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Abstract—We present an algorithm for approximating the

edit distance between two strings of length n in time n'*e,

for any ¢ > 0, up to a constant factor. Our result completes
a research direction set forth in the recent breakthrough pa-
per [1], which showed the first constant-factor approximation
algorithm with a (strongly) sub-quadratic running time. The
recent results [2], [3] have shown near-linear complexity only
under the restriction that the edit distance is close to maximal
(equivalently, there is a near-linear additive approximation). In
contrast, our algorithm obtains a constant-factor approxima-
tion in near-linear running time for any input strings.

Keywords-edit distance; sublinear algorithms; fine-grained
complexity

I. INTRODUCTION

Edit distance is a classic distance measure between
sequences that takes into account the (mis)alignment of
strings. Formally, edit distance between two strings of
length n over some alphabet ¥ is the number of inser-
tions/deletions/substitutions of characters to transform one
string into the other. Being of key importance in several
fields, such as computational biology and signal processing,
computational problems involving the edit distance were
studied extensively.

Computing edit distance is also a classic dynamic pro-
gramming problem, with a quadratic run-time solution. It has
proven to be a poster challenge in a central theme in TCS:
improving the run-time from polynomial towards close(r)
to linear. Despite significant research attempts over many
decades, little progress was obtained, with a O(n?/log?® n)
run-time algorithm [4] remaining the fastest one known to
date. See also the surveys of [5] and [6]. With the emergence
of the fine-grained complexity field, researchers crystallized
the reason why beating quadratic-time is hard by connecting
it to the Strong Exponential Time Hypothesis (SETH) [7]
(and even more plausible conjectures [8]).

Even before the above hardness results, researchers started
considering faster algorithms that approximate edit distance.
A linear-time /n-factor approximation follows immediately
from the exact algorithm of [9], [10], [11], which runs in
time O(n + d?), where d is the edit distance between the
input strings. Subsequent research improved the approxima-
tion factor, first to n3/7 [12], then to n'/3*+°(1) [13], and to
20(V1ogn) [14] (based on the ¢; embedding of [15]). In the
regime of O(n'*¢)-time algorithms, the best approximation
is (logn)©(1/¢) [16]. Predating some of this work was the
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sublinear-time algorithm of [17] achieving n approximation
when d is large.

In a recent breakthrough, [1] showed that one can obtain
constant-factor approximation in O(n'?/7) time. Subsequent
developments [2], [3] give O(n'*¢)-time algorithms for
computing edit distance up to an additive n'=9) term
and f(1/e)-factor approximation, for some non-decreasing
functions f, g, and any € > 0.

Our main result is a n' ¢ algorithm for computing the edit
distance up to a constant approximation.

Theorem L.1. For any ¢ > 0, n > 1, alphabet ¥, and two
strings x,y € X", there’s an algorithm to approximate edit
distance between .y in O(n'*¢) time up to f(1/¢)-factor
approximation, where f(1/¢€) depends solely on e.

While we do not derive the function f(1/e) explicitly,
we note that it is doubly exponential in 1/e. We present
a technical overview of our approach in Section III, af-
ter setting up our notations in Section II. The top-level
algorithm, its main guarantees, and how they imply the
above theorem are in Section IV. The proof of the main
guarantees, where the most of the work is happening,
appears in the full version of this extended abstract, at
https://arxiv.org/abs/2005.07678.

A. Related work

A quantum algorithm for edit distance was introduced in
[18]. Some of the basic elements of the algorithmic approach
are related to [1] (and the algorithm in this paper). Another
recent related paper is [19], who obtain 3+ € approximation
in O(n'%) time; independently, the first author obtained a
slightly worst time for the same approximation [20]. Sim-
ilarly, independently, [21] and [20] extended the constant-
factor edit distance algorithm from [1] to solve the text
searching problem.

A sublinear time algorithm was also recently developed
in [22]; see also earlier [12], and the aforementioned [17].
Another related line of work has been on computing edit
distance for the semi-random models of input [23], [24].
Parallel (MPC) algorithms were developed in [18], [25].

Progress on edit distance algorithms also inspired the
first non-trivial algorithms for approximating the longest
common subsequence (LCS) [26], [27], [28]. In fact, [28]
show that a O(1)-factor approximation to edit distance yields
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a 2 — Q(1) factor approximation to LCS over a binary
alphabet in the same time.
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II. PRELIMINARIES: SETUP AND NOTATIONS

Fix a pair of strings (z,y) € X" x X" for which we care
to estimate the edit distance. We define ed,,(x,y) as half
the number of insertions/deletions to transform one string
into the other. Note that this is a factor-2 approximation to
the standard edit distance. When length n is clear from the
context, we omit the subscript.

Sw is the set of powers of 2 up to w: namely, S, =
{0,1,2,4,8...w}. [n] denotes set {1,2,3,...n}, through-
out the paper, except where stated explicitly.

When describing intuitive parts, we sometimes use
O*(f(n)) to denote O(f(n) - n°©) (where € is the small
constant from the algorithm).

A. Intervals

An interval is a substring z[i : j] £ @241 ...7;_1, for
1,7 € [n], where ¢ < j (i.e., starting at ¢ and ending at j —1,
of length j — 7).

For i € [n], let X, ,, (Y;.,) denote the interval of = (y) of
length w starting at position ¢. Let &, ), the set of all such
X and Y}, strings respectively. We use Z,, = X, U}, to
denote all  and y axis intervals. When clear from context,
we drop subscript w.

By convention, if ¢ € [1,n—w], we pad X;/Y; with a de-
fault character, say, $. Also Y ,, is a string of unique char-
acters. In particular, for various distance functions 7,(-, ")
on two length-w strings, 7(X; ., Y 4, ) is the max possible
distance; e.g., edqy (X w, Y1 0) = w.

Usually, by I € Z,, we refer not only to the corresponding
substring but also to the “meta-information”, in particular
the string it came from, start position, and length (e.g., for
I = X, ., the meta-information is x,¢,w). This difference
will be clear from context or stated explicitly.

In particular, the notation I + j, for an interval /I and
integer j, represents the interval j positions to the right;
eg,if I =X, ,,then I +j=X;(;,.

Alignments. An alignment between z and y which is
a function 7 [n] — [n] U {Ll}, which is injec-
tive and strictly monotone on 7~ !([n]). The set of all
such alignments is called II. Note that ed(z,y)
minger Zie[n] ed; (x;, yw(i)) (recall that, by convention,
edi(c,yy) =1 for all ¢ € X).

It is convenient for us to think of 7 as function from Z —
7, via the following extension. For a given input alignment
m: X = YU{L}, itsextension 7 :Z - ZU{Ll} is:
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where 7[X; ,,| means Yz ;) ., and 7[Y} ;| means X —1(;y
with 771(j) = L if there’s no i with 7(i) = j. Throughout
this paper, we overload notation to use 7 for the extension 7
as well. We also define ?(z) as the minimum = (5), j > 4,
which is defined (# L).

Finally, we also define 7(i) £ i when i < 1 and i > n
for convenience.

B. Interval distances

Our algorithms will use distances/metrics over intervals
in Z,,. One important instance is the alignment distance,
denoted ad,(-,-). At a high level, ad,(-,-) is a distance
metric that approximates edit distance on length-w intervals.
We discuss ad(-, ) metric also in Section IV.

Definition IL.1 (Neighborhood). Fix ¢ > 0 and I € Z,,.
The c-neighborhood of I is the set N.(I) = {J € Z,, |
ad(I,J) < ¢}, ie all x and y intervals which are c-close
to I in terms of their alignment distance.

Definition IL.2 (Ball of intervals). A ball of intervals is a set
of consecutive intervals in either X,, or V,, (i.e., it’s a ball
in the metric where distance between X; and X is |i — j|).
The smallest enclosing ball of a set S is the minimal ball
B2S.

C. Operations on sets and the x notation

By convention, applying numerical functions to a set
refers to the sum over all set items; e.g., f(S) = >, 5 f(4).
When applying set operators on other sets, we use the union;
e.g., m(8) = Uresm(I) and N.(S) = UresN.(I). Any
exception to the above will be clearly specified.

We also use the notation * as argument of a function, by
which we mean a vector of all possible entries. E.g., f(x) is
a vector of f(¢) for ¢ ranging over the domain of f (usually
clear from the context). Similarly, f(xz) means a vector of
/(@) for 7 satisfying property R.

III. TECHNICAL OVERVIEW
A. Prior work and main obstacles

As our natural starting point is the breakthrough
O(n'?/7)-time algorithm of [1], we first describe their core
ideas as well as the challenges to obtaining a near-linear
time algorithm. In particular, we highlight two of their
enabling ideas. At a basic level, their algorithm computes
edit distance ed,,(z,y) by computing ed,, between various
length-w intervals (substrings) of x,y recursively, and then
uses edit-distance-like dynamic programming on intervals
to put them back together. The main algorithmic thrust is to
reduce the number of recursive ed,, computations: e.g., if
the intervals are of length w, and we only consider non-
overlapping intervals, there are still n/w x n/w calls to

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 26,2021 at 02:26:33 UTC from IEEE Xplore. Restrictions apply.



ed,,, each taking at best Q(w) time. Hence, [1] employ two
ideas to do this efficiently: 1) use the triangle inequality to
deduce distance between pairs of intervals for which we do
not directly estimate ed,,, 2) two nearby z-intervals (e.g.,
consecutive) are likely to be matched into two nearby y-
intervals (also consecutive) under the optimal edit distance
alignment 7. Indeed, these ideas are enough to reduce the
number of recursive calls from (n/w)? to =~ (n/w)'>.

One big challenge in the above is that, in general, one has
to consider all, overlapping intervals from z,y, of which
there are n — since, in an optimal ed,, alignment, an x-
interval might have to match to a y-interval whose start
position is far from an integer multiple of w. An alternative
perspective is that if one considers only a restricted set
of interval start positions, say every s < w positions
in y, then one obtains an extra additive error of about
s+ n/w from the “rounding” of start positions in y. That’s
the reason that a bound of (n/w)!® recursive calls did
not transform into n'® runtime in [1]: to compute edit
distance when ed < n' =) they employ a standard (exact)
O(n + ed?(x,y)) algorithm [9], [10].

While recent improvements by [2], [3] showed how to
reduce the number of recursive calls to ~ n/w, some fun-
damental obstacles remained. The linear number of recursive
calls was leveraged to obtain near-linear time but with an
additive approximation only: when ed(z,y) > n'~%, the
overall runtime is n'T/(®) for some increasing function f.

In particular, in addition to the aforementioned challenge,
a new challenge arose: to be able to reduce to near-linear
number of recursive ed,, calls, the algorithms from [2],
[3] might miss a large fraction of “correct” matches. In
particular this fraction is ~ n~?, which results in an additive
error of ~ n'~%. To put this into perspective, for w = \/n,
if we allow an additive error n'=%, then it suffices to
analyze b = n%5t90) intervals (which barely overlap) and
misclassify b-n~? of them.

As a running example illustrating the challenges, consider
an instance where A = n~%0! fraction of intervals in X,
are “sparse” — have a single cheap match (under 7) in Y,
— and the rest of the intervals are dense (they have large
cheap ed-neighborhoods). Assume further that such sparse
intervals are spread around in multiple sparse sections. Note
that if we can afford large additive errors, we can simply
ignore all these sparse intervals (certifying them at max cost
w) and output the distance based on the dense intervals only,
with at most nA = n%99 additive approximation. To avoid
this, one must first identify some sparse intervals (since the
dense intervals do not provide sufficient information about
the sparse sections). Even if we manage to find some of the
sparse intervals efficiently, we still need to apply knowledge
of the location of such intervals to deduce information on
other intervals which might be in completely different areas
in the string. We will return to this example later.

Below we describe the high-level approach to our algo-
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rithm, including how we overcome these obstacles. We note
that, except for the above two core ideas from [1], we depart
from the general approach undertaken in [1], [2], [3]. We
also do not rely on previous results for any distance regime.

B. Our high-level approach

While there are many ideas going in overcoming the above
challenges, one common theme is averaging over the local
proximity of intervals. In particular, the algorithm proceeds
by, and analyzes over, “average characteristics” of various
intervals of z,y, in a “smooth” way. For example decisions
for a fixed interval I € Z,,, such as whether something is
close, or something is matched, are done by considering
the statistics collected on nearby intervals (to the left/right
of I in the corresponding string). While we expand on our
technical ideas below, this is the guiding principle to keep
in mind.

Addressing the first challenge, we consider intervals (of
fixed length w) at all n starting positions, i.e., the entire
set Z,,. Note that recursion becomes prohibitive: we can’t
perform even n edit distance evaluations each taking (w)
time (w is set to be =~ n'~¢). Instead, our top-level algorithm
iterates bottom—up over all interval lengths w = 7,72, ...n,
where v = n¢, and for each w computes a good-enough
approximation to the entire metric (Z,,,ed,,). Recall that
T = XUV, consists of all w-length intervals (substrings);
ie., |Zw| = 2n. The metric will be accessible via a
distance oracle (fast data structure), with n® query time,
and will O(1)-factor approximate most of the “relevant”
matches of z-intervals to y-intervals. This approximating
metric distance is called ©,,(+,-). In particular, if 7 is an
optimal ed-alignment of x to y, then D, (X v, Yx[i],w) Will
approximate ed(z[i : i + w — 1], y[x[i] : w[i] + w — 1]), on
average, for all but ~ ed(x,y) indeces i € [n].

In each iteration, we build ©,, using ., where w’
w/~. Conceptually we do so in two phases. First, we build
another metric, (Z,,,ad,, ), accessible via a fast distance
oracle, that uses 79" = n°(© time and ©,, oracle calls.
Intuitively, ad,, will similarly approximate ed,,. Second,
equipped with a fast oracle for ad,, (itself using D),
we build an “efficient representation” for the entire metric
(Z.,ad,,), while using only n'*t9(€) calls to ad,, oracle.
Naturally, this “efficient representation” will not be able to
capture the entire ad,, metric (whose description complexity
could in general be > n?), but it will capture just enough
to preserve the edit distance between z and y. Then we
build an efficient distance oracle for this efficient repre-
sentation, which will yield the desired metric ©,,. Note
that the final answer is computed by (essentially) querying
Dn(X1n, Y1)

In particular, the “efficient representation” of ad,, is a
weighted graph G, with vertex set Z,, and n'* edges,
such that the shortest path between I,J € Z, approxi-
mates ad,, (I, J). In particular, the shortest path distance is
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non-contracting, and non-expanding for interval pairs that
“matter”, i.e., which are part of the optimal alignment 7
corresponding to ed(z,y). An edge (I, J) of the graph G,
will always correspond to an explicit call to ad,, (7, J); and
the main question in constructing G, is deciding which n'*¢
pairs to compute ad for.

Once we have the graph G,,, we build a fast distance
oracle data structure on it to obtain the metric ©,,. In
particular, our fast distance oracle is merely an embedding
of the shortest path metric on G,, into Kgo, where d = |Z|¢,
incurring an approximation of O(1/¢), via [29]. We note
that we cannot use a more “common’ distance oracle, such
as, e.g., [30], [31], because they do not guarantee that the
resulting output is actually a metric, and in particular, that
it satisfies the triangle inequality, which is crucial for us
(as mentioned above). We remark that this step is some-
what reminiscent of the approach from [14], who similarly
build an efficient representation for the metric (Z,,,ed,,)
using metric embeddings. However, the similarity ends here:
first [14] used Bourgain’s embedding into ¢;, which incurs
O(logn) distortion, and second, more importantly, the con-
struction of G, was altogether different (incurring a much
higher approximation).

Computing the graph G, itself is the most algorithmically
novel part of our approach, and is termed Interval Matching
Algorithm, as it corresponds to matching intervals according
to their ad,, distance. This algorithmic part should be
thought of as the analogue of the algorithm deciding for
which pairs of intervals to (recursively) estimate the edit
distance in [1].

We sketch the Interval Matching Algorithm next in this
technical overview. We also sketch how to compute the ad,,
distance in n©(¢) time, which presents its own challenges.

C. Interval matching algorithm

The main task here is to efficiently compute graph G,,
so that for any pair (I,7[I]), where 7 is the optimal ed
alignment, the shortest path between I and =«[I] in G,, is
O(ad, (I, w[I])), on average, for all but < ed(z, y) intervals.
To generate GG,,, we iterate over all magnitudes of costs
¢ € Sy, and for each such cost, we generate (sub-)graph
Gl,c. With edges of weight ©(c). In particular, for nearly all
pairs (I, w[I]) at a distance ad(I,w[I]) < ¢, we eventually
generate a 1- or 2-hop path for it in G, .. The union' of
such graphs G, . yields the final graph G,,. Below we focus
on a single scale graph G, ., which is supposed to capture
all pairs (I, w[I]) where ad(I,w[I]) < c. We refer to such a
pair as a w-matchable pair (I, 7[I]).

At its core, our algorithm can be thought of as a partition-
ing algorithm, where we partition Z,, into sets of intervals,
such that for nearly all w-matchable pairs (I, n[I]), both

"When there are multiple (I,.J) edges from different c’s, we naturally
take the minimum-weight edge—i.e., the smallest distance certificate.
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intervals belong to the same set. We start from large (coarse)
partition and iteratively refine it into a smaller partition,
keeping 7-matchable pairs I, 7[I] together.

In particular, the matching algorithm proceeds in ~ 1/e
steps. In each step ¢, for A = n¢, we generate \! parts.
To construct a part, we sample a random interval A, termed
anchor, and estimate ad,, (A, I) for all other intervals I in its
part, generating a cluster of intervals at distance O(c) from
the anchor. The main desideratum is that the two intervals
from a w-matchable pair I, 7[I] are either both close to A
or both far from A, and hence always remain together (this
is related to the triangle inequality idea from [1]). However,
this cannot be guaranteed, and ensuring this desideratum is
a major challenge for us, which we will address later. For
now, in order to build intuition, we first make the following
assumption that ensures this desideratum:

Perfect Neighborhood Assumption (PNA): any two
intervals are at distance either < ¢ or w(c);

hence No(e)(I) = Nc(I).

From a cluster, we construct one part (set) by taking
the clustered intervals together with their local extensions:
intervals around the clustered intervals (i.e., to the left/right
of the clustered ones). The parameters are set up such
that the resulting part has size < n/A!. As the partition
granularity decreases with step ¢, we can afford to use more
anchors: e.g., at step t, we start with AL partitions, each
of size about n/A!~!, and hence, for each of A\’ anchors,
we need to estimate ad distance to n/\'"! intervals (in its
part), for an overall of n\ distance computations.

A direct implementation of partitions as above however
runs in various issues, yielding additive errors. In particular,
it only guarantees to “correctly partition a w-matchable pair
with some probability”, instead of the needed “with some
probability, all except a few m-matchable pairs are parti-
tioned correctly” (aka, “for each” vs “for all” guarantee).
For the latter goal, bounding the “except a few” so that
it’s only a O(1)-factor approximation, we use the notion of
corruption, defined later.

Colorings. To describe a partition, we use the slightly
generalized concept of a coloring: a coloring x is a mapping
from each interval I € 7 to a distribution of colors in a
color-set v, where a fixed color should be thought of as a
part. We denote the mapping by u, : Z X v — [0, 1]. For
each interval I, we require ||u.(I,*)|1 = 1, i.e., we think
of the interval I as being split into fractions each assigned
to a part: fraction p,, (I, x) > 0 is assigned to color x. While
under the “perfect neighborhood assumption”, partitions are
sufficient (i.e., u, € {0,1})), fractional colorings will be
crucial for removing the assumption.

All but two colors x € v correspond to a part constructed
from a fixed anchor (i.e., its cluster of intervals together with
the local extension). There are also two special “colors”:
1) the u-color (“uncolored”) consists of intervals which so

Authorized licensed use limited to: Columbia University Libraries. Downloaded on August 26,2021 at 02:26:33 UTC from IEEE Xplore. Restrictions apply.



far has failed to be captured in a part and remains “tbd”
(intervals with certain “sparsity” properties, to be discussed
later), and 2) the color L that corresponds to the already-
matched intervals, i.e., intervals for which we’ve already
added a short path to their w-match in the graph G,
(typically “dense” intervals that have already “converged”).
Overall v = [A] U {u, L}.

Coloring construction via potentials. To construct a new,
more refined step-¢ coloring (from the step-(¢—1) coloring),
we design a mechanism for assigning potential scores to
clustered intervals. Using these potential scores, we assign
colors’ to other nearby intervals in thier proximity, as
suggested above. The main intuition is that a w-matchable
pair I, 7[I] typically has a large set of other w-matchable
J, 7[J] in their respective proximities (i.e., to the left/right).

How large of a “proximity” a cluster can color depends
on the size of the ad-neighborhood of A (and hence of the
clustered intervals, by the perfect neighborhood assumption).
To quantify this, we introduce the notion of density of an
interval I of color X, termed d (7, x): the measure y of its
ad-neighborhood N (I) that share the color y. If such I
(and hence it’s aligned 7[I]) is “dense” (large N.), then we
have a higher probability to cluster such a pair to an anchor;
but we can only afford a small extension for each one (i.e.,
each clustered interval is used to color few other nearby
intervals). In contrast, “sparse” matches will be clustered
with a small probability, but can be used to generate large
extensions in their proximity.

In particular, to compute the new step-t coloring, we
color the intervals gradually in levels, indexed by [
0,1,...,1/e, each level taking care of a density regime as
above. In each level, we define potentials ¢ and . First,
for each anchor A, we allocate potential ¢(I) ~ 55 to
each clustered interval I (i.e., I at distance O(c) from A
in the same “part”® as A) of density d. Next, we define
a derivative potential ¢ by splitting the allocated potential
¢(I) across the u-colored intervals in a proximity ball of
radius ¢ = ¢(I) ~ n around each clustered interval I.
At the end of each level, we transform potential ¢ into
new colors in p,, decreasing the respective u-color (to
be discussed later). Overall, the following is a high-level
diagram of algorithm computation from a (I — 1)-level
coloring ~« to an “amended” [-level coloring 4 (all at the
same step t):

2We'll often just use the verb “color” to describe that process.
3More precisely, to the fraction of I that shares a specific sampled color
x with A.

994

M
J} clustering
Pr
J} extension: splitting in the proximity ball
Pr
J}  minhash (under PNA)
Ha
In each level [ > 1, our goal is to color all intervals of
density in a certain range [n~¢, 1]-d (whp), where d ~ "éj\ ,
where § = n€, as long as there are sufficiently many
intervals of that density range overall*. At level | = 0,

corresponding to the highest density for step ¢, we add an
edge in G between the anchor A and each corresponding
clustered interval I, and mark (fraction of) I as “already-
matched” with the color _L. In other levels, we color intervals
found through extensions of clusters using ¢.

The remaining case — “sparse” intervals we did not color
via an anchor cluster extension as above — will be addressed
by the careful use of u-color, described next. We remark
that, at the end of step ¢, there may be left some pairs of
small densities which we still could not color, and are left
u-colored, and we will show a bound on those as well.

Controlling sparse sections: the u-color. In order to carry
out the level-by-level coloring, we use the special color
u (for un-colored). This color should be thought of as a
“part” in the partition as well. At the beginning of a step,
at level [ = 0, all (fractions of) intervals which are not
“already-matched” are assigned the u color, and (fractions
of) intervals are moved from u-color to “standard” colors
€ [A!] as levels progress. In particular, the u-color helps
with three aspects. First, it provides a way to track sparse
intervals which cannot yet be colored and hence left pending
for future levels. Second, if some sparse sections of intervals
are never colored in the current step, then these intervals will
remain u-colored (and hence, at the end of the current step,
form a part that is also bounded in size). Third, and more
importantly, it allows us to “group together” sparse sections
of intervals that are far apart (in their starting index).

In particular, such grouping of far intervals is done using
the aforementioned “proximity balls”, formally defined via
A-balls: AS(I) is the smallest interval ball around I con-
taining ¢ ~ ' u-colored ¢;-mass on both left and right of
1. Note that A-balls can contain a significantly larger set of
fractions of intervals than { (if the in-between intervals are
mostly colored # u). At the same time, the ball contains
at most 2¢ mass of u-colored intervals, meaning that the
potential ¢(I) is distributed to a mass p < 2¢ of intervals,

“#Notice there can be multiple matches in a ball, hence the quantity we
care about (and bound) is the relative density which is the ratio between
“global” and "local” densities.
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ensuring that, were I to be “corrupted” (e.g., w[I] = L, or
I,7[I] happen to be already separated), we will distribute
O(1) total corrupted potential to ¢’s of intervals in the A-
ball of I.

To showcase the use of u-color, consider again the run-
ning example introduced in Section III-A. In the early steps
t, our algorithm will first color the dense intervals (i.e.,
via clustering/proximity balls, at lower levels [), leaving the
sparse sections mostly unaffected, all colored in u (during
such early steps, the dense intervals are partitioned into
progressively smaller parts while most of the sparse ones
remain u-colored). Now consider a step ¢t where the part
sizes so far are < n/A\7! ~ An and we sample > 1/A
anchors. At the lower levels [, the dense intervals will be
partitioned further (continuing the process from the previous
steps) and assigned a color x € [A!]. However, when we
reach the high levels [, and ¢ ~ B' = n is close to
An, some fraction of the sparse intervals will be clustered.
Furthermore, since at that point the dense intervals are
already colored (and have little u-color), the A-balls around
the clustered sparse intervals will be wide and cover most
of the u-colored sparse intervals. That allows us to finally
partition the sparse intervals into smaller parts as well.

Keeping track of errors: Corruption. To measure and
bound errors, in particular, intervals that do not match suc-
cessfully, we use the notion of “corruption”. First we define
what it means for a (interval, color) pair to be corrupted.
In the below, we use the distance function ddg(a,b) =
a-1[a > Fb], which can be thought of as a “robust” version
of ¢, which tolerates a “distortion” F' > 1 (used for the
non-PNA case). For now ignore parameter F', which will be
clarified later.

Definition ITI.1 (Corrupted pairs). Fix alignment m € 1],
interval 1 € I, distortion F > 1, and graph G on L. For
color x € v in coloring k, we say (I1,x) is a (F,7,G)-
corrupted pair if any of the following holds:

1) 7[I] = L;

2) ad(I,n[I]) > ¢

3) x # L and ddp (ux(L, X), s (L], x)) > O; or

4) x = L and (I,w[I]) are at hop-distance > 2 in G.

For each interval I € Z, we also define corruption

parameter €™ (I) € [0,1] as follows:

r,m,G
& ()
x:(I,x) is (F,m,G)-corrupted pair

pe(L,x). (1)

In particular, an interval [ is fully corrupted (in a col-
oring x) if it does not have its m-matchable counterpart;
and otherwise I is corrupted by the total ¢; color-mass
of p(I,*) where there is insufficient corresponding mass
in p,(w[I],*) (intuitively, the distribution of colors is too
different). While our statements hold for any alignment in
II, we only care about a fixed optimal alignment 7, and a
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single graph G = G,,. Hence, for ease of exposition, we
say I (and W[I(L) are F'-corrupted pair and the corruption is
En(I) £ ¢2™%(I). Our main goal is to bound the growth
of the total corruption {5 = &£(Z) for each level/step
by a constant factor. Our algorithm runs for a constant
number of levels/steps, and hence finishes with £% which
is proportional to the number of intervals without a 7-
matchable counterpart (starting corruption), upper-bounded
by O(% -ed(x,y)). Also, at the end of the interval matching
algorithm, all intervals are “already matched”, i.e., all mass
is on p(Z,1).

To bound the corruption growth, we also introduce the
parameter p(I), which measures the “local amount of cor-
ruption” of an u-colored interval, based on the nearby
corrupted intervals. In particular, p(I) is defined for a A-
ball around I as the ratio of the corruption to the u-mass
inside the A-ball. One can observe that for any fixed ¢ radius
of A, the sum of p over u-colored intervals is proportional
to the total sum of corruption.

Completing the algorithm under the perfect neighbor-
hoods assumption (PNA). Once we compute the palettes ¢
of all intervals (as a function of the sampled anchors), we
then use them to update p for the next level. For illustrative
purposes, we now complete the algorithm under the PNA,
although our general algorithm will differ significantly from
the PNA one. Recall that under PNA, all intervals are either
at ad-distance < ¢ or > ¢, and hence the intervals form
equivalence classes according to their c-neighborhood.

Under PNA, we are guaranteed that the uncorrupted m-
matchable pairs will get similar potentials —in fact, ¢(1)
and ¢(r[I]) are precisely equal (and non-zero whenever they
are clustered by an anchor). More importantly, if we consider
the  palettes of I, 7[I], which gather the contributions from
clusters containing I, 7[I] in their proximity ball, then one
can prove that (the average) ¢; distance between the two ¢
palettes is bounded as a function of the “local corruption”,
namely p(I) and p(r[I]).

Using the /¢;-distance property of ¢, we can assign a
single color x € v to each interval (i.e., u,; (I, *) has support
one), obtaining disjoint partitions. To generate such a color
(for each interval) we can use a random weighted min-wise
hash function h ~ H for R” (say, using [32]) and use it
to partition the vectors (1, *) of all u-colored intervals I.
Specifically, sample a minhash A : R¥ — v and set the
updated coloring to be uz(I, h(¢(I))) < 1 (the rest are 0)
for all I for which p,(I,u) =1 at the end of the previous
level.

For a glimpse of the analysis, recall that our overall goal is
to make each part in partition smaller (for complexity) with
only a constant-factor corruption growth (for correctness);
also, we care only to partition areas with large mass of
intervals with density in some range [n~¢, 1]-d (per level). To
control the size of parts, we cannot afford to assign a single
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color to too many intervals; hence we drop from ¢ all colors
of potential below some fixed threshold o(n~¢), ensuring we
keep each color in the palettes ¢ of at most % intervals.
For bounded corruption, we note that minhash gives us a
bound proportional to the Jaccard distance between o([)
and ¢(n[I]), while the bound we have is over ¢;. This is
where the u-color will eventually help. First, consider an
interval I such that Q(e) portion of its proximity ball A
is composed of intervals of density € [n~¢, 1] - d, where
A is of radius ¢. Then the palette p(I) has ¢; mass (e)
whp after thresholding since: 1) some intervals in A will
be clustered whp (they are dense enough), and 2) once
clustered, the generated potential is large enough to pass
the threshold (since they are not too dense). In this case, we
are done (without using the color u): the Jaccard distance is
proportional to the ¢; distance between ¢(I) and (r[I]),
and hence the probability of separating I from =[I] is
bounded by the “local corruption” (which overall is bounded
by the total corruption). Second, consider the case when
1 — o(€) portion of intervals in the A ball are outside the
aforementioned density range. Then we add u to ¢ of
intervals in the ball A, filling it up to reach ||p(I)|1 = Q(e)
— this will mean that such intervals are likely to mostly map
to u (this increases corruption by a factor < 2). This process
also guarantees A balls at the next level have (1 — o(el)) - ¢
mass of sparse intervals, of density < n/ Z\t .. One can then
prove that, after running this process for ~ 1/¢ levels, the
set of intervals corresponding to each color, including u, is
of size < n/\ only.

Since we could not directly extend the minhash construc-
tion to the general non-PNA case, we do not present this
construction in the paper, but rather use it as an intuition for
the more “robust” version as we describe next.

D. Imperfect neighborhoods

To eliminate the perfect neighborhood assumption (PNA),
we must rely on the weaker form of transitivity instead,
from the triangle inequality: N.(I) C Ujen,(nNae(J) C
N3c(I). Note that the usual ideas to deal with such “weaker
transitivity” do not seem applicable here. E.g., if we pick the
threshold of “close” to be random € [c, O(c)], there’s still a
constant probability of separating I, 7[I]. One could instead
apply the more nuanced metric random partitions, such as
from [33], which would partition the metric (Z,,, ad,,) (thus
putting us back into the perfect neighborhood assumption),
with the probability of I, 7[I] ending up in the same part
being > n~° — which has been useful in other contexts by
repeating such partition ~ n°¢ times. However, such a process
results in a random partition retaining only n'~9(€) -
matched pairs, which is not enough to reconstruct even those
matched pairs (intuitively, the strings are “too corrupted”, as
if the edit distance is (1 — o(1)) - n), making it inapplicable
for our subtle application (here again, this challenge would
not be a big issue if additive approximation were allowed).
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Opverall, dealing with imperfect neighborhoods proved to be
a substantial challenge for us, and we develop several first-
of-a-kind tools specifically to deal with it.

Eventually, we still sample a cost ¢; from an ordered

set E. = {c1,¢2,...} C [¢,0(c)]. We will want that
the sampled cost satisfies that N, (N, (1)) € N, (I).
To ensure the latter, the set E. of costs is exponentially-
growing, i.e., ¢; = O(c) - 3°.
Distortion Resilient Distance. Note that we may assign
somewhat different ¢ potential to I and 7[I] from the sam-
pling procedure above. The distortion (ie, the multiplicative
difference) between ¢(I) and ¢(w[I]) for m-matchable pairs
can be as high as n® for some constant «. Such distortion
makes it impossible to obtain an ¢; bound on ¢ which is
proportional to p. Instead, we deal with such distortion by
employing a distortion resilient version of /7.

Definition IIL2. Fix p,q € R’}. We define the F-distortion
resilient distance,

ddp(p.q)= Y, Ipil

i:p; >F-q;

This function allows us to define and control corruption
of (interval, color) pairs, by differentiating distortion (which
captures multiplicative errors) from corruption (which cap-
tures additive ones). As part of our analysis, we will show
several basic properties of dd distance and develop dd-
preserving soft-transformations, that will replace the hard
thresholds of the minhash construction. Intuitively, dd re-
places the use of the ¢q/Jaccard metric on the vectors ¢,
which is a key enabler for using minhash. However, dd is
not a metric in any reasonable sense, rendering the minhash
construction obsolete (e.g., it seems unreasonable to expect
any kind of LSH under dd).

Assigning potential to (interval, color) pairs. Since main-
taining equivalence classes is essential for our construction,
we analyze pairs of interval and colors in Z x v (which, com-
binatorially, can be thought of as “fractions of intervals”).
Thus when we add some new ¢-potential to a clustered pair
(I, x"), we multiply such increment by it’s x mass, meaning
we add potential ~ u(I, x") 5. Similarly, splitting the ¢
potential to u-colored-pairs in A balls (i.e., assigning ¢) is
done in a pro-rated fashion, weighted according to respective
w(+, u) masses.

Assigning u potential: pivot sampling. While so far we
discussed assigning non-u colors in ¢ of (fractions of)
intervals in a level, we also need to discuss how to assign
u-color in ¢, and, eventually, amended coloring 7. It may
be tempting to merely subtract the assigned fraction of non-
u-color from the u-color mass, but this would result in
additive errors (for the color u), while dd only allows for
multiplicative distortion. Since we need u colors to agree
up to a fixed distortion as well, we compute the new u-
color mass directly, via a different technique for explicitly
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measuring sparseness (which is the central purpose of u-
color). To accomplish this measurement, we developed a
procedure called pivot sampling, which somewhat resembles
the way we assign potentials for the other colors. First,
we downsample Z x v into a smaller set of pivots V.
Second, we approximate the density of each pivot in V), for
each possible cost E., thus generating 8-potential scores for
each pivot. Third and last, such 6 potential is split among
the intervals in a A-ball in a similar fashion to how we
split ¢, generating (-, u) potentials to infervals in sparse
areas. This rather involved process, specific to dealing with
imperfect neighborhoods, requires much care as we need to
control: (1) corruption of u-colors; (2) balance of palettes
o (as we describe next); (3) sparsity guarantees for u-color
at the end of each step ¢; and (4) computational efficiency
of such sampling mechanism.

Amending a coloring in a level, using . While dd is a
convenient analytical tool for bounding corruption, it lacks
the basic properties to allow coordinated sampling between
m-matchable pairs (e.g., it is not even symmetric). Instead of
sampling a color from (7, *) (as was done under PNA), we
add all colors in (I, *) to the amended coloring iz (I, *).
To maintain a distribution of colors, we first combine ¢
with pre-existing non-u-colors in g, and then normalize
to have ¢;-mass of p.(I,u), i.e., what “remains to be
colored” (i.e., ensuring that the overall amended (I, *)
is a distribution). As in the PNA case, we need to bound
extra corruption from normalization by ensuring that the
palettes ¢ have constant norms. While this analysis for
the PNA solution is immediate (by construction), here,
instead, we employ several combinatorial arguments that
analyze mass of pairs with certain density over certain set of
costs, eventually showing that at each level, we either add
sufficient clustered-colors or u-colors to all intervals while
maintaining guarantees (1)—(4) above.

Controlling growing distortion. Our arguments require
that throughout the matching phase, the dd distortion F' is
bounded by 7°(¢) (in particular, to maintain control over the
aforementioned soft-transformations). Many of our algorith-
mic steps generate extra distortion. To control both distortion
(multiplicative error) and corruption (additive error), we
parametrize maximum distortion F' = F(¢,l) for each
step/level a priori, and bound corruption {3 at each step/level
using the pre-determined distortion parameter F' = F'(¢,1).
The final approximation factor is a function of the maximum
cost in %EC (which is further determined by the “base
distortion” F'(1,0) n®), together with the corruption
factor we show in each step. At the end of the day, a
distortion F bounded by n°(¢) allows us to carry out the
above arguments (i.e., some of the above arguments can only
work under small distortion F').
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E. The metrics ad,,

We now briefly discuss the algorithm for computing the
ad, (I, J) distance, using oracle calls to ®,,/, metric. This
metric is used to compute distances when building the graph
G, in the Interval Matching algorithm. Note that the latter
makes n!tO( oracle calls to ad, and hence the algorithm
has to run in time n?(¢) = poly(y).

Intuitively, ad,, (I, J) is meant to capture the following
distance, which should be thought of as an extension of the
edit distance to alphabet with the metric (Z,,,D,) where
w' = w/yd

min Y 5D (44, J + (i),

1€ [w)

where 7 ranges over all alignments of indexes of I to indexes
of J. It’s not hard to see that, if ®(I,J) = ed(!, J), then,
for I = X;.,J = Yj,., the above distance is between
ed(XLw, }/j,w) and ed(XZ"Qw, )/j’Qw).

However, this distance function is hard to compute fast:
not only it is as hard as computing edit distance on w-length
strings, but even linear time (in w > poly()) is too much
for us. In particular, it does not use the fact that ©,, (I +
i,J+m(i)) captures the information of blocks of length w'.
Hence, it is natural to approximate the above by considering
a “rarefication” of the above sum as follows:

ad,, (I, J) = min Z LD (I +iw', J +w(in)). (2)
€[]

However, the latter will not satisfy the triangle inequality —
which is crucial in the Interval Matching Algorithm — and
in fact is not even symmetric: e.g., if the optimal 7 (¢) = i+1,
the ad,,(J,I) would be using © on completely different
arguments. This is especially an issue since certain 3 pairs
may substantially over-estimate ed (and hence “shift by one”
can change the distance a lot).

Indeed, ensuring triangle inequality is the main challenge
for defining and computing ad,, here. We manage to define
an appropriate distance ad, satisfying triangle inequality for
“one scale only” metrics ad,, ., designed for distances in
the range ~ [c,7c|, which turns out to be enough for the
Interval Matching algorithm.

First, we note that we have two different algorithms: for
¢ <w/v, and ¢ > w/~. The reason there’s a big difference
between the two cases is that when ¢ > w/~, the alignment
7 may have a large displacement |i — 7(2)| > w/~y, bigger
than the length of “constituent” intervals for which we have
the base metric ©,,/. Hence, for the “large distance” regime,
when ¢ > w/v, we uses a slightly different (and simpler)
algorithm that runs in time =~ poly(w/c), and hence is only
good when c is sufficiently large.

~
~

51 4+ i means the interval starting ¢ positions to the right of the start of
1.
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Finally, we sketch the harder, poly(v)-time algorithm,
for not-large c. The idea is to allow alignment shifts in
both intervals. More formally, let A be the set of functions
A = (A, Ay) where Ay, Ay ¢ [—v,7) — [T] are non-
decreasing functions with A,[—] = A,[—] = 0 and
Auly —1] = Ay[y — 1], and where T' = v%. We define the
distance ad,, (I, J), to be (essentially), where 6 = ©(c/w):

3 9.
Ae[3T—||ALl,]

I+ w'(i + 0(A + Au[i),

min
A€A
i€[—v,7)

J+w' (i + 0(A + Ayld]))
+ (A Y] + Ay [y) .

Intuitively, ignoring A-sum (i.e., think A = 0), we obtain an
alignment of I to J where the starting positions (of w’-length
intervals) are close to multiples of w’ in both strings (as
opposed to only one string, as in Eqn. (2)). While allowing
such an alignment is enough for ensuring symmetry, it is still
not enough to ensure triangle inequality: think of the case
when ad(I,J) and ad(J, K) use the maximally-allowed
values of the alignment (namely +?), in which case ad(I, K)
cannot use the natural composition of the two alignments
(since it’s out of bounds). This is where the summation over
A saves the day (and is another instance of “averaging it
out”). The last definition can also be computed in poly(~)
time by a standard dynamic programming.

Finally, we remark that, at the end of the day, we cannot
guarantee a per-pair upper bound on ad(I, J), but only on
average, and only when comparing X; . against Yr(;)
(although the triangle inequality is true everywhere). This
is, nonetheless, just enough for computing ed(z,y) in the
end.

IV. TopP-LEVEL ALGORITHM

We now describe our “top-level” algorithm. We assume
here that the first (1 —o(1))n positions of « and y are equal;
we can remove this assumption by padding x,y with some
fixed unique character $, increasing the size of z,y by a
factor of, say, O(logn).

Our algorithm consists of log., n iterations, where y = n*.
For each w = +%, i € [logy n], we construct the metric
(Zw,®w), which approximates the metric (Z,,ed,,) in
a certain average sense, for most of the “relevant” pairs
1,J € Z,. Each iteration consists of two components:
the alignment distance algorithm, and the interval matching
algorithm, described in later sections.

Alignment Distance algorithm. Assuming fast access to
(Zw /> D)) the metric constructed at the previous itera-
tion, our alignment algorithm is an oracle for computing the
distance ad,(-,-) on w-length intervals. More specifically,
we have O(logn) such distance measures, ad,,,, each for
a target cost scale ¢ € S,,. Each such function ad, (-, ")
evaluation is an edit-distance-like dynamic programming of
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size poly(7), and overall can be computed using poly(y) =

n© time and number of oracle calls to Doy /vy

Note that this algorithm is not run directly, but instead is
used as an oracle inside the matching algorithm described
next.

Interval Matching algorithm. We construct a weighted
graph G, on Z,, such that the shortest distance approxi-
mates the ad,, distance on intervals. Again, this won’t be
achieved for all pairs of intervals, but only for interval
pairs that “matter”, i.e., that are in an optimal alignment
for ed(z,y). The graph G,, is union of graphs G, ., for
c € Sy ={0,1,2,4,... w}, each of them approximating
ad,, . at “scale ¢”. Constructing the graphs G, . is the heart
of the matching algorithm.

Once we have the graph G,,, we build a fast distance
oracle data structure on it, using Theorem IV.1 below, and
whose output is the desired metric ©,,. Overloading the
notation, we call ®,, both the distance oracle data structure
as well as the metric it produces.

Theorem IV.1. [29] For any constant integer o > 3, and
given any weighted graph G on n nodes and m edges, we
can build a distance oracle data structure with the following
properties:

supports distance queries: given u,v outputs D¢ (u,v)
which is a a-factor approximation to the shortest path
distance between u,v in the graph;

D¢ (u,v) is a (n-point) metric;

runtime per query is O(n?/®);

data structure uses O(n't?/®) space, and pre-
processing time is O(mn?/®).

Top-level algorithm is described in Algorithm 1. At the
beginning, when w = ~, we use the metric (Z;, D), which
is just the metric on all positions in z and y, where two
positions are at distance O iff the positions contain the same
character, and 1 otherwise. At the end, when w = n, we
can extract the distance between z and y, which is our final
approximation.
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Algorithm 1 EstimateEditDistance(x, y, €, n)

function ESTIMATEEDITDISTANCE(z, 4, €, 1)
Fix C,, to be the constant from Theorem IV.2.
v < nS¢, for a small absolute constant (.
©; is a data structure that, given two positions into
2 and/or y, outputs O iff the characters in those positions
are equal and 1 otherwise.
for w € {7,72,...,n} do
Let X, Y, be sets of all w-length intervals on
z-axis and y-axis respectively, with Z,, = X, U V.
for ce S, do
Initialize new coloring x of a single color
assigned with mass 1 to all Z,,.
Gu,c < MATCHINTERVALS(D
end for
Gu Uce$,Cm - ¢ - Gy, and add edges
(Xiwy Xit1,0)s (Yiw, Yit1,w) With unit cost for all i.
®,, + data structure from Theorem IV.1 on graph
G, for approximation 10/e.
end for
return ©,,(X; ,,,Y; ) for a randomly chosen i € [n].
end function

w/vys € Ky 1)

A. Main guarantees

The guarantees of the algorithm will follow from the
following two main theorems.

Theorem IV.2 (MATCHINTERVALS). Fix € > 0, w,n € N,
and an alignment ™ € 1, as well as cost ¢ € S,.
Suppose the distance ad,, . is a metric, for which we have
query access running in time T,q. Then, the algorithm
MATCHINTERVALS builds an undirected graph G, ., over
intervals T,, = X, U Yy, such that:

1) For all edges (I,J) € Gy, we have ady, (I, J) <
Cpm, - ¢, where Cy,, = Cy,(€) is a constant.

2) There exists a set of at most O(k.) indices i €
[n], such that® ady .(Xiw, Ya(i)w) < ¢ and also
dista, . (Xiw, Ya(i)w) > 2, where k. = |{i |
adw,c(Xiw, Yr(iyw) > c}l, and distg,, , is the hop-
distance in G .

3) The runtime of the algorithm is O(Tuq - n'T0),

As described above, using the algorithm from the above
theorem, we build a graph G,,, which is the union of scale
graphs G, .. Then we take ©,, to be the fast distance oracle
of the shortest path on the graph G,,, using Theorem IV.3.

Next theorem says that, given access to 9, /~» We can
compute ad,, (I, J) for any two intervals I,J € Z, which
corresponds to the “natural extension” of ® from length-
w/7 to length-w substrings.

Theorem IV.3 (alignment distance ad). Fix w and w'
w/y, and suppose we have a data structure for a metric

6Recall from the preliminaries that ad,, (X;, Y1) = w.
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D that satisfies the following for some constant C' > 1,
and any i,j € [n]: 1) D (X, Vi) > ed( X, Vi),
2) Dy (Xiw, Xit1,w) < C (and same for Y intervals),
and 3)
glelg %@w/ (Xi.,w’v Tr(i),w’) <C- ed(mv y)
i€[n]

Then, for any ¢ € Sy, there is an algorithm defining
ady (-, -) with the following properties:

e ady, . is a metric;
ady,(X;,Y;) > min{ed(X;,Y;)

7C\/A’7};

o if we define ad,(X;,Y;) = Y ces, ©
1[ady,o(X;, Y;) > c|, we have:
mierl Lady, (Xiw, Ye(),w) < O(C)-ed(z,y). (3)
e '
i€[n]

for any two intervals 1,J € 1T, ady,.(I,J) can be
computed using O(v°M) time and D, queries.

We remark that ad,, is not guaranteed to be a metric,
which is the reason why we use ad, . in the theorem
statement.

B. Proof of Theorem 1.1

Proof of Theorem 1.1 follows from the above two theo-
rems, IV.2 and IV.3. In particular, the inductive hypothesis
is that, for w = +%, where i € [logﬂ{ n], we have that the dis-
tance oracle data structure 2., outputs a metric ®,, with the
following properties, for some constant Cy, = C/(e, log,, w),
whp:

D Duw(Xiw, Yjw) > ed(Xiw,Yjw) for any i,j € [n];

2) ©4(Xiw, Xit1,w) < 10/€ (and same for Y intervals);

3) min,en Zie[n] igw(Xi,vaﬂ-(i),w) < Cy - ed(x,y).

Base case: for w = 1, this is immediate by construction
of @1.

Now assume the inductive hypothesis for w’ = w/~ and
we need to prove it for w. By inductive hypothesis, 2.,
satisfies hypothesis of Theorem IV.3, and hence we can
apply it to obtain an oracle query to metrics ad, .; each
oracle query takes O(y°()) time. Let 7 be the optimal
alignment obtained from Theorem IV.3.

Define 7(-,-) to be the distance in the graph G, con-
structed in the algorithm. We will prove below that 7 is a
metric satisfying the above properties. Hence, once we build
a fast distance oracle ®,, on the graph G, (using Theo-
rem IV.1 with o = ©(1/¢)), its output metric D, satisfies
7 <D, < O(7), and hence the inductive hypothesis.

To prove the first property of the inductive hypothe-
sis, consider any two intervals I, J, and the shortest path
v1,...0; between them, where v1 = I and vy, = J. We
have that (v;,v;41) is an edge in some graph G, ,, or
is an extra edge of cost 1; call E the set of the latter
i’s. Hence the cost 7(1,J) = > .5 Cne;i + |E|. For
1 € E, by Theorem IV.2 and Theorem IV.3, we have that
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Z (szvy(

i€[n]

Cm

¢ > ady,c, (Vi Vit1) > ed(v;, viy1) (note that the other

part of the min cannot happen). Also, for ¢ € E, we have that
1= T(Ui, viJrl) > ed(vi, ’U7;+1) as ed(Xi, X7;+1) < 1 (and

same for Y’s). Hence ©(I,J) > 7(I,J) =
|E| > ed(vy,v2) + ...

Cm Zz‘gE ¢+
+ ed(vg_1,vr) > ed(I, J).

The second property is immediate by construction of the
graph G, and the fact that approximation of the distance
oracle ©,, is taken to be 10/e.

For the third property, we note that 7(I,.J) is upper

bounded by >

Z T(Xi,w: Yﬂ'(’t) w

i€[n] [n] c€Sw

4-Cpe-1[distg, .(I,J) > 2]. Hence:

cESy

w,e

Z Z 4CmC :U. dlStG (X’L w> Yw(z) > 2]

=4C,, Z Z c- ]l[diStGm)c(Xi’w, Y‘/r(i),w) > 2].

cESy i€(n]

For fixed ¢, we have that, by Theorem IV.2:

Z ]l[diStGw)c(Xi,wa Y‘n’(i),w) > 2] S O(k()

i€[n]

O(Zﬂ. chzumY‘rr()w)>c]>'

Therefore,

chﬂ

c€Sw i€[n]

< (0] Z adw(Xi,wa Yw(i),w)

1€[n]

Altogether, we obtain, using Theorem IV.3 again together
with the inductive hypothesis for v’ = w/~:

Z Do X’i,w7Y7r(7i),w) < O(]-) ' Z T(Xi,wa Yfr(i),w)

i€[n]

i€[n]

Z adw(X7 vaﬂ'(z) ) < O(w : ed(m,y)),

i€[n]

<01

completing the proof of the inductive hypothesis.

Now we argue that the final output produced by the top-
level algorithm is a constant factor approximation. Consider
the ©,, guarantees for w = n, and fix the minimizing 7,
and constant C,, = C,,. For a random index ¢ € [n], with
probability at least 0.9, we have that: 1) i € [1,n — o(n)],

2)

n(i) # L, and D( Xy, Ye)n) < O(Ch) - ed(z,y).
Furthermore note that |i — w(i)] < C,
hence, D (X n, Yin) < D(Xim, Yr(iyn) + 1?0 i —
o(C,

- ed(z,y), and
(i) <
/€) - ed(z,y). Also, since i < n — o(n), we have that

Q(Xi,na Kn) > ed(Xi,TLv Yvi,n) = ed(x, y)

Concluding, the algorithm produces a O(C),/€) approxi-
mation to ed(z, y), with probability > 0.9. Note that C,, is a
constant, depending on €, as we have only a constant number
of iterations, each incurring a constant factor approximation.

The runtime guarantee follows trivially from time guar-
antees of Theorems IV.2 and IV.3.

chzwaYﬂ'() )>
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