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Abstract— We consider an optimal control synthesis problem
for a class of control-affine nonlinear systems. We propose
Sum-of-Square based computational framework for optimal
control synthesis. The proposed computation framework relies
on the convex formulation of the optimal control problem in
the dual space of densities. The convex formulation to the
optimal control problem is based on the duality results in
dynamical systems’ stability theory. We used the Sum-of-Square
based computational framework for the finite-dimensional
approximation of the convex optimization problem. The efficacy
of the developed framework is demonstrated using simulation
results.

I. INTRODUCTION

The control synthesis problem for nonlinear systems has
been a longstanding challenge in the control community.
The optimal control synthesis for general nonlinear dynamics
aiming at designing a control law that minimizes some
cost function is typically addressed using Pontryagin’s
maximum principle [1], or dynamic programming [2]. With
dynamic programming, the optimal control is characterized
by the celebrated Hamilton-Jacobi-Bellman equation [2].
In this control scheme, the problem described by partial
differential equations is equal to the dimension of the
corresponding state space. Thus, the complexity of the
dynamic programming problem grows rapidly with the state
dimension; this phenomenon is known as the curse of
dimensionality. The Pontryagin’s maximum principle, on the
other hand, enjoys much better scalability. However, it only
leads to local optimal control. Another limitation of the
maximum principle is that the solution doesn’t provide a
feedback law; the solution must be recalculated each time
for a different initial state.

The main results presented in this paper on the sum of
square based computation framework for the computation
of optimal control relies on the density-based formulation
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of the optimal control problem. [3] originally explored the
idea of carrying out control synthesis over the density space
for the stabilization problems. The celebrated Lyapunov
theory [4] is a powerful framework to certify the stability
of a given nonlinear dynamics. Searching for a suitable
Lyapunov function for a nonlinear system is a convex
problem. However, when it comes to controller synthesis,
this framework becomes less effective. The joint search of the
Lyapunov function and the control law is, in general, a non-
convex problem. To overcome this difficulty, [3] proposed
to use the dual Lyapunov function known as Lyapunov
density [5]. For control-affine dynamics, the control design
can be formulated as a convex problem. The method we
proposed in this paper can be viewed as a generalization
of that in [3] to deal with optimal control problems. In
[6], a novel framework was proposed towards the density-
based formulation of the optimal controllers. The key idea of
the results from [6] is to convert the nonlinear dynamics to
linear dynamics in the lifted density space. By leveraging the
linear operator theory for nonlinear systems and with proper
reparametrization, the optimal control problem becomes
a convex optimization over the lifted density space. The
formulation of optimal control problem in the density space
is made possible by viewing the duality in stability and
stabilization results through the lens of linear operator theory
involving Koopman and Perron-Frobenius operator [7]–[10].

The paper’s main contribution is to exploit the convex
formulation of the optimal control problem presented in [6]
and provide a Sum of Square (SoS) based computational
framework for optimal control synthesis. The results in this
paper can hence be viewed as a natural extension of results
presented in [3]. While [3] provides SoS based computational
framework for stabilizing control synthesis, in this paper,
we provide SoS based computational framework for optimal
control synthesis. We show that (in Section III), the method
in [3] is a special case of our framework.

The rest of the paper is structured as follows. In Section II,
we provide a brief introduction to our framework’s necessary
ingredient. The problem formulation and the main theoretical
results are given in Section III. In Section IV, we develop
the algorithm details based on the SoS framework. This is
followed by several numerical examples in Section V and a
brief conclusion in Section VI.

II. BACKGROUND

A. Koopman and Perron-Frobenius Operators

For a given dynamical system,

ẋ = f(x), x ∈ X ⊆ Rn, (1)
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there are two different ways of linearly lifting the
finite dimensional nonlinear dynamics from state space to
infinite dimension space of functions, F , namely Koopman
and Perron-Frobenius operators. Denote the solution of
system (1) at time t starting from initial condition x by st(x).
The definitions of these operators along with the infinitesimal
generators of these operators are defined as follows.

Definition 1 (Koopman Operator): Kt : L∞(X) →
L∞(X) for dynamical system (1) is defined as

[Ktϕ](x) = ϕ(st(x)), ϕ ∈ L∞, t ≥ 0.

where L∞(X) is the space of all bounded functions [11]. The
infinitesimal generator for the Koopman operator denoted by
Kf is defined as

lim
t→0

(Kt − I)ϕ

t
= f(x) · ∇ϕ(x) =: Kfϕ (2)

Definition 2 (Perron-Frobenius Operator): Pt :
L1(X) → L1(X) for dynamical system (1) is defined
as

[Ptψ](x) = ψ(s−t(x))

∣∣∣∣∂s−t(x)

∂x

∣∣∣∣ , ψ ∈ L1, t ≥ 0

where |·| stands for the determinant and L1(X) is the space
of integrable functions. The infinitesimal generator for the
P-F operator denoted by Pf is given by

lim
t→0

(Pt − I)ψ

t
= −∇ · (f(x)ψ(x)) =: Pfψ (3)

These two operators are dual to each other where the duality
is expressed as follows.∫

Rn

[Ktϕ](x)ψ(x)dx =

∫
Rn

[Ptψ](x)ϕ(x)dx

B. Almost everywhere stability and Stabilization

The formulation for the optimal control problem we
present in the dual space is intimately connected to density
function and Lyapunov measure introduced for verifying the
almost everywhere notion of stability defined below.

Definition 3 (Almost everywhere stable): The
equilibrium point at x = 0 is said to be almost everywhere
stable w.r.t. measure, µ, if

µ{x ∈ X : lim
t→∞

st(x) 6= 0} = 0

Following theorem from [5] provides the condition for
almost eveywhere stability with respect to (w.r.t.) Lebesgue
measure.

Theorem 1: Given the system ẋ = f(x), where f is
continuous differentiable and f(0) = 0, suppose there exists
a nonnegative ρ is continuous differentiable for x 6= 0 such
that ρ(x)f(x)/|x| is integrable on {x ∈ Rn : |x| ≥ 1} and

[∇ · (ρf)](x) > 0 for almost all x.

Then, for almost all initial states x(0), the trajectory x(t)
converge to zero as t→∞.

The density ρ serves as a stability certificate and can be
viewed as a dual to the Lyapunov function [5]. Applying
Theorem 1 to a control system, ẋ = f(x)+g(x)u, we arrive
at

∇ · (ρ(f + gu)) > 0 for almost all x. (4)

The control synthesis problem becomes searching for a pair
(ρ,u) such that (4) holds. Even though (4) is again bilinear, it
becomes linear in terms of (ρ, ρu). Thus, the density function
based method for control synthesis is a convex problem.

C. Sum of squares

Sum of squares optimization [12]–[15] is a relaxation
of positive polynomial constraints appearing in polynomial
optimization problems which are generally difficult to solve.
SoS polynomials are in a set of polynomials which can
be described as a finite linear combinations of monomials,
i.e., p =

∑`
i=1 dip

2
i where p is a SoS polynomial; pi

are monomials; and di are coefficients. Hence, SoS is
a sufficient condition for nonnegativity of a polynomial
and thus SoS relaxation provides a lower bound on
the minimization problems of polynomial optimizations.
Using the SoS relaxation, any polynomial optmization
problems with positive constraints can be formulated as SoS
optimization as follows:

min
d

w>d s.t. ps(x,d) ∈ Σ[x], pe(x; d) = 0, (5)

where Σ[x] denotes SoS set; w is weighting coefficients;
ps and pe are polynomials with coefficients d. The
problem in (5) is translated into Semidefinite Programming
(SDP) [13], [16]. There are readily available SoS
optimization packages such as SOSTOOLS [17] and
SOSOPT [18] to solve (5).

III. CONVEX FORMULATION OF OPTIMAL CONTROL
PROBLEM

We consider an optimal control problem for input in affine
control system of the form

ẋ = f(x) + g(x)u (6)

where, x ∈ X ⊆ Rn is the state, u ∈ Rm is the control input
and g(x) = (g1(x), . . . , gm(x)) with gi ∈ Rn is the input
vector field. Both f and gi are assumed to be C1(X,Rn) (set
of all continuously differentiable functions from X to Rn).

Assumption 2: We assume that the linearization of the
nonlinear system at the origin i.e., the pair ( ∂f

∂x (0),g(0))
is stabilizable.
Following the above assumption with no loss of generality
we can assume that the x = 0 is locally stable equilibrium
point of system (6) with u = 0 with domain of attraction
N . Because if it is not the case then we can always design a
locally stabilizing controller using Assumption 2 We denote,
X1 := X \ N . With some abuse of notation we denote by
x(t) solution of system (6) starting from initial condition x.

J(µ) =

∫
X1

∫ ∞
0

[
q(x(t)) + u>(t)Ru(t)

]
dt dµ(x) (7)

where µ is some given initial measure assumed to be
equivalent to Lebesgue with density function h i.e., dµ

dx =
h(x). The q : X → R+ is a positive function such that
q(0) = 0 and R > 0 is positive definite. Some comments on
the proposed cost function in (7) are in order. Note that the
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cost function, V (x), for the regular optimization problem is
parameterized by initial state x as follows.

V (x) =

∫ ∞
0

[
q(x(t)) + u>(t)Ru(t)

]
dt

Hence, we can write

J(µ) =

∫
X1

V (x)h(x)dx.

The measure µ or the density h corresponding to µ serves as
a weighting function to the regular cost V . Hence, different
initial conditions are weighted differently in our proposed
formulation of the optimal control problem. The objective
is to find the feedback controller k(x) to minimize the cost
function (7) i.e.,

J?(µ) = inf
k

∫
X1

∫ ∞

0

[
q(x(t)) + k(x(t))>Rk(x(t))

]
dtdµ

Note that the cost function is optimized over set X1

and hence a small neighborhood, N , around the origin
is excluded from the optimization. The reason for this is
explained in the form of Remark 1.

We now make the following assumption.
Assumption 3: (a) We assume that there exists a

feedback controller for which the cost function in (7)
is finite and that the optimal control input is feedback
form i.e., u = k(x) and the function k is assumed to
be C1(X,Rm). Furthermore, the feedback controller k
is assumed to be almost everywhere stabilizing.

(b) The state cost function q(x) is assumed to be uniformly
bounded away from zero outside the neighborhood N .

With the assumed feedback form of optimal control input,
the optimal control problem can be written as

inf
k

∫
X1

[∫ ∞
0

q(x) + β‖k(x)‖1 dt
]
dµ(x)

s.t. ẋ = f(x) + g(x)k(x).

(8)

The solution to the above optimization problem with L1

norm on control input can be obtained by solving the
following infinite-dimensional linear program. The proof of
the theorem is omited due to space constraints and we refer
the readers to [6].

Theorem 4: Under the Assumption 3, the optimal control
problem (8) can be written as following infinite dimensional
linear optimization problem

inf
ρ≥0,ρ̄

∫
X1

q(x)ρ(x) + β‖ρ̄(x)‖1dx

s.t. ∇ · (fρ+ gρ̄) = h,

(9)

and the optimal feedback control input recovered from the
solution of the above linear program as k(x) = ρ̄(x)

ρ(x) .
We next consider an optimization problem with L2 norm on
control input,

inf
k

∫
X1

[∫ ∞
0

q(x) + k(x)>Rk(x) dt

]
dµ(x)

s.t. ẋ = f(x) + g(x)k(x)

(10)

We now present the main theorem on the convex
formulation of the optimal control problem.

Theorem 5: Under the Assumption 3, the optimal control
problem (10) can be written as following infinite dimensional
convex optimization problem

inf
ρ≥0,ρ̄

∫
X1

q(x)ρ(x) +
ρ̄(x)>Rρ̄(x)

ρ
dx

s.t. ∇ · (fρ+ gρ̄) = h

(11)

and the optimal feedback control input recovered as

k(x) =
ρ̄(x)

ρ(x)
.

Furthermore the controller k is a.e stabilizing the equilibrium
point at the origin.

Remark 1: The cost function is optimized in the region
excluding the small neighborhood around the origin. The
reason for this can be explained as follows. The optimal
density function serves a density function for occupation
measure. In particular, µ̄(A) :=

∫
A
ρ(x)dx signifies the

amount of time system trajectories for the close loop system
spend in set A. Hence the optimal density function has
singularity at the origin as all the trajectories are funnelled to
the origin. This singularity at the origin create computation
challenge for the approximation of the cost function near the
origin. There are two potential approaches to address this
challenge due to singularity. The first approach is to ignore
the optimality at the origin as the neighborhood around the
origin is small the performance of closed loop system is not
compromised. The second approach is to design a locally
optimal stabilizing controller based on the linearization of the
nonlinear system at the origin. The local optimal controller
can be designed as a linear quadratic regulator. In this paper,
we adopt the later approach.

IV. SOS-BASED COMPUTATION FRAMEWORK FOR
OPTIMAL CONTROL

In this section, we provide SoS-based computational
framework for the finite dimensional approximation of
optimal control formulation involving L1 norm (Eq. (8)) and
L2 norm (Eq. (10)) for the control cost.

A. Optimal Control with L1 norm of feedback control

Consider the parameterization of ρ(x) and ρ̄(x) as
follows:

ρ(x) =
a(x)

b(x)α
, ρ̄(x) =

c(x)

b(x)α
, (12)

where the polynomials a(x) ≥ 0 and c(x) =[
c1(x), . . . , cm(x)

]>
, having some arbitrary degrees. By

notation, we denote the minimum and maximum degrees dp

and d̄p of any polynomials or polynomial vectors p(x) by
deg(p(x)) = dp : d̄p. Typically, it requires deg(a(x)) ≥
deg(c(x)) for high-order control u = k(x). Here, b(x) is
an arbitrary positive polynomial (positive at x 6= 0), and
α is a positive constant which is sufficiently large so that
the integrability condition in Theorem 1 holds. Using (12),
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we can restate the left-hand side of the constraint in (9) as
follows [3]:

∇ · (fρ+ gρ̄) = ∇ · [ 1

bα
(fa+ gc)]

=
1

bα+1
[b∇ · (fa+ gc)− α∇b · (fa+ gc)].

Thus, it becomes finding a, and c, such that

b∇ · (fa+ gc)− α∇b · (fa+ gc) > 0 (13)

is a non-negative polynomial function. Furthermore, b(x)
can be chosen as a quadratic control Lyapunov function
for the linearized dynamics at x = 0 to guarantee a local
stabilization near the origin. Combining (12)–(13), (9) can
be rewritten as follows:

inf
ρ≥0,ρ̄

∫
X1

q(x)a(x)

b(x)α
+
β||c(x)||1
b(x)α

dx

s.t. (13) ≥ 0, a(x) ≥ 0,

(14)

where a small neighborhood of the origin

N = {x ∈ X : |x| ≤ ε, ε > 0}

is chosen as a polytope and excluded from the integration
of the cost function to remove singularity at the origin for
the reason mentioned in Remark 1. Although the proposed
feedback control stabilizes the system for the entire X,
we design an optimal linear quadratic regulator (LQR)
controller for N from the linearized dynamics of the model
to guarantee the optimality of control costs in N .

By calculating the integrals in the cost function in terms
of coefficient vectors of the polynomials and substituting
non-negativity constraints with SoS constraints, (14) can be
expressed as a SoS problem as below:

min
Ca,Ccj

,Csj
j=1,...,m

d>1 Ca + β
m∑
j=1

d>2 Csj

s.t. (13) ∈ Σ[x], a(x) ∈ Σ[x],

(s(x)− c(x)) ∈ Σ[x],

(s(x) + c(x)) ∈ Σ[x],

(15)

where s(x) are the polynomials equal to |c(x)|; Ca, Ccj
and Csj are the vectors containing coefficients of a(x),
cj(x), and sj(x) in terms of the monomial vector, Ψ(x) =
[1, x1, . . . , xn, x

2
1, x1x2, . . . , x

2
n, . . .]

> such that

a(x) = C>a Ψ(x), cj(x) = C>cjΨ(x), sj(x) = C>sjΨ(x),

for j = 1, . . . ,m, with Ψ(x) having the maximum degree
of a(x), cj(x), and sj(x); and the vectors of the coefficients
d1 and d2 are calculated as

d1 =

∫
X1

q(x)Ψ(x)

b(x)α
dx, d2 =

∫
X1

Ψ(x)

b(x)α
dx. (16)

B. Optimal Control with L2 norm of feedback control

Following the same parameterization in (12), L2 optimal
control problem in (11) is restated as:

min

∫
X1

q(x)a(x)

b(x)α
+

c(x)>Rc(x)

a(x)b(x)α
dx

s.t. (13) ≥ 0, a(x) ≥ 0,

(17)

where we exclude a small neighborhood of the origin to
avoid singularity at the origin (refer to Remark 1). To
convert (17) into a SoS problem, we first reformulate (17)
as follows:

min

∫
X1

q(x)a(x)

b(x)α
+
w(x)

b(x)α
dx

s.t. (13) ≥ 0, a(x) ≥ 0,

M(x) =

[
w(x) c(x)>

c(x) a(x)R−1

]
< 0,

(18)

where the positive semidefinite constraint of the polynomial
matrix M(x) is a result of applying the Schur complement
lemma on the L2 control cost bounded by w(x), i.e.,
c(x)>Rc(x)

a(x) ≤ w(x);. Now, to algebraically express the
positive semidefinite matrix M(x), we first introduce the
following lemma:

Lemma 6 (Positive semidefinite polynomial matrix): A
p×p matrix H(x) whose entries are polynomials is positive
semidefinite with respect to the monomial vector z(x), if
and only if, there exist D < 0 such that

H(x) = (z(x)⊗ Ip)
>

D (z(x)⊗ Ip) ,

where ⊗ denotes a Kronecker product (tensor product) and
Ip is an identity matrix with dimension p [19].

Following Lemma 6, let z(x) be a monomial vector
with deg(z(x)) = floor

(
max(deg(Ψ(x)))

2

)
+ 1 where

max(deg(Ψ(x))) denotes the maximum degree of the
polynomial vector Ψ(x), then M(x) in (18) is positive
semidefinite when there exists D < 0 such that M(x) =
H(x). Using this result and also the integrals of the cost
functions in terms of Ψ(x) shown in (16), a SoS problem
equivalent to (18) can be formulated as follows:

min
Ca,Cw,Ccj
j=1,...,m

d>1 Ca + d>2 Cw

s.t. (13) ∈ Σ[x], a(x) ∈ Σ[x],

w(x)−H11(x) = 0,

c(x)−H12(x) = 0,

a(x)R−1 −H22(x) = 0,

D < 0,

(19)

where Hij(x) denotes a polynomial in ijth entry of H(x);
and Cw is a vector of coefficient of w(x) in terms of Ψ(x),
i.e., w(x) = C>wΨ(x).
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Fig. 1: Closed-loop trajectories of the system in Ex. 1
obtained using LQR control (red) SoS based computational
method (black).

V. SIMULATION RESULTS

In this section, we present simulation results for the
model-based optimal control involving examples of systems
with polynomial vector field.

Example 1: Our first example is that of linear system.
The example is used to compare the analytically derived
optimal control obtained using linear quadratic regulator
(LQR) with the one obtained using the proposed SoS based
computational framework.

ẋ1 = −2x1 + x2, ẋ2 = 3x2 + u.

The finite-dimensional approximation of the infinite
dimensional optimization problem is obtained as
follows. The various polynomials along with the
degrees are chosen as follows: deg(a(x)) = 0 : 1,
deg(c(x)) = 0 : 1, deg(s(x)) = 0 : 2, α = 4, and
b(x) = 0.1959x2

1 − 0.0374x1x2 + 0.1304x2
2. Also, the

parameters for L2 optimal control costs are chosen with
reference to (14) as follows: β = 0.1, R = 1, and
q(x) = x2

1 + x2
2. By solving the SoS optimization problems

(18) for L2 control cost described in Section IV, an optimal
control solution is obtained, u(x) = c(x)

a(x) . In Fig. 1, we
compare closed loop trajectories with control obtained using
LQR formula (red) and proposed SoS based computational
framework (black). In Fig. 2, we show the plot comparison
of the control inputs.

Example 2: Consider the dynamics of controlled Van der
Pol oscillator as follows:

ẋ1 = x2, ẋ2 = (1− x2
1)x2 − x1 + u.

In this example, we will consider L2 feedback control.
For the procedure of formulating finite-dimensional optimal
control problems described in Section IV for the feedback

Fig. 2: Comparison of control inputs: LQR optimal control
(red) and and optimal control obtained using SoS based
computational framework (black) for Ex. 1 with initial
condition at (−4,−4).

Fig. 3: Closed loop dynamics of Van der Pol oscillator using
optimal control with L2 norm for control input.

control, we consider the parameters to (12)–(14) as follows:
deg(a(x)) = 0 : 3, deg(c(x)) = 0 : 6, deg(s(x)) = 0 : 7,
b(x) = 5.8x2

1 +2.9x1x2 +2.9x2
2, α = 4, q(x) = 3.5x2

1 +x2
2,

and R = 1. By solving the resulting SoS optimization
problems in Section IV, we get the stabilized trajectories
starting from arbitrary initial points in X = [−4, 4]× [−4, 4],
converging to the origin, as shown in Fig. 3. Similar to the
previous example, the small red box in the figures represents
the small neighborhood of the origin, N = [−0.1, 0.1] ×
[−0.1, 0.1], where the control is switched to the local LQR
controller once the trajectories are attracted to N towards the
origin by the nonlinear optimal feedback controls synthesized
from the proposed method. This neighbourhood is explicitly
characterised a priori (see Remark 2).

Example 3: Consider the of controlled Lorentz attractor:

ẋ1 = σ(x2 − x1),

ẋ2 = x1(ρ− x3)− x2 + u,

ẋ3 = x1x2 − γx3,
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where σ = 10, ρ = 28, and γ = 8
3 . To formulate

finite-dimensional L2 optimal control problem, consider
deg(a(x)) = 0 : 2, deg(c(x)) = 0 : 9, and deg(s(x)) = 0 :
10, b(x) = 39.15x2

1 + 60.82x1x2 + 23.7x2
2 + 0.2x2

3, α = 4,
q(x) = 3.5x2

1 +x2
2 +x2

3, and R = 1. The result of L2 control
synthesized from our proposed method is shown in Fig. 5.
The closed-loop trajectories are stabilized, starting from
arbitrary initial conditions in X = [−4, 4]× [−4, 4]× [−4, 4].
The LQR control for the linearized system is applied to
the region near the origin, N = [−0.1, 0.1] × [−0.1, 0.1] ×
[−0.1, 0.1].

Fig. 4: Trajectories in states vs. time of Lorentz attractor
simulated from open-loop as well as optimal control with
L2 control norm, starting from some disturbed initial points
converge to the origin while open-loop dynamics shows
chaotic behavior.

Fig. 5: Dynamics of Lorentz attractor, for both closed-loop
system using optimal control with L2 norm for control input
(blue) converging to the origin (denoted by black dot) as well
as the open-loop dynamics (red), starting from initial points
(denoted by ×).

VI. CONCLUSION

A systematic convex optimization-based framework is
provided for optimal control of nonlinear system. The

optimal control problem is formulated in the dual
space of density function leading to infinite dimensional
convex optimization problem for optimal control. The
proposed approach uses the SoS optimization framework
for the finite-dimensional approximation of the optimization
problem. Future research efforts will focus on extending
the framework to data-driven setting, where the explicit
knowledge of system dynamics is not assumed to be known.
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