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Abstract— The paper is about the optimal control of
a stochastic dynamical system. We provide a convex
formulation to the optimal control problem involving
a stochastic dynamical system. The convex formula-
tion is made possible by writing the stochastic optimal
control problem in the dual space of densities involv-
ing the Fokker-Planck or Perron-Frobenius generator
for a stochastic system. The convex formulation leads
to an infinite-dimensional convex optimization problem
for optimal control. We exploit Koopman and Perron-
Frobenius generators’ duality for the stochastic system
to construct the finite-dimensional approximation of the
infinite-dimensional convex problem. We present sim-
ulation results to demonstrate the application of the
developed framework.

I. INTRODUCTION

The problem of optimal control for a nonlinear sys-
tem in the presence of uncertainty is a classical problem
in system theory with wide-ranging applications [1].
The existing approach for solving the stochastic optimal
control problem (OCP) is based on dynamic program-
ming, leading to a partial differential equation is known
as Hamilton Jacobi Bellman (HJB) equation. The HJB
equation is a nonlinear partial differential equation and
is difficult to solve analytically, and one has to resort to
the numerical solution of the HJB equation. This paper
proposes a dual approach based on the density-based
formulation of the optimal control problem. Duality is
exploited in stochastic optimal control theory for the
convex formulation of optimal transport problem [2], in
the derivation of stochastic estimation problem [3], and
Pontryagin principle for Ito equations [4]. The convex
approach to the stochastic OCP problem presented in
this paper is based on the duality in the stability theory
of deterministic and stochastic dynamical systems [5]–
[8]. This duality is exploited to provide convex formu-
lation of stabilization problem for deterministic system
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in [9]–[11] and deterministic optimal control prob-
lem [12]. Similarly, convex dual formulation involving
occupation measures via moment-based approach for
deterministic control problem is studied in [13]–[15].
In this paper, we extend the results from [12] to the
stochastic setting. The duality in the stability theory at
the fundamental level could be understood using duality
between two linear operators in the dynamical system
theory, namely Perron-Frobenius (P-F) and Koopman
operator [16].

The main contributions of the paper are as follows.
We provide a convex formulation to the infinite horizon
stochastic OCP for a class of control affine nonlinear
systems. Compared to the existing results on the convex
formulation to the OCP in deterministic setting, we
present the results using the theory of linear transfer
operators. The convex formulation leads to infinite-
dimensional convex optimization problem formulation
of stochastic OCP. The results derived in this paper are
based on duality between P-F and Koopman operators
and their respective generators in a continuous-time
stochastic setting. The P-F and Koopman generators
in stochastic settings arise as Kolmogorov forward
or Fokker-Planck equation and Kolmogorov backward
equation. This connection of stochastic OCP with
stochastic P-F and Koopman operators allows us to
use methods discovered to approximate these operators
for the finite-dimensional approximation of the infinite-
dimensional optimization problem [17]–[20].

The paper is organized as follows. In Section II, we
present preliminary results on the Koopman and P-F
generators in the stochastic setting and almost every-
where stability results for stochastic systems. The main
results on the convex formulation of stochastic OCP are
presented in Section III. The finite-dimensional approx-
imation of infinite-dimensional optimization problem is
presented in Section IV followed by simulation results
and conclusion in Sections V and VI respectively.



II. PRELIMINARIES AND NOTATIONS

In this section, we discuss some preliminaries and in-
troduce some notations, which are used in deriving the
main results on data-driven optimal control. Consider
a dynamical system

ẋ = f(x) + σn(x)ξ, x ∈ Rn. (1)

Rq 3 ξ = dw
dt is the white noise process and is

the time derivative of the Wiener process. We assume
that n(0) = 0, where the origin is assumed to be the
system’s equilibrium point. Let Xt be the solution of
the stochastic differential equation (1). For more details
on the definition and condition for the existence of a
solution to a stochastic differential equation, refer to
[16]. In particular, the vector fields f(x) and n(x) are
assumed to satisfy following Lipschitz condition.

|f(x)− f(y)| ≤ L|x− y|, x ∈ Rn, y ∈ Rn

|n(x)− n(y)| ≤ L|x− y|, x ∈ Rn, y ∈ Rn (2)

for some constant L. Let Xx := {Xx
t }t≥0 be the

solution process with initial condition X0 = x, where
the solution is defined in the sense of Ito calculus
[16]. The solution is clearly the function of stochastic
process, however for compactness of notation we do not
denote this dependence. Let Px be the distribution of
Xx and Ex be the expectation with respect to Px. We
introduce following notations. Let L1(Rn), integrable
functions on Rn, L∞(Rn), bounded functions on Rn,
Ck(Rn) space of functions with k continuous derivative,
Ckc (Rn), space of functions in Ck(Rn) with compact
support, and C0 closure of Ckc (Rn) in L∞ norm.

A. Perron-Frobenius and Koopman Operator for
Stochastic System

The results and discussion in this section is taken
from various references [16], [21]–[23] The linear
operators’ theory involving Perron-Frobenius (P-F) and
Koopman operator from deterministic dynamical sys-
tem generalizes to the stochastic system.

Following assumptions are made on the vector field
f and n to ensure that these linear operators and their
solutions are well defined.

Assumption 1: We assume that the vector field, f(x),
and coefficients aij(x) =

∑q
k=1 nik(x)nkj(x) are C4

functions of x. Furthermore, following growth condi-
tions are satisfied by the coefficients

|aij(x)| ≤M(1 + |x|2), |f̃i(x)| ≤M(1 + |x|), |c̃(x)| ≤M,

i, j = 1, . . . , n, where M is some positive constant,
f = (f1, . . . , fn)> and

f̃i(x) = −fi(x) + σ2
n∑
j=1

∂aij(x)

∂xj
, (3)

c̃(x) =
σ2

2

n∑
i,j=1

∂2aij(x)

∂xi∂xj
−

n∑
i=1

∂fi(x)

∂xi
(4)

We have aij = aji. For any given λ = (λ1, . . . , λn) ∈
Rn, we assume that uniform parabolicity assumptions
holds if there exists a constant ρ > 0 such that

n∑
i,j=1

aijλiλj ≥ ρ
n∑
i=1

λ2
i

Definition 1 (Koopman Operator and its Generator):
Let ϕ(x) ∈ L∞(Rn), then the Koopman operator
Ut : L∞(Rn) → L∞(Rn) for stochastic dynamical
system (1) is defined as

[Utϕ](x) = Ex [ϕ(Xx
t )] (5)

U := {Ut}t≥0 restricts to strongly continuous semi-
group on C0 and hence it has a infinitesimal generator
( [24], Theorem 21.11). For any ϕ ∈ C2

c (Rn), the
infinitesimal generator is given by

AKϕ := lim
t→0

(Ut − I)ϕ

t
(6)

= f(x) · ∇ϕ+
σ2

2

n∑
i,j=1

[nn>]ij
∂2ϕ

∂xi∂xj
(7)

We assume that the distribution of X0 is absolutely
continuous and has density ρ0(x). Then we know that
Xt has a density ρ(x, t) i.e.,

Prob{Xt ∈ B} =

∫
B
ρ(x, t)dx

which satisfies the following Fokker-Planck (F-P) equa-
tion also known as Kolomogorov forward equation

∂ρ(x, t)

∂t
= −∇ · (f(x)ρ) +

σ2

2

n∑
i,j=1

∂2[(nn>)ijρ]

∂xi∂xj
(8)

Following Assumption 1, we know the solution ρ(x, t)
to F-P equation exists and is differentiable (Theorem
11.6.1 [16]). Under some regularity assumptions on the
coefficients of the F-P equation (Definition 11.7.6 [16])
it can be shown that the F-P admits a unique classical
solution (Theorem 11.7.1 [16]). The classical solution
is used to define family of operators. Given any initial
density function ρ(x, 0) = h(x) ∈ L1(Rn), we can
define family of operators {Pt}t≥0 by

ρ(x, t) = [Pth](x) =

∫
Γ(x,y, t)h(y)dy (9)



Definition 2 (P-F Operator and Generator): The
family of operators P := {Pt}t≥0 as defined in (9)
are called stochastic Perron-Frobenius semi-group.
Following [16] (Theorems 11.6.1, 11.7.1, Corollary
11.8.1, and Remark 11.8.1) it also follows that the right
hand side of the F-P equation is also the infinitesimal
generator for the stochastic P-F semi-group. In
particular, we have

APFψ := lim
t→0

(Pt − I)ψ

t

= −∇ · (f(x)ψ) +
σ2

2

n∑
i,j=1

∂2[(nn>)ijψ]

∂xi∂xj
(10)

Since Pt is a semi-group with generator APF ,

d

dt
Ptψ = APFPtψ (11)

The duality between the P-F and Koopman generators
can be expressed as follows ( [16] Theorem 11.6.1):∫

Rn
[AKϕ](x)ψ(x)dx =

∫
Rn
ϕ(x)[APFψ](x)dx (12)

The duality relation between the two semi-groups can
be expressed as follows (We refer the readers to [25]
for details of this proof)∫

Rn
[Utϕ](x)ψ(x)dx =

∫
Rn
ϕ(x)[Ptψ](x)dx (13)

Definition 3: [Stochastic Almost everywhere stabil-
ity] The equilibrium point at x = 0 is said to be almost
everywhere almost sure stable with respect to finite
measure µ ∈M(Rn) if for almost all initial condition
x w.r.t. measure µ, we have

Prob{ lim
t→∞

Xx
t = 0} = 1 (14)

III. CONVEX FORMULATION OF STOCHASTIC OCP

In this section we present the main results of this
paper on the convex formulation to the optimal control
problem. We consider optimal control problem for
affine in control dynamical system of the form

ẋ = f(x) + g(x)u+ σn(x)ξ (15)

where, x ∈ Rn is the state, u ∈ R is the control
input. For the simplicity of presentation we present the
results for the case of single input, however the results
generalize to multi-input case in a straigh forward
manner. We make following assumption.

Assumption 2: We assume that the x = 0 is locally
almost sure asymptotically stable equilibrium point for
system (15) with control input u = 0. In particular,

there exists a neighborhood N of the origin such that
for all x ∈ N ,

Prob{Xx
t ∈ N} = 1 ∀t ≥ 0, & (16)

Prob{limt→∞Xx
t = 0} = 1. (17)

Remark 1: From the computational perspective local
stability assumption is not needed as local stabilizing
controller can always be designed by assuming local
stabilizability assumption on the linear dynamics mean-
ing the pair ( ∂f

∂x(0),g(0)).
We denote by S1 := Rn \ N , where N is the neigh-
borhood of the origin as defined in Assumption 2.

Consider the cost function

J(µ) =

∫
S1

Ex

[∫ ∞
0

q(Xx
t ) + ru(t)2 dt

]
dµ(x) (18)

Unlike cost function in the usual formulation of
stochastic OCP i.e., V (x) = Ex

[∫∞
0 q(Xx

t ) + ru2 dt
]
,

where the expectation are taken only over the different
realization of random processes, in our proposed OCP
the expectation are also taken w.r.t. measure µ distri-
bution over initial conditions i.e., J =

∫
S1
V (x)dµ(x).

Following assumption are made on the state cost
function q(x) and the measure µ.

Assumption 3: We assume that the state cost func-
tion q : Rn → R+ is zero at the origin and uniformly
bounded away from zero outside the neighborhood N .
The measure µ ∈ M(Rn) is equivalent to Lebesgue
with Radon–Nikodým derivative h i.e., dµdx = h(x) > 0
and h ∈ L1(Rn,R>0) ∩ C2(Rn).

Following important assumption is made on the
solution of the optimal control problem.

Assumption 4: We assume that there exists a feed-
back control such that the cost function with this
control is finite and the controller is assumed to be
stochastic a.e stabilizing the control system. Further-
more, the optimal control is feedback in nature i.e.,
u = k(x) with the function k is assumed to be C4

function of x.
Remark 2: The above assumption on the stochastic

a.e. stabilizing property of the feedback control input is
restrictive and is made to simplify the proof of the main
result and due to space constraint. In [25], we prove the
main result without this restrictive assumption.

With the assumed feedback form of the control input,
the OCP can be written as

inf
k∈C4

∫
S1

Ex

[∫∞
0 q(Xx

t ) + rk(Xx
t )2 dt

]
dµ(x)

s.t. ẋ = f(x) + g(x)k(x) + n(x)ξ (19)

Following is one of the main results of this paper.



Theorem 3: Consider the optimal control problem
(19), with the system dynamics, cost function, and
optimal control satisfying Assumptions 2, 3, and 4
respectively. The OCP (19) can be written as following
infinite dimensional convex optimization problem

J?(µ) = inf
ρ∈S1,ρ̄∈C4

∫
S1

q(x)ρ(x) + r
ρ̄(x)2

ρ
dx

s.t. ∇ · (fρ+ gρ̄)− σ2

2

n∑
i,j=1

∂2[(nn>)ijρ]

∂xi∂xj
= h. (20)

where S := L1(S1) ∩ C2(S1,R≥0). The optimal feed-
back control input is recovered from the solution of the
above optimization problem as k(x) = ρ̄(x)

ρ(x) . Further-
more, the optimal control k(x) is almost everywhere
uniform stochastic stabilizing the origin.

Proof: We can move the expectation inside the
integral of (19) to write J(µ) as

J(µ) =

∫
S1

∫ ∞
0

Ex

[
q(Xx

t ) + u>t Rut

]
dth(x)dx

Using Assumption (4) on the feedback property of the
optimal input and using ϕ(x) := q(x) + rk(x)2, we
obtain using the definition of Koopman operator

J(µ) =

∫
S1

∫ ∞
0

[Uctϕ](x)dth(x)dx

where Uct and Pct are notation for the Koopman and
P-F semi-groups for the closed loop system fc := f +
gk + σnξ. Using the linear property of the Koopman
operator and the duality of Koopman and P-F semi-
groups we obtain

J =

∫
S1

∫ ∞
0

ϕ(x)[Pcth](x)dtdx (21)

where we define ρ(x) :=
∫∞

0 [Pcth](x)dt. We next show
that ρ(x) is well defined for almost all x. Using the
Assumption 3 on the uniform lower bound, say κ, for
state cost function outside N , and Assumption 4 on the
finite value of cost, we obtain

κ

∫
S1

ρ(x)dx ≤
∫

S1

ϕ(x)ρ(x)dx ≤M <∞

This show that ρ(x) is integrable function on S1. We
next show that ρ(x) satisfy the following equation

∇·((fc(x)ρ(x))−σ
2

2

n∑
i,j=1

∂2[(nn>)ijρ]

∂xi∂xj
= h(x), (22)

for a.e. x ∈ S1. Substituting the integral formula for
ρ(x) in (22), we obtain

∇ · (fc(x)ρ(x))− σ2

2

n∑
i,j=1

∂2[(nn>)ijρ]

∂xi∂xj

=

∫ ∞
0
∇ · (fc(x)[Pcth](x))dt

−
∫ ∞

0

σ2

2

n∑
i,j=1

∂2[(nn>)ij [Pcth](x)]

∂xi∂xj
dt (23)

=

∫ ∞
0
− d

dt
[Pcth](x)dt = −[Pcth](x)

∣∣∣∞
t=0

= h(x)

where we have used the infinitesimal generator prop-
erty of P-F operator Eq. (11) and the fact that
limt→∞[Pcth](x) = 0 (Assumption 4). Furthermore,
since h > 0, it follows that ρ > 0 from the positivity
property of P-F semigroup Pct . Combining (21) and
(24) and by defining ρ̄(x) := ρ(x)k(x), it follows
that the OCP problem can be written as convex op-
timization problem (20). The optimal solution ρ?(x) ∈
L1(S1) ∩ C2(S1,R≥0) follows from the fact that h ∈
L1(Rn,R>0) ∩ C2(Rn) from Assumption 3 and the
definitions of ρ (integral formula) and P-F operator (9).

IV. COMPUTATION OF STOCHASTIC OPTIMAL

CONTROL

We first discuss results on the approximation of the
Koopman and P-F generators.

A. Approximation of Koopman and P-F Generators for
Stochastic System

For the approximation of the Koopman and P-
F generators we use Naturally Structured Dynamic
Mode Decomposition (NSDMD) algorithm from [17].
We first outline the procedure for constructing the
approximation of P-F generator. Let {xi,y`i} be the
two consecutive snapshots obtained by simulating the
system (1) using Euler-Maruyama discretization. In
particular, we have

y`i = xi + ∆tf(xi) + σ
√

∆tn(xi)ξ
` (24)

where i = 1, . . . , N are the number of initial conditions
assume to be uniformly distributed in the state space
and ` = 1, . . . , R are the number of realization. For the
finite dimensional approximation, let Ψ : X→ RK be
the vector valued positive basis functions. Writing

φ(x) = Ψ(x)>a, φ̂(x) = Ψ(x)>â

For the approximation of the Koopman operator in Eq.
(5) the expectation is replaced with empirical mean.

φ̂(xi) = Ψ>(xi)â = [Utφ](xi) + r (25)

= Ex[φ(Xxi
∆t)] + r ≈ 1

R

R∑
`=1

Ψ>(y`i)
>a + r (26)



The objective is to minimize the residual term r. The
approximation of Koopman operator is written as

minK∈RK×K ‖ GK−A ‖F
s.t. [ΛKΛ−1]ij ≥ 0, ΛKΛ−11 = 1 (27)

where

G =
1

M

N∑
i=1

Ψ(xi)Ψ
>(xi),A =

1

MR

N,R∑
i,`

Ψ(xi)Ψ
>(y`

i )

and Λ =
∫

Ψ(x)Ψ>(x)dx. The constraints are im-
posed to ensure that the resulting matrix K is positive
and satisfy the Markov property. The P-F operator and
the generator for the stochastic system is then obtained
using duality relation [17] as

P∆t ≈ P = Λ−1K>Λ, Af+σn
PF ≈ P− I

∆t
=: M0

For the approximation of P-F generator corresponding
to the control vector field i.e., g(x), we generate the
data from the deterministic dynamical system ẋ = g(x)
i.e., yi = xi+∆tg(xi). Now using the above procedure
outlined for the approximation of the P-F generator for
stochastic system we approximate the P-F generator for
vecotr field g. The only difference is, since the system
ẋ = g(x) is deterministic we do not generate multiple
realization of trajectories. We denote by M1, the P-F
generator corresponding to the vector field g.

B. Approximation of the Optimization problem

We begin with the approximation of the constraints
in the optimization problem.

Assumption 5: We assume that the basis functions,
ψk(x) for k = 1, . . . , N are positive and let

Ψ(x) = [ψ1(x), . . . , ψN (x)]>.

In this paper, we use Gaussian RBF to obtain all the
simulation results i.e., ψk(x) = exp−

‖x−ck‖
σ̄2 . where ck

is the center of the kth Gaussian RBF.
Let ρ(x), and ρ̄(x) be expressed as follows
ρ(x) ≈ Ψ>v, ρ̄(x) ≈ Ψ>w, h(x) = Ψ>m (28)

Using the procedure outlined in Section (IV-A) for
the approximation of the P-F generators for the stochas-
tic system ẋ = f(x)+σn(x)ξ and ẋ = g(x), we obtain
following approximation for the constraints

∇ · (fρ)− σ2

2

n∑
i,j=1

∂2[(nn>)ijρ]

∂xi∂xj
≈ −Ψ(x)>M0vv

∇ · (gρ̄) ≈ −Ψ(x)>M1w

We now proceed with the approximation of the cost∫
X1

q(x)ρ(x)dx ≈
∫

X
q(x)Ψ>dxv = d>v

where the vector d :=
∫
X q(x)Ψdx is pre-computed.

Similarly, we approximate ρ̄
ρ = Ψ>w

v , where we
assume element-wise division, hence

ρ̄2

ρ
≈ w>ΨΨ>

w

v
,

∫
X1

r
ρ̄2

ρ
dx ≈ w>D

w

v

where, D =
∫
X1

ΨΨ>dx. We have the following
approximation to the optimization problem (20)

minΨ>v≥0,w d>v + rw>Dw
v

s.t. −Ψ(x)> (M0v + M1w) = Ψ(x)>m

Since the basis functions are assumed to be positive
(Assumption 5), the approximation of ρ and ρ̄ in (28)
is obtained by solving the following problem.

minv≥0,w d>v + rw>Dw
v

s.t. − (M0v + M1w) = m (29)

The optimal control is then approximated as u =
Ψ>(x)w

v , where the division is element-wise.

V. SIMULATION RESULTS

Controlled Van der Pol oscillator
ẋ1 = x2, ẋ2 = (1− x2

1)x2 − x1 + σx1ξ2 + u (30)

where x ∈ R2 and u ∈ R is the single input. For
this example we assume q(x) = x>x and quadratic
cost on control. The finite dimensional optimization
formulation in Eq. (29) is applied for the design of
optimal control. For the approximation of stochastic
P-F operator, we applied NSDMD algorithm using
one-step time-series data with 10000 initial conditions,
∆t = 0.01 (i.e., 104 data samples). We used 225
Gaussian RBF with σ̄ = 0.2, and the centers of RBF
are distributed uniformly in D = [−2, 2] × [−3, 3].
The noise σ = 0.5. In Fig. 1 and Fig. 2 we show
the successful simulation results for the comparison
of the open/ closed loop trajectories from five initial
conditions. The simulation results are performed using
MATLAB on desktop machine with 16 GB RAM. The
total simulation time is less than 5 min.

VI. CONCLUSION

This paper presented results on the convex for-
mulation of the stochastic optimal control problem
leading to an infinite-dimensional convex optimization
problem. The data-driven methods developed for the
finite-dimensional approximation of Koopman and P-F
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Fig. 2: Trajectories in 2-D space

operators are used in the finite-dimensional approxi-
mation of the optimization problem. Future research
efforts will focus on discovering data-driven meth-
ods that do not involve knowing the system model
for stochastic optimal control computation. Also, the
choice of positive Gaussian RBF in the approximation
process is restrictive. Future research efforts will focus
on relaxing this assumption.
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COmments

This article proposes controller synthesis methods using the Perron-Frobenius and Koopman operators for
control affine, nonlinear, stochastic systems. The reviewers agree that the contributions are important, but would
benefit from further discussion of assumptions made. Contextualization compared to the authors’ previous work
and comparison to standard methods would highlight the contributions. Several notational, grammatical, and
typographical errors were noted by each reviewer.

Reviewer 1

The following are the comments in order: - Eq. (2) - Is it the same Lipschitz constant for both f and n? - The
way Xx is defined after Eq. (2), it appears deterministic as it is not a function of the stochastic process - The set
B after Eq. (7) is not defined - α in the paragraph before Eq. (9) is not defined - After Eq. (30), the function g
seems to be misused. In Eq. (1), n is used whereas here, g is used in the Eq. ẋ = f(x) +σg(x)ξ - Is it assumed
that the control input is single-dimensional? - The legend in Figures 1 and 3 is not consistent and the trajectories
for many initial conditions is shown which is difficult to see - Figures 2 and 4, it is not clear where is the initial
condition as the direction of the trajectories is not shown It is recommended the authors correct the typos and
grammatical errors in the manuscript (for example, in references, ’koopman’ –¿ ’Koopman’ )

Reviewer 2

The paper considers optimal control synthesis of stochastic dynamical systems and proposes a convex
optimization based approach for control-affine systems. This is made possible by exploiting duality and using
finite dimensional approximation of the associated Koopman/PF operators. The manuscript is well organized and
presents novel theoretical contributions. I have a few comments for the authors that need elaboration/justification

- The theoretical contributions presented in the paper hinge on some strong and restrictive assumptions. I
believe the authors should provide further elaboration to help address their practical implications

- For instance, it is assumed that the functions ρ and ρ̄ lie in the span of the basis functions such that they can
be expressed as a linear combination which further results in the optimization problem to solve for coefficients
v,w instead of the functions. This is a very contested topic in the operator theoretic research community. Could
the authors comment on its validity?

- It is also assumed that the basis functions are positive. This rather restricts the choice of basis functions
for practical implementation. RBFs may work for simple systems like Van Der Pol oscillators but fail for other
systems.

- It is also curious to see how the method performs for different levels of stochasticity. The authors can add
more results with different levels of random noise terms.

Reviewer 3

his paper proposes a convex approach of the stochastic optimal control problem for a class of control affine
nonlinear systems. The stochastic optimal control problem is formulated as an infinite-dimensional convex
optimization problem by the density-based formulation. Then, the duality between Koopman and Perron-
Frobenius generators for the stochastic system is exploited to construct the finite-dimensional approximation
of the infinite-dimensional linear program. This paper is well written and the numerical examples properly shows
the effectiveness of the proposed method.

1. The cost in (21) is weighted by measure Image for each Image. It would be better to provide detailed
explanation about the meaning and ground of this form of cost function. 2. The detailed procedure of the



approximation for cost function and constraints is not provided in section IV. B. It would be better to provide
more detailed derivation process for them. 3. Please check (9) and the equation above (9). They dont match. 4.
Below (20): The definition of Image is not provided. 5. Section III.A : Image seems to omit the term Image. 6.
Section III.A : Definition for Image is not provided. 7. (24): Definition for Image is not provided. 8. (28): Image
is used repeatedly on the right-hand side of (28). 9. Above (27): Definitions for Image, Image are not provided.
10. Equation below (29): Please check if M in the denominator should be N.

Reviewer 4

In this article, recent results by the authors on feedback control synthesis using the Perron- Frobenius and
Koopman operator (A Convex Approach to Data-driven Optimal Control via Perron- Frobenius and Koopman
Operators, arXiv:2010.01742) are extended to stochastic systems. Under several assumptions, the numerical
approximation of the Koopman operator via Extended Dynamic Mode Decomposition is used to compute a
density function based on which a feedback signal can be computed that yields a dual Lyapunov function and
thus stabilizes the system. Two example systems are used to validate the results. The paper covers an interesting
topic and the results are certainly of great interest for the control community. Even though there is a significant
overlap with the paper on which this extension is based, the novelty regarding stochastic systems is sufficient
for a new paper. I thus suggest to accept it for publication provided that a few points are addressed. • Can you
comment on Assumption 1? Is it restrictive or very common for stochastic dynamical systems? • The matrix n
in (1) is not introduced properly. • How does the performance of the feedback controller compare to established
methods? For instance, classical feedback controllers for noisy systems or also MPC for stochastic systems
based on the Koopman generator (cf. “Klus et al. Data-driven approximation of the Koopman generator: Model
reduction, system identification, and control. Physica D, 2020.”) • I believe that it would be very interesting to
see the resulting optimal control signal u = Psi(x) * w/v, to give readers a better intuition how the controller
performs and how regular this solution looks. • The language quality is insufficient in many many places and
should be improved significantly. A few examples (by far not all!) are: ◦ Weineer Process → Wiener Process ◦
The references to previous Theorems are very inconsistent (e.g., ( [20], Theorem 21.11)). Please use the latex
command to unify this ( [?, Theorem 21.11]. ◦ “In particular, the vector fields f (x) and n(x) are assumed to
satisfy the following Lipschitz condition” ◦ The term RBF is never introduced ◦ “The number of basis functions
along each dimension is chosen to be 15 × 15 for 2D example”. It’s 15 in each dimension and not 15x15! Limited
circulation. Attachment to ACC 2021 Review 2083 Limited circulation


