one batch to another, hence
the overall correlation is poor. When the batch size is
large, the overall correlation is improved. However, a
single outlier does not affect the overall correlation
significantly, and this is reflected as the poor partial
correlation. Therefore, a mixed batch size is adopted.
This method can integrate the advantages of large and
small batch sizes and consider the partial correlation
while improving the overall correlation. Since this
method requires constant batch size changes, the
model also needs to train more epochs to achieve the
best results.

Using the above three methods, we finally
increased the model correlation from 0.71 to 0.92 and
even reached 0.96 in the validation set.

Incremental training to specific corner

Since our purpose is to reduce the size of the
traffic predictor as much as possible while retaining its
accuracy, we are interested more in the data points
located at the lower left corner of the size versus
accuracy (or loss) design space shown in Fig. 2. The
architectures located in this corner have smaller size
and higher accuracy, therefore they are referred to as
effective architectures. And the architectures located
outside this corner are referred to as ineffective
architectures as they have larger size and/or lower
accuracy. During the training process, we try to
specialize the model to give better prediction to the
data points corresponding to the effective
architectures. This is achieved by adding more data
points corresponding to the effective architectures to
the training set.

However, to distinguish between an effective
architecture and an ineffective architecture is not easy.
Given a randomly sampled prune vector, while the size
of the compressed model can be easily estimated, its
accuracy is unknown unless we actually compressed
the mode, trained and tested it. Unfortunately, there
are more ineffective architectures than -effective
architecture. Since an ineffective architecture does not
help the training process as much as an effective
architecture, much of the effort in generating the
training data will be wasted. To address this problem,

we apply incremental training as described in Fig. 4.
Incremental training accelerates the model's learning
speed for the feature that we need by adding the
validated model prediction data into the training set.
First, we randomly sample 300-400 compressed
architectures, train and test them to generate the initial
training set. The architecture prediction model is pre-
trained on the initial training set. Taking advantage of
the pre-trained model, we then predict the accuracy of
another set of randomly sampled architectures, and
select the architecture whose accuracy is lower than a
certain threshold. The corresponding compressed
architecture will be generated and tested. These new
data will form a new training batch to further refine the
model. This procedure is repeated iteratively until the
overall correlation achieves a predefined threshold.
Totally 2300 training architecture data is generated in
this work.

Utilizing current training
data to train and save the
architecture predictor

Collect 300~400 groups
training data as initial data

Base on the pre-trained
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have higher accuracy
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loss <
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Adding this data to the
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Drop out this data

Fig. 4. Flow of incremental training.

Experimental Results

Original model vs. compressed model

Using the trained architecture predictor, we
predicted the accuracy of 30 million random
architectures with a size below a given threshold. 30
architectures with the best predicted size vs. accuracy
tradeoffs were selected and implemented. The green
points in Fig. 5 show the size vs. accuracy tradeoffs of
those architectures. The blue points in the figure give



the size vs. accuracy of the 2300 training architectures.
As we can see, since the 30 selected architecture have
been filtered by the predictor, in average, they have
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Fig. 5. Size-accuracy tradeoffs of the 30 selected
architecture.

better accuracy than the training architecture. The
point located at the lower left corner is the best
architecture.

TABLE 1II shows the percentage reduction of
size, accuracy and inference time of the best selected
architecture compared to the original model. As we
can see, the compressed model can slightly improve
the accuracy (negative accuracy reduction) even
though the size is compressed by 55%. The reason that
the accuracy is slightly improved is because the
compressed architecture has less weight parameters
and hence is less likely to do overfitting. The
inference speed is also greatly improved due to the
reduced complexity. This means that our compressed
model consumes fewer resources to achieve the same
prediction effect.

TABLE II. Original Model vs. Compressed Model

Comparison with randomly found architecture

Searching for the optimal architecture by
exhaustively evaluating different structures may be
feasible for simple and small neural networks, since
the possible architectures are limited and the training
of a small neural network does not take too much time.
However, when the network size gets increased, this is
no longer practical. In order to find the optimal size
and accuracy tradeoff, a much larger number of
compressed architectures must be sampled and tested
due to the exponentially increased search space, and
each one requires longer training and evaluation times.

The biggest advantage of our approach is that the
architecture prediction model can be trained based on
a limited number of compressed architectures and it
can generalize the learned architecture-accuracy
relationship to a wider range. In our work, a total of
2300 compressed architectures were generated to train
the model. The average mean square error (MSE) loss
between the predicted value and label is only 0.14, and
the correlation can reach 0.926. Using trained models,
we can evaluate tens of millions of possible
compressed architectures within minutes.

TABLE III. Original Model vs. Compressed
Model (Random search)

Original Compressed | Compar
Model Model ison
Model 1) ser kB | 4713KB -55.38%
size
Loss 37.575 37.413 -0.431%
Time
(200 0.068 s 0.025s -63.24%
Samples
)

Best Random Result
Original Compressed | Compar
Model Model ison
Model
size 10,562 KB 4,490 KB -57.49%
Loss 37.575 39.645 +5.221%
Minimum Loss Result
Original Compressed | Compar
Model Model ison
Model 1) s> kB | 8286 KB 21.55%
size
Loss 37.575 36.038 -4.265%
Minimum Size Result
Original Compressed | Compar
Model Model ison
zfz‘;del 10,562 KB | 4,210 KB -60.14%
Loss 37.575 45.361 +17.16%

We randomly selected 300 architectures and plot

them in the size-accuracy space in Fig. 5 using red
color. As we can see, compared to random compressed
architecture, the size-accuracy plot of the training data



that we generated for the incremental training process
(i.e. data points in grey) has already shifted to the
lower left side notably. This means these training
architectures exhibit better size-accuracy tradeoff.
And the green data points, which are filtered by the
predictor, are further improved compared to the
training data. We also selected 3 of those random
architectures with the best size-accuracy trade off.
Their reduction of its size, accuracy and inference time
compared to the original model is reported in TABLE
III. It shows that at the similar compress ratio, the
randomly selected architecture has much lower
accuracy.

Impact of correlation loss
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Fig. 7. Loss Function Representative Correlation
Result.

As mentioned above, we modified the loss function
of the architecture predictor by adding the correlation
loss. The modified loss function can directly boost the
correlation between the predicted and actual value. Fig.
7 gives the scatter plots between the prediction and the
target value for the architecture predictor with and
without the correlation. As we can see, if only MSE
loss is considered in training, when the target accuracy
(loss) is high (low), the model cannot distinguish the
performance of different architectures and will simply
predict the same value. This obviously will not help us
select the optimal architecture.

Impact of different batch size

As we discussed before, the batch size also has an
impact on the quality of the trained model and it helps
to improve data point distribution. Fig. 6 shows the
relation between the predicted value and target value,
when trained with a mixed batch and a constant batch
with size N=90. As we can see, the model trained with
mixed batch size has better correlation. Actually, the

model trained mixed batch size has correlation as high
as 0.9262. And the models trained fixed batch with size
N=10, 50, and 90, have correlations 0.898, 0.879 and
0.885, respectively.
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Fig. 6. Impact of batch size (a) Mixed (b) N =90

Conclusions

In this paper we proposed a technique to search for
the best prune strategy for the UAV traffic density
prediction model to facilitate fast traffic prediction.
With the help of the proposed architecture prediction
model, we can efficiently evaluate the performance of
many different compressed architectures in the design
space and select the optimal one We found out that
adding correlation into the loss function, dynamically
adding new data during the training phase and training
with a mixed sized batch can significantly improve the
correlation of our architecture prediction model. In our
results, we achieved a reduction in the size of the
original traffic prediction model by 55% while keeping
similar accuracy as the original model. At the same
time, the model execution time speeds up by 60%.
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