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Abstract—The number of daily recreational and commercial
sUAS operations in low altitude airspace is expected to reach
into the millions in the near term. Therefore, UAS density
prediction has become an emerging and challenging problem. In
this paper, a machine learning-based UAS instantaneous density
prediction model is presented. The model takes two types of
data as input: 1) the historical density generated from the
historical data, and 2) the future sUAS mission information. The
architecture of our model contains four components: Historical
Density Formulation module, UAS Mission Translation module,
Mission Feature Extraction module, and Density Map Projection
module. The training and testing data are generated by a python
based simulator which is inspired by the multi-agent air traffic
resource usage simulator (MATRUS) framework. The quality
of prediction is measured by the correlation score and the
Area Under the Receiver Operating Characteristics (AUROC)
between the predicted value and simulated value. The experiment
results demonstrate outstanding performance of the machine
learning-based UAS density predictor. Compared to the baseline
models, for simplified traffic scenario where no-fly zones and safe
distance among sUASs are not considered, our model improves
the prediction accuracy by up to 15.2% and its correlation score
reaches 0.947. In a more realistic scenario, where the no-fly zone
avoidance and the safe distance among sUASs are maintained
using A* routing algorithm, our model can still achieve 0.822
correlation score. Meanwhile, the AUROC can reach 0.951 for
the hot spot prediction. Finally, we extend our UAS instantaneous
density prediction model to a continuous prediction framework.
By applying the continuous prediction framework, the UAS
density prediction time horizon can be significantly increased
from 60 simulation cycles to 360 simulation cycles (1 hour), with
highest 0.892 correlation score on average. This feature grants
us a chance to apply our density prediction model in real-word
scenarios.

Index Terms—instantaneous density prediction, UAS, spatial-
temporal model, continuous prediction framework

I. INTRODUCTION

Recently, many companies devote themselves to develop
small Unmanned Aircraft Systems (sUAS). Complicated and
high density UAS traffic imposes significant burden on air
traffic management, city planning and communication resource
allocation. In this environment, the following critical questions
are usually asked: Given the list of sSUAS scheduled launches
in an area, do we know in advance whether a feasible route in

terms of air space safety and energy efficiency can be found for
a specific mission at a specific time? Do we need to delay the
launch of some sUAS in advance to accommodate a mission
with higher priority scheduled at a specific time? Answering
such questions and being able to predict the traffic distribution
ahead of time will provide an opportunity for more efficient
planning and control.

UAS density prediction is a critical and challenging problem
in the Unmanned Aircraft System Traffic Management (UTM)
system. Most existing studies focus on simulation-based ap-
proaches. Although accurate, they usually take a long time
to deliver results. Neural networks have been used to predict
traffic density [1]. However, most such studies require the sam-
pling of the traffic density from the past data and predict the
future density using past density information. These models
assume a static environment. For example, the source (i.e. the
location where the sUAS enters the air space) and sink (i.e.
the location where the SUAS leaves the air space) of the traffic
flow are assumed to remain the same, and air space constraints,
such as no-fly zones, are fixed. Based on these assumptions,
the traffic in the future will exhibit a similar pattern as the
traffic in the past, and can be predicted from the historical data.
A constant environment may be reasonable for road traffic,
however, the operational environment of sUAS features higher
dynamics and flexibility. The model based on historical data
will become obsolete as soon as the environment changes.
New data must be collected and a new model needs to be
trained, which can take days or weeks. Furthermore, most of
the existing models consider traffic distribution as a stationary
process, and focus on predicting the steady states. For resource
provisioning or safety assurance, we need to know not only
the steady state traffic but also the worst case traffic. Hence the
ability to predict the transient behavior of air traffic distribution
is highly desirable.

In this paper, a machine learning-based prediction model is
presented for semi-transient traffic density distribution predic-
tion. The model takes the air space environment and the pre-
scheduled launch list in the next T time units as the inputs,
and predicts the average traffic density of traffic distribution in
this air space during time [T-§, T]. The parameter T controls



the prediction horizon and by reducing the value of parameter
d, the focus of the model changes from the long-term average
behavior to the transient behavior of the traffic. By taking the
flight environment and detailed launch information as part of
the inputs, the model is specialized only with respect to the
type of trajectory planning algorithms. It can be generalized
to different air space as long as the trajectory of each UAS is
routed using the same algorithm. It will have no “down time”
after the map or the launching/landing zone has changed.

Compared with other existing methods, our model has high
prediction accuracy and can achieve a correlation score of
0.947 and can improve the prediction accuracy by up to 15.2%.
In a realistic traffic scenario, where no-fly zone avoidance
and safe distance between sUASs are considered by planning
the trajectory using A* routing algorithm [2], our model
can still achieve a correlation score of 0.823. The following
summarizes the major contributions of our work:

o A novel UAS traffic density prediction model is devel-
oped that captures the information from the historical data
and the pre-scheduled sUAS launch list.

« A novel input representation of the future SUAS mission
information is proposed. The pre-scheduled missions are
categorized into 3 types according to their launching
times. Our model is designed to extract features from
all types of inputs simultaneously.

e Compared to the baseline models, our model improves
the prediction accuracy by up to 15.2%. When doing hot
spot prediction, our model can achieve an AUROC score
of 0.951.

o The qualitative results demonstrate that our model can
accurately predict hot spots (congestion) in the future
traffic map and has the ability to predict the density of
UAS with broad range of missions/trajectories.

o The UAS instantaneous density prediction model has
been extended to a continuous prediction framework.
By applying the proposed framework, the UAS density
prediction time horizon can be significantly extended
from 60 simulation cycles to 360 simulation cycles, with
highest 0.892 correlation score on average.

II. RELATED WORKS

Over the past decade, unmanned aerial vehicles have played
an increasingly essential role in many areas [3] [4] [5] [6].
With the rise in the popularity of sSUAS, many notable issues
related to UAS traffic management have been studied. How-
ever, the study of the UAS cluster behaviors such as forecast-
ing the UAS traffic density has generally not been addressed.
In our investigation, the density forecasting approaches can
be categorized into simulation based methods and machine-
learning based methods. In this section, we will analyze the
pros and cons of recent works in these two categories.

Many existing works study issues such as sSUAS navigation,
obstacle avoidance or UAS traffic management, by developing
a corresponding simulator with manageable time complexity.
In [7], the authors presented an indoor algorithm to navigate
a single sUAS to avoid collisions. [8] proposed a solution to

avoid collisions in a static environment by importing geomet-
rical constraints. Other approaches considering a single sUAS
included the application of rapidly-exploring random trees
[9] and Voronoi graphs [10] [11]. Trajectory simulation with
multiple sUASs has been studied as a multi-agent cooperative
system and solved in a rolling horizon approach using dynamic
programming [12] or mixed integer linear programming [13].
Other strategies [2] [14] involved real-time routing algorithms
with communication and airspace safety considerations. Re-
cently, a very strict and rigid airspace structure to handle
dense operation in the urban low altitude environment was
suggested by the work on UAS Traffic Management (UTM)
at NASA in [15]. The authors explored UAS operations in non-
segregated air space and managed the risk of mid-air collision
to a level deemed acceptable to regulators. In the paper, the
airspace was divided into multiple layers, and the layers were
further divided into orthogonal sky lanes. There are no current
studies that solve the traffic prediction problem from a broad
perspective within a small runtime.

In this work, instead of developing a simulator, we utilize
machine learning for UAS traffic density prediction. The ma-
chine learning based approach has shown outstanding success
in many domains [16] [17] [18] . Similar multi-agent frame-
works are employed in other fields such as pedestrian density
prediction [19] and autonomous driving [20]. In [21], authors
proposed an LSTM based scene-aware model to predict trajec-
tories for autonomous driving. However, the prediction errors
grew exponentially as the time horizon increased. Another
work addressed pedestrian traffic flow prediction by fusing his-
torical information, but the prediction is limited by historical
data regardless of the upcoming event information. Existing
approaches on single-agent trajectory prediction concentrated
on the behavior of a single SUAS and the impact of environ-
ment conditions, without any consideration of sUAS clusters.
For example, [22] proposed an LSTM-based flight trajectory
model with weather considerations taken into account. [23]
[24] aimed to solve environment navigation problems, and
developed a reinforcement learning model to plan energy
efficient waypoint in a static environment.

Compared to the existing work, our model has the ability
to learn and extract information from the historical data and
the pre-scheduled SUAS mission launch list. And the error is
restrained strictly via dynamic feature extraction. By adopting
a novel channel segmentation approach, our mission feature
extraction module can learn the density features accurately.

III. METHODS

Our density prediction model is an end-to-end model. Each
component module is fully differentiable. The mean square
error (MSE) loss is calculated by measuring the difference
between the predicted density map and the labeled density
map. The architecture of our model contains four components:
Historical Density Formulation module, UAS Mission Transla-
tion module, Mission Feature Extraction module, and Density
Map Projection module. The model structure is depicted in
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Fig. 1: Mission-Aware Spatio-Temporal Model Architecture

Figure 1. In this section, each component of the model will
be elaborated.

A. Historical Density Formulation

The historical density describes the pre-existing air space
environment. The size of the historical density map is 100 x
100 grid unit which is the same as the simulation environment.
The value at each pixel is between 0 and 1 and represents the
average density in the past m simulation cycles. The value of
m is set to be 10 in this paper. The historical density will also
be called “initial density” in this paper. Given the historical
density, we employ a convolutional neural network (CNN)
to extract the relevant features. The model is composed of 3
convolution layers, 2 pooling layers and the ReLU activation
layers. Finally, the C' x 32 x 32 feature maps are obtained
from the feature extractor, where C is the number of feature
channels. The feature extracted from the historical density is
denoted as Xj,.

B. UAS Mission Translation

This module is responsible for translating the trajectory
of each sUAS mission to image representation. First, the
UAS future missions are summarized into a mission list. The
dimension of the mission list is 7 X 5 where n is the number
of missions in the future. Each mission is defined by a 5
dimensional vector: {X,Y;, X}, Y], T,,}. The {X,,Y;} and
the {X/,Y]} represent the launching and landing locations
of the mission. The launching time is indicated by 7T},. Given
the mission list, the model will first cluster the missions into
different groups based on the mission launching time. Then,
the mission translation module follows in the same manner as
the breadth-first search (BFS) algorithm to map the trajectory
of each mission into a 2D map. From each Origin-Destination

(O-D) pair, we draw a shortest path from the launching
location to the landing location. For each individual mission,
we assume that the horizontal direction movement has a higher
priority than the vertical direction movement. The movement
priority is the same as in the MATRUS simulator [25]. After
the UAS mission translation procedure, a K channel output
can be obtained. Each channel lumps the trajectory information
of the sUAS that will be launched in the same simulation cycle.
K is set to be 60 in this paper.

Moreover, we introduce a novel sUAS trajectory repre-
sentation approach, which we refer to as the “Flow”. The
“Flow” input representation uses an ascending sequence to
represent the SUAS movement from the launching location
to the landing location. Therefore, in the visualization of
the 2D map, the waypoints near the landing location are
brighter than the waypoints near the launching location. If
one location is occupied by more than one sUAS, we use the
mean of all the overlapped values to represent this location.
By using this input representation, the model can distinguish
launching and landing locations. In addition, the order of the
sUAS movement is also specified. Figure 2 shows two mission
translation examples.

=

(a) Translation 1

(b) Translation 2

Fig. 2: UAS Mission Translation Examples



C. Mission Feature Extraction

The translated UAS missions are fed into the mission feature
extraction module. This module is responsible for learning
the density features from the pre-scheduled missions. Inspired
by [1], we develop a novel channel segmentation model.
First, according to the mission launching time, the translated
missions are categorized into 3 groups: long-term, mid-term
and short-term. In our case, the long-term group contains
the launching missions from cycle 1 to cycle 30. The mid-
term group involves the launching missions from cycle 31
to cycle 50. The rest of the launching missions, cycle 51 to
cycle 60, belong to the short-term group. Then, three types of
models with different number of input channels are employed
to extract the features from the inputs. The number of input
channels for long-term, mid-term and short-term models are
10, 5 and 2, respectively. Each individual model has the
same structure but the weight will be updated independently.
The intuition behind the model architecture design is that the
mission whose launching time is close to the end should have
a larger impact on the final density. Then, three types of
features (long-term feature, mid-term feature and short-term
feature) can be obtained, which are denoted as {F}, Fy,,, Fs}.
In the fusion module, the learnable parameters are introduced
to adjust the degrees affected by different features. Therefore,
the mission from different times will contribute accordingly
to the final density. The fusion equation is defined as follows:

X;={Wi X Fq14.WixFpi4 ..+ Wy xF_,} (1)

where W denotes the learnable parameters. The output density
feature is denoted as Xy. And, the F, F}, and [} are the
features extracted from short-term input, mid-term input and
long-term input, respectively.

Consequently, a C' x 32 x 32 feature map is obtained
from this module, where C' stands for the number of feature
channels.

D. Density Map Projection

Finally, two features {X},, Xy} are concatenated together
to construct a fused density feature representation. Then, we
apply a de-convolution module to project the density feature
into a 2D density map that has the same width and height as
the whole simulation environment. The de-convolution module
is composed of four 2D-transpose layers, batch normalization
layers and the ReLU activation layers. The value at each
location stands for the average density at the given prediction
time 7. In this paper, T is set to be 10 simulation cycles.

IV. EXPERIMENTS
A. Data Generation

Inspired by the MATRUS framework [25], we implement a
Python based sUAS flight simulator. For each traffic scenario
tested in this paper, we ran the simulator to generate 3000
samples. All the data sets are divided into two subsets: training
and testing. The split ratio is 90 : 10. For each sample, the
simulator randomly generates 5 launching areas and 5 landing

areas on a 100 x 100 grid environment. Each area has the size
3 x 3. Any grid in this area can be considered as the launching
location. The minimum distance between any two areas is
5 cells. For each launching area, the simulator uses uniform
distribution to randomly generate a floating-point number as
the launch probability. At every simulation cycle, the simulator
randomly selects 15 launching locations from all launching
areas. For each selected location, the simulator randomly
decides whether a mission should be launched from current
location at current cycle based on the launch probability.

For each sample, the simulation time horizon is defined as
T'. In this paper, T is set to be 60 simulation cycles, and each
cycle lumps sUAS launching information in 10 seconds. The
time period that generates the density map will be described
as T4. The data generation procedure is depicted in Figure 3.
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Fig. 3: Data Generation Procedure

B. Evaluation Metrics

Two metrics are used to measure the quality of the predic-
tion.

(1) Correlation: Correlation is calculated between the sim-
ulated traffic density (Y'), which is considered as the ground
truth, and the predicted traffic density (37) In our experiments,
this shows whether and how strongly the predicted and labeled
variables are related. The equation of the Correlation is as
follows:

Cov(X,Y)

p(X,Y) =
OxXO0y

2

where p(X,Y") is Pearson’s correlation coefficient of X and
Y, ox and oy are the standard deviations of X and Y,

respectively. Cov(X,Y) is the covariance of variables X and
Y, which can be calculated by the following equation:

Cov(X,Y) = E[(X - EIX])(Y - E[Y])] 3)

where E[.] denotes the expected value.
(2) Area Under the Receiver Operating Characteristics

(AUROC): The ROC curve is plotted by mapping the True
Positive Rate (TPR) against the False Positive Rate (FPR)
with different thresholds. Given a ROC curve, the AUROC
evaluates the performance of the model by distinguishing
between classes. The higher the AUROC score of a model,
the better the performance is. For an uninformative model,
the AUROC is close to 0.5. The maximum AUROC is 1.



C. Comparison Models

To the best of our knowledge, there is no prior work
considering exactly the same application as this paper. For
comparison, we selected several existing models that are
potentially promising for traffic prediction, and re-trained them
using our data set. We also compared with a modified version
of our own model to show the effectiveness of certain design
decisions of our model. The following five models are tested
and compared.

e Vanilla CNN (VCNN): This is a typical CNN based
encoder-decoder model. The model assumes that, the
location and action probability of each launching/landing
area is static and can be represented in a 2D map. It
tries to learn the relation between traffic density and
the 2D map, and makes predictions based on the static
information.

e Vanilla LSTM (VLSTM): This is a typical LSTM based
encoder-decoder model. It takes the T'-cycle scheduled
launching information and predicts the density at the
T+1" cycle. Because the traffic density of cycle (t+1)
is determined by the density at cycle ¢ and the current
launching information, it is expected that such temporal
dependency can be captured by an LSTM model.

o RouteNet [26]: The RouteNet model is encouraged by
the Fully Convolutional Network (FCN) architecture that
predicts the congestion in VLSI placement and routing.
The FCN allows the input to be any size and produces an
output with exactly the same size as the input, indicating
the density (or hotspot) at any location.

o Segmented Channel: This is our model as discussed in
this paper. The inputs are categorized into 3 groups.
Then, the designated models are assigned to each group
for extracting the features. The model applies the 2D
convolution with 2 x 2 and 4 x 4 kernel size. The max
pooling is also used in the model.

e All Channel: This model has a similar structure as the
one presented in this paper except that there is no input
channel segmentation. The model treats all missions with
different launching times equally.

D. Experiment Setup

We run our experiments on a desktop server running Ubuntu
16.04 OS with 3.60GHz Intel Xeon W-2123 CPU, 256GB
Memory and a NVIDIA 2080Ti GPU. During the training,
the Adam optimizer is applied with a 0.005 learning rate. The
weight decay is set to 0.0001. We use the ReLU to be the
activation function. Batch normalization and dropout are also
applied for preventing the overfitting. The training and testing
framework are built in PyTorch.

V. RESULTS

A. Predicted Density Accuracy Improvement

In the first experiment, we compare the accuracy of the
density prediction between our model and the other baseline
models mentioned in Section IV-C. The model which extracts

the trajectory features from all input channels is denoted
as “channelgy;”. Our presented channel segmentation model
is denoted as “channel,.,”. Because the prediction model
assumes a non-empty air space, we are interested to know
how close the initial traffic density resembles the density at
the target time of prediction. The column “init” gives the
correlation between the initial density and the label density.

TABLE I: The Correlation Score of the Density Prediction

Init VCNN  VLSTM  RouteNet Channely;;  Channelseg

0.822  0.863 0.803 0.889 0.944 0.947

Table I shows the correlation score for all the models. The
LSTM model has the worst performance among all the models.
The correlation score of the “V LST M” model is even lower
than the “init” correlation score. One reason for this is that
the 60 cycle prediction period is too long for the “V LSTM”
model. The error will accumulate and propagate from the first
cycle to the last cycle. The “VCNN” model improves the
correlation score by 5.0%. However, ignoring the information
of exactly when and where each sUAS is going to be launched
and where it is heading from now to the end of prediction
window makes the prediction much less specific. Therefore,
the “VC N N model cannot achieve a higher accuracy. In the
“RouteNet” model, each scheduled mission will be marked
by a bounding box between the Origin-Destination (O-D) pair.
This approach gives the model a more forthright indication
of each mission and the relation between the launching and
the landing locations. Consequently, the “RouteNet” model
improves the correlation score by 8.2%. Finally, our presented
model, “channel,;;” and “channels.,”, outperforms all other
models. Compared to the initial traffic density, the predicted
density of these models clearly resembles the actual density at
the end of prediction window better, with 14.8% and 15.2%
improvement of the correlation score, respectively.

Between the two model architectures that we proposed,
the “channel,.,” model can achieve higher correlation score
than the “channel,;” model. However, the difference is very
marginal. In the next, we will show that using segmented
channel is important under the scenario in which the process
of UAS launching is non-stationary.

B. The Model Sensitivity to Missions

In the second experiment, we study the model’s sensitivity
to missions. In our assumption, the most recent missions
should have a larger contribution to the predicted density than
those that took place earlier in time. And the model should be
able to capture the features from the non-stationary missions.
In order to further analyze this conjecture, we use the normal
mission list as the input in the model training phase. The
normal mission list means that all the 60 cycles have the
launching missions. However, in the testing phase, we remove
the missions from either the first 30 cycles or last 30 cycles.
Therefore, the experiments are broken down into 2 scenarios:



o No Task Before 30 (NTB_30): No new launching mission
from cycle 1 to cycle 30.

o No Task After 30 (NTA_30): No new launching mission
from cycle 31 to cycle 60.

TABLE II: Model Sensitivity to Missions Experiments

Scenario (2D) NTB_30 NTA_30
init 0.699 0.647
channel ,y; 0.765 (+9.4%) 0.751 (+16.1%)
channelseqg  0.836 (+19.6%)  0.858 (+32.6%)

Table II shows the correlation score of the experiment. The
“init” stands for the correlation score between the initial
density and the label. We take the “channel,;” and the
“channelseq” to be two comparison models. The results show
that the “channels.,” model always has a better prediction
performance than the “channel,;” model. With 2D convo-
lution operation, compared to the “init”, the “channels.,”
model can achieve 19.6% and 32.6% improvement in the cor-
relation score in NTB_30 and NTA_30, respectively. However,
the “channely;” model can only achieve 9.4% and 16.1%
improvement. This result is consistent with our hypothesis at
the beginning of the section. In our “channel,.,” model, the
missions with different launching time can be distinguished.
Our model is capable of learning the meaningful features from
the non-stationary missions.

C. Density Prediction with No-Fly Zone Avoidance and Rout-
ing Algorithm

In the third experiment, we introduce no-fly zones into the
simulation environment. In each batch of the simulation, the
ratio of grids which are occupied by a no-fly zone is varying
from 5% to 45%. By applying the routing algorithm, the
simulated sUAS is capable of avoiding the no-fly zone and
other sUASs. Hence, the sUAS trajectory is more heuristic
and that leads to a more challenging density prediction task. In
order to reach a high prediction accuracy, we investigate three
potential input representations at the same time. The “Flow”
input representation has been presented in Section III-B, as
shown in Figure 4(a). In the second input representation,
we draw a bounding box to incorporate the launching and
landing grids of each sSUAS. The launching/landing grids are
located at the two corners of the bounding box. The value
in each grid represents the needed steps to move from the
launching location, as shown in Figure 4(c). Therefore, we
call it “Ones” input representation. For the “Probability” input
representation, we use the same bounding box to incorporate
the launching and landing grids. However, the value in each
grid stands for the probability that the sUAS moves from
its previous adjacent grid to the current grid, as shown in
Figure 4(b).

Table IIT shows the correlation scores for the different
representations. From the result, we can notice that both
models can improve the correlation in all the input represen-
tation types. However, the performance of the “channels.,”
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Fig. 4: Different Input Representation

TABLE III: Density Prediction with No-Fly Zone Avoidance
and Routing Algorithm

Correlation Flow Probability Ones
init 0.698 0.698 0.698
channel g, 0.795 (+13.9%) 0.818 (+17.2%)  0.821 (+17.6%)
channelseqg  0.798 (+14.3%) 0.820 (+17.5%) 0.822 (+17.8%)

model is slightly better than all-channel model. Compared
to the correlation score of the initial density, our presented
“channels.,” model can improve the correlation score up
to 14.3% in “Flow” input representation, up to 17.5% in
”Probability” input representation and up to 17.8% in the
”Ones” input representation. The “Ones” input representation
outperforms other two representations due to two reasons: 1)
The routing algorithm is used in the simulation, therefore,
the potential sUAS trajectories are more heuristic. Although
the “flow” representation has the ability to indicate the sUAS
movement, the flexibility of the model is also reduced by
given only one possible path. 2) Compared to the “Probability”
representation, the “Ones” representation does not only have
all the possible trajectories, but also indicate the moving order
of the sUAS.

Besides the correlation evaluation, we also apply the AU-
ROC to evaluate the performance of the “channel,.,” model.
In this experiment, the pixel with a non-zero value label is
considered to be the evaluation reference as we are more
interested in the high dense area on the map. The P estimation
is a popular method in financial risk assessment and internet
congestion investigation. Hence, we employ the P50, P75,
P90 and P99 to select the threshold. After the threshold is
defined, the pixel in the label whose value is larger than the
threshold is binarized to 1, and vice versa. Table IV shows the
selected threshold for different P values. For the prediction,
the threshold value is sampled progressively from 0.0 to 1.0,
with 0.01 granularity.

TABLE IV: Threshold Selection in Different P Value

P50 P75 P90 P99
Threshold 0.2 0.3 0.5 0.8

Figure 5 shows the AUROC in different thresholds. As we
can see from the figure, the “Ones” input representation still
outperforms other methods. The P50 means that half of the



UAS flight areas are considered as the hot spot. In this strict
circumstance, the AUROC of the “Ones” representation can
still achieve 0.803. However, in reality, the severity is often ex-
aggerated by choosing the P50. For the P75, P90, and P99,
the AUROC of the “Ones” representation are 0.836, 0.889 and
0.951, respectively. This result further proves that our model
is capable of making an accurate hot spot prediction.
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D. Density Prediction Visualization

In the fourth experiment, we visualize several UAS density
predictions to give a qualitative demonstration of our model.
The model is extended to predict two types of UAS trajecto-
ries: 1) Manhattan trajectory type, and 2) point-to-point (p2p)
trajectory type. For the Manhattan style trajectory, we select
two typical scenarios to test the performance: a) dense traffic,
b) sparse traffic. Both scenarios are tested with/without the
routing algorithm. For the p2p style trajectory, the reactive
“routing” that utilizes artificial potential field [27] to dynami-
cally avoid potential conflicts is integrated.

Figure 6 shows the Manhattan style trajectory density
prediction results without the routing algorithm. The figures
on the left-hand side are the predictions and the figures on
the right-hand side are the labels (i.e., the ground truth).
The value of each pixel varies from O to 1, representing the
average density in 73. The brighter area indicates that there
are more sUAS passing through this location. The Manhattan
style trajectory density prediction with the routing algorithm
is shown in Figure 7. Finally, the p2p trajectory density
prediction with the artificial potential field collision avoidance
algorithm is presented in Figure 8.

From Figure 6 we can notice that, our predicted densities
are close to the label in both scenarios. In the dense traffic
scenario, all 6 dense areas are predicted by our model, as
shown in Figure 6(a) and Figure 6(b). Although some of the
dense areas are close to each other, the model can still predict
them clearly. In the sparse traffic scenario, there are only two
horizontal dense areas. One is in the middle of the map, and the
other is at the bottom of the map. Both of them are predicted
accurately by our model.

(a) Prediction (Dense) (b) Label (Dense)

(c) Prediction (Sparse) (d) Label (Sparse)

Fig. 6: Density Prediction without Routing Visualization

After the routing algorithm is introduced, the sUAS trajec-
tory is heuristic which will lead to a more random density
distribution. Both prediction and label become blurry in this
situation. Under this circumstance, our presented model can
still predict the most obvious dense areas. In Figure 7(b), there
are four obvious dense areas which are marked by the red
dashed circles. Figure 7(a) shows that all of the dense areas
are predicted successfully by our model. In the sparse traffic
scenario, there are three obvious dense areas in Figure 7(d).
Although the model fails to predict the dense area at the top
of the map, two other dense areas at the left bottom have been
predicted successfully, as shown in Figure 7(c).

Figure 8 visualizes the p2p style trajectory density pre-
diction results with the reactive routing algorithm. From the
visualization, we can notice that some of the density paths
are tangled, such as in the middle left area in Figure 8(b),
the bottom left area in Figure 8(d), the top right area in
Figure 8(f), and the bottom right area in Figure 8(h). The
tangled paths, which are marked by the red dashed circles,
lead to a more tough density prediction problem in our
model. It requires our model to learn the clear and meaningful
features from both historical density and future UAS missions.
Figure 8(a) 8(c) 8(e) 8(g) show that our model can successfully
predict the UAS density in p2p trajectory type. Almost all the



(a) Prediction (Dense)

(b) Label (Dense)

(c) Prediction (Sparse)

(d) Label (Sparse)

Fig. 7: Density Prediction with Routing Visualization

density paths can be predicted accurately. Furthermore, the
density path in the tangled area can be easily distinguished
by the observer (human). In conclusion, the above results
demonstrate that our model can be used to predict the density
of the UAS with a broad range of missions/trajectories.

E. UAS Instantaneous Density Continuous Prediction Frame-
work

In the last experiment, we extend our UAS instantaneous
density prediction model to a continuous prediction frame-
work. The framework architecture is depicted in Figure 9.
The yellow box is the mission-aware spatial-temporal model,
which was introduced in Section III. The model takes two
types of input: 1) the historical density, and 2) the future sSUAS
mission information. For the continuous density prediction,
the extended simulation time horizon is defined as T teng. In
this section, T,y tenq 1S set to be 360 simulation cycles, and
each cycle lumps sUAS launching information in 10 seconds.
The future sUAS launching information in T,y ¢enq is equally
divided into N segments. Each segment contains 60 cycles of
launching information. The continuous prediction framework
consists of NV UAS instantaneous density prediction models.
Each model takes one segment of the future SUAS launching
information as the input. The initial density will be given to
the first model of the continuous prediction framework. The
following models take the density map which is predicted by
the previous model as the historical density input. Finally,
the continuous density maps can be obtained by running the
prediction framework.

Table V shows the correlation score of our UAS density
continuous prediction framework in three scenarios:

e Cont.-W. Init.-Random Start: In this scenario, the start
time of the T, tenq Simulation cycles are randomly se-

(g) Prediction 4 (p2p)

(h) Label 4 (p2p)

Fig. 8: Point-to-Point Trajectory Density Prediction

lected. When the start time is selected, the data will be
generated by running the simulator for T,,¢cq cycles.
Cont.-W/O. Init.-Random Start: Compared to “Cont.-
W. Init.-Random Start” scenario, the ”Cont.-W/O. Init.-
Random Start” scenario uses the same method to generate
the data. However, the initial density will not be provided
to the continuous density prediction framework.
Cont.-W/O. Init.-Zero Start: Compared to ~Cont.-W/O.
Init.-Random Start” scenario, the ” Cont.-W/O. Init.-
Zero Start” scenario sets the start time of the 7., iend
simulation cycles as 0. Therefore, there is no initial
density that can be provided to the prediction framework
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Fig. 9: The UAS Instantaneous Density Continuous Prediction Framework

TABLE V: The Correlation Score of the Continuous Prediction Results

Init Avg. Pred. Pred. (seg. 1) Pred. (seg. 2) Pred. (seg. 3) Pred. (seg. 4) Pred. (seg. 5) Pred. (seg. 6)
Cont.-W. Init.-Random Start
Correlation  0.767  0.892 (+16.30%) 0.891 0.892 0.892 0.892 0.892 0.893
Cont.-W/O. Init.-Random Start
Correlation 0 0.891 (N/A) 0.888 0.892 0.892 0.892 0.892 0.893
Cont.-W/O. Init.-Zero Start
Correlation 0 0.887 (N/A) 0.843 0.893 0.895 0.894 0.896 0.894

as the input.

The Avg.Pred. evaluates the average correlation score of N
segments. The Pred.(seg. n) indicates the correlation score of
segment n. The Init. stands for the correlation score between
the initial density and the label density of segment 1. In
addition, the scenarios in this section are generated without
the UAS collision avoidance algorithm. The evaluation of
the continuous prediction framework with the UAS collision
avoidance algorithm will be included in our future work.

First, we can observe from Table V that, for the ”Cont.-
W. Init.-Random Start” scenario, the continuous prediction
framework achieves an average correlation of 0.892, which
is the highest in all testing scenarios. Compared to the Init.,
the prediction framework improves the correlation score by
16.30%. This result proves that the initial density map can help
the model improve the prediction accuracy. Then, in ”Cont.-
W/O. Init.-Random Start” scenario and “Cont.-W/O. Init.-
Zero Start” scenario, the average correlation scores are 0.891
and 0.887, respectively. This phenomenon shows that, even
without the initial density map, each individual model in the
continuous prediction framework can extract the meaningful
features from each segment of pre-scheduled missions.

The second observation from the result is that, compared
to the correlation score of the first segment, the correlation
scores of the following segments have similar values. In

”Cont.-W. Init.-Random Start” scenario and ”Cont.-W/O. Init.-
Random Start” scenario, the correlation scores from segment
2 to segment 5 are between 0.892 and 0.893. For the ”Cont.-
W/O. Init.-Zero Start” scenario, the minimum and maximum
correlation score from segment 2 to segment 5 are 0.893
and 0.895, respectively. This result demonstrates that our
framework can immediately achieve the most detailed result.
Furthermore, even if the prediction error at the beginning is
accumulated and propagated to the end of the prediction, our
framework can still maintain an accurate density prediction.

In summary, the experiment results show that, by apply-
ing the continuous prediction framework, the prediction time
horizon can be significantly extended, while maintaining the
prediction accuracy. This feature grants us a chance to apply
our density prediction model to real-word scenarios.

VI. CONCLUSIONS

In this paper, we have proposed a novel machine learning-
based model, which aims at predicting the UAS instantaneous
density. The model has the ability to extract meaningful fea-
tures from the given historical density and learn the informa-
tion from the pre-scheduled SUAS missions. In the experiment
section, we use the correlation score and the AUROC to
evaluate the prediction accuracy of our model. Compared to
the baseline models, in a simplified traffic scenario where no-
fly zones and safe distance requirements among sUASs are not



considered, our model improves the prediction accuracy by up
to 15.2% and its correlation score reaches 0.947. The results
in Section V-B show that our model is sensitive to the pre-
scheduled missions and has the ability to predict the transient
behavior of the traffic distribution. In a more realistic scenario,
where the no-fly zone avoidance and the safe distance among
sUASs are maintained using A* routing algorithm, our model
can still achieve a correlation score of 0.822. Moreover, the
AUROC results demonstrate that the hot spot predictions by
our model are accurate. The qualitative results also show that
the presented model can generate a detailed prediction and can
be generalized to broad range of UAS missions/trajectories.
By designing the continuous prediction framework, the UAS
density prediction time horizon can be extended from 60
simulation cycles to at least 360 simulation cycles (1 hour),
with highest 0.892 correlation score on average.
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