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Symmetry-breaking polymorphous descriptions for correlated materials without interelectronic U
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Correlated materials with open-shell d and f ions having degenerate band-edge states show a rich variety of
interesting properties ranging from metal-insulator transition to unconventional superconductivity. The textbook
view for the electronic structure of these materials is that mean-field approaches are inappropriate, as the
interelectronic interaction U is required to open a band gap between the occupied and unoccupied degenerate
states while retaining symmetry. We show that the latter scenario often defining what Mott insulators are is in fact
not needed for the 3d binary oxides MnO, FeO, CoO, and NiO. The mean-field-like band theory can indeed lift
such degeneracies in the binaries when nontrivial unit-cell representations (polymorphous networks) are allowed
to break symmetries, in conjunction with a recently developed nonempirical exchange and correlation density
functional without an on-site interelectronic interaction U. We explain how density-functional theory in the
polymorphous representation achieves band-gap opening in correlated materials through a separate mechanism
from the Mott-Hubbard approach. We show the method predicts magnetic moments and gaps for the four
binary monoxides in both the antiferromagnetic and paramagnetic phases, offering an effective alternative
to symmetry-conserving approaches for studying a range of functionalities in open d- and f -shell complex
materials.
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I. INTRODUCTION

Studies of late 3d transition-metal monoxides (MnO, FeO,
CoO, and NiO) and their transport properties led to the semi-
nal concepts of Mott insulators and strong correlation [1]. His-
torically, these discussions were centered around experiments
on NiO, a transparent and magnetic insulator. Assuming a
nonmagnetic (NM) configuration and that the macroscopi-
cally observed global cubic symmetry with a single formula
unit can be interpreted also locally on an atom-by-atom ba-
sis, early naïve band theory incorrectly predicted NiO to be
metallic with partially filled d bands [2]. Later, when low-
temperature antiferromagnetic (AFM) order was considered
by doubling the unit cell and allowing magnetic moment
formation, the band gap opened up, even in simple band
theory [3]. But this triumph of mean-field theory to explain
band-gap opening in the spin ordered phase was considered
to be insufficient to explain the observed band gap in the
high-temperature spin disordered paramagnetic (PM) phase.
This is because when a single formula unit per cell was used
to describe the PM phase, the local magnetic moment at the
transition-metal site must coincide with the global magnetic
moment, which is zero in a cell containing a single 3d ion.
Thus, the PM phase has to be nonmagnetic and hence gapless
from band theory, in contrast to experiments on the binary 3d
oxides.

*Corresponding authors: alex.zunger@colorado.edu;
jsun@tulane.edu

This historic failure of such simple band theory ideas set
the stage for alternative strongly correlated strategies. In his
seminal work [1], Mott theorized that the insulating behavior
of 3d transition-metal oxides can emerge from the strong
correlation, encoded by the on-site interelectronic repulsion
(“U”) between d electrons. This repulsion keeps the d elec-
trons localized within bands of width W where U > W , and
was argued as the correct mechanism regardless of the mag-
netic order [1]. This picture of d-orbital dominated doubly
occupied and empty band edges (valence and conduction
bands, respectively) is the textbook model of (Mott) insu-
lation. Many contemporary nonperturbative methods [4–6]
applicable to open-shell transition-metal and rare-earth com-
pounds are rooted in the concept of such symmetry conserving
approaches, i.e., modeling strong correlation while conserving
the unbroken spatial unit-cell symmetry [7,8]. This textbook
view of strong correlation disqualified both mean-field the-
ories and methods based on perturbation theories for the BO
monoxides as well as ternary ABO3 oxides (B = 3d) band gap
problem.

While the Mott-Hubbard Hamiltonian approach seemed
a priori plausible and potentially exact, it was not obvious
if the celebrated Mott Insulator compounds—the binary and
ternary 3d oxides—follow the edicts of this Hamiltonian, e.g.,
have 3d-like band-edge states with band gaps that essentially
equal U. On the other hand, the complexity of the explicitly
dynamically correlated methods makes electronic structure
studies of real-life structurally complex transition-metal ox-
ides difficult if not intractable for numerous material specific
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properties in applications such as catalysis, superconductivity,
magnetoresistance, and carrier doping.

That the assumption underlying the early naïve band theory
[7–11] that required all transition-metal sites in a PM phase
to be symmetry equivalent may be overly restrictive was
noted by Trimarchi et al. [12] and Varignon et al. [13].
Indeed, much like the AFM configuration that involves a
doubling (or quadrupling) of the primitive cell, the PM phase
can also be described by an even larger spin supercell. In
this larger spin supercell the total magnetic moment is zero
as required by paramagnetism, yet local sites can develop
nonzero local magnetic moments [12]. Such representations
for the PM phase allow the existence of a distribution of
different local environments (a “polymorphous network”) for
transition-metal sites [12]. This generalization of mean field
for allowing symmetry breaking has produced finite band
gaps, local atomic displacements, and moments in both BO
binary [12] and ABO3 ternary [13,14] oxides without recourse
to explicitly including dynamic correlation.

The success of the polymorphous representations [12–14]
relied on several key factors: (i) the use of larger-than-
primitive unit cells does not force upon us the symmetry
equivalence of all chemically identical sites, thus the poly-
morphous representation provides an option to break the local
symmetry, should this lower the total energy—in other words,
although unlike the AFM phase the PM phase has no gap-
opening long-range order (LRO), this does not preclude the
latter from having gap-opening short-range order (SRO; not
disorder); (ii) the use of an exchange-correlation functional in
DFT that can distinguish occupied from unoccupied orbitals
and allow orbitals to be spatially compact so as to benefit from
these symmetry-breaking energy-lowering opportunities; and
(iii) “nudging” of the system to allow relaxation in all de-
grees of freedom, both local displacements and breaking the
orbital occupation pattern, thus allowing factors (i) and (ii)
to develop. Polymorphous representations [10] allow for a
range of symmetry-breaking mechanisms such as Jahn-Teller
displacements, octahedral tilting and rotations, different spin-
disordered environments, as well as unequal occupation of
previously degenerate states [e.g., for doubly degenerate E
level with occupations E(x, y), we use E (1, 0) instead of
E ( 12 ;

1
2 )]. These broken symmetries can all contribute to band-

gap opening, magnetic moment formation, and stabilization of
the observed crystal structures [12]. Symmetry can be restored
as a follow-up step [15,16], but this formality should have
a negligible effect on the total energy when the individual
symmetry-broken configurations are spatially localized and
have band gaps.

Not all exchange-correlation functionals can take advan-
tage of the energy-lowering symmetry-breaking opportunities
afforded by polymorphous representations [obviously, highly
delocalized orbitals produced by some exchange-correlation
(XC) functionals may be too “far sighted” to “see” local
symmetry breaking [17]]. Benefiting from symmetry breaking
requires [12–14] density functionals that have (i) reduced
self-interaction error (SIE) leading to realistically compact
orbitals, and (ii) the capability to distinguish occupied from
unoccupied orbitals [12–14] for example through different
effective potentials for different orbitals. Such orbital spe-
cific effective potentials can be achieved through explicit

orbital dependence, at the fourth and fifth levels of the
Perdew-Schmidt hierarchy of XC functionals [18], or implic-
itly through the kinetic-energy density at the third level as
indicated in Ref. [14]. (Note that Refs. [12,13] suggested the
stronger restriction of using level 4 or 5 functionals, but the
current work as well as Ref. [14] find that for band-gap calcu-
lations the weaker conditions of rung 3 can suffice.) When
combined with polymorphous representations such density
functionals are far simpler than the explicitly correlated ap-
proaches applicable to solids such as Quantum Monte Carlo
[6], dynamical mean-field theory (DMFT) [4], and density-
matrix embedding theory [5]. Moreover, this approach points
to a different mechanism of gap opening relative to the Mott-
Hubbard scenario.

DFT+U [19] satisfies the above criteria and thus opens
band gaps for open-shell transition-metal compounds [12,13].
It remains nontrivial to determine the U value as an input
however, a problem shared with DMFT. The appearance of
“+U” in DFT+U can create the impression that the success of
this method in conjunction with the polymorphous represen-
tation in explaining much of the phenomenology of the AFM
and PM phases is due to the Mott-Hubbard-like correlation
physics. However, U appears in DFT+U predominantly as
a simplified self-interaction-error (SIE) reduction device that
enhances the spatial compactness of 3d orbitals, allowing
them to take advantage of symmetry breaking. Furthermore,
it has been shown in Ref. [14] that even without U, the
nonempirical strongly constrained and appropriately normed
(SCAN) [20] density functional in conjunction with polymor-
phous representations opens band gaps of the ternary ABO3

perovskites when symmetry breaking is allowed. The success
of DFT without U indicates that the Mott mechanism (where
the gap equals U) does not necessarily apply to the main 3d
oxides.

This recent development raises a very important question:
why can DFT without U open band gaps for correlated mate-
rials in both AFM and PM phases of binary transition-metal
monoxides and ternary ABO3? The present paper aims to an-
swer this question and apply SCAN to the prototypical binary
transition-metal monoxides for the band-gap prediction.

This paper is organized as following. Section II gives the
computational details. In Sec. III, we show computationally
that without invoking U, the SCAN functional in conjunc-
tion with polymorphous representations systematically pre-
dicts magnetic moments and qualitatively opens band gaps
in four monoxides (MnO, FeO, CoO, and NiO) in both the
AFM and PM phases. In the high-temperature PM phase
the polymorphous network of spin disorder is modeled by
the special quasirandom structure (SQS) [21–23]. In Sec. IV,
we provide an understanding of how the choice of exchange-
correlation functionals with the right attributes allows band-
gap opening for correlated materials in conjunction with
symmetry-breaking representations. The understanding is il-
lustrated in Sec. V by showing results including (i) the
success of single determinant SCAN for reproducing the
total energies of hydrogen systems from highly correlated
methods, (ii) the improved compliance of SCAN with the
generalized Koopmans condition, and (iii) the achievement
of more spatially compact orbitals with SCAN enabling more
effectively symmetry breaking. Finally, Sec. VI discusses the
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role of the polymorphous representation and Sec. VII provides
the summary and conclusions.

II. COMPUTATIONAL DETAILS

The SCAN functional is implemented in the Vienna Ab-
initio Simulation Package (VASP) [24] and Turbomole [25].
For the binary systems we used the projector-augmented wave
method [26,27], and a cutoff energy of 500 eV to truncate
the plane waves. The K meshes for Brillouin-zone integration
are 8 × 8 × 8 for the four-atom unit cell, 3 × 3 × 3 for the
64-atom supercell, and 2 × 2 × 2 for the 216-atom supercell.
We used here projector-augmented waves (PAWs) generated
from the Perdew-Burke-Ernzerhof (PBE) functional [28], as
SCAN optimized PAWs were not available. It has been shown
that using PBE PAWs for other functionals has little influence
on calculated energy differences [29]. The hydrogen chain
at the thermodynamic limit was modeled in a supercell with
the chain along the x direction, while the lattice constants in
the y and z directions were set to 30 Å, in order to avoid
the interaction between two adjacent periodic images. For
the total-energy calculations of the chain, energies were con-
verged to within 10−6 eV and a plane-wave energy cutoff of
1200 eV was used.

Finite system (molecular) calculations were carried out in
Turbomole. Hydrogen systems were obtained by extrapolat-
ing to the basis set limit from the cc-pVXZ (X = 2, 3, 4, 5)
basis sets, as described in Ref. [30]. The Mn ion with a frac-
tional number of electrons was calculated in the def2-TZVP
basis set [31]. Expanded quadrature grids were used in all
Turbomole DFT calculations using the control option radsize
= 100 to augment the standard level seven Turbomole grid
with additional radial points. Spin symmetry was explicitly
broken in initial guess orbitals.

Supercells modeling a PM phase with a given lattice
symmetry (cubic, orthorhombic, etc.) [12,13] are chosen as
follows:

(i) The global shape of a supercell is fixed to the macro-
scopically observed lattice symmetry.

(ii) Lattice sites of an N-atom supercell are occupied by
spin up and spin down so as to achieve the closest sim-
ulation of a perfectly random (i.e., high-temperature limit)
distribution, modeled by SQS. The latter selects a supercell of
finite number N of atoms so that the spin-spin pair-correlation
functions best mimic the correlation functions of an infinite
sized supercell [21]. Then, N is increased as a convergence
parameter until no further change occurs. We use here the
216-atom supercell for the SQS PM. SQS can be generated
for random spin-spin correlations (no short-range order at the
high-T limit) or for atomic arrangements with some atom-
atom correlations (corresponding to the low-T limit of PM)
[22]. In the current study we consider the fully random PM
phase, which contains the essential physics. Agreement with
experiment can presumably be improved by including finite-
temperature short-range order.

(iii) Relaxation is performed by retaining the symmetry of
the lattice vectors to the originally assumed symmetry (here,
cubic) while relaxing cell-internal atomic positions. Atoms
can be nudged initially to avoid trapping in local minima.

(iv) Occupation numbers of degenerate partially occupied
orbitals are nudged and not forced to be the same.

(v) Wave functions are not symmetrized.
We use the conventional two-atom primitive cell for the

NM, and the four-atom supercell for the G-type AFM. Note
that a 64-atom supercell of FeO is also used for the AFM
phase. We used the SQS of Ref. [12] for the 64- and 216-atom
supercells to model PM phases, which has been obtained via
the stochastic generation algorithm implemented in the Alloy
Theoretic Automated Toolkit (ATAT) code [32,33].

III. RESULTS

A. General trends

Table I shows that SCAN in conjunction with polymor-
phous representation that permits energy-lowering symmetry-
breaking produces the following results:

(i) We predict the naïve NM model to be a high-energy
state thus energetically irrelevant to the ground-state physics
at hand. Thus, the NM calculations previously used exten-
sively in conjunction of DMFT publications (listed in Ref.
[13]) to disqualify DFT are not pertinent.

(ii) Structural relaxation enhances the stability of the
monoxides in the AFM and PM phases. This change is small
for MnO, NiO, and CoO, while the energy of FeO is signif-
icantly lowered by structure relaxation resulting in a struc-
tural phase transition to the monoclinic phase. The following
discussions are based on calculations from the experimental
NaCl crystal structures.

(iii) Our method stabilizes the magnetic moments of the
transition-metal sites in both AFM and PM phases with values
in good agreement with those measured from their AFM
phases. Such findings are consistent with previous work in
cuprates [34–36] and the ABO3 perovskites [14], for which
SCAN also predicts reliable magnetic moments.

(iv) Our approach opens the band gaps for both the AFM
and PM phases. Furthermore, the orbital-decomposed den-
sity of state (DOS) (Fig. 2) shows that the VBM of these
compounds is far from being a d state as envisioned in the
Mott-Hubbard model (that treats only d states). This indi-
cates again that the Mott-Hubbard mechanism involving the
interelectronic interactionU is not necessarily the required de-
scription for opening band gaps in the classic (so-called) Mott
insulators binary (present work) or ternary 3d oxide Mott
insulators [13,14]. Indeed, unlike the Mott mechanism (gap
equals U) the mechanism is free from U, thereby constituting
different physics.

Much like other popular density functionals however,
SCAN produces too small band gaps for the usual (nominally
uncorrelated) semiconductors such as Si and GaAs; here
we also face the same difficulty. Photoemission and inverse
photoemission measurements available for the PM phases
give 3.9 (0.80); 2.5 (0.21), and 2.5 (1.07) for MnO, FeO and
CoO, respectively, where the calculated values are given in
parentheses. For NiO, the measured AFM gap was 4.0 eV and
the calculated 2.5 eV.When compared to the metallic behavior
predicted by the popular PBE [28] density functional however,
the gap openning by SCAN is a remarkable step forward. The
remaining significant underestimation from SCAN is likely
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TABLE I. Stabilities, band gaps, and local magnetic moments of four 3d monoxides in the G-type AFM phase (where every nearest-
neighbor pair of magnetic moments are antiparallel) and the PM phase calculated by the SCAN density functional without U. The PM
phases are modeled by the special quasirandom structure (SQS) with 216-atom supercells to create close approximations to the random spin
configuration [12,21]. “Unrelaxed” means that both the lattice type and the cell internal coordinates are kept equal to the experimental NaCl
crystal structure. “Relaxed” means that our calculations started from the NaCl experimental crystal structure and used a gradient relaxation
algorithm to identify the nearest minima, generally not the deepest minima. The magnetic moments in the SQS-PM phase have small variations
in magnitude among the transition-metal sites, and the results given here are the averaged values. The calculated total energy difference gap
is compared to the difference between photoemission ionization and electron affinnity, denoted by “p”, that defines the total energy band gap.
The smaller optical band gap, denoted by “o”, is given as general reference which should not be directly compared to the calculated values
because the former differs from the total band band gap by excitonic and d-d correction terms. See the discussions on the total energy band
gap from photoemission and optical absorption measurements in Sec. IV.

Energy (meV/atom) Band gap (eV) Magnetic moment (µB)

Structure & model MnO NiO FeO CoO MnO NiO FeO CoO MnO NiO FeO CoO

NM, unrelaxed 1487 666 561 542 0 0 0.71a 0 0 0 0 0

AFM, unrelaxed 0 0 0 0 1.63 2.48 0.22 0.98 4.44 1.58 3.55 2.58
AFM, relaxed −4.7 −0.2 −59 −1.5 1.67 2.52 0.14 0.94 4.43 1.57 3.54 2.57
AFM, expt. 3.5(o)b 4.0(p) [37] 2.4(o) [39] 2.8(o) [40] 4.58 [41] 1.9 [41] 4.0 [42] 3.8 [43]

4.3(p) [38]
PM, unrelaxed 14 40 13 33 0.77 1.50 0.18 0.94 4.47 1.63 3.60 2.62
PM, relaxed 12 37 −32 32 0.80 1.49 0.21 1.07 4.47 1.63 3.58 2.62
PM, expt. 3.9(p) [44], 2.5(p) [46] 2.5(p) [47],

3.6–3.8(o) [45] 2.4(o) [40]

aFeO can also have a band gap in its nonmagnetic phase, but its total energy is high in comparison with the G-type AFM phase.
bReference [48].

due to the residual SIE [49]. More realistic band gaps were
opened by PBE+U in Ref. [12], at the price of introducing U
as a way to remove SIE within DFT [50].

B. AFM phases

The gap opening mechanism of the AFM phase monoxides
has been widely studied using different methods including
DFT+U, see Ref. [12] and references therein for discus-
sions [12,51–55]. Table I shows that the present approach of
SCAN, in conjunction with the polymorphous representation
without invoking the interelectronic U, opens the band gap
of the AFM phase for the four transition-metal monoxides,
while Fig. 1 shows the SCAN band structures. The gap
opening mechanism varies among the four binary oxides
studied here:

(i) In MnO a band gap of 1.63 eV is seen due to ex-
change splitting between the spin-up and spin-down channels,
resulting in the Mn2+ 3d5 orbitals having one fully occupied
[(t32ge

2
g)

↑] group and one completely empty [(t02ge
0
g)

↓] group (↑
and ↓ denote the spin-majority and spin-minority channels).

(ii) For NiO, the band gap of 2.48 eV is between (t32g)
↓ and

(e0g)
↓ states, originating from crystal-field splitting.
(iii) For FeO, the band gap is within the three t2g orbitals of

Fe2+ 3d6. If we define the local Cartesian axes along the Fe-O
bond directions, the self-consistent occupation of dxy, dyz, and
dxz orbitals are 0.332, 0.342, and 0.272 electrons, respectively,
demonstrating the occupation symmetry breaking (i.e., or-
bital anisotropy [55] or polarization [51]). Such occupation
symmetry breaking is crucial for the band-gap formation in
partially occupied t2g systems like FeO (t12g), in addition to the
exchange splitting and crystal-field splitting mechanisms (see
further discussions in Appendix A). The occupied minority

spin d band is a linear combination of the dxy dyz, and dxz
orbitals with a1g symmetry [51,56].

(iv) For CoO, the band-gap opening is due to the occu-
pation polarization of the two occupied t2g subbands and one
empty t2g subband. These findings are consistent with earlier
work [12,50,56].

C. PM phases

Table I shows that the present method with the SQS-PM
model stabilizes local magnetic moments for all monoxides
considered. The values are almost the same as those of
the AFM phases, and thus the band gaps are opened. This
stabilization of local magnetic moments makes the SQS-PM
model substantially more stable than the naïve NM model
even though both models have zero total magnetic moment.

In addition to lifting degeneracy, the low-symmetry crystal
field due to the short-range spin order in PM broadens DOS in
comparison to the AFM DOS for all monoxides considered,
as shown in Fig. 2. This is consistent with early work for the
PM phase [57,58]. As a result, the metal-oxygen bonding is
weakened, leading to noticeable destabilizations of the PM
monoxides with respect to their AFM phases. The broadening
of DOS also causes the reduction of band gaps in MnO (from
1.63 eV in the AFM phase to 0.77 eV in PM) and NiO (from
2.48 eV in the AFM phase to 1.50 eV in PM). Note that
we used in the present SQS the high-temperature spin ar-
rangement and no attempt was made to introduce short-range
spatial correlations between the spins which could affect the
gap. It is interesting to note that the band gaps of FeO and
CoO are almost unaffected in the PM phase. This is likely
due to the fact that the gap opening in these two monoxides
mainly comes from the occupation symmetry breaking of the

045112-4



SYMMETRY-BREAKING POLYMORPHOUS DESCRIPTIONS … PHYSICAL REVIEW B 102, 045112 (2020)

FIG. 1. SCAN band structures of the four G-type AFM transition-metal monoxides calculated with the experimental NaCl crystal
structures. Orbital characters are indicated where red circles ( ) are the 3d states in the majority spin channel, green squares ( ) the 3d
states in the minority spin channel, and blue crosses ( ) the transition-metal 4s sates. Interaction patterns of the 3d states, i.e., bonding (b),
antibonding (a), and nonbonding (n), are also labeled. For FeO, the inset shows the charge density distribution of the highest occupied band
a1g band, which is a linear combination of the dxy, dyz, and dxz orbitals [51,56]. The valence-band maximum (VBM) is located at the “M”
point, which is not included in the standard K path of this figure. The regions between occupied and unoccupied states are shaded with yellow.
Calculation details are given at end of the main text.

t2g states, which is not directly related to the crystal-field
symmetry breaking.

The DOS broadening highlights the capability of the SQS-
PM model to provide different local environments [12] and
SCAN’s capability to recognize chemical environments [59].
This enabling and appropriate handling of different local
environments is directly visualized in the density distributions
of 3d spin orbitals. Figure 3(a) plots the spin-orbital density
of the two Mn2+ eag states below the Fermi level of the
SQS-PM MnO [counterparts to the two eag states indicated in
Fig. 1(a)]. The distribution pattern clearly reflects the random
distribution patterns of the magnetic moment directions, while
the spatial distributions at Mn2+ sites with different magnetic
moment directions are equivalent. In stark contrast, a similar
plot of the a1g state of the SQS-PM FeO below the Fermi
level shows an interesting spatial disorder in addition to the
spin disorder, demonstrated in Fig. 3(b). As mentioned in the
analysis of the AFM phase, the a1g state in FeO is a singly
occupied band resulting from the linear combination of three
near-degenerate t2g orbitals. The spatial disorder illustrated in
Fig. 3(b) reflects the occupancy symmetry breaking coupled to
the spin disorder enabled by the SQS model and captured by
SCAN, consistent with the findings from DFT+U (see Fig. 6
of Ref. [12]). The spatial disorder also presents in the AFM
FeO when a supercell containing more than two Fe atoms is
used (see Appendix B).

In general, the DOS curves of SQS-PM model are similar
to those of the AFM model (Fig. 2), which is consistent with
the experimental finding, i.e., the long-range ordering of the
magnetic moments is not the driving force of the band-gap

opening. Instead, it is the stabilization of the local magnetic
moment that opens the band gap, which is the essence of
the Mott physics [1], consistent with previous studies of
local spin density approximation (LSDA) plus self-interaction
correction (SIC) [60] with disordered local moment (DLM)
[58] implemented within the single-site coherent-potential
approximation (CPA) [61,62] and DFT+DMFT results [7,8].

D. Symmetry restoration

As in all symmetry-broken solutions [15,16,63] one needs
to restore the global symmetry; see Ref. [63] and references
therein. It is telling that different SQS configurations corre-
sponding to different initial nudging all give similarly large
local moments and similar band gaps [12]. Additionally, as
Ref. [12] noted, whereas different initializations of SQS create
slightly different total energies and band gaps, the coupling
between such broken-symmetry solutions needed to restore
symmetry would be very weak as they are spatially localized
in different subspaces. We therefore expect that symmetry
restoration will have little influence on the total energy and
band gaps but will generate a symmetrized wave function.

Approaches exist for restoring symmetries after they are
broken, e.g., projected unrestricted HF and coupled-cluster-
singles-doubles (CCSD) in quantum chemistry [15,63], and
in nuclear physics [16]. As spontaneous symmetry breaking
happens in extended systems however, e.g., the AFM phase
of the monoxides considered, the symmetry dilemma of get-
ting total-energy and wave-function symmetry simultaneously
correct may be less severe for solids. Special care must be
paid to properties determined by symmetries however, e.g.,
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FIG. 2. Density of states of four transition-metal monoxides with the G-type AFM and SQS-PM spin configurations calculated by SCAN.
All crystal structures are fixed to the experimental data (“Unrelaxed” in Table I). The SQS model contains 216 atoms. The band gaps are
indicated by the vertical dashed lines. Calculation details are shown at the end of the main text.

topological properties of materials with open d- or f -shell
ions, when computed from the symmetry-broken DFT calcu-
lations, as symmetry restoration is likely required.

IV. UNDERSTANDING HOW EXCHANGE CORRELATION
FUNCTIONALS AND SELF-INTERACTION CORRECTION
(SIC) AFFECT BAND-GAP OPENING FOR CORRELATED

MATERIALS IN CONJUNCTION WITH
SYMMETRY-BREAKING REPRESENTATIONS

There are two practical definitions of the band-gap con-
cept. The band gap defined as the “total-energy difference
band gap” (also termed the “delta SCF method”; see Ref.
[64]) is the separation between the ionization energy EI =
E (M − 1) – E (M ) and the electron affinity energy EA =
E (M ) – E (M + 1), whereM is the number of electrons. Since
in this definition only the ground-state energies are involved,
this total-energy band gap can be calculated, in principle,
exactly from DFT and directly compared to that measured
from experiments [65–67]. We note that experimentally only

the ionization energy minus the electron affinity obtained
from X-ray photoemission spectroscopy (XPS) and inverse
XPS, respectively, gives the total energy band gap that should
be comparable to the calculated total energy band gap. The
(smaller) optical band gaps obtained from optical absorption
measurements require corrections for the d-d and excitonic
effect not included in band theory

On the other hand, the band gap defined through the
“single-particle energy band gap” εCBM−εVBM (where CBM
and VBM denote conduction-band minimum and valence-
band maximum, respectively) is obtained from a Kohn-
Sham (KS) or generalized KS (gKS) DFT calculation. Un-
like the gKS, in the KS scheme, the XC effective poten-
tial is multiplicative. For example, the generalized-gradient-
approximation (GGA) in the form of PBE [28] has a mul-
tiplicative effective potential and cannot consistently open
the band gap defined through the single-particle energies of
the four monoxides considered here even in the AFM phase.
However, the generalized KS scheme allows the DFT effective
potential to be nonmultiplicative and continuous (e.g., orbital
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FIG. 3. Spin and orbital disorder patterns in the paramagnetic
phase simulated in the 64-atom-supercell from the SCAN SQS-PM
model. (a) MnO, spin disorder visualized from the charge density
distributions of the two eag bands. (b) FeO, the a1g band. The two eag
bands in MnO and the a1g band in FeO are selected because they are
just below the valence-band maximum and are well separated from
the other transition-metal 3d and O-2p states. Similar information for
NiO and CoO is difficult to extract because of the significant orbital
mixing. The blue and red isosurfaces denote the two spin channels on
each transition-metal ion. Oxygen atoms are omitted for simplicity.
The 216-atom supercell contains similar information, but the smaller
64-atom supercell is selected here for clarity.

dependent). It has been proved [65–67] that in this scheme the
single-particle εCBM-εVBM band gap for a solid from a density-
functional calculation is equal to the total-energy band gap
for the same density functional, if the gKS potential operator
is continuous and the density change is delocalized when an
electron or hole is added. The above noted proof also implies
that in the gKS scheme, density functionals that are improved
for giving better total energies can predict improved band gaps
for solids. SCAN is orbital dependent and implemented in the
gKS scheme with a continuous effective potential and thus
not restricted by the first error (failure to distinguish occupied
from unoccupied orbitals) discussed below.

There are three major, XC-related conditions for minimiz-
ing the underestimation of the band gap predicted from the
single particle energies.

A. Use of XC functionals that distinguish occupied from
unoccupied states and the issue of XC derivative discontinuity

An ideal density functional should be nonlocal, which
usually is realized by orbital dependence, i.e., distinguishing
occupied from unoccupied states. To use orbital energies to
predict total-energy band gaps, it is important to perform
calculations in the gKS scheme to eliminate errors associated
with the derivative discontinuity [65–67]. In Refs. [12,13] the
authors emphasized this condition for exchange correlation
functionals.

In the KS scheme the used exchange correlation energy
functionals, e.g., the orbital-dependent ones, can have a
derivative discontinuity that is present even for the exact KS
exchange-correlation density functional [68]. The disconti-
nuity is difficult to compute and generally ignored, but it
should be added to the single-particle band gap for the correct
prediction of total-energy band gap [68]. When SCAN is
implemented in gKS, there is no derivative discontinuity in
its effective potential, having an analytic continuous behavior.

B. Use of XC functionals that minimize SIE, enforced
by the piecewise linearity of total energy

The used exchange-correlation density functionals can
suffer from the self-interaction error [60] (SIE was also
discussed and explained early on by Zunger and Freeman
[64]). SIE results from the imperfect cancellation of the spu-
rious classical Coulomb self-interaction by the approximate
exchange-correlation self-interaction. Because the repulsive
self-Coulomb exceeds the attractive self- exchange correla-
tion, the net SIE is generally positive, causing orbitals to be
under bound (orbital energies too high) and wave functions to
be excessively delocalized. Such overly delocalized orbitals
may not have the needed spatial resolution to “see” sym-
metry breaking and can underestimate the total-energy band
gap.

The SIE for a single orbital can be easily defined and
clearly illustrated in single-electron systems [Fig. 4(a)] while
the many-orbital SIE has to be defined through the deviation
from the piecewise linearity of total energy between two
adjacent integers of electron number. The exact density func-
tional should have a linear connection between two adjacent
integers with derivative discontinuities at integer M [68],
also known as the generalized Koopman’s condition. Many
popular semilocal density functionals (e.g., PBE) generally
overstabilize the energy for fractional numbers, deviating
from the piecewise linearity from below [Figs. 4(c) and
4(d)] and indicating the tendency to spuriously delocalize
electrons between nuclear centers (i.e., the delocalization
error).

One-electron self-interaction correction that is related to
the correct power law in vacuum (i.e., far away from the
atom) is not sufficient for improving predictions of band
gaps. Correcting the gap due to SIC affects also greater
orbital compactness on the length scale of the chemical bond.
This is often referred to as reducing the delocalization er-
ror stemming from SIE. Indeed, for a DFT calculation in
the gKS scheme with symmetry breaking, it is the many-
electron SIE or delocalization error that matters for the band-
gap predictions from orbital-dependent density functionals.
The lower the many-electron SIE or delocalization error, the
lower the error in band gap predictions [66,69,70]. Many
density functionals, which are one-electron SIE free, includ-
ing weighted density approximation (WDA) [71] and the
Perdew-Zunger (PZ) self-interaction correction (SIC) [60],
have also reduced many-electron SIE and improved band-gap
predictions [70,72–75].

The PZ-SIC [60] or an approximation thereof via the
DFT+U approach [12,13,50,76] opens the band gaps of the
aforementioned binary and ABO3 3d oxides by creating a
distinction between occupied and unoccupied states while
also creating more compact orbitals able to take advantage
of symmetry-breaking possibilities. For the binary 3d oxides
considered here, SIC has been shown to improve the band-gap
prediction of LSDA dramatically by ∼1–3 eV [72], while
DFT+Uwith modestU that has the primary effect of reducing
SIE similarly increases band gaps from zero to 1 eV or more
in 3d oxides [12,13].

Most widely used density functionals did not implement
the condition of self-interaction cancellation into their con-
structions. Yet any functional can be measured as to the
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FIG. 4. Self-interaction error reduction and electron localization with SCAN. (a) The dissociation energy curves of the H2
+ molecule from

Hartree-Fock theory (HF), PBE, and SCAN. HF theory is exact for the chosen basis set for single electron H2
+. (b) Difference of electron

density calculated by SCAN and PBE, i.e., nSCAN − nPBE. AFMMnO is selected because Mn2+ is fully spin polarized with a simple completely
filled 3d5 shell in one spin channel. (c) Total energy of isolated Mn ion as a function of fractional orbital occupation, normalized such that the
3d5 (Mn2+) state is at zero. (d) Deviation from ideal linear behavior between integer electron numbers for the total energies of (c).

extent of its de facto self-interaction cancellation, even if
this condition was not deliberately implemented. We show
in Figs. 4(c) and 4(d) that SCAN has a better self-interaction
cancellation than PBE does.

Not all mean-field approximations are alike. The
Hartree-Fock (HF) approximation is orbital dependent, and
one-electron exact and thus self-interaction free (so it
satisfies the first two conditions listed in the current
Sec. IV), and satisfies Koopman’s theorem which dictates the
first ionization energy to be equal to the negative of the
orbital energy of the highest occupied molecular orbital under
the frozen orbital approximation. HF however misses all
correlation energy and the effective screening of the exchange
interaction. It thus ends up being a very poor approximation,
badly overestimating band gaps. This overestimation is a
consequence of the overlocalization error in correspondence
to the deviation of HF from the piecewise linearity in total
energy between two adjacent integer numbers [see Figs. 4(c)
and 4(d)]. This suggests that the orbital-dependence condition
is only a necessary condition for a density functional which
should also satisfy the generalized Koopman’s condition
for accurate predictions of the total-energy band gap using
its orbital energies. For conventional density functionals,
satisfying the generalized Koopman’s condition enforces the
minimization of SIE.

C. Use of XC functional with spin-symmetry breaking

If one insists on no symmetry breaking, then for
strongly correlated electron systems, including the 3d oxides,
the exchange-correlation energy functional should have an
explicit ly discontinuous (nondifferentiable) dependence on
the density or density matrix. This traditional no symmetry-
breaking scenario is illustrated by the NM phases of the
binaries as well as by the spin singlet H2 molecule (compared
to the spin-symmetry-broken solution of H2 where the elec-
tron at one proton is spin up and the other electron is spin
down at the other proton, reminding of AFM against NM)
[77]. Such discontinuity is missing from all current practi-
cal exchange correlation approximations. This missing piece
results in too high energy as seen in the NM phases of the
binaries, and should be added to the orbital energy-band gap
for the prediction of the total-energy band gap. This source
of error is removed if the spin symmetry is allowed to break
as in our present approach as well as in Refs. [12–14]. Note
that even LDA/GGAs accommodate spin-symmetry breaking.
However, the problem for LDA/GGAs is that these functionals
cannot take advantage of this spin-symmetry breaking given
their internal restrictions of not using conditions 1 (orbital de-
pendence) and not using condition 2 (SIE reduction). In other
words, our three conditions must be applied simultaneously,
not in isolation.
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The SCAN functional systematically opens qualitatively
correct band gaps without invoking the U parameter (Table I).
This is understood by the following three factors correspond-
ing to the three error sources mentioned above: (i) SCAN
is orbital dependent and implemented in the generalized
Kohn-Sham (gKS) scheme; (ii) SIE is reduced in SCAN com-
pared to PBE; (iii) breaking of the spin symmetry eliminates
the third error source above and also facilitates accurate total-
energy descriptions for these monoxides in their AFM and PM
phases in comparison to their NM phases.

V. ILLUSTRATION OF SMALLER SIE AND GREATER
ORBITAL COMPACTNESS IN SCAN: HYDROGEN

MOLECULE AND HYDROGEN CHAIN

The one-electron SIE can be demonstrated in the H2
+

binding energy curve [Fig. 4(a)]. As there is only one elec-
tron, the Hartree-Fock (HF) description is exact because
the classical Coulomb interaction is completely canceled by
the exact exchange [78,79]. When stretching H2

+ significant
SIE develops within the PBE and SCAN calculations, while
SCAN reduces the SIE noticeably. Figures 4(c) and 4(d) show
the total energy vs fractional electron number (E vs N) of
the Mn ion and the deviations from the linearity of total
energy between adjacent integers, respectively. Consistent
with the performance in H2

+, SCAN reduces the deviation
noticeably and thus the delocalization error or many-electron
SIE compared with PBE.

For SCAN, the SIE reduction leads to more compact
and energetically deeper orbitals, as directly visualized in
the electron density difference, nSCAN − nPBE, plot for MnO
[Fig. 4(b)]. The charge density difference shows that SCAN
accumulates electrons around the ions but depletes them in
the interstitial regions compared to PBE, clear evidence of
electron localization and SIE reduction.

The ability of SCAN to capture a part of SIC helps it
describe nontrivial two-electron systems, e.g., H2, with ac-
curacy rivaling the far more complex coupled cluster singles
and doubles method that is exact in two-electron systems
for the chosen basis set. Figure 5(a) shows the H2 binding
curves, which illustrate the success and limitations of the spin-
symmetry-breaking approach for modeling the PM phase. As
the H2 bond length is stretched, the first excited spin-triplet
and ground spin-singlet states become degenerate, causing
difficulty for mean-field-like methods if symmetries are en-
forced. If spin symmetry is broken even a spin unrestricted
HF model can recover the exact dissociation limit, though
it deviates from the reference curve at shorter separations.
Remarkably, the unrestricted SCAN model with the spin-
symmetry breaking accurately recovers the whole reference
binding curve with only small disagreement around the shoul-
der (at 1.5 Å) to a maximum of ∼0.1 eV/atom. The recovery
of the binding-energy curve comes at the price of “spin
contaminated” unrestricted single-particle KS wave-function
solutions however, which are no longer eigenfunctions of the
total spin operator Ŝ2 [80].

Spin-symmetry-broken SCAN performs similarly well for
the ten-hydrogen chain [Fig. 5(b)], and the thermodynamic
limit of the infinite hydrogen chain H∞ [Fig. 5(c)]. A small
increase in error around equilibrium is seen in these cases.

(a)

(b)

(c)

FIG. 5. Performance of unrestricted SCAN approach with spin-
symmetry breaking for various hydrogen structures. Binding ener-
gies are plotted as a function of interatomic distances for (a) H2,
(b) H10, and (c) the thermodynamic limit of the hydrogen chain
(H∞). In (a), the coupled-cluster-singles-doubles (CCSD) (red ) is
exact and used as the reference. In (b) and (c), the HF data <1.9Å
(blue ) and reference auxiliary-field quantumMonte Carlo data (red
) are from Ref. [30]. H∞ has an antiferromagnetic order when the

magnetic moment persists. Atomic spacing is uniform in H10 and
H∞ systems, the same value as used in Ref. [30]. The insets show
the energy difference between SCAN and the references.

Being regarded as a generalization of the one-dimensional
Hubbard model, H∞ captures the key features that include the
presence of strong electron correlation of diverse nature as the
H-H distance is varied, and a need to treat the full physical
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Coulomb interaction and to work in the continuous space
and thermodynamic limits [30]. To our knowledge, H∞ is the
only extended correlated system with accurate reference total
energies that can be used to benchmark density functionals for
the strong correlation.

It is striking that a density-functional single determinant
[20] produces such accurate energies when the spin symmetry
is allowed to break. Note that spin-symmetry-breaking so-
lutions from DFT+SIC have also been shown to be critical
for describing response properties of hydrogen chains [81],
consistent with our supposition that Koopman’s compliance
of the functional [Figs. 4(c) and 4(d)] helps in approaching
the correct ground state.

As with the binding curves of these hydrogen systems, it is
reasonable to expect that spin-symmetry-broken SCAN with
the SQS model can predict better total energies for the PM
phase than the spin-symmetry conserved NMmodel. With the
connection between total energy and band gap established in
gKS [65–67], opening a band gap in the PMmonoxides within
the SQS model is also expected.

VI. ROLE OF POLYMORPHOUS REPRESENTATION

In principle, a density functional with the explicit deriva-
tive discontinuities that account for spin degeneracies [77]
might predict band gaps in the NM model. However, such a
density functional that is also generally applicable to different
systems is extremely hard to construct and not available
currently. It is important thus to realize that using any of the
current exchange correlation functionals without a symmetry-
breaking polymorphous representation does not open band
gaps uniformly in all binary oxides considered here and ABO3

ternaries. This hence mandates the polymorphous representa-
tion to allow symmetry breaking (in spin local environments
as well as in positional relaxation) for band-gap predictions
with exchange-correlation functional that satisfy the condi-
tions discussed in Sec. IV.

Another example where the allowance of different local
environments is sanctioned by DFT and provides a qualita-
tive correction of the electronic structure is bond dispropor-
tionation [82]. Large, energy-lowering atomic relaxation can
convert crystal structures that have a monomorphous structure
with a “single local environment” (SLE, such as a single BX6

octahedron in ABX3 perovskites) to a doubled unit cell that
is characterized by a “double local environment” (DLE, such
as two BX6 octahedra per cell, one small and the other large).
For transition-metal compounds, correlation effects were pre-
viously argued to be the reason for such transitions [83].
However, from standard DFT calculations for both sp-electron
systems such as BaBiO3 and CsTlF3 as well as for d-electron
systems such as SmNiO3 and CaFeO3, it was recently found
[82] that whenever the SLE phase is metallic, the formation
of the DLE polymorphous configuration lowers the total
energy and becomes automatically insulating, in agreement
with experiment. Thus, the metal-insulator transition in these
systems is a consequence of structural symmetry breaking that
is systematically captured by DFT for a broad range of either
sp- or d-electron compound without a need for special effects.

The polymorphous situation can encompass local varia-
tions in (i) atomic displacements in AFM and PM including

Jahn-Teller distortions [84], octahedral tilting and rotation,
(ii) local magnetic moments in AFM and PM, (iii) spin
local environments in the PM phases, and (iv) distribution in
occupation patterns of partially occupied degenerate partner
levels. Unlike the Mott-Hubbard approach that explains band-
gap opening by a uniform mechanism (U) for all Mott insu-
lators alike, the polymorphous approach finds that gapping in
different members of the binary and ternary 3d oxide series
are dominated by different local effects from the list (i)–(iv)
above, either using DFT+U [12,13,84] or DFT-without U
(Ref. [14] and the present work) alike. The polymorphous
approach explains not only band-gap opening in these com-
pounds, but also orbital ordering [14] and reveals quantitative
agreement with measured local moments [12–14] and atomic
displacements [84].

The significance of the polymorphous representation on
gapping is clear: Naïve DFT approaches have often modeled
the properties of the system as the property 〈P〉 = P(S0) of the
macroscopically averaged monomorphous structure S0 rather
than the average Pobs = �P(Si ) of the properties {P(Si )}
of the individual, low-symmetry microscopic configurations
{Si; i = 1,N}. The SQS provides a direct route to Pobs: The
observable property P (e.g., band gap) calculated for an SQS
structure is more than the average property from many small
random structures, but approximates the ensemble average
P for the polymorphous configuration [21,23]. It has been
shown that a relatively small SQS structure produces numer-
ically the same property values as well as larger (ergodic)
randomly selected supercells do [85].

VII. CONCLUSIONS

This work shows that the nonempirical and efficient
semilocal SCAN density functional in conjunction with the
polymorphous representations predicts reliable magnetic mo-
ments and opens band gaps for the prototypical Mott 3d
transition-metal monoxides in the AFM and PM phases, even
without interelectronic U [12]. We have thus demonstrated
that mean-field-like theories can describe critical properties
like band gaps and magnetic moments of open d- and f -
shell materials when symmetry breaking is allowed. This
work therefore opens an alternative to symmetry-conserving
approaches for the study of open d-shell and f -shell materials.
The use of such non-naïve DFT for applications to complex
3d systems where other approaches may be computationally
prohibitive (catalysis, photovoltaics, and multicomponent de-
vice structures) is therefore legitimate.

This work identifies, out of many possible other combina-
tions, four specific conditions, that when used together, go a
long way to solve the band-gap opening problem encountered
with naive DFT applications to Mott insulators. The first
three conditions apply to the exchange correlation functional,
whereas the fourth condition applies to the real-space repre-
sentation of the structure.

(i) Use of XC functionals that distinguish occupied from
unoccupied states.

(ii) Use XC functionals that minimize self-interaction er-
ror, enforced by the piecewise linearity of total energy.

(iii) Use of XC functionals with spin symmetry breaking.
(iv) Allow unit-cell representation that could break sym-

metry, possibly leading to polymorphous networks. The
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latter can encompass local variations in quantities such as
atomic displacements, local magnetic moments, local spin
environments, and distribution in occupation patterns of par-
tially occupied degenerate partner levels.

It is important to emphasize that whereas individual con-
ditions, when considered in isolation, may not be sufficient,
when taken together they are both sufficient and necessary
(although quantitatively not perfect). The Hartree-Fock ap-
proximation misses all the correlation effect, and doesn’t fall
into the categories to be considered here although it satisfies
the above requirements for the XC functionals.
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APPENDIX A: OPENING A BAND GAP IN AFM FeO AND
CoO: OCCUPATION SYMMETRY BREAKING

OF THE t2g ORBITALS

Fe2+ (3d6) in FeO and Co2+ (3d7) in CoO have their
majority spin channels filled by five electrons, but their three-
fold degenerate t2g orbitals in the minority spin channels have
partial occupancy with one and two electrons, respectively.
Therefore, the degeneracy of the three t2g orbitals must be
lifted in order to open a band gap across them. Figures 1(c)
and 1(d) show that the band gaps from SCAN are between one
occupied t2g band and two empty t2g bands for FeO, and two
occupied t2g bands and one empty t2g band for CoO. Although
the gap opening mechanism is similar for FeO and CoO, we
find that it is much more difficult to open the band gap of FeO.
We, therefore, take FeO as an example to analyze the orbital
physics and gap opening mechanism.

Figures 6(a)–6(c) are the t2g bands of FeO calculated by
density-functional approximations. When orbital symmetry
(see detailed discussions in the next paragraph) is enforced,

FIG. 6. Gap opening mechanism in rocksalt FeO with the G-AFM magnetic ordering. (a) PBE predicted band structure by keeping the t2g
orbital symmetry. (b) PBE band structure but with the t2g orbital symmetry removed. Spin-orbit coupling effect is used to guide the calculation
to find the electronic ground state. (c) SCAN band structure also with orbital symmetry removed. In (a)–(c), the t2g wave functions are
superimposed onto the band structures. The insets of subplots (a) and (b) show the band degeneracies of the zoomed-in areas. (d) Brillouin zone
and K path of the G-AFM phase for the band-structure calculations, together with the energy surfaces that are 0.1 eV below the valence-band
maximum in (c). (e)–(g) The dxy, dyz, dxz orbitals extracted from the Wannier function construction, from SCAN calculation. The blue and pink
colors denote the signs of Wannier function. (h) The a1g orbital. (i) The difference of charge density distribution between calculations with and
without orbital symmetry, both from SCAN calculations. The blue and pink colors denote charge accumulation and depletion, respectively.
(j) The difference of charge density distribution between SCAN and PBE calculations, both without orbital symmetry.
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TABLE II. Relative stability of FeO from different simulation models. “Unrelaxed” means that both the lattices and internal coordinates
are kept to the experimental NaCl crystal structure, while “relaxed” means that all structural degrees of freedom are fully relaxed. Note that
the cubic FeO6 octahedron is distorted in the structural relaxation. For the SQS-PM phase, our simulations with the 64-atom supercell (not
shown here) are qualitatively similar to the 216-atom supercell results here. The bigger (216-atom) cell is used here to better represent the spin
disordering effect. The cubic 216-atom supercell is, however, incommensurate with the G-type AFM order.

Spin long-range Orbital long-range FeO6 cubic Energy
Simulation models ordered? ordered? symmetry? (meV/atom)

Unrelaxed primitive cell (4 atoms) with G-type AFM yes yes yes 0
supercell (64 atoms) with G-type AFM yes no yes −31
supercell (216 atoms) with SQS-PM no no yes −18

Relaxed primitive cell (4 atoms) with G-type AFM yes yes no −59
supercell (64 atoms) with G-type AFM yes no no −90
supercell (216 atoms) with SQS-PM no no no −63

a common method for reducing computational cost, neither
PBE [Fig. 6(a)], SCAN (not shown here), nor their combina-
tion with Hubbard U opens a gap across the three t2g orbitals.
The degeneracy of the three t2g-derived bands along the �-Z
path is protected by the orbital symmetry, which prevents
a gap being opened within the single-particle approaches.
After lifting the orbital symmetry constraint, PBE opens a
tiny local gap at each K point [inset of Fig. 6(b)], although
those local gaps are too small to result in a band gap across
the whole Brillouin zone. On the other hand, the SCAN meta-
GGA separates one occupied t2g orbital [the a1g orbital; see
Fig. 6(c)] from the other two unoccupied t2g orbitals, resulting
in an insulating state.

The gap opening in SCAN calculations is partially due to
the SIE reduction. The SIE typically makes the pd orbitals too
diffuse, leading to a too small band gap. Another important
effect is related to the orbital occupation symmetry breaking:
SCAN predicts that the dxy, dyz, and dxz [Figs. 6(e)–6(g)]
orbitals have different occupation numbers of 0.332, 0.342,
and 0.272 electrons, respectively. It is worth noting that there
are some numerical uncertainties in counting the electron
numbers based on the DFT approaches. Nevertheless, it is
evident that while the dxy and dyz orbitals are near-degenerate,
the dxz orbital has a smaller occupation.

This t2g orbital polarization can only be captured when the
constraint of orbital symmetry was removed, which can be
realized by turning on spin-orbit coupling or turning off the
symmetry constraint (ISYM = −1 in the VASP calculation).
The linear combination of the dxy, dyz, and dxz orbitals has
a1g symmetry [Fig. 6(h)], and its orientation is approximately
along the [111] direction with a small deviation angle. As a
result, the orbital symmetry is lower than the rocksalt lattice
symmetry. In fact, the t2g orbital polarization can be directly
visualized from the difference of charge densities calculated
with and without the symmetry constraint [Fig. 6(i)], which
reveals an a1g-like shape with charge accumulation along the
[111] direction.

Theoretically, it is interesting that SCAN captures the t2g
orbital polarization well. For comparison, we plot the dif-
ference of charge distribution predicted by SCAN and PBE
[Fig. 6(j)], both without orbital symmetry constraint in the
calculations. Surprisingly, this pattern in Fig. 6(j) is almost
identical to that in Fig. 6(i). As PBE usually underestimates

the electron inhomogeneity, our results show that SCAN is
more reliable than PBE in recognizing the subtle differences
of chemical environments and thus effectively distinguishing
the transition-metal 3d orbital anisotropy.

APPENDIX B: SUPERCELL EFFECTS ON THE FeO
STRUCTURE RELAXATION AT THE AFM

AND PM PHASES

Table II shows the effect of supercell size on the FeO
structure relaxation. The well-known G-type AFM phase is
conventionally simulated in a hexagonal primitive cell with
two Fe atoms and two oxygen atoms. In this work, we also
simulated the spin-disordered phase using the SQS paramag-
netic (SQS-PM) model with 64 and 256 atoms. It is surprising
that the FeO SQS-PM phase has lower energies compared
with the above AFM phase simulated with four-atom cell.
This is not consistent with those in MnO, NiO, and CoO (see
Table I).

The reason for the energy of the 216-atom SQS-PM being
lower than the four-atom AFM of FeO calculations can be
understood by considering the effect of an additional degree
of freedom, the orbital spatial order [see Fig. 3(b)]. The orbital

FIG. 7. Charge density of the a1g orbital of FeO in the 64-atom
supercell. The G-type spin configuration is shown as FM coupling
within (111) plane and AFM coupling between the planes. The a1g
band shows a disordered pattern in charge density. Oxygen atoms are
omitted for simplicity.
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is enforced to order in the four-atom primitive cell with the G-
type AFM configuration, but with larger supercells the long-
range orbital ordering can be broken. We therefore simulate
the two effects, i.e., spin ordering and orbital disordering,
for the AFM phase using a 64-atom supercell (Table II).

Interestingly, this model has the lowest energy among all three
simulation models shown in Table II, indicating the critical
role of orbital disorder in stabilizing the electronic energy. To
directly visualize these effects, we also plot the charge density
of the a1g orbital in Fig. 7, similar to Fig. 3.

[1] N. F. Sir Mott, Metal-insulator Transitions, 2nd ed. (Taylor &
Francis, Bristol, 1990).

[2] J. H. de Boer and E. J. W. Verwey, Semi-conductors with
partially and with completely filled 3d-lattice bands, Proc. Phys.
Soc. 49, 59 (1937).

[3] J. C. Slater, Magnetic effects and the Hartree-Fock equation,
Phys. Rev. 82, 538 (1951).

[4] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg.
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[5] G. Knizia and G. Kin-Lic Chan, Density Matrix Embed-
ding: A Simple Alternative to Dynamical Mean-Field Theory,
Phys. Rev. Lett. 109, 186404 (2012).

[6] P. R. C. Kent and G. Kotliar, Toward a predictive theory of
correlated materials, Science 361, 348 (2018).

[7] X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, and D.
Vollhardt, LDA+DMFT computation of the electronic spec-
trum of NiO. Phys. Rev. B 74, 195114 (2006).

[8] I. Leonov, L. Pourovskii, A. Georges, and I. A. Abrikosov.
Magnetic collapse and the behavior of transition metal oxides
at high pressure, Phys. Rev. B 94, 155135 (2016).

[9] S. Biermann, A. Poteryaev, A. I. Lichtenstein, and A. Georges,
Dynamical Singlets and Correlation-Assisted Peierls Transition
in VO2, Phys. Rev. Lett. 94, 026404 (2005).

[10] J. Kuneš, V. I. Anisimov, A. V. Lukoyanov, and D. Vollhardt,
Local correlations and hole doping in NiO: A dynamical mean-
field study, Phys. Rev. B 75, 165115 (2007).

[11] Y. Shinohara, S. Sharma, S. Shallcross, and N. N. Lathiotakis,
EKU Gross, computation, Spectrum for Nonmagnetic Mott
Insulators from Power Functional within Reduced Density Ma-
trix Functional Theory, J. Chem. Theory Comput. 11, 4895
(2015).

[12] G. Trimarchi, Z. Wang, and A. Zunger, Polymorphous band
structure model of gapping in the antiferromagnetic and para-
magnetic phases of the Mott insulators MnO, FeO, CoO, and
NiO, Phys. Rev. B 97, 035107 (2018).

[13] J. Varignon, M. Bibes, and A. Zunger, Origin of band gaps in
3d perovskite oxides, Nat. Commun. 10, 1658 (2019).

[14] J. Varignon, M. Bibes, and A. Zunger, Mott gapping in 3d ABO3

perovskites without Mott-Hubbard interelectronic repulsion en-
ergy U. Phys. Rev. B 100, 035119 (2019).

[15] P.-O. Löwdin, The normal constants of motion in quantum
mechanics treated by projection technique, Rev. Mod. Phys. 34,
520 (1962).

[16] J. A. Sheikh, J. Dobaczewski, P. Ring, L. M. Robledo, and C.
Yannouleas, Symmetry restoration in mean-field approaches,
arXiv:1901.06992.

[17] A. Zunger, On the Farsightedness (hyperopia) of the Standard
k · pModel, Physica Status Solidi (a) 190, 467 (2002).

[18] J. P. Perdew and K. Schmidt, Jacob’s ladder of density func-
tional approximations for the exchange-correlation energy, in

Density Functional Theory and its Application to Materials,
edited by V. Van Doren, C. Van Alsenoy, and P. Geerlings, AIP
Conf. Proc. No. 577 (AIP, Melville, NY, 2001), p. 1.

[19] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, First-
principles calculations of the electronic structure and spectra
of strongly correlated systems: the LDA+U method, J. Phys.:
Condens. Matter 9, 767 (1997).

[20] J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly Con-
strained and Appropriately Normed Semilocal Density Func-
tional, Phys. Rev. Lett. 115, 036402 (2015).

[21] A. Zunger, S. H. Wei, L. G. Ferreira, James, and E. Bernard,
Special Quasirandom Structures, Phys. Rev. Lett. 65, 353
(1990).

[22] L. Bellaiche and A. Zunger, Effects of atomic short-range order
on the electronic and optical properties of GaAsN, GaInN, and
GaInAs alloys, Phys. Rev. B 57, 4425 (1998).

[23] S. H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger,
Electronic properties of random alloys: Special quasirandom
structures, Phys. Rev. B 42, 9622 (1990).

[24] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[25] TURBOMOLE V7.3 2018, a development of University
of Karlsruhe and Forschungszentrum Karlsruhe GmbH,
1989–2007,TURBOMOLE GmbH, since 2007; available from
http://www.turbomole.com.

[26] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[27] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[28] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gra-
dient Approximation Made Simple, Phys. Rev. Lett. 77, 3865
(1996).

[29] J. Sun, M. Marsman, G. I. Csonka, A. Ruzsinszky, P. Hao,
Y.-S. Kim, G. Kresse, and J. P. Perdew, Self-consistent
meta-generalized gradient approximation within the projector-
augmented-wave method, Phys. Rev. B 84, 035117 (2011).

[30] M. Motta, D. M. Ceperley, G. K.-.L. Chan, J. A. Gomez, E.
Gull, S. Guo, C. A. Jiménez-Hoyos, T. N. Lan, J. Li, F. Ma, A. J.
Millis, N. V. Prokof’ev, U. Ray, G. E. Scuseria, S. Sorella, E. M.
Stoudenmire, Q. Sun, I. S. Tupitsyn, S. R. White, D. Zgid, and
S. Zhang, Towards the Solution of the Many-Electron Problem
in Real Materials: Equation of State of the Hydrogen Chain with
State-of-the-Art Many-Body Methods, Phys. Rev. X 7, 031059
(2017).

[31] F.Weigend and R. Ahlrichs, Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to
Rn: Design and assessment of accuracy, Phys. Chem. Chem.
Phys. 7, 3297 (2005).

[32] A. van de Walle, M. Asta, and G. Ceder, The alloy theoretic
automated toolkit: A user guide, Calphad 26, 539 (2002).

045112-13

https://doi.org/10.1088/0959-5309/49/4S/307
https://doi.org/10.1103/PhysRev.82.538
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.109.186404
https://doi.org/10.1126/science.aat5975
https://doi.org/10.1103/PhysRevB.74.195114
https://doi.org/10.1103/PhysRevB.94.155135
https://doi.org/10.1103/PhysRevLett.94.026404
https://doi.org/10.1103/PhysRevB.75.165115
https://doi.org/10.1021/acs.jctc.5b00661
https://doi.org/10.1103/PhysRevB.97.035107
https://doi.org/10.1038/s41467-019-09698-6
https://doi.org/10.1103/PhysRevB.100.035119
https://doi.org/10.1103/RevModPhys.34.520
http://arxiv.org/abs/arXiv:1901.06992
https://doi.org/10.1002/1521-396X(200204)190:2<467::AID-PSSA467>3.0.CO;2-4
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1103/PhysRevLett.65.353
https://doi.org/10.1103/PhysRevB.57.4425
https://doi.org/10.1103/PhysRevB.42.9622
https://doi.org/10.1103/PhysRevB.54.11169
http://www.turbomole.com
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.84.035117
https://doi.org/10.1103/PhysRevX.7.031059
https://doi.org/10.1039/b508541a
https://doi.org/10.1016/S0364-5916(02)80006-2


ZHANG, FURNESS, ZHANG, WANG, ZUNGER, AND SUN PHYSICAL REVIEW B 102, 045112 (2020)

[33] A. van de Walle, P. Tiwary, M. de Jong, D. L. Olmsted, M.
Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, Ef-
ficient stochastic generation of special quasirandom structures,
Calphad 42, 13 (2013).

[34] J. W. Furness, Y. Zhang, C. Lane, I. G. Buda, B. Barbiellini,
R. S. Markiewicz, A. Bansil, and J. Sun, An accurate first-
principles treatment of doping-dependent electronic structure
of high-temperature cuprate superconductors, Commun. Phys.
1, 11 (2018).

[35] C. Lane, J. W. Furness, I. G. Buda, Y. Zhang, R. S. Markiewicz,
B. Barbiellini, J. Sun, and A. Bansil. Antiferromagnetic ground
state of La2CuO4: A parameter-free ab initio description,
Phys. Rev. B 98, 125140 (2018).

[36] Y. Zhang, C. Lane, J. W. Furness, B. Barbiellini, J. P. Perdew,
R. S. Markiewicz, A. Bansil, and J. Sun, Competing stripe
and magnetic phases in the cuprates from first principles,
Proc. Natl. Acad. Sci. USA 117, 68 (2019).

[37] S. Hüfner, J. Osterwalder, T. Riesterer, and F. Hulliger, Photoe-
mission and inverse photoemission spectroscopy of NiO. Solid
State Commun. 52, 793 (1984).

[38] G. A. Sawatzky and J. W. Allen, Magnitude and Origin of the
Band Gap in NiO. Phys. Rev. Lett. 53, 2339 (1984).

[39] H. K. Bowen, D. Adler, and B. H. Auker, Electrical and optical
properties of FeO. J. Solid State Chem. 12, 355 (1975).

[40] G.W. Pratt and R. Coelho, Optical Absorption of CoO andMnO
above and below the Neel Temperature, Phys. Rev. 116, 281
(1959).

[41] A. K. Cheetham and D. A. O. Hope, Magnetic ordering
and exchange effects in the antiferromagnetic solid solutions
MnxNi1−xO. Phys. Rev. B 27, 6964 (1983).

[42] H. Fjellvåg, F. Grønvold, S. Stølen, and B. Hauback, On the
Crystallographic and Magnetic Structures of Nearly Stoichio-
metric Iron Monoxide, J. Solid State Chem. 124, 52 (1996).

[43] D. Herrmann-Ronzaud, P. Burlet, and J. Rossat-Mignod. Equiv-
alent type-II magnetic structures: CoO, a collinear antiferro-
magnet, J. Phys. C 11, 2123 (1978).

[44] J. Van Elp, R. H. Potze, H. Eskes, R. Berger, and G. A.
Sawatzky, Electronic structure of MnO. Phys. Rev. B 44, 1530
(1991).

[45] I. A. Drabkin, L. T. Emelyano, R. N. Iskender, and Y. M.
Ksendzov, Photoconductivity of single crystals of MnO, Soviet
Physics Solid State, USSR 10, 2428 (1969).

[46] B. Kim, S. Hong, and D W. Lynch, Inverse-photoemission
measurement of iron oxides on polycrystalline Fe, Phys. Rev.
B 41, 12227 (1990).

[47] J. van Elp, J. L. Wieland, H. Eskes, P. Kuiper, G. A. Sawatzky,
F. M. F. De Groot, and T. S. Turner, Electronic structure of CoO,
Li-doped CoO, and LiCoO2. Phys. Rev. B 44, 6090 (1991).

[48] W. L. Roth, Magnetic Structures of MnO, FeO, CoO, and NiO,
Phys. Rev. 110, 1333 (1958); T. Usani and T. Masumi, Hall
mobility of photoelectrons in MnO, Physica B+C (Amsterdam)
86-88, 985 (1977); H. H. Chou and H. Y. Fan, Effect of
antiferromagnetic transition on the optical-absorption edge in
MnO, α−MnS, and CoO, Phys. Rev. B 10, 901 (1974).

[49] H. Peng and J. P. Perdew, Synergy of van der Waals and
self-interaction corrections in transition metal monoxides,
Phys. Rev. B 96, 100101(R) (2017).

[50] M. Cococcioni and S. De Gironcoli, Linear response approach
to the calculation of the effective interaction parameters in the
LDA+U method, Phys. Rev. B 71, 035105 (2005).

[51] V. I. Anisimov, M. A. Korotin, and E. Z. Kurmaev, Band-
structure description of Mott insulators (NiO, MnO, FeO, CoO).
J. Phys.: Condens. Matter 2, 3973 (1990).

[52] Kl. Terakura, A. R. Williams, T. Oguchi, and J. Kübler,
Transition-Metal Monoxides: Band or Mott Insulators, Phys.
Rev. Lett. 52, 1830 (1984).

[53] M. R. Norman, Orbital Polarization and the Insulating Gap in
the Transition-Metal Oxides, Phys. Rev. Lett. 64, 1162 (1990).

[54] M. R. Norman, Crystal-field polarization and the insulating gap
in FeO, CoO, NiO, and La2CuO4. Phys. Rev. B 44, 1364 (1991).

[55] A. Schrön, C. Rödl, and F. Bechstedt, Crystalline and magnetic
anisotropy of the 3d-transition metal monoxides MnO, FeO,
CoO, and NiO. Phys. Rev. B 86, 115134 (2012).

[56] I. I. Mazin and V. I. Anisimov. Insulating gap in FeO: Correla-
tions and covalency, Phys. Rev. B 55, 12822 (1997).

[57] J. Staunton, B. L. Gyorffy, A. J. Pindor, G. M. Stocks, and H.
Winter, Electronic structure of metallic ferromagnets above the
Curie temperature, J. Phys. F: Met. Phys. 15, 1387 (1985).

[58] I. D. Hughes, M. Däne, A. Ernst, W. Hergert, M. Lüders, J. B.
Staunton, Z. Szotek, andW.M. Temmerman, Onset of magnetic
order in strongly-correlated systems from ab initio electronic
structure calculations: application to transition metal oxides,
New J. Phys. 10, 063010 (2008).

[59] J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, H.
Peng, Z. Yang, A. Paul, U. Waghmare, and X. Wu, Accurate
first-principles structures and energies of diversely bonded sys-
tems from an efficient density functional, Nat. Chem. 8, 831
(2016).

[60] J. P. Perdew and A. Zunger, Self-interaction correction to
density-functional approximations for many-electron systems,
Phys. Rev. B 23, 5048 (1981).

[61] G. M. Stocks, W. M. Temmerman, and B. L. Gyorffy, Complete
Solution of the Korringa-Kohn-Rostoker Coherent-Potential-
Approximation Equations: Cu-Ni Alloys, Phys. Rev. Lett. 41,
339 (1978).

[62] J. S. Faulkner and G. M. Stocks, Calculating properties with
the coherent-potential approximation, Phys. Rev. B 21, 3222
(1980).

[63] Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria, Projected
coupled cluster theory: Optimization of cluster amplitudes in
the presence of symmetry projection, J. Chem. Phys. 149,
164108 (2018).

[64] A. Zunger and A. J. Freeman, Ground- and excited-state prop-
erties of LiF in the local-density formalism, Phys. Rev. B 16,
2901 (1977).

[65] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Fractional charge
perspective on the band gap in density-functional theory, Phys.
Rev. B 77, 115123 (2008).

[66] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Localization and
Delocalization Errors in Density Functional Theory and Impli-
cations for Band-Gap Prediction, Phys. Rev. Lett. 100, 146401
(2008).

[67] J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. U. Gross, M.
Scheffler, G. E. Scuseria, T. M. Henderson, I. Y. Zhang, and A.
Ruzsinszky, Understanding band gaps of solids in generalized
Kohn–Sham theory, Proc. Natl. Acad. Sci. USA 114, 2801
(2017).

[68] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Density-
Functional Theory for Fractional Particle Number: Derivative
Discontinuities of the Energy, Phys. Rev. Lett. 49, 1691 (1982).

045112-14

https://doi.org/10.1016/j.calphad.2013.06.006
https://doi.org/10.1038/s42005-018-0009-4
https://doi.org/10.1103/PhysRevB.98.125140
https://doi.org/10.1073/pnas.1910411116
https://doi.org/10.1016/0038-1098(84)90007-3
https://doi.org/10.1103/PhysRevLett.53.2339
https://doi.org/10.1016/0022-4596(75)90340-0
https://doi.org/10.1103/PhysRev.116.281
https://doi.org/10.1103/PhysRevB.27.6964
https://doi.org/10.1006/jssc.1996.0206
https://doi.org/10.1088/0022-3719/11/10/023
https://doi.org/10.1103/PhysRevB.44.1530
https://doi.org/10.1103/PhysRevB.41.12227
https://doi.org/10.1103/PhysRevB.44.6090
https://doi.org/10.1103/PhysRev.110.1333
https://doi.org/10.1016/0378-4363(77)90770-7
https://doi.org/10.1103/PhysRevB.10.901
https://doi.org/10.1103/PhysRevB.96.100101
https://doi.org/10.1103/PhysRevB.71.035105
https://doi.org/10.1088/0953-8984/2/17/008
https://doi.org/10.1103/PhysRevLett.52.1830
https://doi.org/10.1103/PhysRevLett.64.1162
https://doi.org/10.1103/PhysRevB.44.1364
https://doi.org/10.1103/PhysRevB.86.115134
https://doi.org/10.1103/PhysRevB.55.12822
https://doi.org/10.1088/0305-4608/15/6/019
https://doi.org/10.1088/1367-2630/10/6/063010
https://doi.org/10.1038/nchem.2535
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevLett.41.339
https://doi.org/10.1103/PhysRevB.21.3222
https://doi.org/10.1063/1.5053605
https://doi.org/10.1103/PhysRevB.16.2901
https://doi.org/10.1103/PhysRevB.77.115123
https://doi.org/10.1103/PhysRevLett.100.146401
https://doi.org/10.1073/pnas.1621352114
https://doi.org/10.1103/PhysRevLett.49.1691


SYMMETRY-BREAKING POLYMORPHOUS DESCRIPTIONS … PHYSICAL REVIEW B 102, 045112 (2020)

[69] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Many-electron
self-interaction error in approximate density functionals, J.
Chem. Phys. 125, 201102 (2006).

[70] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G.
E. Scuseria, Density functionals that are one- and two- are not
always many-electron self-interaction-free, as shown for H2+,
He2+, LiH+, and Ne2+, J. Chem. Phys. 126, 104102 (2007).

[71] I. I. Mazin and D. J. Singh, Nonlocal density functionals and the
linear response of the homogeneous electron gas, Phys. Rev. B
57, 6879 (1998).

[72] A. Svane and O. Gunnarsson, Transition-Metal Oxides in
the Self-Interaction–Corrected Density-Functional Formalism,
Phys. Rev. Lett. 65, 1148 (1990).

[73] Z. Szotek, W. M. Temmerman, and H. Winter, Application of
the self-interaction correction to transition-metal oxides, Phys.
Rev. B 47, 4029 (1993).

[74] Z. Wu, D. J. Singh, and R. E. Cohen, Electronic structure of
calcium hexaboride within the weighted density approximation,
Phys. Rev. B 69, 193105 (2004).

[75] J. Robertson, K. Xiong, and S. J. Clark, Band structure of func-
tional oxides by screened exchange and the weighted density
approximation, Physica Status Solidi b 243, 2054 (2006).

[76] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-
functional theory and strong interactions: Orbital ordering in
Mott-Hubbard insulators, Phys. Rev. B 52, R5467 (1995).

[77] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Discontinuous
Nature of the Exchange-Correlation Functional in Strongly
Correlated Systems, Phys. Rev. Lett. 102, 066403 (2009).

[78] Mathematical Physics in Theoretical Chemistry, edited by S. M.
Blinder and J. House (Elsevier, New York, 2019).

[79] C. Shahi, P. Bhattarai, K. Wagle, B. Santra, S. Schwalbe, T.
Hahn, J. Kortus, K. A. Jackson, J. E. Peralta, K. Trepte, S.
Lehtola, N. K. Nepal, H. Myneni, B. Neupane, S. Adhikari,
A. Ruzsinszky, Y. Yamamoto, T. Baruah, R. R. Zope, and J. P.
Perdew, Stretched or noded orbital densities and self-interaction
correction in density functional theory, J. Chem. Phys. 150,
174102 (2019).

[80] O. Gunnarsson and B. I. Lundqvist, Exchange and correlation
in atoms, molecules, and solids by the spin-density-functional
formalism, Phys. Rev. B 13, 4274 (1976).

[81] T. Körzdörfer, M. Mundt, and S. Kümmel, Electrical Response
of Molecular Systems: The Power of Self-Interaction Corrected
Kohn-Sham Theory, Phys. Rev. Lett. 100, 133004 (2008).

[82] G. M. Dalpian, Q. Liu, J. Varignon, M. Bibes, and A. Zunger,
Bond disproportionation, charge self-regulation, and ligand
holes in sp and in d-electron ABX3 perovskites by density
functional theory, Phys. Rev. B 98, 075135 (2018).

[83] H. Park, A. J. Millis, and C. A. Marianetti, Site-Selective Mott
Transition in Rare-Earth-Element Nickelates, Phys. Rev. Lett.
109, 156402 (2012).

[84] J. Varignon, M. Bibes, and A. Zunger, Origins versus finger-
prints of the Jahn-Teller effect in d-electron ABX3 perovskites,
Phys. Rev. Res. 1, 033131 (2019).

[85] K. C. Hass, L. C. Davis, and A. Zunger, Electronic structure of
random Al0.5Ga0.5As alloys: Test of the “special-quasirandom-
structures”description, Phys. Rev. B 42, 3757 (1990).

045112-15

https://doi.org/10.1063/1.2403848
https://doi.org/10.1063/1.2566637
https://doi.org/10.1103/PhysRevB.57.6879
https://doi.org/10.1103/PhysRevLett.65.1148
https://doi.org/10.1103/PhysRevB.47.4029
https://doi.org/10.1103/PhysRevB.69.193105
https://doi.org/10.1002/pssb.200666802
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevLett.102.066403
https://doi.org/10.1063/1.5087065
https://doi.org/10.1103/PhysRevB.13.4274
https://doi.org/10.1103/PhysRevLett.100.133004
https://doi.org/10.1103/PhysRevB.98.075135
https://doi.org/10.1103/PhysRevLett.109.156402
https://doi.org/10.1103/PhysRevResearch.1.033131
https://doi.org/10.1103/PhysRevB.42.3757

