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ABSTRACT

Trinucleotide repeat expansion disorders (TRED) are associated with the overexpansion of (CNG)
repeats on the genome. mRNA transcripts of sequences with greater than 60 to 100 (CNG) tandem units
have been implicated in TRED pathogenesis. In this paper, we develop a diagrammatic theory to study
the structural diversity of these (CNG)n RNA sequences. Representing structural elements on the chain’s
conformation by a set of graphs and employing elementary diagrammatic methods, we have formulated a
renormalization procedure to re-sum these graphs and arrive at a closed-form expression for the
ensemble partition function. With a simple approximation for the renormalization and applied to extended
(CNG)n sequences, this theory can comprehensively capture an infinite set of conformations with any
number and any combination of duplexes, hairpins, multiway junctions and quadruplexes. To quantify the
diversity of different (CNG)» ensembles, the analytical equations derived from the diagrammatic theory
were solved numerically to derive equilibrium estimates for the secondary structural contents of the
chains. The results suggest that the structural ensembles of (CNG)n repeat sequence with n ~ 60 are
surprisingly diverse, and the distribution is sensitive to the ability of the N nucleotide to make
noncanonical pairs and whether the (CNG)n sequence can sustain stable quadruplexes. The results show
how perturbations in the form of biases on the stabilities of the various structural motifs, duplexes,
junctions, helices and quadruplexes, could affect the secondary structures of the chains, and how these

structures may switch when they are perturbed.

STATEMENT OF SIGNIFICANCE

Trinucleotide repeat expansion disorders (TRED) are associated with the overexpansion of (CNG)
repeats on the genome. mRNA transcripts of sequences with critical length greater than 60 to 100 (CNG)
tandem units have been implicated in TRED pathogenesis, though their structures remain poorly
characterized. Conventional view has tacitly assumed that conformations with maximal C:G base pairing

dominate at equilibrium, but here we demonstrate that (CNG) repeat sequences are characterized by



diverse ensembles of structurally heterogeneous folds and with a large variance of secondary structural

contents. These results were based on a diagrammatic approach to the ensemble partition function.



INTRODUCTION

Diagrammatic approaches for classifying RNA structures have been used widely (1-12). Graphs
provide an elegant method for categorizing the many diverse conformational structures that can be
adopted by RNA sequences and may be used to more easily recognize common topological features in
RNA structures that are otherwise difficult to decipher from their 2- or 3-dimensional structures. Graphs
also provide an alternate space within which RNA secondary structures can be understood (13, 14) and
they are the basis of the algorithms (15, 16) behind some of the most widely used RNA secondary
structure prediction tools (17—19). Graphs also help elucidate the rich connection between RNA structure
and topology, enabling topological interpretations to be used for annotating RNA structures (20-25).

In this paper, we employ diagrammatic methods to compute the conformational diversity of
trinucleotide repeat RNA sequences. In a family of neurological diseases known as trinucleotide repeats
expansion disorders (TREDs) (26—30), the onset of iliness is associated with the overexpansion of
(CNG)n repeats in the genome (29-31). While most of these expanded repeats occur in noncoding
regions and do not appear to translate to aberrant proteins (30, 31), the mRNA transcripts of these
overexpanded templates may interfere with cellular pathways leading to cytotoxicity(32, 33) . At the same
time, (CNG)n expanded mRNA may also acquire unintended functions in the cell (34). Ascertaining the
structures of these sequences is therefore necessary for the understanding of their functions.

Examples of some possible conformations of a short (CNG) repeat with different secondary structures
are shown in Fig. 1. Because of their repeat structures, at least one-third of the nucleotides on (CNG)n
sequences cannot form canonical base pairs upon folding. Depending on the identity of the N nucleotide,
they may also interact with themselves or with the G or C nucleotides. TRED disease onset is often
associated with a critical expansion threshold of n > 60 to 100 (35). The structures most often associated
with the gain of function hypothesis for CNG expanded RNA sequences cited in the literature is a
necklace-like structure composed of a long stretch of successive two-way junctions interposed by shorts
helixes and with a hairpin stem-loop cap (31, 32, 36—40), like the one shown in Fig. 1(a). Many of the
studies conducted are based on short (CNG) repeats (31, 32) and the structures resolved are limited to
those which can be isolated and crystalized (38—41). As the length of the CNG repeats grows, the

diversity of accessible structures could grow rapidly as well.
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Figure 1.
Examples of a 5-NG(CNG)sCN-3’ repeat sequence in five different conformations. (a) The maximal hairpin
“necklace” structure. (b) and (c) Structures with an asymmetric internal junction. (d) and (e) Structures with three-
way junctions. The dual graph representation is shown next to each example, where each 2-bp duplex is
represented by a dot, hairpin loops by circles with one dot, 2-way junctions by circles with two dots, 3-way
junctions by circles with three dots and an arc represents the two unpaired ends. In the graphs, the number
adjacent to each edge indicates its length in nt. The base pair representation is shown below the dual graph of
each example.

Fig. 1(a) illustrates a maximally canonically paired “necklace” structure. To the right of it is shown its
dual graph representation. The length of each junction is specified in number of nucleotides (nt). The
base-pair representation of the structure is shown below the dual graph. The base-pair or "matrix"
representation explicitly enumerates the sequence positions of the nucleotides bound by canonical
interactions. Fig. 1(b) and (c) show two other examples where one of the two-way junctions is
asymmetric. These two structures have one fewer helix and thus lower base pair and stacking stability
than (a). Their dual graph representations are shown to the right of (b) and (c), suggesting that their loop
structures are topologically distinct from (a). Different junction lengths also cost different amount of
conformational entropy for the sugar-phosphate backbone. The loop entropies in the various secondary
structures must be accounted for to correctly determine their free energies. In general, (b) and (c) do not
have the same loop entropies even though they contain the same number of nucleotides inside their
loops (five 1-nt loops, one 4-nt loop and one 7-nt loop). This is because the 4x1 internal loops in (c)

adjacent to the hairpin may sterically interface with each other and with the helices differently compared



to the 1x1 internal loops in (b). Loop entropies are therefore dependent on where and how they appear on
the structure relative to each other.

Fig. 1(d) and (e) show two examples with three-way junctions. In general, higher multiway junctions
cost more entropy because they represent a more stringent conformational constraint for the sugar-
phosphate backbone, and they also experience more steric congestion for the helices around the
junction. The dual graph representation of each is shown to the right. Even though (d) and (e) are
topologically equivalent, they do not contain the same loop entropies because their loops are arranged
differently along the sequence. Notice that while (e) has identical junction lengths to (b) and (c), the loop
entropies of these three structures are also intrinsically different.

Entropies of loops and junctions, or more precisely the loss in their conformational entropies, arise
from constraints coming from the base pairs. An unfolded RNA is in a high-entropy state. Its structures
are characterized by a diverse ensemble. If ¢ denotes a chain conformation and P(c¢) its probability, the
total entropy content of this ensemble is given by S = —kz .. P(c) In P(c). If the sequence spontaneously
folds and develops secondary and/or tertiary structures, the conformational entropy of the chain is
suppressed because base complementarity and stacking interactions produce constraints on the chain’s
conformations. Under these constraints, the new probability for each conformation in the presence of

these constraints P’(c) = P(c|constaints) incurs a penalty, and the loss of entropy is given by:

AS = S(with constraints) — S(no constraints) = —kjp Z P/ InP. —P.InP, (1)
c

where the sum runs over all conformations. If one can determine how the constraints imposed by the
secondary and tertiary structures in the fold transforms P(c) - P’(c), AS can be determined.

In general, the constraints imposed by secondary/tertiary structures are correlated. “Factorizability”
describes how these constraints may break up into independent (or approximately independent) subsets.
For instance, if the fold introduces 4 constraints A, B, C and D but the effects of A and B are separable
from C which is also separable from D, then P'(c¢) = P(c|A,B,C,D) = P(c|A,B) - P(c|C) - P(c|D). Under
this factorization, the entropy change in Eq.(1) would simply be equal to AS = AS(with constraints 4, B) +
AS(with constraint C) + AS (with constraint D).

Different approximations have been used to account for loop entropies in RNA folding predictions.
These range from ignoring loop entropies all together (20, 23, 42, 43), to treating each loop in the
secondary structure as independent and approximating its value by additivity rules (13—15), to assigning
experimentally-derived free energy to loops of specific known sequences (44). The most sophisticated of
these is NNDB (45), which Mfold (17) is based on. NNDB employs thermodynamic data to assign
approximate functional forms to interpolate experimentally measured loop free energies of hairpins,
bulges, internal loops and multibranch junctions. In one form or another, an intrinsic factorizability in the
loop entropies is assumed by all of these approaches. For example, NNDB treats the loop entropies in
multiway junctions higher than two approximated by a sum in the form a + b X u + ¢ X h, where u is the

number of unpaired nucleotides, h is the number of branching helices, and the empirical constants a, b, ¢



are parameters that were found by maximizing the accuracy of secondary structure prediction (46). For
many RNA folding problems, this assumption may be well justified because the thermodynamic driving
force for the secondary structure comes from the stability of the pairing and stacking of bases in the
helices. But for (CNG) trinucleotide repeat sequences, this may not be the case since each helix is no
more than a two-base-pair stack of GC|CG, and they lack the more substantial stacking free energy that
stabilizes longer helices (47). Indeed, experimental measurements suggest that the helix free energy
estimated from Mfold greatly overestimates the stability of GC|CG stacks in (CNG) repeats (36). Because
of this, the role of the loop entropies, their factorizability, and how they influence the conformational
diversity of (CNG) repeats should be examined.

Using a large body of empirical data derived from Monte Carlo (MC) conformational sampling (48, 49),
we have determined cases where constraints are approximately independent and provided quantitative
metrics for their factorizability. For example, in a two-way junction, the loop entropies of the two junctions
are correlated but they are largely independent from the loops on the other sides of the helices. The same
is true for hairpins and other multiway junctions. The topological reason behind this loop factorizability is
related to the secondary nature of these features. Furthermore, Refs. (48, 49) provide a self-consistent
library of loop entropies derived from MC simulations. The data library in Refs. (48, 49) has been used in
this study to more accurately account for the these loop entropy contributions in conformational
predictions for (CNG) repeats. In Materials and Methods, we show how this approximate factorizabilities
of the loop entropies can be expressed diagrammatically, and in Results and Discussion, we apply this to

study the conformational diversity of (CNG) repeat sequences.

MATERIALS AND METHODS

Graph Representations

Tinoco et al. (50) used an adjacency matrix representation to denote the canonically bound base pairs
in RNA secondary structures. This representation is given in Fig. 1 to the lower right of each structure.
Waterman et al. (13, 14, 51) have described several equivalent representations, such as chord diagrams
and linear trees. Schlick et al. (1, 5, 9) employed dual graphs to represent the same information, and
examples of these are shown in Fig. 1 to the upper right of each structure. Though topologically
equivalent, various representations emphasize different aspects of the folding free energies. The matrix
representation and the chord diagrams, for example, emphasize the paired bases, whereas dual graphs
highlight the unpaired segments on the loops and junctions, as pointed out by Liu and Bundschuh (44).

Since the focus of this paper is on loops, we rely on dual graphs. In the Introduction, we describe the
approximate factorizabilities of certain secondary structural features that were observed in the MC data in
Refs. (48, 49). These factorizabilities can be expressed using diagrams. For instance, the loop entropies

of the unpaired segments in any two-way junction are correlated, but they are largely uncorrelated with



the loops on the other sides of the helices exiting from the two-way junction. Fig. 2 shows how this
factorization works for the two structures in Fig. 1(b) and (c). Each of the objects on the right side of Fig. 2
contain loop entropies that can be retrieved from the data library in Refs. (48, 49). Similar factorizabilities
exist for higher multiway junctions, and their dual graph representations can also be used to express this

in the same way analogous to Fig. 2.
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Figure 2.

Example showing factorization of the diagram on the left into the factors on the right. The circle with one dot
represents a hairpin loop of size d. Circles with two dots represent 2-way junctions. The two open line segments
represent open strands. The three filled dots represent 2-bp (4-nt) duplexes. The corresponding expression for the
composite probability is given in Eq. (2).

The composite probability of the graph on the left in Fig. 2 is given by:
Py (d)P, (b, f)P2(c, )Py (a)Po(g)[R.(D]? 2)

where P, (x) is the probability associated with a hairpin loop (or a “1-way junction”) of length x, P,(x,y) is
the probability of a 2-way junction with loop lengths x and y, P,(x) = 1 is the probability associated with
an open strand and P, is the probability of the duplex. For the loops in hairpin and junctions, their
probabilities are given by P = e25/k8 where AS is the conformational entropy of a loop relative to an open
strand. P,(4) = e25-/ks=AH./kBT the probability of a 2-bp (4-nt) duplex, has both enthalpic and entropy
contributions in it, which involve stacking and base pairing interactions as well as the loss of
conformational freedom suffered by the backbone to stack. An example of all the decomposable factors

of a necklace diagram is given on the right side of Fig. 2.

Specializing to (CNG) Repeat Sequences

To specialize the formulation to apply to 5’-NG(CNG)sCN-3’ repeat sequences specifically, we take into
account their repeat structure. By “repeat structure”, we are referring to the periodicity of the nucleotide

sequence. In our calculations, we employ constructs with the following architecture:

5'-(N-GC)-(N-GC)-(N-GC)-(N-GC)-(N-GC)-(N-GC)- ... ~(N-GC)-(N-GC)-N-3’



with n repeating units of (NGC). Formally, this construct has | = 3n + 1 nucleotides instead of 3n. This is
done to ensure that the 5’ and 3’ ends of the chain do not have to be treated differently, but it does not
materially alter the results or the formulation.

As described above, the periodicity of the sequence permits canonical base pairing producing 2-bp
duplexes only. Beyond that, the ability of the N nucleotides to form noncanonical base pairs can favor
different structures depending on whether N = A, C, G or U. These noncanonical effects can be captured
by assigning an extra bias to the 2-way junctions of those sequences where noncanonical base pair or
stacking can add stability to the chain. Because of the repeat structure, unpaired segments on the
sequence are limited to lengths equal to 1, 4, 7, 11, ... nt. To do this, every loop length in the formulation
is replaced by its length divided by 3. For example the lengths {a, b, ... g} in Fig. 2 become {a’ = a\3,b’ =
b\3,...g' = g\3}, where \ denotes an integer division without remainder. A loop with length a’ = 0 is 1-nt
long. A loop with a’ = 1 is 4-nt long, etc. The only exception to this rule is a 2-bp (4-nt) duplex, which is
assigned a length of 2 repeat units instead of 1, and a quadruplex, which is assigned 4 repeat units.

Bundschuh et al. (44, 52) have applied a related diagrammatic method to various trinucleotide
repeats. They employed a diagrammatic recursion relation for the partition function Z to study the
crossover from asymptotic scaling behavior to finite-length effects. They found that in the presence of
multiloop junctions, the crossover to the scaling regime is related to the chain’s ability to make branches.
For (GCA)n chains, their results show that the scaling regime is reached with just a handful of repeats,
whereas for (GCC)n sequences the crossover does not occur until the sequence is hundreds of repeats
long because of the extra pairing coming from the N = C nucleotides in the junctions with the G residues
adjacent to them. These studies suggest that the interaction of the N nucleotide in (CNG) repeats may
play a significant role in determining their prevalent structures. In our work, we have employed a graph
renormalization scheme based on diagrammatic decomposition to study the concentrations of different
structural elements on the chain, whereas in the work of Bundschuh et al. (44, 52) their graph recursion
on Z was better suited to studying the emergence of repeat-length-dependent asymptotic behaviors. But

the two methods share common diagrammatic features.

Graph Elements and Loop Entropy Contributions

The secondary structural elements considered in this study are shown in Fig. 3. A dot represents a
GC|CG helix. Its probability P, contains the pairing and stacking free energy, as well as the backbone
entropy of the doublet. Circles with one, two or three holes represent the loops in a hairpin, a two-way
junction and a three-way junction, respectively, and their probabilities P,, P, and P; contain the loop
entropies. Hairpins and two-way junctions have been found in experimental thermodynamic studies (36)
to be most relevant for (CNG) repeat sequences. In this study we also include three-way junctions to
assess their relevance. In addition to these, quadruplexes, represented by the diagram with three loops
emanating from a square core in Fig. 3, have also been included because they have been observed in

experimental studies of other trinucleotide repeat sequences, noticeably (AGG) and (UCC) (36). The core



of each quadruplex contains a double-deck tetrad structure with eight G nucleotides bound with
Hoogsteen base pairs and is represented diagrammatically by a solid square. Its probability F, contains
the pairing and stacking free energy as well as the backbone entropy of the bases in the tetrad. Since
only G can form tetrads, quadruplexes are possible only on (CGG) repeat sequence. For multibranch
structures, while we have limited ourselves to 3-way junction in this paper, 4-, 5- or any higher multiway
junctions may be added without complications, but the results will show that multiway junctions are of less
importance for (CNG) repeats. The 5’ or 3’ unpaired ends of the chain, represented by the last diagram in

Fig. 3, do not cost any extra entropy compared to an open chain.

000 - —-

Dual graph representation of all structural elements included in this study: helix, hairpin, 2-way junction, 3-way
junction, loops in a quadruplex, the quadruplex core, bridge and unpaired ends.

The loop entropies contained in each graph element are supplied by the data library in Refs. (48, 49).
For example, the entropies of the two loops in a 2-way junction are dependent but their total can be
expressed as a function of the sum of their lengths. The portions of the library relevant to (CNG) repeats
are reproduced in Table 1 for total loop length in units of the number of repeats n. Loop entropy data for

all relevant elements in Fig. 3 are given in Table 1.

Loops free energy as a function of total loop length (kcal/mol)
Feature (nickname) n=20 n=1 n=2 n=3 n>3
hairpin (1wj) 0 5.02 5.85 6.16 3.9 + 1.08In(3n+ 1)
two-way junction (2wj) 5.97 6.53 6.79 6.88 44 + 1.08In(3n + 2)
three-way junction (3wj) 7.12 7.33 7.46 7.53 49 + 1.08In(3n+ 3)
quadruplex (quad) 15.5 17.6 19.0 19.9 ed
Table 1.

Contributions of loop entropies to the folding free energy at 310 K from the data library in Refs. (48, 49) (RT =
0.616 kcal/mol). Entropies of the loops in a multibranch junction are in general correlated, but their sum scales with
the total junction lengths. Loop entropies of the junction internal to the branches are uncorrelated with the loops on
the other sides of the branches. Empirically, higher multibranch structures cost more entropy.

The basic premise of the present work considers free energies of the loops to be a fundamental
determinant of RNA structures. This is somewhat different from the traditional view, where base paired in
helices, triplexes, quadruplexes or from tertiary interactions are considered the drivers. Both of these
factors are of course present in any RNA system, but in some problems paired structures are more
important, whereas in others loop entropies may outweigh pairs. For the type of problem studied in this

paper, where the ensemble may be dominated by open instead of strongly paired structures, careful




consideration must be given to the loop entropies. Our results will show that for the (CNG) repeats,

treating the loop entropies carefully is the key to understanding their conformational ensembles.

Stabilities of GC|CG Helix Doublets and G-Quadruplexes

The core thermodynamic stabilities of pair structures, such as the helices and quadruplexes in Fig. 3,
are taken from experiments. For example, to determine the free energy contribution from each duplex, we
used the experimental AG.,,, data reported by Sobczak et al. for (CNG)20 oligomers in 100mM NaCl (36)
forN = A, C, G and U. The only conformation that was reported for (CNG)20 has the maximal hairpin
structure analogous to that shown in Fig. 1(a). Using the loop entropy values from our library, and in
conjunction with the experimentally observed AG.y, for the maximal hairpin, we determined free energies
of the helix cores in each of the (CNG)2o repeats for N = A, C, G and U separately. The smallest came
from N = C with AG,(duplex) = —6.17 kcal/mol, followed by U (—6.39 kcal/mol), A (—6.57 kcal/mol), and G
(—6.62 kcal/mol). In the results below, we will use the N = C AG,(duplex) value as the reference, as this
represents a lower bound to stability. The other results for N = A, G or U were obtained by applying the
appropriate offset to the values for each duplex. For quadruplexes, experimental data from Sobczak et al.
suggest that (UGG)+17 and (AGG)7 can form quadruplexes, but (CGG) repeats cannot. To estimate the
effects of including quadruplexes in the (CNG)n repeat ensembles, we used the experimental free
energies of (UGG)17 and (AGG)17 and determined the free energy of a quadruplex core using the AGey,
for (UGG)17 and (AGG)17 in 100mM NaCl (36) These yielded an approximation for the quadruplex core
free energy ~ —20.4 kcal/mol from (AGG)17 and (UGG)+7. In our calculations, we varied the quadruplex
stability from zero up to and beyond these values to examine how the potential formation of quadruplexes
might affect the structures of (CNG) repeats.

The values of the duplex free energies derived from the experimental data of Sobczak et al. (36)
using the method above are ~ 3 kcal/mol weaker per GC|CG helix compared to the nearest-neighbor
model of Turner et al. (45, 53). Using Mfold (17) to calculate the free energy of a typical (CNG) repeat
produces exclusively the maximal hairpin structure analogous to Fig. 1(a) as the only significant
conformation. But using the helix free energies obtained according to the prescription in the last
paragraph, structural alternatives to the maximal hairpin becomes more competitive. In general, non-
maximally paired structures enjoy higher entropies because loop segments in hairpins and junctions are
less constrained compared to pair bases. In the results below, we will see the tradeoff between higher
entropy in the more open structures versus the higher stability in the helices and quadruplexes in
compact structures produce a mixed diverse ensemble for most (CNG) repeat sequences, rather than

favoring a single dominant maximal hairpin structure.

Diagrammatic Renormalization

10



The graph approach described here share many features with those employed in field theory and in
liquids, where diagrammatic techniques have been used extensively to manipulate graphs (54). Previous
work have also applied diagrammatic techniques to study RNAs (13, 15, 20, 23-25, 44, 52).

The canonical partition function of the ensemble Z(n) as a function of the number of (CNG) repeats n
is represented by diagrams. The generating function, Z(1) = Y7, Z(n) exp(—A4n), which is the grand
canonical ensemble partition function allowing variable repeat lengths, can then be expressed in terms of
the generating functions of the probabilities of the diagrammatic elements described above at 310K.
Standard renormalization allows the graphs to be re-summed, giving

Z) =1/[1—e*=RW)] (3)

where the root function R is a sum over all irreducible diagrams. Recursion relations similar those in

Eq. (3) have previously been described in the context of RNA structural studies (13-15, 20, 23-25, 42,
44, 52). Pillsbury et al. reported similar recursion relations for RNA (42) as well as Reidys et al. (43), while
the use of irreducible diagrams has been introduced by Orland et al. (20, 22, 24, 42) for studying RNA
structures. The root function satisfies the Dyson equation (20, 22, 24, 42, 55), which is shown
diagrammatically in Fig. 4. Including multibranch loops up to 3-way junctions, this self-consistent equation
for the root function R;(A) is quadratic. Recursion relations for Z have also been used by Liu and

Bundschuh (44) to examine how the partition function scales with repeat lengths.

e-0+®-¥Q. 0.

Dyson equation for the root function R including hairpins, 2- and 3-way junctions, as well as quadruplexes.

The inputs, P.(1), P;(4),P,(4), P;(1) and P, (1) were obtained from the loop free energies of duplexes,
hairpins, 2- and 3-way junctions, as well as quadruplexes and the duplex and quadruplex stabilities
described in the last subsection. The functional dependence of the loop free energies on the loop lengths
were extended beyond the finite-length data available from the simulations by using the same scaling
relationships that have been adopted by Turner, et al. in the nearest-neighbor model(45, 56, 57) which

was based on Stockmayer et al.(58), yielding the following expressions at T = 310 K:

6.17
P(1) = & (% u56) (4)
Pl(/l) = e_(l+%) + e_(2/1+%) + e_(3l+%) + e_(4l+g:2—§2) . d <e_l, 1_7&?) (4b)
Py(1) = Q;(1) — dQ,(1)/dA (4¢)

11
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where @ is the Lerch transcendent (59).

RESULTS AND DISCUSSION

We have applied the calculations described in Methods and Materials to (CNG) repeats, where N = A,
C, G or U, to compute the ensemble average number of secondary structure features associated with the
conformations of the chains. The Dyson equation in Fig. 4 is quadratic in R; and there are in general two
roots. In all of the cases studied, we found only one of them to yield physical results, while the other root
produced a negative value for the partition function Z. Results from the physically-relevant solution are
shown in Fig. 5. Since (CAG), (CCG) and (CUG) repeat sequence cannot physically produce
quadruplexes but (CGG) repeats may, we have plotted the results as a function of the stability of the
quadruplex core p/RT. While (CGG) repeat sequences can potentially form quadruplexes, experimental
evidence shows little to no quadruplex structures on (CGG)7 or (CGG)20 sequences (36). On the other
hand, (AGG) repeats have been found to fold predominantly into quadruplex-rich structures (36). We
have employed experimental data for (AGG) repeats to establish an upper limit for how stable a
quadruplex could be if it was to exist in (CGG) repeats. This upper limit is on the left side of the graphs in
Fig. 5, and the quadruplex core stability decreases (i.e. ug/RT becomes more positive) moving to the
right. (CAG), (CCG) and (CUG) repeats are therefore associated with the right side of Fig. 5. The

expected structural features of (CNG)eo chains are displayed as a function of ug/RT.
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Figure 5.

Ensemble averages of the number of helices (solid line), bridges (dashed lines), hairpin loops (open
circles), 2-way junctions (dotted dashed lines), 3-way junctions (open triangles) and quadruplexes
(squares) computed from the physically-relevant solution for a (CNG)eo repeat, as a function of
quadruplex stability (stable on the left, unstable on the right).

Before discussing the results, we point out that what have been calculated are ensemble averages,
and as such, they may contain contributions from a large number of different structures. When
considering the data, it is therefore important to not associate the averages with a single conformation,
keeping in mind that there may be many structures within each ensemble. For example, while the
maximal hairpin structure depicted in Fig. 1(a) may be one of the prevalent structures in a (CNG) repeat
ensemble, it may be only one of many. In fact, the ensembles we have computed are rather diverse, and
the averages of all the structural features vary smoothly across the entire parameter space studied.

Fig. 5 shows that the structural characteristics of (CNG)eo is strongly dependent on the ability of the
chain to make quadruplexes. When quadruplexes are unstable, the structures on the right side of Fig. 5
correspond to an ensemble with largely open chains with high concentrations of bridges and hairpin loops
and some 2-way junctions, but relatively few 3-way junctions and no quadruplexes. Interestingly, the
number of hairpin loops is almost identical to the number of bridges on the right side of Fig. 5. This
suggests that the structures in this ensemble are dominated by the “1+2” diagrams, an example of which
is illustrated in Fig. 6. Furthermore, a large number of bridges is also indicative of largely open structures,
but the number of helices observed here is somewhat less than the maximum number that could be

sustained on a (CNG)eo repeat (theoretical maximum is 29). Instead of being driven by the favorable
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enthalpy of formation of the helices, the formations in this ensemble seem to be dominated by loop

entropies.
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|
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Figure 6.
Diagrams illustrating some of the structures observed in the results in Figs. 5 and 7.

Next, focusing on the left side of Fig. 5, we examine how the presence of quadruplexes alters the
structural characteristics of the ensemble. As the stability of the quadruplex is increased (i.e. uJ/RT going
from right to left in Fig. 5), they begin to displace the helices. This is revealed by a decrease in the
concentration of helices and a concomitant increase in the concentration of quadruplexes. The number of
bridges on the chain also increases, while the number of 2- and 3-way junctions decreases. These
changes occur because as the quadruplexes displace the helices, the chain must dissolve other
structures in order to give way to the quadruplexes, since quadruplexes have a larger footprint on the
sequence (one quadruplex takes up a minimum of four CNG repeats, whereas a helix only takes up two).
Dissolution of the other structures creates more bridge segments. Based on these observations, we can
conclude that the most relevant graphs in the stable-quadruplex limit (left side) of Fig. 5 are the “lei”
diagrams in Fig. 5, where quadruplexes are distributed along a largely open chain.

Experimental evidence shows little to no quadruplex formation for short (CGG) repeat sequences
(36). Based on this and the results in Fig. 5, we can estimate that the stability of a quadruplex on a (CGG)
chain uJ/RT must be at least ~ 6RT lower than on a (AGG) chain. We indicate this estimate in Fig. 5 by a
vertical dotted line. This suggests that a quadruplex in (CGG) repeats must be approximately

> 3.7 kcal/mol less stable than in (AGG) repeats.
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Next, we examine the structures of (CNG) repeat in the absence of quadruplexes. As we have seen
already, even though (CGG) repeats can form quadruplexes, quadruplexes in (CGG) repeat are expected
to be ~ 3.7 kcal/mol less stable than those in (AGG) repeats. The other (CNG) repeats, N = A, C, U,
cannot physically form quadruplexes. In Fig. 7, we show results for these (CNG) repeats after placing a

large unfavorable bias against quadruplex formation on the chains.
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Figure 7.
Ensemble averages of features computed for a (CNG)eo repeat as a function of extra stability added to
each 2-way junction (favorable on the left, unfavorable on the right).

In actual (CNG) repeat sequences the ability of the N nucleotides to form noncanonical base pairs is
expected to favor different structures depending on whether N = A, C, G or U. We can capture these
effects in our model by assigning an extra bias to the 2-way junctions of those sequences where
noncanonical base pair or stacking can add stability to the chain. The bias is applied to every 2-way
junction regardless of size primarily to account for the propensity of stacking a N nucleotide against either
of the helices on the junction. To easily ascertain these effects, the results in Fig. 7 are reported as a
function of this bias u,/RT, where u, is a chemical potential imposed on each 2-way junction. Negative
value adds a bonus, and positive value assesses a penalty. Approximate values of the bias for N = G, A,
U and C are indicated on the top of Fig. 7.

In the limit where 2-way junctions are very stable (left side of Fig. 7), the structures are dominated by

a large number of helices and 2-way junctions but very few hairpins or bridges. This suggests that the
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ensemble is characterized by closed and compact structures. These conformations correspond to the
“necklace” diagrams in Fig. 6 that we have discussed in Materials and Methods.

Turning to the right side of Fig. 7, in the limit of a large bias imposed against the formation of 2-way
junctions, the solutions correspond to the “bubble” diagrams in Fig. 6 and they are the hairpin-capped
counterpart of the lei diagrams. They have almost as many bridge segments as hairpins but the number
of helices is far from the theoretical maximum of 30. These chains are therefore largely open, and they
are dominated by the entropies of the loop segments. Results from Fig. 7 suggest that noncanonical base
pairs or favorable stacking of the N nucleotide within the junctions can produce a significant effect on the
conformations of (CNG) repeats. The values of the bias u,/RT used to generate the results in Fig. 7
spans a range of only ~ 3.1 kcal/mol, but within this very narrow range, the structures in these ensembles
vary drastically.

Fig. 8 shows a “phase diagram” summarizing all the findings from above, where variations in
quadruplex stability from Fig. 5 are plotted along the vertical direction and variations in two-way junction
stability from Fig. 7 are plotted along the horizontal direction. On this phase diagram, “(AGG)” and
“(CGG)” indicate the approximate quadruplex stabilities in (AGG) versus (CGG) chains. Approximate
values of the stability of 2-way junctions in (CNG) repeats for N = G, A, U and C are also indicated on the
top of Fig. 8. Non-quadruplex-forming (CNG)eo repeat sequences occupy the center of this phase
diagram, with most of their structures dominated by the 1+2 and bubble diagrams illustrated in Fig. 6,
which are semi-open structures. A minor fraction of the ensemble is also made up of necklace structures,
which are closed and compact. These results point to the existence of many potential structures of similar
prevalence with contributions from both open and compact structures. Though crystallographic data of
(CNG) repeats suggest the dominance of hairpin structures (32, 38, 38, 41), it leaves the question of how
an ensemble of diverse structures could be detected in solution. Techniques such as small-angle X-ray
scattering (SAXS) (60-63), UV melting (64), and Forster resonance energy transfer (FRET) (65) can all
be used to probe the solution structure of RNA. While the use of thermodynamic data of Sobczak et al.
(36) does provide a point of contact between the calculated free energies and experimental
measurements, the ensemble predicted by our results is diverse enough that a one-to-one
correspondence to specific structure(s) revealed by experiments is unlikely. Also important is that
multiway junctions seem to be of low abundance because higher branching costs more entropy according
to data in Table 1, so while multibranch structures higher than three-way can be included in the

calculations, they are not likely to alter the results significantly.
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Figure 8.

A “phase diagram” summarizing the results from Fig. 5 and 7. The horizontal axis indicates 2-way junction stability,
and the vertical axis quadruplex stability. Phases that have been identified by the calculations are labeled. See
Fig. 6 for their graphical representations. Phase boundaries are approximate. Star shows position for which the
scaling analysis in Fig. 9 was carried out.

The conformational ensembles are functions of the repeat length. This repeat length dependence is
illustrated in Fig. 9 for a point on the phase diagram marked by the star in Fig. 8. Fig. 9(a) shows
divergence of the partition function Z(1) when A approaches the singular point 1..The slope is ~ -1,
suggesting that it is a simple pole. This result is expected because this problem is isomorphic to the
enumeration all paths from the 5’ to 3’ end of the chain on the space the folding problem is embedded,
and generating functions of paths all have the same dominant singularity, which is a simple pole (66). The
scale on the top of Fig. 9(a) shows the average repeat lengths (n) for each 4, and repeats lengths
approximately > 60 appear to be in the scaling region. Fig. 9(b) shows how each of the features as a
fraction of the repeat length varies as a function of 4, again with the scale on the top mapping (n) to 1.
Short repeats and long repeats have very different structural compositions, and the crossover appears to
occur between 30 to 60 repeats. Note that in the scaling limit, there are almost equal densities of bridges,

hairpins and two-way junctions on the chain, and the ensemble is dominated by largely open structures.

17



= T TTTT |ILLBLALLLLL LILLLALLLLL T TTHI A I I | I I
B <n> 1920 480 120 6030 15 7] <pn> 120 60 30 15 — brid
10000 B e A g ,03r R T | n’gef’-
N =~ Do 3 -7 @ helices
N 10008 siope -7 = %ozt T .
- . E -7 (O hairpins
100 E E I T N _‘__f_,:.:u_—;.-—o'——r—o—
= 3 L{'% 01k ‘ T |
» - ‘ O 2wjs
10 :
E(a) NS (b) © awis
I I O T S O W 1T R I A W 0.0 f - i — : 4
0.0001 0.001 0.01 0.1 0 0.02 0.04 0.06 0.08 0.1
A-A A-A
C Cc
Figure 9.
(a) Divergence of the partition function Z(1) when A approaches the singular point A.. The scale on the
top shows the average repeat lengths (n) for each A. (b) Structural features as a fraction of the repeat
length as a function of A. The scale on the top maps (n) to A. Short repeats and long repeats have very
different structural compositions, and the crossover appears to occur between 30 to 60 repeats.

Finally, since there is a significant discrepancy between the stability of the GC|CG duplexes predicted
by NNDB compared to experimentally-derived results collected specifically from (CNG) repeat
sequences, we want to know to what extent the stability of the duplexes may have on the computed
results. Fig. 10 shows the structural characteristics of (CNG)eo as a function of a bias placed on the
helices, more stable to the left, less stable to the right. Toward the right, as the helices become less
stable, they are displaced by quadruplexes, which are the only structures other than helices that can cap
the end of a branch. These map to the lei diagrams in Fig. 6. Toward the left, as the helices become more
stable, they seed an increasing number of two- and three-way junctions in favor of hairpins. The resulting
structures correspond to the necklace and “three-way tree” structures in Fig. 6. Notice that —3RT on the
left edge of Fig. 10 corresponds to only -1.8 kcal/mol of extra stability, and this small difference produces
a significant change in structural compositions. Therefore, a more accurate experimental assessment on
the thermodynamic stability of the GC|CG duplexes may be important for understanding (CNG) repeat

structures.
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Figure 10.
Ensemble averages of features computed for a (CNG)eo repeat as a function of extra stability added to
each helix (favorable on the left, unfavorable on the right).

CONCLUSION

We have formulated a diagrammatic theory to study the conformational ensembles of (CNG)n RNA
sequences. Transcripts of overexpanded microsatellites on the genome containing 60 to 100 (CNG)
repeats have been implicated in a number of neurological diseases known as TREDs. To understand the
structures of these (CNG) repeat sequences, we performed a series of calculations aimed at
characterizing their equilibrium ensembles. With a diagrammatic representation of the partition function,
our calculations are based on using graphs to annotate structural motifs on the chains, and in conjunction
with evidence from previous simulation studies, these diagrammatic representations allowed us to easily
factorize the graphs in order to re-express the free energy of each configuration as a sum of independent
terms. Using generating function mathematics and diagrammatic re-summation techniques, we were able
to derive a closed-form expression for the partition function in terms of a renormalized root function, which
is the diagrammatic equivalence of the sum over all self-contained circuit diagrams. Employing a simple
approximation for this root function, we derived analytical expressions for the partition function and its
corresponding thermodynamic observables. Including hairpins, 2- and 3-way junctions, helices and
quadruplexes in the root function, the partition function captures an infinite set of conformations with any
number and any combination of these structural elements. Together with simulation data from a self-

consistent library of entropic costs previously obtained for the various graph elements, as well as
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experimentally derived free energies for the helices and quadruplexes, we solved the resulting equations
to arrive at numerical estimates for the ensemble expectation values of the number of structural features
on the chain, including bridges, hairpin loops, 1-, 2- and 3-way junctions and quadruplexes. This enabled
us to quantitatively characterize the structural diversity of different (CNG)n ensembiles.

While most studies in the field have implicitly assumed that the ensemble of a (CNG)n sequence is
dominated by a single structure having the maximal number of paired bases forming duplexes interposed
by 2-way junctions between them, the results of this study suggest otherwise (27, 35, 36, 38, 39). The
data show that the structural ensembles of (CNG)n repeat sequence with n ~ 60 are surprisingly diverse.
The equilibrium number of duplexes, hairpins, junctions, bridges and quadruplexes on these sequences
indicate that their secondary structure contents are far from the expected maximally paired conformation.
To the contrary, the ensemble is dominated by a mixture of open and compact structures. We have
mapped out the resulting structures as a function of the ability of the N nucleotide (N = A, C, G or U) in
(CNG) repeats to make noncanonical pairs, as well as their ability to sustain stable quadruplexes. The
“phase diagram” that emerges shows a diversity of different structures across this parameter space,
demonstrating that ensembles of (CNG) repeat sequences can potentially contain many alternate
conformations. The results show how perturbations in the form of biases on the stabilities of the various
structural motifs - duplexes, junctions, hairpins and quadruplexes - could affect the secondary structures
of the chains in either directions and how these structures may switch when they are perturbed, e.g. when
they interact with or bind other molecules. This may in turn have implications on how these (CNG)n

sequences could acquire unintended functions in the cell, leading to their cytotoxicity.
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