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Abstract. The “double descent” risk curve was proposed to qualitatively describe the out-of-sample prediction
accuracy of variably parameterized machine learning models. This article provides a precise math-
ematical analysis for the shape of this curve in two simple data models with the least squares/least
norm predictor. Specifically, it is shown that the risk peaks when the number of features p is close
to the sample size n but also that the risk sometimes decreases toward its minimum as p increases
beyond n. This behavior parallels some key patterns observed in large models, including modern
neural networks, and is contrasted with that of “prescient” models that select features in an a priori
optimal order.
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1. Introduction. The “double descent” risk curve was proposed by Belkin et al. [4] as
a general way to qualitatively describe the out-of-sample prediction performance of variably
parameterized machine learning models. This risk curve reconciles the classical bias-variance
trade-o↵ with the behavior of predictive models that interpolate training data, as observed
for several model families (including neural networks) in a wide variety of applications (see
section 1.1 for references). In these studies, a predictive model with p parameters is fit to a
training sample of size n, and the test risk (i.e., out-of-sample error) is examined as a function
of p. When p is below the sample size n (for regression or binary classification), the test risk
is governed by the usual bias-variance decomposition. As p is increased toward n, the training
risk (i.e., in-sample error) is driven to zero, but the test risk shoots up, sometimes toward
infinity. The classical bias-variance analysis identifies a “sweet spot” value of p 2 [0, n] at
which the bias and variance are balanced to achieve low test risk. However, in the “modern
regime,” as p grows beyond n, the training risk remains zero, but the test risk decreases again,
even when fitting noisy data, provided that the model is fit using a suitable inductive bias
(e.g., least norm solution). In many (but not all) cases from [4], the limiting risk as p ! 1 is
lower than what is achieved at the “sweet spot” value of p.
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1168 MIKHAIL BELKIN, DANIEL HSU, AND JI XU

In this article, we show that key aspects of the “double descent” risk curve can be observed
with the least squares/least norm predictor in two simple random features models. The first
is a Gaussian model studied by Breiman and Freedman [7] in the classical p  n regime,
while the second is a Fourier series model for functions on the circle. In both cases, we prove
that the risk is infinite around p = n and decreases again as p increases beyond n. When
the signal-to-noise ratio is high, the minimum risk is, in fact, achieved in the modern regime,
when p > n. Our results provide a precise mathematical analysis in a simple and tractable
setting of the mechanism that was qualitatively described by Belkin et al. [4]. In particular,
it captures a key aspect of many practical overparameterized models: that increasing the
number of parameters to the maximum can lead to better performance. We also establish
some nonasymptotic concentration phenomena in the Gaussian model.

We note that in both of the models, the features are selected randomly, which makes them
useful for studying scenarios where features are plentiful but individually too “weak” to be
selected in an informed manner. Such scenarios are common in machine learning practice,
and they should be contrasted with “scientific” scenarios where features are carefully designed
or curated, as is often the case in scientific applications. For comparison, we give an example
of “prescient” feature selection, where the p features a priori known to be most useful are
included in the model. In this case, the optimal test risk is achieved at some p  n, which is
consistent with the classical analysis of Breiman and Freedman [7].

1.1. Related and concurrent works. The “double descent” risk curve was posited by
Belkin et al. [4] to connect the classical bias-variance trade-o↵ to behaviors observed in over-
parameterized regimes for a variety of machine learning models. The shape and features
of the risk curve itself appear throughout in the literature in a number of contexts, e.g.,
[21, 17, 13, 12, 6, 23, 1]; see also [14] for a “brief prehistory” that focuses on the curious
peak in the curve. These prior works analyze the risk of linear classification and regression
models and neural networks in high-dimensional asymptotic regimes. Our analysis in the
Gaussian model gives an exact expression for the risk for any finite sample size and number
of parameters.

More recently, Neal et al. [16] observed that similar phenomena in neural networks can
be explained by a variance reduction e↵ect of increasing network width. The transition from
under- to overparametrized regimes was recently analyzed by Spigler et al. [20] by drawing
a connection to the physical phenomenon of “jamming” in a class of glassy systems. Our
analysis makes these ideas concrete and explicit in the context of simple regression models.
For instance, our analysis captures the transition from under- to overparameterized regimes at
a point where an inverse Wishart random matrix has no finite expectation. It also allows us to
compare the risks at any points in the curve and explain how the risk in the overparameterized
regime can be lower than any risk in the underparameterized regime.

The initial version of this article [5] appeared concurrently with works of Hastie et al. [11],
Muthukumar et al. [15], and Bartlett et al. [3], all of which also study the behavior of the
least squares/least norm predictor in overparameterized linear regression. Muthukumar et
al. [15] focus on the well-specified scenario (essentially p = D) and provide upper bounds on
the risk that go to zero as p ! 1. (A related variance analysis was carried out by Neal et
al. [16].) Hastie et al. [11] provide a much broader range of analyses in the high-dimensionalD
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TWO MODELS OF DOUBLE DESCENT FOR WEAK FEATURES 1169

asymptotic regime, including a “misspecified” setup that is related to ours. Their analyses
require weaker distributional assumptions than ours because of their reliance on asymptotic
analysis. (A special case of the results in the follow-up work by Xu and Hsu [24] further
broadens the range of analyses to allow highly nonisotropic designs, but again only in the
high-dimensional asymptotic regime.) The analysis of Hastie et al. [11] also considers the e↵ect
of ridge regularization; in particular, they show that when the optimal level of regularization
is used, the risk curve no longer shows the “double descent” shape. Finally, Bartlett et al. [3]
study nonasymptotic upper and lower bounds on the risk in the overparameterized regime
and provide a characterization in terms of certain “e↵ective dimensions” based on the tail of
the eigenvalue sequence of the covariance operator.

2. Gaussian model. We consider a regression problem where the response y is equal to a
linear function � = (�1, . . . , �D) 2 RD of D real-valued variables x = (x1, . . . , xD) plus noise
�✏:

y = x⇤� + �✏ =
DX

j=1

xj�j + �✏.

Given n independent and identically distributed copies ((x(i), y(i)))ni=1 of (x, y), we fit a linear
model to the data only using a subset T ✓ [D] := {1, . . . , D} of p := |T | variables.

Let X := [x(1)| · · · |x(n)]⇤ be the n⇥D design matrix, and let y := (y(1), . . . , y(n)) be the
vector of responses. For a subset A ✓ [D] and aD-dimensional vector v, we use vA := (vj : j 2
A) to denote its |A|-dimensional subvector of entries fromA; we also useXA := [x(1)

A | · · · |x(n)
A ]⇤

to denote the n ⇥ |A| design matrix with variables from A. For A ✓ [D], we denote its
complement by Ac := [D] \A. Finally, k · k denotes the Euclidean norm.

We fit regression coe�cients �̂ = (�̂1, . . . , �̂D) with

�̂T := X†
Ty, �̂T c := 0.

Above, the symbol † denotes the Moore–Penrose pseudoinverse. In other words, we use the
solution to the normal equations X⇤

TXTv = X⇤
Ty of least norm for �̂T and force �̂T c to all

zeros.
In this section, our analysis assumes a model in which (x, ✏) follows a standard multivariate

Gaussian distribution. This Gaussian model was also studied by Breiman and Freedman [7],
although their analysis is restricted to the case where the number of variables used p is always
at most n; our analysis will also consider the p � n regime.

2.1. Prediction risk. We derive a formula for the (prediction) risk of �̂ for an arbitrary
choice of p features T ✓ [D] and then examine this risk under particular selection models for
T .

Theorem 2.1. Assume the distribution of x is the standard normal in RD, ✏ is a standard
normal random variable independent of x, and y = x⇤� + �✏ for some � 2 RD and � > 0.
Pick any p 2 {0, . . . , D} and T ✓ [D] of cardinality p. The risk of �̂, where �̂T = X†

Ty andD
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Figure 1. Plot of risk E[(y � x⇤�̂)2] as a function of p under the random selection model of T . Here,
k�k2 = 1, �2 = 1/25, D = 100, and n = 40.

�̂T c = 0, is

E[(y � x⇤�̂)2] =

8
>><

>>:

(k�T ck2 + �2) ·
⇣
1 + p

n�p�1

⌘
if p  n� 2,

+1 if n� 1  p  n+ 1,

k�T k2 ·
⇣
1� n

p

⌘
+ (k�T ck2 + �2) ·

⇣
1 + n

p�n�1

⌘
if p � n+ 2.

The proof of Theorem 2.1 is not hard; we give the details in subsection 2.2. We now turn
to the risk of �̂ under a random selection model for T .

Corollary 2.2. Let T be a uniformly random subset of [D] of cardinality p. In the setting
of Theorem 2.1, the risk of �̂ (taking expectation with respect to the random choice of T in
addition to the random design matrix and response vector) satisfies

E[(y � x⇤�̂)2] =

8
<

:

��
1� p

D

�
· k�k2 + �2

�
·
⇣
1 + p

n�p�1

⌘
if p  n� 2,

k�k2 ·
⇣
1� n

D ·
⇣
2� D�n�1

p�n�1

⌘⌘
+ �2 ·

⇣
1 + n

p�n�1

⌘
if p � n+ 2.

Proof. Since T is a uniformly random subset of [D] of cardinality p,

E[k�T k2] =
p

D
· k�k2, E[k�T ck2] =

⇣
1� p

D

⌘
· k�k2.

Plugging into Theorem 2.1 completes the proof.

Thus, assuming D > n + 1, we observe that the risk first increases with p up to the
“interpolation threshold” (p = n), after which the risk decreases with p. Moreover, when the
signal-to-noise ratio k�k2/�2 is larger than D/(D � n � 1), the risk is smallest at p = D; in
particular, it is smaller than the risk at any p  n. This is the “double descent” risk curve,
where the first “descent” is degenerate (i.e., the “sweet spot” that balances bias and variance
is at p = 0). See Figure 1 for an illustration.

It is worth pointing out that the behavior under the random selection model of T can be
very di↵erent from that under a deterministic model of T . Consider including variables in
T by decreasing order of �2

j—a kind of “prescient” selection model studied by Breiman and
Freedman [7]. The behavior of the risk as a function of p, illustrated in Figure 2, reveals a
striking di↵erence between the random selection model and the “prescient” selection model.D
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Figure 2. Plot of risk E[(y � x⇤�̂)2] as a function of p under the “prescient” selection model of T . Here,
k�k2 = 1, �2

j / 1/j2, �2 = 1/25, D = 100, and n = 40.

2.2. Proof of Theorem 2.1. Recall that x is assumed to follow a standard normal distri-
bution in RD. Since x is isotropic (i.e., zero mean and identity covariance), the mean squared
prediction error of any �0 2 RD can be written as

E[(y � x⇤�̂)2] = �2 + k� � �̂k2 = �2 + k�T c � �̂T ck2 + k�T � �̂T k2.

Since �̂T c = 0, it follows that the risk of �̂ is

E[(y � x⇤�̂)2] = �2 + k�T ck2 + E[k�T � �̂T k2].

Classical regime. The risk of �̂ was computed by Breiman and Freedman [7] in the regime
where p  n:

E[(y � x⇤�̂)2] =

(
(k�T ck2 + �2) ·

⇣
1 + p

n�p�1

⌘
if p  n� 2,

+1 if p 2 {n� 1, n}.

Interpolating regime. We consider the regime where p � n. Recall that the pseudoinverse
of XT can be written as X†

T = X⇤
T (XTX

⇤
T )

†. Thus, letting ⌘ := y �XT�T ,

�T � �̂T = �T �X⇤
T (XTX

⇤
T )

†y

= �T �X⇤
T (XTX

⇤
T )

†(XT�T + ⌘)

= (I �X⇤
T (XTX

⇤
T )

†XT )�T �X⇤
T (XTX

⇤
T )

†⌘.

On the right-hand side, the first term (I �X⇤
T (XTX

⇤
T )

†XT )�T is the orthogonal projection
of �T onto the null space of XT , while the second term �X⇤

T (XTX
⇤
T )

†⌘ is a vector in the
row space of XT . By the Pythagorean theorem, the squared norm of their sum is equal to
the sum of their squared norms, so

k�T � �̂T k2 = k(I �X⇤
T (XTX

⇤
T )

†XT )�T k2 + kX⇤
T (XTX

⇤
T )

†⌘k2.

We analyze the expected values of these two terms by exploiting properties of the standard
normal distribution.D
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First term. Note that ⇧T := X⇤
T (XTX

⇤
T )

†XT is the orthogonal projection matrix for the
row space of XT . So, by the Pythagorean theorem, we have

k(I �X⇤
T (XTX

⇤
T )

†XT )�T k2 = k�T k2 � k⇧T�T k2.

By rotational symmetry of the standard normal distribution, it follows that

E[k⇧T�T k2] = k�T k2 ·
n

p
.

Therefore,

E[k(I �X⇤
T (XTX

⇤
T )

†XT )�T k2] = k�T k2 ·
✓
1� n

p

◆
.

Second term. We use the “trace trick” to write

kX⇤
T (XTX

⇤
T )

†⌘k2 = tr((XTX
⇤
T )

†(XTX
⇤
T )(XTX

⇤
T )

†⌘⌘⇤) = tr((XTX
⇤
T )

†⌘⌘⇤),

where the second equality holds almost surely because XTX
⇤
T is almost surely invert-

ible. Since x⇤
T�T and x⇤

T c�T c + �✏ are uncorrelated, it follows that

E[kX⇤
T (XTX

⇤
T )

†⌘k2] = tr(E[(XTX
⇤
T )

†]E[⌘⌘⇤]).

The distribution of ⌘ is normal with mean zero and covariance (k�T ck2+�2)·I 2 Rn⇥n,
so

E[⌘⌘⇤] = (k�T ck2 + �2) · I.

The distribution of P := (XTX
⇤
T )

† is inverse-Wishart with identity scale matrix
I 2 Rn⇥n and p degrees of freedom. Each diagonal entry Pi,i of P , for i = 1, . . . , n,
has a reciprocal that follows the �2 distribution with p � n + 1 degrees of freedom.
Hence, E[Pi,i] = 1/(p�n�1) if p � n+2 and E[Pi,i] = +1 if p 2 {n, n+1}. Therefore,

tr(E[(XTX
⇤
T )

†]) =

(
n

p�n�1 if p � n+ 2,

+1 if p 2 {n, n+ 1}.

We conclude that

E[kX⇤
T (XTX

⇤
T )

†⌘k2] =
(
(k�T ck2 + �2) · n

p�n�1 if p � n+ 2,

+1 if p 2 {n, n+ 1}.

Combining the first and second terms gives the claimed expression for the risk.

2.3. Concentration. We briefly consider the measure concentration of k� � �̂k2.D
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Theorem 2.3. Consider the setting from Theorem 2.1, and fix any ✏ 2 (0, 1). If ↵ := p/n <
1, then

k� � �̂k2 2 (k�T ck2 + �2)

✓
1 +

✓
1± ✏

1⌥ ✏

◆
p

n� p+ 1

◆

with probability at least

1� 2 exp

 
� p✏4(

p
↵�1 � 1)2

24((2� ✏)
p
↵�1 + ✏)2

!

� 2 exp

 
�p(1� ✏)2(

p
↵�1 � 1)2

2

!
� 2p exp

✓
�p(↵�1 � 1)✏2

24

◆
.

If ↵ > 1, then

k� � �̂k2 2 k�T k2
✓
1� (1± ✏)

n

p

◆
+ (k�T ck2 + �2)

✓
1 +

✓
1± ✏

1⌥ ✏

◆
n

p� n+ 1

◆

with probability at least

1� 2 exp

✓
�n✏2

12

◆
� 2 exp

✓
� n✏4(

p
↵� 1)2

24((2� ✏)
p
↵+ ✏)2

◆

� 2 exp

✓
�n(1� ✏)2(

p
↵� 1)2

2

◆
� 2n exp

✓
�n(↵� 1)✏2

24

◆
.

The proof is given in Appendix A. The main idea for the p > n case is as follows. From
the proof of Theorem 2.1, we have the decomposition

k�T � �̂T k2 = k(I �⇧T )�T k2 + kX⇤
T (XTX

⇤
T )

†⌘k2.

The first term k(I � ⇧T )�T k2 is the squared distance from �T to a uniformly random n-
dimensional subspace of Rp. This squared distance has the same distribution as the squared
distance from a uniformly random vector of length k�T k to a fixed n-dimensional subspace
of Rp. Thus, measure concentration on the unit sphere can be used here. The second term
kX⇤

T (XTX
⇤
T )

†⌘k2 is a (random) quadratic form in the Gaussian random vector ⌘. Gaussian
concentration is readily applied after controlling the spectral properties of the Wishart random
matrix XTX

⇤
T . (The p < n case is similar to the analysis of this second term.)

The same arguments can be used to give fixed-level confidence bounds; see Proposition B.1
in Appendix B.

Finally, it is also possible to compare k�T k2 to (p/D)k�k2 (and k�T ck2 to (1�p/D)k�k2)
under the random selection model of T from Corollary 2.2 using concentration inequalities
for sampling without replacement; see, e.g., [2], for a discussion. The following is a simple
consequence of Proposition 1.4 of [2].D
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Proposition 2.4. For any t > 0, with probability at least 1� 2e�t,
���k�T k2 �

p

D
k�k2

��� =
���k�T ck2 �

⇣
1� p

D

⌘
k�k2

���

 k�k2
 s

2

✓
µ2 � 1

D

◆
min

n p

D
, 1� p

D

o
t+

2µ2t

3

!
,

where µ := maxi2[D] |�i|/k�k.

The proof is in Appendix C. The crucial parameter µ has range [1/
p
D, 1]. It is small

when there are many relevant “weak” features, each with a relatively small coe�cient in �;
conversely, it is large when � is concentrated on a sparse subset of features.

3. Fourier series model. In this section, we consider a noise-free Fourier series model
which can be regarded as a one-dimensional version of the random Fourier features model
studied by Rahimi and Recht [18] for functions defined on the unit circle.

Let F 2 CD⇥D denote the D ⇥D discrete Fourier transform matrix: Its (i, j)th entry is

Fi,j =
1p
D
!(i�1)(j�1),

where ! := exp(�2⇡i/D) is a primitive root of unity. Let µ := F� for some � 2 CD. Consider
the following observation model:

1. S and T are independent random subsets of [D]. For any i 2 [D], the membership of
i in S (respectively, T ) is determined by an independent Bernoulli variable with mean
⇢n := n/D (respectively, ⇢p := p/D).

2. We observe the n ⇥ p design matrix F S,T and n-dimensional vector of responses µS .
Here, F S,T is the submatrix of F with rows from S and columns from T , and µS is
the subvector of µ of entries from S.

We fit regression coe�cients �̂ = (�̂1, . . . , �̂D) with

�̂S := F †
S,TµS , �̂Sc := 0.

One important property of the discrete Fourier transform matrix that we use is that the
matrix FA,B has rank min{|A|, |B|} for any A,B ✓ [D]. This is a consequence of the fact
that F is Vandermonde. Thus, we have

F †
S,T =

(
F T

S,T (F S,TF
T
S,T )

�1, |T | � |S|,
(F T

S,TF S,T )
�1F T

S,T , |T |  |S|.

In the remainder of this section, we analyze the risk of �̂ under a random model for �,
where

E[��T ] =
1

D
· I

(which implies E[k�k2] = 1). The random choice of � is independent of S and T . Considering
the risk under this random model for � is a form of average-case analysis. For simplicity, we
only consider the regime where ⇢p > ⇢n.D
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Following the arguments from subsection 2.1, we have

k� � �̂k2 = k�Sck2 + k(I � F †
S,TF S,T )�Sk2 + kF †

S,TF S,T c�Sck2

= k�k2 � kF †
S,TF S,T�Sk2 + kF †

S,TF S,T c�Sck2.

Now we take (conditional) expectations with respect to �, given S and T :
(3.1)

E[k�� �̂k2 | S, T ] = 1� 1

D
· tr((F †

S,TF S,T )
T (F †

S,TF S,T ))+
1

D
· tr((F †

S,TF S,T c)T (F †
S,TF S,T c)).

Since F S,T has rank min{|S|, |T |}, the first trace expression is equal to

tr((F †
S,TF S,T )

T (F †
S,TF S,T )) = min{|S|, |T |}.

For the second trace expression, we use the explicit formula for F †
S,T and the fact that

F S,TF
T
S,T + F S,T cF T

S,T c = I to obtain

tr((F †
S,TF S,T c)T (F †

S,TF S,T c)) = tr(F T
S,T c(F S,TF

T
S,T )

�1F S,T c)

= tr(F T
S,T c(I � F S,T cF T

S,T c)�1F S,T c)

= tr((I � F S,T cF T
S,T c)�1F S,T cF T

S,T c)

=

min{|S|,|T |}X

i=1

�i

1� �i

= �min{|S|, |T |}+
min{|S|,|T |}X

i=1

1

1� �i
,

where the �i 2 [0, 1] are the eigenvalues of F S,T cF T
S,T c . Therefore, from (3.1), we have

E[k� � �̂k2] = 1� 2Emin

⇢
|S|
D

,
|T |
D

�
+

n

D
· E

2

4 1

n

min{|S|,|T |}X

i=1

1

1� �i

3

5

| {z }
(⇤)

.

To determine the asymptotic behavior of (⇤), we use a recent result of Farrell [10],

(⇤) ! ⇢p · (1� ⇢n)

⇢p � ⇢n

as D,n, p ! 1 with ⇢n = n/D and ⇢p = p/D held fixed. Further, under this limit, we have

Emin

⇢
|S|
D

,
|T |
D

�
! ⇢n

since ⇢p � ⇢n. Hence, we have the following.D
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Figure 3. Plot of risk as a function of p in the Fourier series model. Here, � was chosen uniformly at
random (once) from the unit sphere in RD for D = 1024. We then computed �̂ from 10 independent random
choices of S (with n = 256) and T and plotted the average value of k� � �̂k2.

Theorem 3.1. Assume the setting as above, with D,n, p ! 1 and ⇢n = n/D and ⇢p = p/D
held fixed. Then

lim E
h
k� � �̂k2

i
= 1� n

D

✓
2� p(1� n/D)

p� n

◆
.

Note that the right-hand side in the equation from Theorem 3.1 is well defined in the limit
because the ratios ⇢n, ⇢p are fixed. It diverges to +1 when ⇢p is close to ⇢n and decreases
as ⇢p approaches 1. This is the same behavior as in the Gaussian model from section 2 with
random feature selection; we depict a nonasymptotic instantiation of it in Figure 3.

4. Discussion. Our analysis shows that when features are chosen in an uninformed man-
ner, it may be optimal to choose as many as possible—even more than the number of data—
rather than limit the number to that which balances bias and variance as suggested by classical
analyses. This choice is simple, both conceptually and algorithmically (although it may incur
a computational penalty for processing large numbers of parameters), and avoids the need for
precise control of regularization parameters. It is reflective of the practice in modern machine
learning applications like image and speech recognition, where signal processing–based features
are individually weak but in great abundance, and models that use all of the features, notably
neural networks, are highly successful. This stands in contrast to the “scientific” scenarios
with informed selection of features; for example, in many science and medical applications,
features are purposefully chosen based on the detailed understanding of the underlying phe-
nomena. As illustrated by the “prescient” model that selects the best features, in that case
choosing the number of features to balance bias and variance can be better than incurring the
costs that come with using all of the features.

Finally, we remark that there appears to be a sharp divide between the classical analyses of
statistics and machine learning in p < n regimes and the modern “weak but plentiful features”
interpolating settings. While the former are deeply explored, an understanding of the latter
is only starting to emerge. It is clear that the best practices for model and feature selection
depend crucially on the regime of the application.D

ow
nl

oa
de

d 
08

/2
5/

21
 to

 6
9.

12
7.

17
3.

16
7.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWO MODELS OF DOUBLE DESCENT FOR WEAK FEATURES 1177

Appendix A. Proof of Theorem 2.3. We first consider p > n (i.e., ↵ > 1). From the
proof of Theorem 2.1, we have the decomposition

k�T � �̂T k2 = k(I �⇧T )�T k2 + kX⇤
T (XTX

⇤
T )

†⌘k2,

where ⇧T is the orthogonal projection matrix for the row space of XT and ⌘ is normal
with mean zero and covariance (k�T ck2 + �2)I and independent of XT . By symmetry of the
standard normal distribution, the first term k(I �⇧T )�T k2 is the squared distance from �T

to a uniformly random n-dimensional subspace of Rp. This squared distance has the same
distribution as the squared distance from a uniformly random vector of length k�T k to a fixed
n-dimensional subspace of Rp. This argument was also used by Dasgupta and Gupta [9] in
their proof of the Johnson–Lindenstrauss lemma. By Lemma 2.2 from [9], we have, for any
✏ 2 (0, 1),

Pr


k(I �⇧T )�T k2 62

✓
1� (1± ✏)

n

p

◆
k�T k2

�
 2 exp

✓
�n✏2

12

◆
.

The second term kXT
T (XTX

T
T )

†⌘k2 is a (random) quadratic form in ⌘. Let KT := XTX
T
T ,

which is nonsingular almost surely. By Lemma 4 from [8], we have, for any ✏ 2 (0, 1),

Pr
h
kXT

T (XTX
T
T )

†⌘k2 62 (1± ✏)(k�T ck2 + �2)tr(K�1
T ) | KT nonsingular

i

 2 exp

✓
� n✏2

24(XT )2

◆
,

where (XT ) = �max(XT )/�min(XT ) is the ratio of the largest singular value of XT to the
smallest singular value of XT . For any t > 0,

Pr
⇥
�max(XT ) �

p
p+ (1 + t)

p
n
⇤
 exp(�nt2/2),

Pr
⇥
�min(XT ) 

p
p� (1 + t)

p
n
⇤
 exp(�nt2/2).

These inequalities follow from Gaussian comparison inequalities and concentration of measure
on the sphere and in Gaussian space; see, e.g., [19, 22]. Therefore, for p > (1 + t)2n,

Pr

"
(XT )

2 �
✓p

p+ (1 + t)
p
n

p
p� (1 + t)

p
n

◆2
#
 2 exp

✓
�nt2

2

◆
.

Finally, observe that 1/(K�1
T )i,i has a �2-distribution with p � n + 1 degrees of freedom.

Therefore, again using Lemma 4 from [8] and a union bound, we have, for any ✏ 2 (0, 1),

Pr


tr(K�1

T ) /2 n

p� n+ 1
· 1

1⌥ ✏

�
 2n exp

✓
�(p� n+ 1)✏2

24

◆
.

Putting these probability inequalities together (with t = (1� ✏)(
p
↵� 1)) completes the proof

for p > n.D
ow

nl
oa

de
d 

08
/2

5/
21

 to
 6

9.
12

7.
17

3.
16

7.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1178 MIKHAIL BELKIN, DANIEL HSU, AND JI XU

Now we consider p < n (i.e., ↵ < 1). We have

�̂T = (X⇤
TXT )

†X⇤
T (XT�T + ⌘).

The matrixX⇤
TXT is nonsingular almost surely, so k�̂T��k2 = ⌘⇤(XTX

⇤
T )

†⌘ = ⌘⇤K†
T⌘ also

holds almost surely. Note that KT has the same eigenvalues as X⇤
TXT , and hence K†

T has
the same eigenvalues as (X⇤

TXT )�1. Therefore, following essentially the same arguments as
above for handling kX⇤

T (XTX
⇤
T )

†⌘k2 (but switching the roles of p and n and hence replacing
↵ with ↵�1) completes the proof for p < n.

Appendix B. Confidence bounds.
Fixed-level confidence bounds can be immediately derived from the probability inequalities

in Appendix A.

Proposition B.1. Consider the setting from Theorem 2.1, and fix any � 2 (0, 1). If p < n,
then with probability at least 1� �,

k�T � �̂T k2 2

0

B@1±
1 +

q
p
n +

q
2 ln(8/�)

n

1�
q

p
n �

q
2 ln(8/�)

n

·

s
48 ln(256/�)

p

1

CA

· (k�T ck2 + �2) · p

n� p+ 1
· 1

1⌥
q

24 ln(8p/�)
n�p+1

.

If p > n, then with probability at least 1� �,

k�T � �̂T k2 2
 
1�

 
1±

r
12 ln(8/�)

n

!
n

p

!
k�T k2

+

0

B@1±
1 +

q
n
p +

q
2 ln(8/�)

p

1�
q

n
p �

q
2 ln(8/�)

p

·
r

48 ln(256/�)

n

1

CA (k�T ck2+�2) · n

p� n+ 1
· 1

1⌥
q

24 ln(8n/�)
p�n+1

.

In the expressions above, we assume n and p are large enough (perhaps in relation to each
other) so that all denominators are positive.

Appendix C. Proof of Proposition 2.4.
LetX1, . . . , Xp be a random sample of cardinality p from the finite population (�2

1 , . . . , �
2
D),

drawn without replacement, so that k�T k2 =
Pp

j=1Xj . Since k�T ck2 = k�k2 � k�T k2, we
have

���k�T k2 �
p

D
k�k2

��� =
���k�T ck2 �

⇣
1� p

D

⌘
k�k2

��� .

Observe that the finite population (�2
1 , . . . , �

2
D) has mean 1

Dk�k2, variance 1
D

PD
j=1 �

4
j �

( 1
D

PD
j=1 �

2
j )

2  1
Dk�k4µ2 � ( 1

Dk�k2)2 = 1
Dk�k4(µ2 � 1

D ), and range maxj2[D] �
2
j = k�k2µ2.D
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Therefore, Proposition 1.4 of [2] and a union bound implies, with probability at least 1�2e�t,

���k�T k2 �
p

D
k�k2

��� =
���k�T ck2 �

⇣
1� p

D

⌘
k�k2

���  k�k2
 s

2

✓
µ2 � 1

D

◆
pt

D
+

2µ2t

3

!
.

If p/D is more than 1/2, then we can replace p/D by 1 � p/D on the right-hand side by
analogously applying the previous argument to the random sample of cardinality D � p that
determines �T c .
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