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Abstract 
The number of daily small Unmanned Aircraft 

Systems (sUAS) operations in uncontrolled low 
altitude airspace is expected to reach into the millions 
in the future. This makes UAS traffic density 
prediction a critical and challenging problem. In an 
Unmanned Aircraft System Traffic Management 
(UTM) framework, an accurate traffic prediction 
model is the key to manage congestion in very dense 
areas and allow us to evaluate different mission and 
resource provision plans in search for the best solution. 
In our previous work, a deep neural network (DNN) 
model has been proposed that predicts the 
instantaneous traffic density based on mission 
schedule information. However, one of the main 
drawbacks of the DNN is the high computational cost, 
which prevents us from applying the model to search 
for the best mission plan or best locations of launching 
and landing zones, because it requires exponentially 
large numbers of predictions based on different input 
combinations. In this paper, we aim to reduce the 
complexity of the neural network model. A neural 
architecture optimization framework that searches for 
the best compression ratio for each layer is developed. 
Overall, we are able to reduce the size of the traffic 
prediction model by 50%. Furthermore, because the 
pruning adds more regularization on the model and 
reduces the potential of overfitting, the compressed 
model also achieves small improvements in the 
prediction accuracy. 

Introduction 
New applications and services based on small 

Unmanned Aircraft Systems (sUAS) have gradually 
been introduced into urban city environments. The 
number of daily sUAS operations in uncontrolled low 
altitude airspace is expected to reach into the millions 
in the future. Complicated and high density UAS 

traffic imposes a significant burden on air traffic 
management, city planning and communication 
resource allocation. Fast and accurate UAS traffic 
density prediction is necessary for centralized 
management to coordinate and control UAS missions 
to avoid potential conflicts, ensure timely completion 
of missions and enhance operational safety through 
guaranteed connectivity to communication networks. 

The UAS traffic density at a future time T can be 
considered as a function of the current UAS traffic 
density distribution, the flight environment (e.g. the 
location of the no-fly-zones), and the schedule of the 
future UAS missions within the target air space up to 
time T. Recent research showed that conventional 
neural networks with at least one hidden layer satisfy 
the universal approximation property [1] in that they 
can approximate an arbitrary continuous or 
measurable function given enough number of neurons 
in the hidden layer. In our previous work [2] a DNN 
model has been developed to predict the traffic 
density. Compared to previous machine learning based 
traffic predictors, our DNN takes the flight 
environment and detailed UAS mission launch 
information as the inputs, hence it can be generalized 
to different air spaces as long as the trajectory of each 
UAS is routed using the same algorithm. In other 
words, it will need no “down time” after a change of 
the no-fly-zone or the launching/landing zone 
information. The predicted traffic has high correlation 
to the actual traffic. 

However, the complexity of the DNN model 
increases when more environment dynamics are 
considered. The traffic predictor is used in the inner 
loop of many dynamic traffic management 
applications, such as selecting the landing and 
launching area, scheduling a mission request, and 
allocating frequency band resources for UAV 
communications. Each of such tasks is a combinatorial 
optimization problem, where the optimal solution 
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cannot be found analytically. To efficiently explore 
the design space to search for the optimal 
configuration, the traffic predictor must be able to 
process many potential traffic scenarios in a short 
period of time. Therefore, in addition to accuracy, low 
complexity and low cost are other critical 
requirements for the traffic predictor. 

The goal of this work is to compress the traffic 
prediction model to a smaller size without sacrificing 
the prediction accuracy. A network architecture search 
(NAS) method is developed to find the optimal DNN 
architecture in the spatial-temporal domain for better 
prediction performance and robustness. The overall 
framework is based on an architecture prediction 
model that predicts the accuracy of a compressed 
traffic density predictor. With the architecture search 
framework, we have reduced the size of the original 
traffic prediction model by 50% without losing 
accuracy. 

Background and Related Works 
Unmanned aerial vehicles have played an 

increasingly important role in many areas [3][4][5][6]. 
As one of the key factors in the design of UTM system, 
UAS traffic density prediction based on 
implementations that use deep learning methods has 
attracted great interest. [7][8][9][10]. 

In our previous work, a DNN model has been 
trained to predict the UAV traffic density with a 
correlation up to 0.945 and to predict traffic hot-spots 
with the Area Under the Receiver Operating 
Characteristics (AUROC) score up to 0.95. In order to 
consider the long, medium and short-term impact of 
the scheduled UAV missions, the model architecture 
shown in Fig. 1, with each term contains two 
convolutional neural networks (CNNs) in total six was 
used to extract features from the future mission plans 
for up to 6 cycles. And each cycle represents 10 
simulation cycles which is 10 seconds for real time. 
Another CNN is needed to process the current traffic 
density map. Finally, a multi-layer fully connected 
network is used to fuse the information from different 
channels to form a vector embedding and a de-
convolutional neural network is used to transform the 
vector into a 2D traffic map. The model has 10.6MB 
weight parameters and requires 7.85GOP (Giga 
Operation) computations for each prediction. 

Recent works have shown that weight pruning 
techniques [11][12][13] can significantly reduce the 
size of DNNs without loss of accuracy. [14] proposes 
a Structured Sparsity Learning (SSL) method to 
regularize the structures (i.e., filters, channels, filter 
shapes, and layer depth) of DNNs, and learn a compact 
structure from a bigger DNN to reduce computation 
cost. [15][16] proposed methods to overcome pruning 
ratio limitations. Other model compression methods, 
such as connection pruning [17][18] and low rank 
approximation [19][20], have also been proposed.  

Most of the previous works aim at removing links 
and neurons in the given network until the pre-
specified prune ratio is reached. How much can be 
pruned without affecting the performance of the model 
is unknown in advance. Different prune ratios must be 
tried until the right one is found. As each DNN layer 
can be pruned with a different ratio, the possible 
number of combinations increases exponentially with 
the size of the network. While pruning a network 
requires iterative training and fine tuning, it obviously 
is not feasible to try each possible prune configuration. 

Our solution in this work is to train an 
architecture prediction model that predicts the 
performance of the compressed model based on the 
combination of its layer-wise compression ratio. The 
architecture prediction model allows us to quickly 
estimate the performance (e.g., traffic prediction 
accuracy) of any compressed model without lengthy 
pruning, and consequently narrows down the search 
space. The predictor allows us to find a good 
combination of prune ratios of different layers that 
reduces the size of the traffic predictor while 
maintaining its accuracy. 

 

 

Fig. 1. Mission-Aware Spatio-Temporal Model 
Architecture. 



Model Reduction and Architecture 
Search 

Motivations 
Our traffic prediction network extracts mission 

information using 6 convolutional neural networks 
(CNNs) as shown in Fig. 1. Each network processes 
the set of missions scheduled to launch in a certain 
time period. All of them have the structure that is given 
in  TABLE I. The missions scheduled to launch in the 
near future and far future play different roles in 
shaping the traffic density, therefore, although 
initialized with the same architecture, the weight 
parameters of the 6 CNNs diverge after training.  

TABLE I. Architecture information of the original 
traffic predictor  

Layer Filter size #of filters Stride 
1 4 x 4 64 2 
2 2 x 2 128 1 
3 2 x 2 256 1 

 

Although the model gives high quality traffic 
density prediction, the complexity is also extremely 
high. Most of the computation is on the 6 CNNs for 
mission feature extraction. Our goal is to reduce the 
size of the CNNs to lower the model complexity and 
accelerate the prediction without sacrificing its 
prediction accuracy. This is achieved by pruning 
(unnecessary) filters in the CNN layers. Filter pruning 
is chosen here because it results in a dense weight 
matrix, thereby facilitating GPU acceleration. 
Furthermore, pruning a filter in layer 𝑖 results in the 
removal of a channel in layer 𝑖 +1 without creating 
sparsity.  

Because their input has different importance to 
the prediction, it is natural to expect that the 6 CNNs 
should be compressed in different ways. Moreover, the 
layers in the CNNs must be pruned differently. For 
example, some layers play a dominant role in the 
prediction process. When the number of filters of these 
layers is relatively low, the model's final performance 
will become extremely poor. The overall complexity 
of the compressed model is determined by the prune 
ratios of each of the 3 layers in those 6 CNNs. Fig. 2 
shows the relation between the prediction accuracy of 
the compressed model and its actual model size. 
Generally, a smaller size indicates a higher 

compression ratio. As we can see that a smaller model 
does not always have worse accuracy and vice versa. 
This is because the same compression ratio may 
correspond to different neural architectures, 
depending on how those 18 layers in Fig. 1 are pruned. 
To find the best architecture is to find the optimal 
combination of the 18 prune ratio variables. We also 
need to point out that, the accuracy of the compressed 
model is not necessarily lower than the original model. 
As we will show in the experimental results, the 
compressed model may slightly outperform the 
original model, as the highly regulated structure helps 
it to avoid overfitting.   

Exhaustively evaluating each possible 
compressed architecture to find its accuracy is not 
realistic as pruning a DNN is extremely time 
consuming. In this work we develop another DNN that 
predicts the accuracy of the compressed architecture to 
accelerate the design space exploration. We refer to it 
as the architecture predictor to distinguish from the 
traffic prediction model to be pruned. 

Architecture Prediction Model 
We expect that the prediction accuracy is a 

function of the combination of layer-wise prune ratios. 
A 5-layer DNN is trained to approximate this 
relationship. The structure of the DNN is shown in Fig. 
3, where N is the batch size. The size of each layer is 
labeled in the figure. The input of the model is the 
vector of 18 prune ratios, and the output is the 

 

Fig. 2. Prediction accuracy versus compression 
ratio. 



accuracy of the compressed traffic predictor, measured 
by the mean square error of the traffic prediction.  

The architecture predictor is trained using 
supervised training. To generate the training data, 
different prune ratio combinations are sampled and the 
original traffic predictor is pruned/trained accordingly. 
The resulting compressed model is tested and its mean 
square prediction error is used as the target value for 
the training. As we can see, generating each data point 
for the training set requires us to train a compressed 
model, hence is time-consuming. However, as we will 
show in the experimental results, the DNN can 
generalize the relation between the architecture and 
the model performance, and extend it to other prune 
ratio combinations that is not in the training set. While 
the training set is just a subset of the architecture 
space, the model can be used to explore the entire 
architecture space, which is much larger than the 
training set. 

Training of the architecture predictor 
The architecture predictor is slightly different 

from a regular regression model. The goal of the 
conventional regression models is to maximize the 
prediction accuracy; hence they usually use mean 
square error as the loss function. The architecture 
predictor is used to compare different compressed 
architectures (that have similar size) to find the one 
with the best accuracy. The absolute value of those 
architectures’ accuracy is not important, as long as 
their relative order is predicted correctly. In other 
words, it is more important to maintain a high 
correlation between the predicted accuracy and target 
accuracy than minimizing the absolute difference 
between these two. Therefore, during the training, the 
following three techniques were adopted to improve 
the correlation between the predicted and the target 
accuracy.  

Adding correlation to the loss function 
For each training batch, after the forward pass, 

the correlation between the model's predicted value 𝑦ො 
and the target value 𝑦 is calculated using the following 
equation.  

 𝑐𝑜𝑟𝑟 ൌ  
௖௢௩ሺ௬ො ,௬ሻ

ඥ௩௔௥ሺ௬ොሻ∗௩௔௥ሺ௬ሻ
 

The loss function of the training is a weighted 
combination of the mean square error (MSE) loss and 
the correlation loss as specified in Equation (2): 

 𝑙𝑜𝑠𝑠 ൌ  𝛼 ∗ 𝑀𝑆𝐸 ൅  𝛽 ∗ ሺ1 െ 𝑐𝑜𝑟𝑟ሻ 

where  α and β are hyper-parameters. Smaller α and 
larger β would cause the model to focus on increasing 
the overall correlation, while larger α and smaller β 
would cause the model to focus on reducing the overall 
loss.  

Using the new loss function, the correlation 
between the prediction and the target value is 
improved. Although the model may lose some 
prediction accuracy, this is acceptable in our 
application.   

Adjusting training data distribution 
We found that adding data with different features 

as much as possible helps to improve the quality of the 
model. For instance, in some extreme cases, the 
randomly sampled compressed architecture has 
convolutional layers that have only one filter left. The 
accuracy of such traffic prediction network is 
obviously very poor. Although these architectures do 
not have real application significance, including them 
in the training set can help the model better understand 
the role of different convolutional layers in the training 
process. 

Training with mixed batch size 
In the training process, the architecture predictor 

be optimized one time in one epoch and the batch size 
is a crucial factor. We dynamically change the batch 
size as the epoch increases during training. The batch 
size increases sequentially. For example, the first 
epoch's batch size is 4, the batch size of the second 
epoch is 10, and the batch size of the third epoch is 90.  

We use partial correlation to refer to the 
prediction and target value correlation in the same 
batch and use overall correlation to refer to the 

 

Fig. 3. Architecture prediction model. 



correlation in the entire training set. We found that 
using a fixed batch size, no matter how large or small, 
it is hard to balance the overall and partial correlation. 
When the batch size is small, we get very high partial 
correlation. However, the model does not give 
consistent prediction from one batch to another, hence 
the overall correlation is poor. When the batch size is 
large, the overall correlation is improved. However, a 
single outlier does not affect the overall correlation 
significantly, and this is reflected as the poor partial 
correlation. Therefore, a mixed batch size is adopted. 
This method can integrate the advantages of large and 
small batch sizes and consider the partial correlation 
while improving the overall correlation. Since this 
method requires constant batch size changes, the 
model also needs to train more epochs to achieve the 
best results. 

Using the above three methods, we finally 
increased the model correlation from 0.71 to 0.92 and 
even reached 0.96 in the validation set. 

Incremental training to specific corner 
Since our purpose is to reduce the size of the 

traffic predictor as much as possible while retaining its 
accuracy, we are interested more in the data points 
located at the lower left corner of the size versus 
accuracy (or loss) design space shown in Fig. 2. The 
architectures located in this corner have smaller size 
and higher accuracy, therefore they are referred to as 
effective architectures. And the architectures located 
outside this corner are referred to as ineffective 
architectures as they have larger size and/or lower 
accuracy. During the training process, we try to 
specialize the model to give better prediction to the 
data points corresponding to the effective 
architectures. This is achieved by adding more data 
points corresponding to the effective architectures to 
the training set.  

However, to distinguish between an effective 
architecture and an ineffective architecture is not easy. 
Given a randomly sampled prune vector, while the size 
of the compressed model can be easily estimated, its 
accuracy is unknown unless we actually compressed 
the mode, trained and tested it. Unfortunately, there 
are more ineffective architectures than effective 
architecture. Since an ineffective architecture does not 
help the training process as much as an effective 
architecture, much of the effort in generating the 
training data will be wasted. To address this problem, 

we apply incremental training as described in Fig. 4. 
Incremental training accelerates the model's learning 
speed for the feature that we need by adding the 
validated model prediction data into the training set. 
First, we randomly sample 300-400 compressed 
architectures, train and test them to generate the initial 
training set. The architecture prediction model is pre-
trained on the initial training set. Taking advantage of 
the pre-trained model, we then predict the accuracy of 
another set of randomly sampled architectures, and 
select the architecture whose accuracy is lower than a 
certain threshold. The corresponding compressed 
architecture will be generated and tested. These new 
data will form a new training batch to further refine the 
model. This procedure is repeated iteratively until the 
overall correlation achieves a predefined threshold. 
Totally 2300 training architecture data is generated in 
this work.  

Experimental Results 

Original model vs. compressed model 
Using the trained architecture predictor, we 

predicted the accuracy of 30 million random 
architectures with a size below a given threshold. 30 
architectures with the best predicted size vs. accuracy 
tradeoffs were selected and implemented. The green 
points in Fig. 5 show the size vs. accuracy tradeoffs of 
those architectures. The blue points in the figure give 

Fig. 4. Flow of incremental training. 



the size vs. accuracy of the 2300 training architectures. 
As we can see, since the 30 selected architecture have 
been filtered by the predictor, in average, they have 

better accuracy than the training architecture. The 
point located at the lower left corner is the best 
architecture. 

TABLE II shows the percentage reduction of 
size, accuracy and inference time of the best selected 
architecture compared to the original model. As we 
can see, the compressed model can slightly improve 
the accuracy (negative accuracy reduction) even 
though the size is compressed by 55%. The reason that 
the accuracy is slightly improved is because the 
compressed architecture has less weight parameters 
and hence is less likely to do overfitting.  The 
inference speed is also greatly improved due to the 
reduced complexity. This means that our compressed 
model consumes fewer resources to achieve the same 
prediction effect. 

TABLE II. Original Model vs. Compressed Model  

 Original 
Model 

Compressed 
Model 

Compar
ison 

Model 
size 

10,562 KB 4,713 KB -55.38% 

Loss 37.575 37.413 -0.431% 
Time 
(200 
Samples
) 

0.068 s 0.025 s -63.24% 

Comparison with randomly found architecture 
Searching for the optimal architecture by 

exhaustively evaluating different structures may be 
feasible for simple and small neural networks, since 
the possible architectures are limited and the training 
of a small neural network does not take too much time. 
However, when the network size gets increased, this is 
no longer practical. In order to find the optimal size 
and accuracy tradeoff, a much larger number of 
compressed architectures must be sampled and tested 
due to the exponentially increased search space, and 
each one requires longer training and evaluation times.  

The biggest advantage of our approach is that the 
architecture prediction model can be trained based on 
a limited number of compressed architectures and it 
can generalize the learned architecture-accuracy 
relationship to a wider range. In our work, a total of 
2300 compressed architectures were generated to train 
the model. The average mean square error (MSE) loss 
between the predicted value and label is only 0.14, and 
the correlation can reach 0.926. Using trained models, 
we can evaluate tens of millions of possible 
compressed architectures within minutes.  

TABLE III. Original Model vs. Compressed 
Model (Random search) 

Best Random Result 
 Original 

Model 
Compressed 
Model 

Compar
ison 

Model 
size 

10,562 KB 4,490 KB -57.49% 

Loss 37.575 39.645 +5.221% 

Minimum Loss Result 

 
Original 
Model 

Compressed 
Model 

Compar
ison 

Model 
size 

10,562 KB 8,286 KB -21.55% 

Loss 37.575 36.038 -4.265% 

Minimum Size Result 

 
Original 
Model 

Compressed 
Model 

Compar
ison 

Model 
size 

10,562 KB 4,210 KB -60.14% 

Loss 37.575 45.361 +17.16% 
We randomly selected 300 architectures and plot 

them in the size-accuracy space in Fig. 5 using red 
color. As we can see, compared to random compressed 
architecture, the size-accuracy plot of the training data 

Fig. 5. Size-accuracy tradeoffs of the 30 selected 
architecture. 



that we generated for the incremental training process 
(i.e. data points in grey) has already shifted to the 
lower left side notably. This means these training 
architectures exhibit better size-accuracy tradeoff. 
And the green data points, which are filtered by the 
predictor, are further improved compared to the 
training data. We also selected 3 of those random 
architectures with the best size-accuracy trade off. 
Their reduction of its size, accuracy and inference time 
compared to the original model is reported in TABLE 
III. It shows that at the similar compress ratio, the 
randomly selected architecture has much lower 
accuracy. 

Impact of correlation loss 

As mentioned above, we modified the loss function 
of the architecture predictor by adding the correlation 
loss. The modified loss function can directly boost the 
correlation between the predicted and actual value. Fig. 
7 gives the scatter plots between the prediction and the 
target value for the architecture predictor with and 
without the correlation. As we can see, if only MSE 
loss is considered in training, when the target accuracy 
(loss) is high (low), the model cannot distinguish the 
performance of different architectures and will simply 
predict the same value. This obviously will not help us 
select the optimal architecture.  

Impact of different batch size 
As we discussed before, the batch size also has an 

impact on the quality of the trained model and it helps 
to improve data point distribution. Fig. 6 shows the 
relation between the predicted value and target value, 
when trained with a mixed batch and a constant batch 
with size N=90. As we can see, the model trained with 
mixed batch size has better correlation. Actually, the 

model trained mixed batch size has correlation as high 
as 0.9262. And the models trained fixed batch with size 
N=10, 50, and 90, have correlations 0.898, 0.879 and 
0.885, respectively.  

Conclusions 
In this paper we proposed a technique to search for 

the best prune strategy for the UAV traffic density 
prediction model to facilitate fast traffic prediction. 
With the help of the proposed architecture prediction 
model, we can efficiently evaluate the performance of 
many different compressed architectures in the design 
space and select the optimal one We found out that 
adding correlation into the loss function, dynamically 
adding new data during the training phase and training 
with a mixed sized batch can significantly improve the 
correlation of our architecture prediction model. In our 
results, we achieved a reduction in the size of the 
original traffic prediction model by 55% while keeping 
similar accuracy as the original model. At the same 
time, the model execution time speeds up by 60%.  
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