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Abstract

The support vector machine (SVM) is a
well-established classification method whose
name refers to the particular training ex-
amples, called support vectors, that deter-
mine the maximum margin separating hyper-
plane. The SVM classifier is known to en-
joy good generalization properties when the
number of support vectors is small compared
to the number of training examples. How-
ever, recent research has shown that in su�-
ciently high-dimensional linear classification
problems, the SVM can generalize well de-
spite a proliferation of support vectors where
all training examples are support vectors.
In this paper, we identify new determinis-
tic equivalences for this phenomenon of sup-
port vector proliferation, and use them to
(1) substantially broaden the conditions un-
der which the phenomenon occurs in high-
dimensional settings, and (2) prove a nearly
matching converse result.

1 INTRODUCTION

The Support Vector Machine (SVM) is one of the
most well-known and commonly used methods for bi-
nary classification in machine learning (Vapnik, 1982;
Cortes and Vapnik, 1995). Its homogeneous version in
the linearly separable setting (commonly also known
as the hard-margin SVM ) is defined as the solution
to an optimization problem characterizing the linear
classifier (a separating hyperplane) that maximizes the
minimum margin achieved on the n training examples
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(x1, y1), . . . , (xn, yn) 2 Rd
⇥ {�1,+1}:

max
w2Rd,��0

�

subj. to margini(w) � � for all i = 1, . . . , n, (1)

where

margini(w) :=

(
yixT

iw/kwk2 if w 6= 0

0 if w = 0

is the margin achieved by w on the i
th training ex-

ample1 (xi, yi). The SVM gets its name from the fact
that the solution (w?

, �
?) depends only on the set of

training examples that achieve the minimum margin
value, �?. These examples are known as the “support
vectors”, and it is well-known that the weight vector
w? can be written as a (non-negative) linear combi-
nation of the yixi corresponding to support vectors.
More precisely, the dual form of the solution expresses
the weight vector w? =

Pn
i=1 ↵

?
i yixi in terms of dual

variables ↵
?
1, . . . ,↵

?
n � 0. This constitutes a concise

representation of the solution—just the list of non-zero
dual variables ↵?

i and corresponding data points. This
remarkable property of the SVM is particularly impor-
tant in its “kernelized” extension (Boser et al., 1992;
Schölkopf and Smola, 2002), where the dimension d

may be very large (or, in fact, infinite) but inner prod-
ucts can be computed e�ciently.

The number of support vectors, if su�ciently small,
has interesting consequences for the generalization er-
ror of the hard-margin SVM solution. Techniques
based on leave-one-out analysis and sample compres-
sion (Vapnik, 1995; Graepel et al., 2005; Germain
et al., 2011) bound the generalization error as a linear
function of the fraction of support vectors and have no
explicit dependence on the dimension d. In particular,
if the number of support vectors can be shown to be
o(n) with high probability, these bounds imply “good
generalization” of the SVM solution in the sense that
the generalization error of the SVM is upper-bounded

1We only consider homogeneous linear classifiers in this
paper and hence have omitted the bias term. The equiva-
lent, but more standard, form of this problem is presented
as Eq. (2) in Section 2.1.
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by a quantity that tends to zero as n ! 1. More-
over, this sparsity in support vectors can be demon-
strated in su�ciently low-dimensional settings using
asymptotic arguments (Dietrich et al., 1999; Buhot
and Gordon, 2001; Malzahn and Opper, 2005). How-
ever, the story is starkly di↵erent in the modern high-
dimensional (also called overparameterized) regime; in
fact, quite the opposite can happen. Recent work com-
paring classification and regression tasks under the
high-dimensional linear model (Muthukumar et al.,
2020a) showed that under su�cient “e↵ective over-
parameterization”, e.g., d ⇠ n log n under isotropic
Gaussian design, every training example is a support

vector with high probability. That is, the fraction of
support vectors is exactly 1 with high probability.
This establishes a remarkable link between the SVM
and solutions that interpolate training data, allowing
an entirely di↵erent set of recently developed tech-
niques that analyze interpolating solutions in regres-
sion tasks (Belkin et al., 2019; Bartlett et al., 2020;
Hastie et al., 2019; Mei and Montanari, 2019; Mi-
tra, 2019; Muthukumar et al., 2020b) to be applied to
the SVM. Using this equivalence, Muthukumar et al.
(2020a) showed the existence of intermediate levels of
overparameterization in which all training examples
are support vectors with high probability, but the en-
suing SVM solution still generalizes well. This charac-
terization was derived for a specific overparameterized
ensemble inspired by spiked covariance models (Wang
and Fan, 2017; Mahdaviyeh and Naulet, 2019). More
importantly, the level of overparameterization consid-
ered there was only su�ciently, not necessarily, high
enough for support vector proliferation.

In this paper, we establish necessary and su�cient
conditions for the phenomenon of support vector pro-
liferation to occur with high probability for a range
of high-dimensional linear ensembles, including sub-
Gaussian and Haar design of the covariate matrix. In
other words, for su�ciently high e↵ective overparame-

terization (measured through quantities that are re-
lated to e↵ective ranks of the covariance matrix as
identified by Bartlett et al. (2020)), we show that all
training examples are support vectors with high proba-
bility. We also provide a weak converse: in the absence
of a certain level of overparameterization, at least one
training example is not a support vector with constant
probability.

Related work

The number of support vectors has been previously
studied in several contexts on account of the aforemen-
tioned connection to generalization error both in clas-
sical regimes using sample compression bounds (Vap-
nik, 1995; Graepel et al., 2005; Germain et al., 2011),

and the modern high-dimensional regime (Muthuku-
mar et al., 2020a; Chatterji and Long, 2020). Several
works investigate the thermodynamic limit where both
the dimension of the input data d and the number of
training data n both tend to infinity at a fixed ratio
� = n/d (e.g., Dietrich et al., 1999; Buhot and Gor-
don, 2001; Malzahn and Opper, 2005; Liu, 2019). One
particular result of note is that of Buhot and Gor-
don (2001), who consider a linearly2 separable setting
where the training data inputs are drawn iid from a d-
dimensional isotropic normal distribution. They find
that the typical fraction of training examples that are
support vectors approaches the following (in the limit
as both n, d ! 1):

8
<

:

0.952
� for � � 1,

1�
q

2�
⇡ exp

�
�

1
2�

�
for � ⌧ 1.

In the classical regime, where n � d (i.e., � � 1),
a combination of this asymptotic estimate with sam-
ple compression arguments yields generalization error
bounds of order O(1/�) = O(d/n), which tend to zero
as � ! 1. However, in the high-dimensional regime,
where d � n (i.e., � ⌧ 1), the fraction of exam-
ples that are support vectors quickly approaches 1 as
� ! 0. In these cases, the generalization error bounds
based on support vectors no longer provide non-trivial
guarantees.

Muthukumar et al. (2020a) recently provided a non-
asymptotic result for this isotropic case considered
above. They found that if d grows somewhat faster
than n (specifically, d ⇠ n log n), then the fraction
of examples that are support vectors is 1 with very
high probability. They also showed that the fraction
of support vectors obtained by the hard-margin linear
SVM can tend to 1 in anisotropic settings if the set-
ting is su�ciently high-dimensional; this is captured
by notions of e↵ective rank of the covariance matrix
of the linear featurizations (Bartlett et al., 2020). Our
results greatly sharpen the su�cient conditions pro-
vided there; see Section 3 for a detailed comparison,
and in particular, Section 3.4 for additional discussion
of implications for generalization error bounds.

Chatterji and Long (2020) also recently showed that
the SVM can generalize well in overparameterized
regimes. In their work, the data are generated by a
linear model inspired by Fisher’s linear discriminant
analysis, and establish their results under the assump-
tion of su�ciently high separation between the means
of the two classes. Their results are based on a di-
rect analysis of the SVM, but do not make any claims

2We note that the main interest of Buhot and Gordon
is in SVMs with non-linear feature maps; we quote one of
their results specialized to the linear setting.
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about the number of support vectors.

The number of support vectors has also been studied
in non-separable but low-dimensional settings, using
suitable variants of the SVM optimization problem.
These variants include the soft-margin SVM (Cortes
and Vapnik, 1995) and the ⌫-SVM (Schölkopf et al.,
2000). In both of these, the hard-margin constraint
is relaxed and support vectors include training exam-
ples that are exactly on the margin as well as margin

violations. The soft-margin SVM doees this by in-
troducing slack variables in the margin constraints on
examples, and uses a hyper-parameter to control the
trade-o↵ between the margin maximization objective
and the sum of constraint violations. The ⌫-SVM pro-
vides somewhat more direct control on the number of
support vectors: the hyper-parameter ⌫ is an upper-
bound on the fraction of margin violations and a lower-
bound on the fraction of all support vector examples.
First, for a suitable choice of the hyper-parameter, the
fraction of examples that are support vectors in the
soft-margin SVM can be related to the Bayes error
rate when certain kernel functions are used (Stein-
wart, 2003; Bartlett and Tewari, 2007). Indeed, this
fact has motivated algorithmic developments for spar-
sifying the SVM solution (e.g., Burges, 1996; Downs
et al., 2001; Keerthi et al., 2006). Second, under some
general conditions on the data distribution, it is also
shown for the ⌫-SVM (Schölkopf et al., 2000, Propo-
sition 5) that as n ! 1 for a fixed dimension d, all
support vectors are of the margin violation category.
These results for non-separable but low-dimensional
settings are not directly comparable to ours, which
hold in the high-dimensional (therefore, typically sep-
arable) regime. Notably, our results on the support
vector proliferation do not require the presence of la-
bel noise—i.e., the Bayes error rate can be zero and
still, every example may be a support vector.

In addition to the aforementioned sample compression
bounds that explicitly use the number of support vec-
tors, there is a distinct line of work on generaliza-
tion error of SVMs based on the margin � achieved
on the training examples (Bartlett and Shawe-Taylor,
1999; Zhang, 2002; Bartlett and Mendelson, 2002;
McAllester, 2003; Grønlund et al., 2020). However,
in the settings we consider, these generalization er-
ror bounds are never smaller than a universal con-
stant (e.g., 1/

p
2), as pointed out by Muthukumar

et al. (2020a, Section 6) and expanded upon in Sec-
tion 3.4. It is worth mentioning that the margin-based
bounds, as well as the bounds based on the number
of support vectors, make no (or very few) assump-
tions about the distribution of the training examples.
The distribution-free quality makes the bounds widely
applicable, but it also limits their ability to capture

certain generalization phenomena, such as those from
(Muthukumar et al., 2020a; Chatterji and Long, 2020).

Finally, our work bears some resemblance to the early
work of Cover (1965) on linear classification. There,
the concern is the number of independent features nec-
essary and su�cient for a data set (with fixed, non-
random labels) to become linear separable. Linear
separability just requires the existence of w 2 Rd such
that margini(w) > 0 for all i = 1, . . . , n, but these
margin values could vary across examples. In contrast,
our work considers necessary and su�cient conditions
under which the margins achieved are all the same
maximum (positive) value.

2 SETTING

In this section, we introduce notation for the SVM
problem, and describe the probabilistic models of the
training data under which we conduct our analysis.

2.1 SVM optimization problem

Our analysis considers the standard setting for ho-
mogeneous binary linear classification with SVMs.
In this setting, one has n training examples
(x1, y1), . . . , (xn, yn) 2 Rd

⇥ {�1,+1}. A homoge-
neous linear classifier is specified by a weight vector
w 2 Rd, so that the prediction of this classifier on
x 2 Rd is given by the sign of xTw. The ambiguity
of the sign when xTw = 0 is not important in our
analysis.

The SVM optimization problem from Eq. (1) is more
commonly written as

min
w2Rd

1

2
kwk

2
2

subj. to yix
T
iw � 1 for all i = 1, . . . , n.

(2)

The well-known Lagrangian dual of Eq. (2) can be
written entirely in terms of the vector of labels y :=
(y1, . . . , yn) 2 Rn and the n⇥ n Gram (or kernel) ma-
trix K corresponding to x1, . . . ,xn, i.e., Ki,j := xT

ixj

for all 1  i, j  n:

max
↵2Rn

nX

i=1

↵i �
1

2
↵T diag (y)T K diag (y)↵

subj. to ↵i � 0 for all i = 1, . . . , n.

(3)

Above, we use diag (·) to denote the diagonal matrix
with diagonal entries taken from the vector-valued ar-
gument. An optimal solution ↵? to the dual prob-
lem in Eq. (3) corresponds to an optimal primal vari-
able w? for the problem in Eq. (2) via the relation
w? =

Pn
i=1 ↵

?
i yixi. The support vectors are precisely
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the examples (xi, yi) for which the corresponding ↵
?
i

is positive, a consequence of complementary slackness.

It will be notationally convenient to change the opti-
mization variable from ↵ to � 2 Rn with �i = yi↵i for
all i = 1, . . . , n. In terms of �, the SVM dual problem
from Eq. (3) becomes

max
�2Rn

yT� �
1

2
�TK�

subj. to yi�i � 0 for all i = 1, . . . , n.
(4)

An optimal solution �? to this problem corresponds to
an optimal primal variable w? via the relation w? =Pn

i=1 �
?
i xi, and the support vectors are precisely the

examples (xi, yi) for which �
?
i is non-zero.

Note that if it were not for the n constraints, the so-
lutions to optimization problem would be character-
ized by the linear equation K� = y. We refer to
the version of the optimization problem in Eq. (4)
without the n constraints as the ridgeless regression

problem. Solutions to this problem have been exten-
sively studied in recent years (e.g., Liang and Rakhlin,
2020; Bartlett et al., 2020; Muthukumar et al., 2020b;
Belkin et al., 2019; Hastie et al., 2019; Mahdaviyeh
and Naulet, 2019). If a vector � 2 Rn satisfies both
K� = y as well as the n constraints yi�i � 0 for all
i = 1, . . . , n, then � is necessarily an optimal solution
to the SVM dual problem from Eq. (4).

2.2 Data model

We analyze the SVM under the following probabilistic
model of the training examples.

Feature model. The x1, . . . ,xn are random vectors
in Rd satisfying

xi := diag (�)1/2 zi, for all i = 1, . . . , n,

The positive vector � 2 Rd
++ parameterizes the model.

The random vectors, collected in the n ⇥ d random
matrix Z := [z1| · · · |zn]T = (zi,j)1in;1jd, satisfy
one of the following distributional assumptions.

1. Independent features: Z has independent entries
such that each zi,j is mean-zero, unit variance,
and sub-Gaussian with parameter v > 0 (i.e.,

E(zi,j) = 0, E(z2i,j) = 1, and E(etzi,j )  e
vt2/2

for all t 2 R).

2. Haar features: Z is taken to be the first n rows of
a uniformly random d⇥d orthogonal matrix (with
the Haar measure), and then scaled by

p
d. The

scaling is immaterial to our results, but it makes
the analysis comparable to that for the indepen-
dent features case.

Label model. Conditional on x1, . . . ,xn, the
y1, . . . , yn are independent {�1,+1}-valued random
variables such that the conditional distribution of yi
depends only on xi for each i = 1, . . . , n. Formally:

yi ?? (x1, y1, . . . ,xi�1, yi�1,xi+1, yi+1, . . . ,xn, yn) | xi.

Remarks. All of our results will assume d �

n. The non-singularity of the kernel matrix K =
Z diag (�)ZT will be important for our analysis. In
the case of Haar features, setting d � n ensures that
the matrix Z always has rank n, and hence the ker-
nel matrix K = Z diag (�)ZT is always non-singular.
In the case of independent features, if the distribu-
tions of the zi,j are continuous, then Z has rank n

almost surely, and hence again K is non-singular al-
most surely. Our results only require the zi,j to be sub-
Gaussian and need not have continuous distributions.
For instance, if the zi,j are Rademacher (uniform on
{�1,+1}), then there is a non-zero probability that Z
is rank-deficient—however, we will see that this prob-
ability is negligible.

Our label model is very general and allows for a variety
of settings, including the following.

1. Generalized linear models (GLMs): Pr(yi = 1 |

xi) = g(xT
iw) for some w 2 Rd and some function

g : R ! [0, 1]. Examples include logistic regres-

sion, where g(t) = 1/(1 + e
�t); probit regression,

where g(t) = �(t) and � is the cumulative distri-
bution function of the standard Gaussian distribu-
tion; and one-bit compressive sensing (Boufounos
and Baraniuk, 2008), where g(t) = 1{t>0}.

2. Multi-index models: Pr(yi = 1 | xi) = h(Wxi)
for some k 2 N, W 2 Rk⇥d, and h : Rk

! [0, 1].
The case k = 1 corresponds to GLMs. Examples
with k � 2 include the intersections of half-spaces
models and certain neural networks (Baum, 1990;
Klivans et al., 2004; Klivans and Servedio, 2008).

3. Fixed labels: yi 2 {�1,+1} are fixed (non-
random) values. This can be regarded as a null
model where the feature vectors have no statis-
tical relationship to the labels. This null model
was, e.g., considered by Cover (1965).

Our results in Theorem 1 and Theorem 2 consider,
respectively, the independent features and Haar fea-
tures, but both allowing for general label models. Our
weak converse result in Theorem 3 is established in
the special case where the zi,j are iid standard Gaus-
sian random variables (a special case of independent
features), and where the labels are fixed.
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2.3 Additional notation

Let [n] := {1, . . . , n} for any natural number n. Let
R++ := {x 2 R : x > 0} denote the positive real num-
bers. For a vector v 2 Rn, we let v\i 2 Rn�1 denote
the vector obtained from v by omitting the ith coordi-
nate. For a matrix M 2 Rn⇥d, we let M\i 2 R(n�1)⇥d

denote the matrix obtained from M by omitting the
i
th row. Sometimes, for a square matrix M 2 Rn⇥n,
we will also use M\i 2 R(n�1)⇥(n�1) to denote the
matrix obtained from M by removing the ith row and
column. We let ei denote the i

th coordinate vector in
Rn. For a vector v 2 Rd, we denote its p-norm by
kvkp = (

Pd
i=1 |vi|

p)1/p. For a matrix M 2 Rd⇥d, we
denote its 2 ! 2 operator norm (i.e., largest singu-
lar value) by kMkop = supv2Rd:kvk21 kMvk2. Let

S
d�1 := {x 2 Rd : kxk2 = 1} denote the unit sphere

in Rd. If M is a symmetric matrix, �min(M) denotes
the smallest eigenvalue of M . Finally, we will use
(C, c, c1, c2) to denote universal constants that do not
depend, explicitly or implicitly, on the dimension d,
the number of training examples n, or properties of
the data distribution.

3 MAIN RESULTS

Our primary interest is in the probability that every
training example is a support vector under the data
model from Section 2.2. We give su�cient conditions
on certain e↵ective dimensions for this probability to
tend to one as n ! 1. We complement these results
with a partial weak converse. Finally, we present a
key deterministic result that is used in the proofs of
the aforementioned results. All proofs are given in
Appendix A.

We define the following e↵ective dimensions in terms
of the data model parameter �:

d2 :=
k�k21
k�k22

and d1 :=
k�k1
k�k1

.

Observe that d � d2 � d1, and that if �j = 1
for all j = 1, . . . , d (i.e., the isotropic setting), then
d = d2 = d1. We note that d2 and d1 are, respec-
tively, the same as the e↵ective ranks r0(diag (�)) and
R0(diag (�)) studied by Bartlett et al. (2020). They
arise naturally from the tail behavior of certain linear
combinations of �2-random variables (see, e.g., Lau-
rent and Massart, 2000).

3.1 Su�cient conditions

Our first main result provides su�cient conditions on
the e↵ective dimensions d2 and d1 in the independent
features setting so that, with probability tending to
one, every training example is a support vector.

Theorem 1. There are universal constants C > 0 and

c > 0 such that the following holds. If the training data

(x1, y1), . . . , (xn, yn) follow the model from Section 2.2

with independent features, subgaussian parameter v >

0, and model parameter � 2 Rd
++, then the probability

that every training example is a support vector is at

least

1� exp

 
�c ·min

⇢
d2

v2
,
d1
v

�
+ Cn

!

� exp

✓
�c ·

d1
vn

+ C log n

◆
.

Observe that the probability from Theorem 1 is close
to 1 when

d2 � v
2
n and d1 � vn log n.

We can compare this condition to that from the prior
work of Muthukumar et al. (2020a) in our setting
with independent Gaussian features (v = 1). In the
anisotropic setting (i.e., general �), the prior result’s
condition for every training example to be a sup-
port vector with high probability is d2 � n

2 log n
and d1 � n

3/2 log n. In the isotropic setting (i.e.,
all �j = 1), assuming the labels are fixed (i.e., non-
random), the prior result’s condition is d � n log n.
Theorem 1 is an improvement in the anisotropic case,
and it matches this prior result in the isotropic case.3

Our second main result provides an analogue of The-
orem 1 for the case of Haar features (where neither
training examples nor features are statistically inde-
pendent).

Theorem 2. There are universal constants C > 0 and

c > 0 such that the following holds. If the training data

(x1, y1), . . . , (xn, yn) follow the model from Section 2.2

with Haar features and model parameter � 2 Rd
++,

then the probability that every training example is a

support vector is at least

1� exp (�c · d1 + Cn)

� exp

✓
�c ·

d� n+ 1

d
·
d1
n

+ C log n

◆
.

3.2 Weak converse

Our final main result gives a weak converse to Theo-
rem 1 in the case where the features are iid standard
Gaussians and the labels are fixed.

3We remark that the result of Muthukumar et al.
(2020a) for the anisotropic case, in fact, holds for all (fixed)
label vectors y 2 {�1,+1}n simultaneously. However,
their proof does not readily give a tighter condition when
only a single (random) label vector is considered. Our proof
technique side-steps this issue by showing that it is su�-
cient to consider the scaling of quantities that do not de-
pend on the value of the label vector.
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Theorem 3. Let the training data

(x1, y1), . . . , (xn, yn) follow the model from Sec-

tion 2.2 with � = (1, . . . , 1), z1, . . . , zn being iid

standard Gaussian random vectors in Rd
, and

y1, . . . , yn 2 {±1} being arbitrary but fixed (i.e.,

non-random) values. For any d � n, the probability

that at least one training example is not a support

vector is at least

�

0

@�

s
d� n+ 4 + 2

p
d� n+ 2

n� 1

1

A ·

✓
1�

1

e

◆
,

where � is the cumulative distribution function of the

standard Gaussian distribution.

Observe that the probability bound from Theorem 3
is at least a positive constant (independent of d and n)
whenever the dimension d (regarded as a function of
n) is O(n). This means that the dimension d must be
super-linear in n in order for the “success” probability
of Theorem 1 to tend to one with n.

Theorem 3 applies to the case where the features vec-
tors are isotropic. In Appendix B, we give a version of
the result that applies to certain anisotropic settings,
again in the case of independent Gaussian features and
fixed labels. The theorem puts restrictions on the tail
behavior of �. These restrictions are related to the
e↵ective ranks studied by Bartlett et al. (2020). The
proof is similar to that of Theorem 3, but also relies
on a technical result from (Bartlett et al., 2020).

Except when the “success” probability is required to
be � 1 � 1/nc for constant c > 0, there is a log(n)
gap between the su�cient condition from Theorem 1
and the necessary condition from Theorem 3. Our
approach to the proof of Theorem 3 does not appear to
be able to close this gap. We discuss this issue further
in Appendix C, and leave its resolution to future work.

3.3 Deterministic equivalences

The crux of all of the above results lies in the following
key lemma, which characterizes equivalent conditions
for every training example to be a support vector.

Lemma 1. Suppose Z := [z1| · · · |zn]T 2 Rn⇥d

and � 2 Rd
++ are such that Z diag (�)ZT

and

Z\i diag (�)Z
T

\i for all i = 1, . . . , n are non-singular.

Let the training data (x1, y1), . . . , (xn, yn) 2 Rd
⇥

{�1,+1} satisfy xi = diag (�)1/2 zi for each i =
1, . . . , n. Then the following are equivalent:

1. Every training example is a support vector.

2. The vector � := K�1y satisfies yi�i > 0 for all

i = 1, . . . , n.

3. yiyT

\i

⇣
Z\i diag (�)Z

T

\i

⌘�1
Z\i diag (�) zi < 1 for

all i = 1, . . . , n.

The above lemma is a deterministic result—it does
not reference a particular statistical model for the
data—and hence the equivalences are given under
non-singularity conditions. We note that the non-
singularity conditions are readily satisfied under the
data model from Section 2.2 (with high probability, in
the case of independent features, or deterministically,
in the case of Haar features).

The equivalences of the first two items in this lemma
connect the solutions to the SVM optimization prob-
lem and the ridgeless regression problem more tightly
than was done in the prior work of Muthukumar et al.
(2020a), who only proved one direction of the equiv-
alence between the first two items. The proofs of our
main results critically use the third item in the above
equivalence.

3.4 Implications for generalization

In Theorem 1 and Theorem 2, we identified high-
dimensional regimes in which the SVM solution ex-
actly corresponds to the least norm (linear) interpo-
lation of training data with high probability. We ob-
serve in Figure 1 that certain deterministic featuriza-
tions (which bear some resemblance to the Haar fea-
tures of Theorem 2, and have been independently an-
alyzed in the interpolating regime for regression prob-
lems (Belkin et al., 2019; Muthukumar et al., 2020b))
also empirically exhibit similar support vector prolif-
eration when the e↵ective overparameterization is suf-
ficiently high.

The regimes considered in our results go beyond the
common high-dimensional asymptotic where d and n

grow proportionally to each other (i.e., n/d ! � as
n, d ! 1). One may wonder, then, whether these
regimes are too high dimensional for the SVM to gen-
eralize well. As mentioned in Section 1, the classical
generalization error bounds for the SVM are based on
the number of support vectors or the worst-case mar-
gin achieved on the training examples. Recall that
these upper bounds are, respectively, roughly of the
form4

# support vectors

n
and

kw?
k
2
2

n
·
E[tr (K)]

n
.

Here, w? is the solution to the SVM primal problem

4Some bounds are given as the square-roots of the ex-
pressions we show, but whether or not the square-root is
used will not make a di↵erence in our case. We also omit
constants (which are typically larger than 1), polylogarith-
mic factors in n, and terms related to the confidence level
for the bound.
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(a) ⌘i = 1/i (b) ⌘i = 1/i3

Figure 1: Plots of linear functions on top of trigonometric features of a scalar input variable that parameterizes
the horizontal axis. (These plots originally appeared in (Muthukumar et al., 2020a).) The two linear functions
are those given by the solution to the SVM optimization problem and the ridgeless regression problem (i.e., the
least norm interpolation), based on 32 training data shown as ⇥’s in the plot. The features are obtained via
the mapping t 7! (1,

p
⌘1 cos(1 · t),

p
⌘1 sin(1 · t), . . . ,

p
⌘k cos(k · t),

p
⌘k sin(k · t)) 2 R2k+1 where k = 214. In

(a), the SVM and least norm interpolation coincide exactly (so all 32 examples are support vectors); in (b),
the functions are noticeably distinct (and only 18 out of 32 examples are support vectors). In each case, we
computed analogues of d2 and d1 based on the eigenvalues of the Gram matrix. In (a), they are 108.386 and
21.5626; in (b), they are 3.21378 and 2.20198.

in Eq. (2). Unfortunately, these bounds are not infor-
mative for the high-dimensional regimes in which all
training points become support vectors. As soon as
d2 and d1, respectively, grow beyond n and n log n,
then both bounds above become trivial with probabil-
ity tending to one. This is immediately apparent for
the first bound, as a consequence of Theorem 1. For
the second bound, an inspection of the proof of The-
orem 1 shows that in an event where every training
example is a support vector (with the same probabil-
ity as given in Theorem 1), we have

kw?
k
2
2 = yTK�1y �

n

kKkop
�

n

2k�k1
.

Since E[tr (K)]/n = k�k1, the second bound is at least
1/2 in this event. We also remark that even more
sophisticated generalization bounds using the distri-
bution of the margin on training examples (e.g., Gao
and Zhou, 2013) do not help in this high-dimensional
regime. This is because when all training examples be-
come support vectors, the normalized margin of every
training point becomes exactly the worst-case margin,
which is 1/kw?

k2.

However, recent analyses show that the SVM can
generalize well even when all training points be-
come support vectors. In particular, the recent work
of Muthukumar et al. (2020a) provided positive im-
plications for the SVM by analyzing the classification
test error of the least norm interpolation. In particu-
lar, they considered a special anisotropic Gaussian en-
semble inspired by spiked covariance models, parame-
terized by positive constants p > 1 and 0 < (q, r) < 1;
here, d = n

p and (q, r) parameterize the eigenvalues of

the feature covariance matrix and the sparsity of the
unknown signal respectively. See (Muthukumar et al.,
2020a, Section 3.4) for further details. It su�ces for
our purposes to note that the main result of Muthuku-
mar et al. (2020a, Theorem 2) showed that the follow-
ing rate region of (p, q, r) is necessary and su�cient for
the least norm interpolation of training data to gener-
alize well, in the sense that the classification test error
goes to 0 as n ! 1:

0  q < 1� r +
p� 1

2
. (5)

It is easy to verify that Theorem 1 directly implies
good generalization of the SVM for this entire rate
region. First, for q � 1� r, it holds that

d2 ⇣ n
2p�max{2p�2q�r,p}

d1 ⇣ n
q+r

,

and since we have assumed p > 1, the conditions of
Theorem 1, i.e., d2 � n, d1 � n log n, would hold if
and only if q > 1 � r. On the other hand, the usual
margin-based bounds would show good generalization
of the SVM if 0  q < (1�r). Putting these together,
the SVM generalizes well for the entire rate region in
Equation (5).

Further, the improvement of this implication over the
partial implications for the SVM that were provided
in Muthukumar et al. (2020a) is clear. In particu-
lar, (Muthukumar et al., 2020a, Corollary 1) required
p > 2, i.e. d � n

2, and showed that the SVM will then
generalize well if (3/2 � r) < q < (1 � r) + (p � 1)/2.
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Thus, the rate region implied by this work was

�
0  q < (1� r)

 

[

(✓
3

2
� r

◆
< q < (1� r) +

(p� 1)

2

)
,

which has a non-trivial gap compared to Eq. (5). In
summary, our results imply an expansion over the rate
region predicted by classical generalization bounds
based on either the number of support vectors or the
margin.

4 PROOF OF MAIN LEMMA

This section gives the proof of the main technical
lemma (Lemma 1). (The proofs of the main results
are given in Appendix A.)

Throughout, we use the shorthand notations ⇤ :=
diag (�) and K\i := Z\i⇤ZT

\i for each i = 1, . . . , n.
Note that K\i is the same as K = Z diag (�)ZT ex-
cept omitting both the i

th row and the i
th column.

We now give the proof of Lemma 1. Recall that we as-
sume K and K\i for all i = 1, . . . , n are non-singular.
We first show that all training examples are support
vectors if and only if the candidate solution � = K�1y
satisfies

yi�i > 0 for all i = 1, . . . , n. (6)

( (= ) Assume yi�i > 0 for all i 2 [n]. Recall that
� = K�1y is the unique optimal solution to the ridge-
less regression problem (i.e., the problem in Eq. (4)
without the n constraints). Since Eq. (6) holds, then �
is dual-feasible as well, and so it is the unique optimal
solution to the dual program, i.e., �? = �. Moreover,
yi�

?
i > 0 =) �

?
i 6= 0 for all i 2 [n], and so every

training example is a support vector.

( =) ) Assume every training example is a support
vector, i.e., �?

i 6= 0 for all i 2 [n] (so, in particular,
yi�

?
i > 0 for all i 2 [n]). We shall write the solution

w? to the primal problem from Eq. (2) as a linear com-
bination of x1, . . . ,xn in two ways. The first way is in
terms of the dual solution �?, i.e., w? =

Pn
i=1 �

?
i xi,

which follows by strong duality. The second way comes
via complementary slackness, which implies that w?

satisfies every constraint in Eq. (2) with equality. In
other words, w? solves minw2Rd

1
2kwk

2
2 subject to

xT
iw = yi for all i = 1, . . . , n. Since K is non-

singular by assumption, the solution is unique and
is given by XTK�1y = XT� =

Pn
i=1 �ixi, where

X = [x1| · · · |xn]T. So we have w? =
Pn

i=1 �
?
i xi =Pn

i=1 �ixi. The non-singularity of K also implies that
x1, . . . ,xn are linearly independent, so we must have
�i = �

?
i 6= 0 for all i 2 [n], and thus Eq. (6) holds.

So we have shown that all training examples are sup-
port vectors if and only if Eq. (6) holds. It therefore
su�ces to show that, for each i = 1, . . . , n,

yi�i > 0 () yiy
T

\iK
�1
\i Z\i⇤zi < 1.

By symmetry, we only need to show this implication
for i = 1.

Observe that y1�1 = y1eT
1K

�1y = eT
1K

�1(y1y) is the
inner product between the first row of K�1 and y1y.
Therefore, by Cramer’s rule, we have

y1�1 = y1e
T
1K

�1y =
det(K̃)

det(K)

where K̃ is the matrix obtained from K by replacing
the first row with y1yT. Since K is assumed to be
invertible, K is positive definite, and so det(K) > 0.
Hence, we have y1�1 > 0 i↵ det(K̃) > 0.

Let us write K̃ as

K̃ =

"
1 y1yT

\1
a K\1

#
,

where a := Z\1⇤z1 and recall that K\1 denotes the
(n�1)⇥ (n�1) matrix obtained by removing the first
row and column from K. Note that K\1 is invertible
by assumption and hence positive definite. Also, define

Q :=

"
1 �y1yT

\1
0 In�1

#
,

where In�1 is the (n � 1) ⇥ (n � 1) identity matrix.
Every diagonal entry of Q is equal to 1, so det(Q) = 1.
Hence

det(K̃) = det(K̃) det(Q)

= det(K̃Q)

= det

0

@
"
1 0

T

a K\1 � y1ayT

\1

#1

A

= det(K\1 � abT)

where b := y1y\1. Therefore, det(K̃) > 0 i↵

det(K\1 � abT) > 0.

By the matrix determinant lemma,

det(K\1 � abT) = det(K\1)(1� bTK�1
\1 a).

Since K\1 is positive definite, we have det(K\1) > 0.

Hence, det(K\1 � abT) > 0 i↵ bTK�1
\1 a < 1.

Connecting all of the equivalences and plugging-in for
a, b, and K\1, we have shown that

y1�1 > 0 () y1y
T

\1(Z\1⇤ZT

\1)
�1Z\1⇤z1 < 1,

as required. This completes the proof of the lemma.
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