A Study of Persistent Memory Bugs in the Linux Kernel

Duo Zhang*, Om Rameshwar Gatla®, Wei Xu, Mai Zheng
Department of Electrical and Computer Engineering, Iowa State University
<duozhang,ogatla, weixu, mai>@iastate.edu

ABSTRACT

Persistent memory (PM) technologies have inspired a wide range
of PM-based system optimizations. However, building correct PM-
based systems is difficult due to the unique characteristics of PM
hardware. To better understand the challenges as well as the oppor-
tunities to address them, this paper presents a comprehensive study
of PM-related bugs in the Linux kernel. By analyzing 1,350 PM-
related kernel patches in depth, we derive multiple insights in terms
of PM patch categories, PM bug patterns, consequences, and fix
strategies. We hope our results could contribute to the development
of effective PM bug detectors and robust PM-based systems.

CCS CONCEPTS

« Software and its engineering — Operating systems; - Hard-
ware — Memory and dense storage.

KEYWORDS
Persistent Memory, Kernel Patches, Bug Detection, Reliability

ACM Reference Format:

Duo Zhang*, Om Rameshwar Gatla*, Wei Xu, Mai Zheng. 2021. A Study of
Persistent Memory Bugs in the Linux Kernel . In The 14th ACM International
Systems and Storage Conference (SYSTOR 21), June 14-16, 2021, Haifa, Israel.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3456727.3463783

1 INTRODUCTION

Persistent memory (PM) technologies offer attractive features for
developing storage systems and applications. For example, Intel®
Optane™ PM [6] can support byte-granularity accesses with la-
tencies less than 3x of DRAM latencies [49], while also providing
durability guarantees. Such new properties have inspired a wide
range of PM-based software optimizations [5, 20, 24, 34, 46].
Unfortunately, building correct PM-based software systems is
challenging [33, 43]. For example, to ensure persistence, PM writes
must be flushed from CPU cache explicitly via specific instructions
(e.g., c1flushopt); to ensure ordering, memory fences must be in-
serted (e.g., mfence). Moreover, to manage PM devices and support
PM programming libraries (e.g., PMDK [11]), multiple OS kernel
subsystems must be revised (e.g., dax, 1ibnvdimm). Such complexity
could potentially lead to obscure bugs that hurt system reliability.

* Both authors contributed equally

Ot

This work is licensed under a Creative Commons Attribution International 4.0 License.

SYSTOR 21, June 14-16, 2021, Haifa, Israel

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8398-1/21/06.
https://doi.org/10.1145/3456727.3463783

Addressing the challenge above will require cohesive efforts
from multiple related directions including PM bug detection [18, 36,
37, 41, 42], PM programming support [11], PM specifications [23],
among others. All of these directions will benefit from a better
understanding of real-world PM-related bug characteristics.

Many studies have been conducted to understand and guide the
improvement of software [19, 22, 25, 32, 38, 39]. For example, Lu
et al. [38] studied 5,079 patches of 6 Linux file systems and derived
various patterns of file system evolution. Neal et al. [41] studied
63 PM bugs (mostly from PMDK [11]) and identified two general
patterns of PM misuse. While these existing efforts have generated
valuable insights for their targets, they do not cover the potential
PM-related issues in the Linux kernel due to the different foci.

In this paper, we perform the first comprehensive study on PM-
related bugs in the Linux kernel. We focus on the Linux kernel for
its prime importance in supporting PM programming [8, 10, 12].
Our study is based on 1,350 PM-related patches committed in Linux
between Jan. 2011 and Dec. 2020. For each patch, we carefully
examine its purpose and logic, which enables us to gain quantitative
insights along multiple dimensions:

First, we observe that a large number of PM patches (39.9%) are
for adding new features or improving the efficiency of existing ones,
and a similar portion (37.1%) are for maintenance. These two major
categories reflect the significant efforts needed to add PM devices
to the Linux ecosystem and to keep the kernel well-maintained.
Meanwhile, a non-negligible portion (23.0%) are bug patches for
fixing correctness issues.

Next, we analyze the PM bug patches in depth. We find that
the majority of kernel subsystems have been involved in the bug
patches (e.g., ‘arch’, ‘fs’, ‘drivers’, ‘block’, ‘mm’), with drivers
and file systems being the most “buggy” ones. This reflects the
complexity of implementing the PM support correctly in the kernel,
especially the nvdimm driver and the dax file system support.

In terms of bug patterns, we find that the classic semantic and
concurrency bugs remain pervasive in our dataset (47.2% and 16.2%
respectively), although the root causes are different. Also, many
PM bugs are uniquely dependent on hardware (20.5%), which may
be caused by misunderstanding of specifications, miscalculation of
addresses, etc. Such bugs may lead to missing devices, inaccessible
devices, or even security issues, among others.

In terms of bug fixes, we find that PM bugs tend to require more
lines of code to fix compared to non-PM bugs reported in previous
studies [38]. Also, 21.6% bugs require modifying multiple kernel
subsystems to fix, which implies the complexity. In the extreme
cases (0.9%), developers may temporarily “fix” a PM bug by disabling
a PM feature, hoping for a major re-work in the future. On the other
hand, we observe that different PM bugs may be fixed in a similar
way by refining the sanity checks.

In addition, we look into 3 representative PM bug detectors [36,
37, 41] and find that they are largely inadequate for addressing the

https://doi.org/10.1145/3456727.3463783
https://doi.org/10.1145/3456727.3463783
https://creativecommons.org/licenses/by/4.0/

SYSTOR 21, June 14-16, 2021, Haifa, Israel

Category Description
Bug Fix existing correctness issues
(23.0%) (e.g., misalignment of PM regions, race on PM pages)
Feature Add new features or improve efficiency of existing ones
(39.9%) (e.g., extend device flags, reduce write overhead)
Maintenance | Polish source code, compilation scripts, and documentation
(37.1%) (e.g., delete obsolete code, fix compilation errors)

Table 1: Three Categories of PM-related Patches.

PM bugs in our study. On the other hand, a few recently proposed
non-PM bug detectors [29, 30, 47, 48] could potentially be applied
to detect a great portion of PM bugs if one common challenge is
addressed. We hope our study and the resulting dataset [2] could
contribute to the development of effective PM bug detectors and
the enhancement of robust PM-based systems.

The rest of the paper is organized as follows: §2 describes the
study methodology; §3 presents the overview of PM patches; §4
characterizes PM bugs in details; §5 discusses the implications on
bug detection; §6 discusses related work and §7 concludes the paper.

2 METHODOLOGY

In this section, we describe how we collect the dataset for study
(§2.1), how we characterize the PM-related patches and bugs (§2.2),
and the limitations of the methodology (§2.3).

2.1 Dataset Collection and Refinement

All changes to the Linux kernel occur in the form of patches [14],
including but not limited to bug fixes. We collect PM-related patches
from the Linux source tree for study via three steps as follows:

First, we collect all patches committed to the Linux kernel be-
tween Jan. 2011 and Dec. 2020, which generates a dataset containing
more than 693,000 patches.

Second, in order to effectively identify PM-related patches, we
refine the dataset using a wide set of PM-related keywords, such as
‘persistent memory’, ‘pmem’, ‘dax’, ‘ndctl’, ‘nvdimm’, ‘c1flushopt’,
etc. The resulting dataset contains 2,541 patches. Note that this step
is similar to the keyword search in previous studies [26, 39].

Third, to prune the potential noise, we refine the dataset further
by manual examination. Each patch is analyzed at least twice by
different researchers, and those irrelevant to PM are excluded based
on our domain knowledge. The final dataset contains 1,350 PM-
related patches.

2.2 Dataset Analysis

Based on the 1,350 PM-related patches, we conduct a comprehensive
study to answer three set of questions:

e Overall Characteristics: What are the purposes of the PM-
related patches? How many of them are merged to fix cor-
rectness issues (i.e., PM bugs)?

o Bug Characteristics: What types of PM-related bugs existed
in the Linux kernel? What are the bug patterns and conse-
quences? How are they fixed?

o Implications: What are the limitations of existing PM bug
detection tools? What are the opportunities?

To answer these questions, we manually analyzed each patch

in depth to understand its purpose and logic. The patches typi-
cally follow a standard format containing a description and code

Duo Zhang®, Om Rameshwar Gatla®, Wei Xu, Mai Zheng

180 166

135

920 83

57

45
45

23 17

8 5 5 2
0
drivers fs mm include arch kernel tools block lib doc

Figure 1: Counts of PM Bug Patches in the Kernel Source Tree.

changes [14], which enables us to characterize them along multiple
dimensions. For patches that contain limited information, we fur-
ther looked into relevant source code and design documents. We
present our findings for the three sets of questions above in §3, §4,
and §5, respectively.

2.3 Limitations

The results of our study should be interpreted with the method in
mind. The dataset was refined via PM-related keywords and manual
examination, which might be incomplete. Also, we only studied PM
bugs that have been triggered and fixed in the mainline Linux kernel,
which is biased: there might be other latent (potentially trickier)
bugs not yet discovered. Nevertheless, we believe our study is one
important step toward addressing the challenge. We release our
results publicly to facilitate follow-up research [2].

3 PM PATCH OVERVIEW

We classify all PM-related patches into three categories as shown in
Table 1: (1) ‘Bug’ means fixing existing correctness issues (e.g., mis-
alignment of NVDIMM namespaces); (2) ‘Feature’ means adding
new features (e.g., extend device flags) or improving the efficiency
of existing designs; (3) ‘Maintenance’ means code refactoring, com-
pilation or documentation updates.

The largest category is ‘Feature’ (39.9%), which is different
from previous studies where maintenance patches tend to be domi-
nant [38]. This reflects the significant changes needed to add PM to
the Linux ecosystem which has been optimized for non-PM devices
for decades. One interesting observation is that many (40+) feature
patches are proactive (e.g., “In preparation for adding more flags,
convert the existing flag to a bit-flag” [3]), which may imply that
PM-based extensions tend to be well-planned in advance.

The second largest category is ‘Maintenance’ (37.1%), which
reflects the significant effort needed to keep PM-related kernel
components well-maintained.

The ‘Bug’ patches, which directly represent correctness issues in
the kernel, account for a non-negligible portion (23.0%), We analyze
this important set of patches further in the next section.

4 PM BUG CHARACTERISTICS

4.1 Where Are the Bugs

Figure 1 shows the distribution of PM bug patches in the Linux
kernel source tree. For clarity, we only show the major top-level
directories in Linux, which represent major subsystems (e.g., ‘fs’

A Study of Persistent Memory Bugs in the Linux Kernel

File Name # of LoC Changed
Occur. | per 100 LoC

fs/dax.c 41 5.08
drivers/nvdimm/pfn_devs.c 22 2.62
drivers/nvdimm/bus.c 21 1.8
drivers/nvdimm/pmem.c 18 3.23
drivers/acpi/nfit/core.c 16 0.7
drivers/nvdimm/region_devs.c 15 1.95
drivers/nvdimm/namespace_devs.c 15 0.8
drivers/dax/super.c 14 3.27
mm/memory.c 13 0.53
drivers/nvdimm/btt.c 12 2.44

Table 2: Top 10 Most “Buggy” Files

Type Subtype Description Major
Subsystems
Specification misunderstand specification drivers, arch,
- (e.g.: ambiguous ACPI specifications) include
E _é Alignment mismatch b/w abstractions of PM device drivers, mm,
z g (e.g.: misaligned NVDIMM namespace) arch
-E :):34 Compatibility | Device or architecture compatibility issue drivers, arch, mm
o= Cache | Misuse of cache related operations arch, mm,
(e.g.: miss cacheline flush) drivers
o Logic | improper design drivers, fs, mm
= (e.g.: wrong design for DAX PMD mgmt.)
g State incorrect update to PM State fs, mm
E Others other minor issues drivers, fs
4 (e.g.: wrong function / variable names)
Race data race issues involving DAX IO fs, mm, drivers
E‘ Deadlock deadlock on accessing PM resource drivers, mm, fs
o Atomicity | violation of atomic property for PM access drivers, fs, mm
E} ‘Wrong Lock use wrong lock for PM access fs, drivers, block
g Order | violation of order of multiple PM accesses fs
8 Double Unlock | unlock twice for PM resource drivers
Miss Unlock | forget to unlock PM resource drivers
> Null Pointer dereference null PM / DRAM pointer drivers, fs, mm
] Resource Leak PM / DRAM resource not released drivers, mm, arch
?, Uninit. Read read uninitialized PM / DRAM variables drivers, fs
= Overflow overrun the boundary of PM/DRAM struct. drivers, fs, include
) Error Return no / wrong error code returned drivers, fs, kernel
B E Error Check miss / wrong error check drivers, fs, mm
=

Table 3: Classification of PM Bug Patterns. The last column
shows the major subsystems (up to 3) affected by the bugs.

for file systems, ‘mm’ for memory management). In case a patch
modifies multiple files across different directories (which is not
uncommon as will be discussed in §4.4.1), we count it towards all
directories involved. Therefore, the total count is larger than the
number of PM bug patches.

We can see that ‘driver’ is involved in most patches, which
is consistent with previous studies [22]. In the PM context, this is
largely due to the introduction of nvdimm driver. Also, ‘f's’ accounts
for the second most patches, largely due to the complexity of adding
dax support for file systems [4]. The fact that PM bug patches
involve many major kernel subsystems implies that we cannot only
focus on one (e.g., ‘fs’) to address the challenge.

We also count the occurrences of individual files involved in the
bug patches. Table 2 shows the top 10 most “buggy” files based on
the occurrences and the average lines of code (LoC) changed per
100 LoC, which verifies that adding dax and nvdimm supports are
the two major sources of introducing PM bugs in the kernel.

4.2 Bug Pattern

To build robust PM systems, it is important to understand the types
of bugs occurred. We analyze the PM bug patches in depth and

SYSTOR 21, June 14-16, 2021, Haifa, Israel

error code
5.6%

memory
10.5%

semantic concurrency
0,
47.2% 16.2%
hardware
dependent
20.5%

Figure 2: Percentages of PM Bug Types

100% -
75% -
50% -
25%
0% -
hardware semantics concurrency memory error code
dependent
. cache . state . miss unlock overflow error check
g compatibility %@ others % double unlock uninit read H error return
% alignment ﬂﬂ]]]]ﬂ logic @ order resource leak
um specification @ wrong lock null pointer
Y atomicity
deadlock
race

Figure 3: Percentages of PM Bug Subtypes

classify the bugs into five types (Table 3): Hardware Dependent,
Semantic, Concurrency, Memory and Error Code. Each type includes
multiple subtypes. The last column of Table 3 shows the major
subsystems affected by each type of bugs. For clarity, the column
only lists up to 3 subsystems for each type. We can see that the
same type of bugs may affect multiple subsystems (e.g. ‘drivers’,
‘fs’, ‘mm’). The percentages of the five types and the subtypes are
shown in Figure 2 and Figure 3, respectively. Due to space limits,
we only discuss a few representative cases below.

Compared to previous studies [38, 39], the most unique pattern
observed in our dataset is Hardware Dependent, which accounts
for 20.5% of PM bugs (Figure 2). There are four subtypes including
Specification (33.9% of Hardware Dependent), Alignment (32.3%),
Compatibility (24.2%), and Cache (9.6%), which reflects four different
aspects of challenge for integrating PM devices correctly to the
Linux kernel.

Specification is the largest subtype of Hardware Dependent bugs
(33.9%). Figure 4 shows an example caused by the ambiguity of PM
hardware specification. In this case, the PM device uses Address
Range Scrubbing (ARS) [1] to communicate errors to the kernel.
ACPI 6.1 specification [1] requires defining the size of the output
buffer, but it is ambiguous if the size should include the 4-byte ARS
status or not. As a result, when the nvdimm driver should have been
checking for ‘out_field[1] - 4, it was using ‘out_field[1] -
8’ instead, which may lead to a crash.

SYSTOR 21, June 14-16, 2021, Haifa, Israel

drivers/nvdimm/bus.c

1 u32 nd_cmd_out_size(...) {

2 - if (out_field[l] - 8 == remainder)
3 4 if (out_field[1l] - 4 == remainder)
4 return remainder;

5 - return out_field[1l] - 4;

6 + return out field[1l] - 8;

Figure 4: A Specification Bug Example. This bug was caused
by the ambiguity of the ACPI specification.

Thread 1: Thread 2:
write() read fault
Ls dax_iomap_pte_fault ()
iomap_begin ()
dax_iomap_rw() 1
L> iomap_apply () !
- [}
iomap_begin() - allocates blocks |
dax_iomap_actor () |
invalidate_inode_pages2_range ()|
L» grab_mapping_entry ()
zero page added to radix tree |
and mapped to page tables

Figure 5: A Concurrency Bug Example. This bug was caused
by a race condition involving DAX IO operations.

In terms of the other 3 subtypes, we find that Alignment issues
are typically caused by the inconsistency between various abstrac-
tions of PM devices (e.g., PM regions, namespaces); Compatibility
issues often arise when the new dax functionality conflicts with the
underlying CPU architecture or PM device; Cache bugs are caused
by misuse of cache-related operations (e.g., c1flushopt), which is
the focus of previous studies [41]. However, the Cache subtype only
accounts for 9.6% of Hardware Dependent bugs (Figure 3), which im-
plies that kernel-level PM issues are more complex than the typical
pattern observed in user-level programs.

In addition to Hardware Dependent, we find that PM bugs may
follow the classic Semantic, Concurrency, Memory, Error Code pat-
terns [38, 39], although the root causes are typically different due
to the different contexts. For example, the State in Semantic are
often related to PM device states instead of file system states [38].
Similarly, Concurrency bugs in our dataset are specific to the PM
environment. In particular, we find that the majority of Concurrency
PM bugs are caused by race conditions between the dax page fault
handler and regular IO operations. Figure 5 shows one specific
example involving two threads. In this case, Thread 1 invokes a
write syscall which allocates blocks on PM, and Thread 2 invokes
a read to the same PM blocks which triggers a page fault. When
Thread 1 is updating the block mappings, Thread 2 should wait until
the update completes. However, due to the lack of proper locking,
Thread 2 instead maps hole pages to the page table, which results
in reading zeros. The bug was fixed by locking the exception entry
before mapping the blocks for a page fault. In this way, either the
writer will be blocked until read finishes or the reader will see the
correct PM blocks updated by the writer.

4.3 Bug Consequence

To understand how severe the PM bugs are, we classify them based
on the symptoms reported in the patches. We find that there are 8
types of consequence, including Missing Device, Inaccessible Device,
Security, Corruption, Crash, Hang, Wrong Return Value, and Resource

Duo Zhang®, Om Rameshwar Gatla®, Wei Xu, Mai Zheng

100%

75%

Patch Percentage
n
o
X

Lines of Code (Insertion + Deletion)

0 50 100 200 300 400 500 600
Figure 6: Size Distribution of PM Bug Patches

File Count 1 2 3 4 5 >5
Patch % 64.0% | 14.0% | 8.8% | 6.1% | 2.9% | 4.2%
Dir. Count 1 2 3 4 5 >5
Patch % 78.4% | 13.2% | 5.8% | 1.8% | 0.6% | 0.3%

Table 4: Scope of PM Bug Patches. This table shows the % of
bug patch involving different counts of files or directories.

Leak. We elaborate on the first three types as they are relatively
more unique to PM (the others are similar to previous studies [38]):

Missing Device implies the kernel is unable to detect PM devices,
which is often the consequence of hardware dependent bugs. For ex-
ample, the e820_pmenm driver is responsible for registering resources
that surface as pmem ranges. However, the buggy ‘€e820_pmem_probe’
method may fail to register the pmem ranges into the System-Physical
Address (SPA) space, which makes the PM device not recognizable
by the kernel.

Inaccessible Device means the PM device is detectable by the
kernel but not accessible. For example, the ‘start_pad’ variable was
introduced in ‘struct nd_pfn_sb’ of the nvdimm driver to record
the padding size for aligning namespaces with the Linux memory
hotplug section. But the buggy ‘nd_pfn_validate’ method of the
driver does not check for the variable, which leads to an alignment
issue and makes the namespace not recognizable by the kernel.

In addition, we observe two Security issues. For example, write
operations may be allowed on read-only dax mappings, which
exposes wrong access permissions to the end user.

4.4 Bug Fix

44.1 How difficult it is to fix PM bugs. To quantitatively mea-
sure the complexity of fixing PM bugs, we calculate three metrics:

Bug Patch Size. We define the patch size as the sum of lines of
insertion and deletion in the patch. Figure 6 shows the distribution
of bug patch sizes. We can see that most bug patches are relatively
small. For example, 50% patches have less than 50 lines of insertion
and deletion code (LoC). However, compared to traditional non-PM
file system bug patches where 50% are less than 10 LoC [38], the
majority of PM bug patches tend to be larger.

Bug Patch Scope. We define the patch scope as the counts of files
or directories involved in the patch. For simplicity, we only count
the top-level directories in the Linux source tree. Table 4 shows the
patch scopes. We can see that most patches only modified one file
(64.0%) or files within one directory (78.4%). On the other hand, 4.2%
patches may involve more than 5 files. Moreover, a non-negligible
portion of patches involve more than one directories (21.6%). Since

A Study of Persistent Memory Bugs in the Linux Kernel

different directories represent different kernel subsystems, this
implies that fixing these PM bugs are non-trivial. For comparison,
we randomly sample 100 GPU-related bug patches and measure the
scope too. We observe that only 5% of the sampled GPU patches
involve more than one directory, which is much less than the 21.6%
cross-subsystem PM bug patches.

Time-to-Fix. Most patches in our dataset do not contain the infor-
mation when the bug was first discovered. However, we find that 48
bug patches include links to the original bug reports, which enables
us to measure the time-to-fix metric. We find that PM bugs may
take 6 to 48 days to fix with an average of 24 days, which further
implies the complexity. There are other sources which may provide
more complete time-to-fix information (e.g., Bugzilla [7]), which
we leave as future work.

4.4.2 Fix Strategy. We find that the strategies for fixing PM bugs
often vary a lot depending on the specific bug types (Table 3). On
the other hand, we also observe that different types of PM bugs
may be fixed by one common strategy: refining sanity checks. For
example, in one alignment bug case, a PM device was mistakenly
disabled due to an ineffective sanity check (is_power_of_2), The
bug was fixed by replacing the original sanity check with an ac-
curate one (IS_ALIGNED). Similar fixes have been applied to other
bugs triggered by check violations.

We also find that developers may temporarily “fix” a PM bug
by disabling a PM feature. For example, to avoid a race condition
in handling transparent huge pages (THP) over dax, developers
make the THP support over dax dependent on CONFIG_BROKEN,
which means if CONFIG_BROKEN is disabled (common case) then the
feature is disabled too. The developers even mention that a major
re-work is required in the future, which implies the complexity of
actually fixing the bug.

5 IMPLICATIONS ON PM BUG DETECTION

Our study has exposed a variety of PM-related issues, which may
help develop effective PM bug detectors and build robust PM sys-
tems. For example, since 21.6% PM bug patches involve multiple
kernel subsystems, simply focusing on one subsystem is unlikely
enough. On the other hand, since many bugs in different subsys-
tems may follow similar patterns, capturing one bug pattern may
benefit multiple subsystems. We further discuss the limitations of a
few state-of-the-art bug detection tools as well as the opportunities
in this section.

PM Bug Detectors: Multiple PM-specific bug detection tools have
been proposed recently [36, 37, 41]. We are able to verify their
effectiveness by reproducing most of the reported detection re-
sults. Unfortunately, we find that they are fundamentally limited
for capturing the PM bugs in our dataset. For example, XFDetec-
tor [36] relies on Intel Pin [13] which can only instrument user-level
programs. PMTest [37] can be applied to kernel modules, but it re-
quires manual annotations which is impractical for major kernel
subsystems. AGAMOTTO [41] relies on KLEE [17] to symbolically
explore user-level PM programs. While it is possible to integrate
KLEE with virtual machines to enable full-stack symbolic execution
(as in S2E [21]), novel PM-specific path reduction algorithms are
likely needed to avoid the state explosion problem [31].

SYSTOR 21, June 14-16, 2021, Haifa, Israel

Non-PM Bug Detectors: Great efforts have been made to detect
non-PM bugs in the kernel [29, 30, 40, 47, 48]. For example, Crash-
Monkey [40] logs the bio requests and emulates crashed disk states
to test the crash consistency of traditional file systems. Such crash
consistency issues likely exist in PM subsystems too due to the
complexity. Nevertheless, extending CrashMonkey to detect PM
bugs may require substantial modifications including tracking PM
accesses and PM-critical instructions (e.g., mfence), designing PM-
specific workloads, among others.

Similarly, fuzzing-based tools have proven to be effective for ker-
nel bug detection [29, 30, 47, 48]. For example, Razzer [29] combines
fuzzing with static analysis and detects data races in multiple kernel
subsystems (e.g., ‘driver’, ‘fs’, ‘mm’), which could potentially be
extended to cover a large portion of concurrency PM bugs in our
dataset. Since Razzer and similar fuzzers heavily rely on virtual-
ized (e.g., QEMU [16]) or simplified (e.g., LKL [9]) environments to
achieve high efficiency, one common challenge and opportunity for
extending them is to emulate PM devices and interfaces precisely
to ensure the fidelity, which we leave as future work.

6 RELATED WORK

Studies of Software Bugs. Many researchers have performed em-
pirical studies on bugs in open source software [19, 22, 25, 32, 38, 39].
For example, Lu et al. [39] studied 105 concurrency bugs from 4
applications and found that atomicity-violation and order-violation
are two common bug patterns; Lu et al. [38] studied 5,079 file sys-
tem patches (including 1,800 bugs fixed between Dec. 2003 and
May 2011) and identified the trends of 6 file systems. Our study is
complementary to the existing ones as we focus on bugs related to
the latest PM technology, which may involve issues beyond existing
foci (e.g., user-level concurrency [39], non-PM file systems [38]).

Studies of Production System Failures. Researchers have also
studied various failure incidents in production systems [26-28,
35, 44, 45], many of which were caused by software bugs. For ex-
ample, Gunawi et al. [26] studied 597 cloud service outages and
derived multiple lessons including the outage impacts, causes, etc;
Liu et al. [35] studied hundreds of incidents in Microsoft Azure. Due
to the nature of the data source, these studies typically focus on
high-level insights instead of source-code level bug patterns. Since
PM-based servers are emerging for production systems [15], our
study may help understand PM-related incidents in the real world.

7 CONCLUSIONS

This paper presented the first comprehensive study on PM-related
patches and bugs in the Linux kernel. We hope our efforts could
contribute to the development of effective PM bug detection tools
and the enhancement of PM-based systems.

8 ACKNOWLEDGEMENTS

We thank the anonymous reviewers and Ryan Stutsman (our shep-
herd) for their insightful feedback. We also thank researchers from
Western Digital including Adam Manzanares, Filip Blagojevic, Qing
Li, and Cyril Guyot for valuable discussions on PM technologies.
This work was supported in part by NSF under grants CNS-1566554,
CNS-1855565, and CNS-1943204. Any opinions, findings, and con-
clusions expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsor.

SYSTOR 21, June 14-16, 2021, Haifa, Israel

REFERENCES

(1]

[2

—

(3]

[18

[19

[20]

[21

[22

[23]

[24

[25

[26

[27]

[28]

Advanced Configuration and Power Interface Specification. https://uefi.org/sites/
default/files/resources/ACPI_6_1.pdf.

Classification of PM Bug Cases. https://git.ece.iastate.edu/data-storage-lab/
prototypes/pm-bugs.

dax: convert to bitmask for flags. https://patchwork kernel.org/project/linux-
fsdevel/patch/149875885239.10031.8327478660509602792.stgit@dwillia2-
desk3.amr.corp.intel.com/.

DAX: Page cache bypass for filesystems on memory storage. https://lwn.net/
Articles/618064/.

HPE NVDIMM-N Drivers for Microsoft Windows . https://support.hpe.com/
hpsc/swd/public/detail?swltemId=MTX_a77a79d838194d6498f355f2e4.

Intel Optane DC Persistent Memory. https://www.intel.com/content/www/us/
en/architecture-and-technology/optane-dc-persistent-memory.html.
Kernel.org Bugzilla. https://bugzilla.kernel.org/.
LIBNVDIMM: Non-Volatile Devices.
Documentation/nvdimm/nvdimm.txt.

LKL: Linux Kernel Library. https://Ikl.github.io/.
Managing Persistent Memory. https://Irita.github.io/images/posts/filesystem/
Managing-Persistent-Memory_0.pdf.

Persistent Memory Development Kit (PMDK). https://pmem.io/pmdk/.
Persistent Memory FAQ. https://software.intel.com/content/www/us/en/develop/
articles/persistent-memory-faq.html.

PIN — a dynamic binary instrumentation tool. https://software.intel.com/en-
us/articles/pin-a-dynamic-binary-instrumentation-tool/.

Submitting Patches: The Essential Guide to Getting your Code into the Kernel .
https://www.kernel.org/doc/html/latest/process/submitting-patches.html.

Dell EMC DCPMM: User’s Guide. https://dl.dell.com/topicspdf/dcpmm-user-
guide_en-us.pdf, January, 2021.

Fabrice Bellard. QEMU, A Fast and Portable Dynamic Translator. In USENIX
Annual Technical Conference, FREENIX Track, 2005.

Cristian Cadar, Daniel Dunbar, and Dawson R Engler. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI), 2008.

Eduardo Berrocal Garcia De Carellan. Discover Persistent Memory Programming
Errors with Pmemcheck . https://software.intel.com/content/www/us/en/
develop/articles/discover-persistent-memory-programming-errors-with-
pmemcheck.html, 2018.

Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and
M Frans Kaashoek. Linux Kernel Vulnerabilities: State-of-the-art Defenses and
Open Problems. In Proceedings of the 2nd Asia-Pacific Workshop on Systems
(APSys), 2011.

Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu. HiNFS: A Persistent Memory
File System with Both Buffering and Direct-Access. In ACM Transactions on
Storage (TOS), 2018.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The S2E platform:
Design, Implementation, and Applications. In ACM Transactions on Computer
Systems (TOCS), 2012.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler.
An Empirical Study of Operating Systems Errors. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP), 2001.

Intel Corporation. Intel Optane Persistent Memory Module: DSM Specification
v2.0 . https://pmem.io/documents/IntelOptanePMem_DSM_Interface-V2.0.pdf,
2020.

Vaibhav Gogte, William Wang, Stephan Diestelhorst, Aasheesh Kolli, Peter M.
Chen, Satish Narayanasamy, and Thomas F. Wenisch. Software Wear Manage-
ment for Persistent Memories. In Proceedings of the 17th USENIX Conference on
File and Storage Technologies (FAST), 2019.

Haryadi S. Gunawi, Thanh Do, Agung Laksono, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Jeffrey F. Lukman, and Riza O. Suminto. What Bugs Live in the
Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2014.

Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto, Agung Laksono, Anang D
Satria, Jeffry Adityatama, and Kurnia J Eliazar. Why Does the Cloud Stop Com-
puting? Lessons from Hundreds of Service Outages. In Proceedings of the 7th
ACM Symposium on Cloud Computing (SoCC), 2016.

Haryadi S Gunawi, Riza O Suminto, Russell Sears, Casey Golliher, Swaminathan
Sundararaman, Xing Lin, Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, et al. Fail-slow at Scale: Evidence of Hardware Performance
Faults in Large Production Systems. In ACM Transactions on Storage (TOS), 2018.
Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo, Tom
Bergan, Madan Musuvathi, Zheng Zhang, and Lidong Zhou. Failure Recovery:
When the Cure is Worse than the Disease. In Proceedings of the 14th Workshop
on Hot Topics in Operating Systems (HotOS), 2013.

https://www.kernel.org/doc/

Duo Zhang®, Om Rameshwar Gatla®, Wei Xu, Mai Zheng

Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik
Shin. Razzer: Finding Kernel Race Bugs through Fuzzing. In Proceedings of the
40th IEEE Symposium on Security and Privacy (S&P), 2019.

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. Finding Semantic Bugs in File Systems with an Extensible Fuzzing Frame-
work. In Proceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP), 2019.

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. Effi-
cient State Merging in Symbolic Execution. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
2012.

David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why does
Cryptographic Software Fail? A Case Study and Open Problems. In Proceedings
of 5th Asia-Pacific Workshop on Systems (APSys), 2014.

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay
Chidambaram. RECIPE: Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP) , 2019.

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. Evaluating Persistent Memory Range Indexes. In Proceedings of the
45th International Conference on Very Large Data Bases (VLDB), 2019.

Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. What Bugs Cause
Production Cloud Incidents? In Proceedings of the 17th Workshop on Hot Topics in
Operating Systems (HotOS), 2019.

Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli,
and Samira Khan. Cross-failure Bug Detection in Persistent Memory Programs.
In Proceedings of the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2020.

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. PMTest: A
Fast and Flexible Testing Framework for Persistent Memory Programs. In Proceed-
ings of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan
Lu. A Study of Linux File System Evolution. In Proceedings of the 11th USENIX
Conference on File and Storage Technologies (FAST), 2013.

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from Mis-
takes: A Comprehensive Study on Real World Concurrency Bug Characteristics.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2008.

Ashlie Martinez and Vijay Chidambaram. CrashMonkey: A Framework to Sys-
tematically Test File-System Crash Consistency. In Proceedings of the 9th USENIX
Conference on Hot Topics in Storage and File Systems (HotStorage), 2017.

Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon Peter,
and Baris Kasikci. AGAMOTTO: How Persistent is your Persistent Memory
Application? In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2020.

Kevin P O’Leary. How to Detect Persistent Memory Programming Errors Using
Intel® Inspector - Persistence Inspector . https://software.intel.com/content/
www/us/en/develop/articles/detect-persistent-memory-programming-errors-
with-intel-inspector-persistence-inspector.html, 2018.

Paul Von Behren. NVML: Implementing Persistent Memory Applications. In
Proceedings of the 13th USENIX Conference on File and Storage Technologies (FAST),
2015.

Erci Xu, Mai Zheng, Feng Qin, Jiesheng Wu, and Yikang Xu. Understanding SSD
Reliability in Large-scale Cloud Systems. In Proceedings of the 3rd IEEE/ACM Inter-
national Workshop on Parallel Data Storage & Data Intensive Scalable Computing
Systems (PDSW), 2018.

Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. Lessons and Actions:
What we Learned from 10K SSD-related Storage System Failures. In Proceedings
of the 2019 USENIX Annual Technical Conference (ATC), 2019.

Jian Xu and Steven Swanson. NOVA: A Log-structured File System for Hy-
brid Volatile/Non-volatile Main Memories. In Proceedings of the 14th USENIX
Conference on File and Storage Technologies (FAST), 2016.

Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. KRace: Data Race
Fuzzing for Kernel File Systems. In Proceedings of the 41st IEEE Symposium on
Security and Privacy (S&P), 2020.

Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
Fuzzing File Systems via Two-Dimensional Input Space Exploration. In Proceed-
ings of the 40th IEEE Symposium on Security and Privacy (S&P), 2019.

Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson.
An Empirical Guide to the Behavior and Use of Scalable Persistent Memory. In
Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST),
2020.

https://uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://git.ece.iastate.edu/data-storage-lab/prototypes/pm-bugs
https://git.ece.iastate.edu/data-storage-lab/prototypes/pm-bugs
https://patchwork.kernel.org/project/linux-fsdevel/patch/149875885239.10031.8327478660509602792.stgit@dwillia2-desk3.amr.corp.intel.com/
https://patchwork.kernel.org/project/linux-fsdevel/patch/149875885239.10031.8327478660509602792.stgit@dwillia2-desk3.amr.corp.intel.com/
https://patchwork.kernel.org/project/linux-fsdevel/patch/149875885239.10031.8327478660509602792.stgit@dwillia2-desk3.amr.corp.intel.com/
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/
https://support.hpe.com/hpsc/swd/public/detail?swItemId=MTX_a77a79d838194d6498f355f2e4
https://support.hpe.com/hpsc/swd/public/detail?swItemId=MTX_a77a79d838194d6498f355f2e4
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://bugzilla.kernel.org/
https://www.kernel.org/doc/Documentation/nvdimm/nvdimm.txt
https://www.kernel.org/doc/Documentation/nvdimm/nvdimm.txt
https://lkl.github.io/
https://lrita.github.io/images/posts/filesystem/Managing-Persistent-Memory_0.pdf
https://lrita.github.io/images/posts/filesystem/Managing-Persistent-Memory_0.pdf
https://pmem.io/pmdk/
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-faq.html
https://software.intel.com/content/www/us/en/develop/articles/persistent-memory-faq.html
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://dl.dell.com/topicspdf/dcpmm-user-guide_en-us.pdf
https://dl.dell.com/topicspdf/dcpmm-user-guide_en-us.pdf
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://pmem.io/documents/IntelOptanePMem_DSM_Interface-V2.0.pdf
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html

	Abstract
	1 Introduction
	2 Methodology
	2.1 Dataset Collection and Refinement
	2.2 Dataset Analysis
	2.3 Limitations

	3 PM Patch Overview
	4 PM Bug Characteristics
	4.1 Where Are the Bugs
	4.2 Bug Pattern
	4.3 Bug Consequence
	4.4 Bug Fix

	5 Implications on PM Bug Detection
	6 Related Work
	7 Conclusions
	8 Acknowledgements
	References

