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ABSTRACT  

Trinucleotide repeat expansion disorders (TRED) are associated with the overexpansion of (CNG) 

repeats on the genome. mRNA transcripts of sequences with greater than 60 to 100 (CNG) tandem units 

have been implicated in TRED pathogenesis. In this paper, we develop a diagrammatic theory to study 

the structural diversity of these (CNG)n RNA sequences. Representing structural elements on the chain’s 

conformation by a set of graphs and employing elementary diagrammatic methods, we have formulated a 

renormalization procedure to re-sum these graphs and arrive at a closed-form expression for the 

ensemble partition function. With a simple approximation for the renormalization and applied to extended 

(CNG)n sequences, this theory can comprehensively capture an infinite set of conformations with any 

number and any combination of duplexes, hairpins, multiway junctions and quadruplexes. To quantify the 

diversity of different (CNG)n ensembles, the analytical equations derived from the diagrammatic theory 

were solved numerically to derive equilibrium estimates for the secondary structural contents of the 

chains. The results suggest that the structural ensembles of (CNG)n repeat sequence with n ~ 60 are 

surprisingly diverse, and the distribution is sensitive to the ability of the N nucleotide to make 

noncanonical pairs and whether the (CNG)n sequence can sustain stable quadruplexes. The results show 

how perturbations in the form of biases on the stabilities of the various structural motifs, duplexes, 

junctions, helices and quadruplexes, could affect the secondary structures of the chains, and how these 

structures may switch when they are perturbed. 

 

 

STATEMENT OF SIGNIFICANCE 

Trinucleotide repeat expansion disorders (TRED) are associated with the overexpansion of (CNG) 

repeats on the genome. mRNA transcripts of sequences with critical length greater than 60 to 100 (CNG) 

tandem units have been implicated in TRED pathogenesis, though their structures remain poorly 

characterized. Conventional view has tacitly assumed that conformations with maximal C:G base pairing 

dominate at equilibrium, but here we demonstrate that (CNG) repeat sequences are characterized by 
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diverse ensembles of structurally heterogeneous folds and with a large variance of secondary structural 

contents. These results were based on a diagrammatic approach to the ensemble partition function. 
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INTRODUCTION 

      Diagrammatic approaches for classifying RNA structures have been used widely (1–12). Graphs 

provide an elegant method for categorizing the many diverse conformational structures that can be 

adopted by RNA sequences and may be used to more easily recognize common topological features in 

RNA structures that are otherwise difficult to decipher from their 2- or 3-dimensional structures. Graphs 

also provide an alternate space within which RNA secondary structures can be understood (13, 14) and 

they are the basis of the algorithms (15, 16) behind some of the most widely used RNA secondary 

structure prediction tools (17–19). Graphs also help elucidate the rich connection between RNA structure 

and topology, enabling topological interpretations to be used for annotating RNA structures (20–25).  

      In this paper, we employ diagrammatic methods to compute the conformational diversity of 

trinucleotide repeat RNA sequences. In a family of neurological diseases known as trinucleotide repeats 

expansion disorders (TREDs) (26–30), the onset of illness is associated with the overexpansion of 

(CNG)n repeats in the genome (29–31). While most of these expanded repeats occur in noncoding 

regions and do not appear to translate to aberrant proteins (30, 31), the mRNA transcripts of these 

overexpanded templates may interfere with cellular pathways leading to cytotoxicity(32, 33) . At the same 

time, (CNG)n expanded mRNA may also acquire unintended functions in the cell (34). Ascertaining the 

structures of these sequences is therefore necessary for the understanding of their functions.  

      Examples of some possible conformations of a short (CNG) repeat with different secondary structures 

are shown in Fig. 1. Because of their repeat structures, at least one-third of the nucleotides on (CNG)n 

sequences cannot form canonical base pairs upon folding. Depending on the identity of the N nucleotide, 

they may also interact with themselves or with the G or C nucleotides. TRED disease onset is often 

associated with a critical expansion threshold of n > 60 to 100 (35). The structures most often associated 

with the gain of function hypothesis for CNG expanded RNA sequences cited in the literature is a 

necklace-like structure composed of a long stretch of successive two-way junctions interposed by shorts 

helixes and with a hairpin stem-loop cap (31, 32, 36–40), like the one shown in Fig. 1(a). Many of the 

studies conducted are based on short (CNG) repeats (31, 32) and the structures resolved are limited to 

those which can be isolated and crystalized (38–41). As the length of the CNG repeats grows, the 

diversity of accessible structures could grow rapidly as well.  
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Figure 1. 
Examples of a 5’-NG(CNG)8CN-3’ repeat sequence in five different conformations. (a) The maximal hairpin 

“necklace” structure. (b) and (c) Structures with an asymmetric internal junction. (d) and (e) Structures with three-

way junctions. The dual graph representation is shown next to each example, where each 2-bp duplex is 

represented by a dot, hairpin loops by circles with one dot, 2-way junctions by circles with two dots, 3-way 

junctions by circles with three dots and an arc represents the two unpaired ends. In the graphs, the number 

adjacent to each edge indicates its length in nt. The base pair representation is shown below the dual graph of 

each example. 

 

      Fig. 1(a) illustrates a maximally canonically paired “necklace” structure. To the right of it is shown its 

dual graph representation. The length of each junction is specified in number of nucleotides (nt). The 

base-pair representation of the structure is shown below the dual graph. The base-pair or "matrix" 

representation explicitly enumerates the sequence positions of the nucleotides bound by canonical 

interactions. Fig. 1(b) and (c) show two other examples where one of the two-way junctions is 

asymmetric. These two structures have one fewer helix and thus lower base pair and stacking stability 

than (a). Their dual graph representations are shown to the right of (b) and (c), suggesting that their loop 

structures are topologically distinct from (a). Different junction lengths also cost different amount of 

conformational entropy for the sugar-phosphate backbone. The loop entropies in the various secondary 

structures must be accounted for to correctly determine their free energies. In general, (b) and (c) do not 

have the same loop entropies even though they contain the same number of nucleotides inside their 

loops (five 1-nt loops, one 4-nt loop and one 7-nt loop). This is because the 4x1 internal loops in (c) 

adjacent to the hairpin may sterically interface with each other and with the helices differently compared 



5 
 

to the 1x1 internal loops in (b). Loop entropies are therefore dependent on where and how they appear on 

the structure relative to each other. 

      Fig. 1(d) and (e) show two examples with three-way junctions. In general, higher multiway junctions 

cost more entropy because they represent a more stringent conformational constraint for the sugar-

phosphate backbone, and they also experience more steric congestion for the helices around the 

junction. The dual graph representation of each is shown to the right. Even though (d) and (e) are 

topologically equivalent, they do not contain the same loop entropies because their loops are arranged 

differently along the sequence. Notice that while (e) has identical junction lengths to (b) and (c), the loop 

entropies of these three structures are also intrinsically different. 

      Entropies of loops and junctions, or more precisely the loss in their conformational entropies, arise 

from constraints coming from the base pairs. An unfolded RNA is in a high-entropy state. Its structures 

are characterized by a diverse ensemble. If 𝑐 denotes a chain conformation and 𝑃(𝑐) its probability, the 

total entropy content of this ensemble is given by 𝑆 =  −𝑘𝐵 ∑ 𝑃(𝑐) ln 𝑃(𝑐)𝑐 . If the sequence spontaneously 

folds and develops secondary and/or tertiary structures, the conformational entropy of the chain is 

suppressed because base complementarity and stacking interactions produce constraints on the chain’s 

conformations. Under these constraints, the new probability for each conformation in the presence of 

these constraints 𝑃′(𝑐) = 𝑃(𝑐|constaints) incurs a penalty, and the loss of entropy is given by: 

Δ𝑆 = 𝑆(with constraints) − 𝑆(no constraints) = −𝑘𝐵 ∑ 𝑃𝑐
′ ln 𝑃𝑐

′ − 𝑃𝑐 ln 𝑃𝑐
𝑐

 (1) 

 

where the sum runs over all conformations. If one can determine how the constraints imposed by the 

secondary and tertiary structures in the fold transforms 𝑃(𝑐) → 𝑃′(𝑐), Δ𝑆 can be determined.  

      In general, the constraints imposed by secondary/tertiary structures are correlated. “Factorizability” 

describes how these constraints may break up into independent (or approximately independent) subsets. 

For instance, if the fold introduces 4 constraints 𝐴, 𝐵, 𝐶 and 𝐷 but the effects of 𝐴 and 𝐵 are separable 

from 𝐶 which is also separable from 𝐷, then 𝑃′(𝑐) = 𝑃(𝑐|𝐴, 𝐵, 𝐶, 𝐷) = 𝑃(𝑐|𝐴, 𝐵) ⋅ 𝑃(𝑐|𝐶) ⋅ 𝑃(𝑐|𝐷). Under 

this factorization, the entropy change in Eq.(1) would simply be equal to Δ𝑆 = Δ𝑆(with constraints 𝐴, 𝐵) +

Δ𝑆(with constraint 𝐶) + Δ𝑆(with constraint 𝐷). 

      Different approximations have been used to account for loop entropies in RNA folding predictions. 

These range from ignoring loop entropies all together (20, 23, 42, 43), to treating each loop in the 

secondary structure as independent and approximating its value by additivity rules (13–15), to assigning 

experimentally-derived free energy to loops of specific known sequences (44). The most sophisticated of 

these is NNDB (45), which Mfold (17) is based on. NNDB employs thermodynamic data to assign 

approximate functional forms to interpolate experimentally measured loop free energies of hairpins, 

bulges, internal loops and multibranch junctions. In one form or another, an intrinsic factorizability in the 

loop entropies is assumed by all of these approaches. For example, NNDB treats the loop entropies in 

multiway junctions higher than two approximated by a sum in the form 𝑎 + 𝑏 × 𝑢 + 𝑐 × ℎ, where 𝑢 is the 

number of unpaired nucleotides, ℎ is the number of branching helices, and the empirical constants 𝑎, 𝑏, 𝑐 
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are parameters that were found by maximizing the accuracy of secondary structure prediction (46). For 

many RNA folding problems, this assumption may be well justified because the thermodynamic driving 

force for the secondary structure comes from the stability of the pairing and stacking of bases in the 

helices. But for (CNG) trinucleotide repeat sequences, this may not be the case since each helix is no 

more than a two-base-pair stack of GC|CG, and they lack the more substantial stacking free energy that 

stabilizes longer helices (47). Indeed, experimental measurements suggest that the helix free energy 

estimated from Mfold greatly overestimates the stability of GC|CG stacks in (CNG) repeats (36). Because 

of this, the role of the loop entropies, their factorizability, and how they influence the conformational 

diversity of (CNG) repeats should be examined. 

      Using a large body of empirical data derived from Monte Carlo (MC) conformational sampling (48, 49), 

we have determined cases where constraints are approximately independent and provided quantitative 

metrics for their factorizability. For example, in a two-way junction, the loop entropies of the two junctions 

are correlated but they are largely independent from the loops on the other sides of the helices. The same 

is true for hairpins and other multiway junctions. The topological reason behind this loop factorizability is 

related to the secondary nature of these features. Furthermore, Refs. (48, 49) provide a self-consistent 

library of loop entropies derived from MC simulations. The data library in Refs. (48, 49) has been used in 

this study to more accurately account for the these loop entropy contributions in conformational 

predictions for (CNG) repeats. In Materials and Methods, we show how this approximate factorizabilities 

of the loop entropies can be expressed diagrammatically, and in Results and Discussion, we apply this to 

study the conformational diversity of (CNG) repeat sequences. 

 

 

MATERIALS AND METHODS 

 

Graph Representations  

      Tinoco et al. (50) used an adjacency matrix representation to denote the canonically bound base pairs 

in RNA secondary structures. This representation is given in Fig. 1 to the lower right of each structure. 

Waterman et al. (13, 14, 51) have described several equivalent representations, such as chord diagrams 

and linear trees. Schlick et al. (1, 5, 9) employed dual graphs to represent the same information, and 

examples of these are shown in Fig. 1 to the upper right of each structure. Though topologically 

equivalent, various representations emphasize different aspects of the folding free energies. The matrix 

representation and the chord diagrams, for example, emphasize the paired bases, whereas dual graphs 

highlight the unpaired segments on the loops and junctions, as pointed out by Liu and Bundschuh (44). 

      Since the focus of this paper is on loops, we rely on dual graphs. In the Introduction, we describe the 

approximate factorizabilities of certain secondary structural features that were observed in the MC data in 

Refs. (48, 49). These factorizabilities can be expressed using diagrams. For instance, the loop entropies 

of the unpaired segments in any two-way junction are correlated, but they are largely uncorrelated with 
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the loops on the other sides of the helices exiting from the two-way junction. Fig. 2 shows how this 

factorization works for the two structures in Fig. 1(b) and (c). Each of the objects on the right side of Fig. 2 

contain loop entropies that can be retrieved from the data library in Refs. (48, 49).  Similar factorizabilities 

exist for higher multiway junctions, and their dual graph representations can also be used to express this 

in the same way analogous to Fig. 2. 

 

 

Figure 2. 
Example showing factorization of the diagram on the left into the factors on the right. The circle with one dot 

represents a hairpin loop of size 𝑑. Circles with two dots represent 2-way junctions. The two open line segments 

represent open strands. The three filled dots represent 2-bp (4-nt) duplexes. The corresponding expression for the 

composite probability is given in Eq. (2). 

 

      The composite probability of the graph on the left in Fig. 2 is given by: 

𝑃1(𝑑)𝑃2(𝑏, 𝑓)𝑃2(𝑐, 𝑒)𝑃0(𝑎)𝑃0(𝑔)[𝑃•(4)]3 (2) 
 

where 𝑃1(𝑥) is the probability associated with a hairpin loop (or a “1-way junction”) of length 𝑥, 𝑃2(𝑥, 𝑦) is 

the probability of a 2-way junction with loop lengths 𝑥 and 𝑦, 𝑃0(𝑥) = 1 is the probability associated with 

an open strand and 𝑃• is the probability of the duplex. For the loops in hairpin and junctions, their 

probabilities are given by 𝑃 = 𝑒Δ𝑆/𝑘𝐵, where Δ𝑆 is the conformational entropy of a loop relative to an open 

strand. 𝑃•(4) = 𝑒Δ𝑆•/𝑘𝐵−Δ𝐻•/𝑘𝐵𝑇, the probability of a 2-bp (4-nt) duplex, has both enthalpic and entropy 

contributions in it, which involve stacking and base pairing interactions as well as the loss of 

conformational freedom suffered by the backbone to stack. An example of all the decomposable factors 

of a necklace diagram is given on the right side of Fig. 2. 

 

Specializing to (CNG) Repeat Sequences  

      To specialize the formulation to apply to 5’-NG(CNG)8CN-3’ repeat sequences specifically, we take into 

account their repeat structure. By “repeat structure”, we are referring to the periodicity of the nucleotide 

sequence. In our calculations, we employ constructs with the following architecture: 

 

5’-(N-GC)-(N-GC)-(N-GC)-(N-GC)-(N-GC)-(N-GC)- … -(N-GC)-(N-GC)-N-3’ 
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with 𝑛 repeating units of (NGC). Formally, this construct has 𝑙 = 3𝑛 + 1 nucleotides instead of 3𝑛. This is 

done to ensure that the 5’ and 3’ ends of the chain do not have to be treated differently, but it does not 

materially alter the results or the formulation. 

      As described above, the periodicity of the sequence permits canonical base pairing producing 2-bp 

duplexes only. Beyond that, the ability of the N nucleotides to form noncanonical base pairs can favor 

different structures depending on whether N = A, C, G or U. These noncanonical effects can be captured 

by assigning an extra bias to the 2-way junctions of those sequences where noncanonical base pair or 

stacking can add stability to the chain. Because of the repeat structure, unpaired segments on the 

sequence are limited to lengths equal to 1, 4, 7, 11, … nt. To do this, every loop length in the formulation 

is replaced by its length divided by 3. For example the lengths {𝑎, 𝑏, … 𝑔} in Fig. 2 become {𝑎′ = 𝑎\3, 𝑏′ =

𝑏\3, … 𝑔′ = 𝑔\3}, where \ denotes an integer division without remainder. A loop with length 𝑎′ = 0 is 1-nt 

long. A loop with 𝑎′ = 1 is 4-nt long, etc. The only exception to this rule is a 2-bp (4-nt) duplex, which is 

assigned a length of 2 repeat units instead of 1, and a quadruplex, which is assigned 4 repeat units. 

      Bundschuh et al. (44, 52) have applied a related diagrammatic method to various trinucleotide 

repeats. They employed a diagrammatic recursion relation for the partition function 𝑍 to study the 

crossover from asymptotic scaling behavior to finite-length effects. They found that in the presence of 

multiloop junctions, the crossover to the scaling regime is related to the chain’s ability to make branches. 

For (GCA)n chains, their results show that the scaling regime is reached with just a handful of repeats, 

whereas for (GCC)n sequences the crossover does not occur until the sequence is hundreds of repeats 

long because of the extra pairing coming from the N = C nucleotides in the junctions with the G residues 

adjacent to them. These studies suggest that the interaction of the N nucleotide in (CNG) repeats may 

play a significant role in determining their prevalent structures. In our work, we have employed a graph 

renormalization scheme based on diagrammatic decomposition to study the concentrations of different 

structural elements on the chain, whereas in the work of Bundschuh et al. (44, 52) their graph recursion 

on 𝑍 was better suited to studying the emergence of repeat-length-dependent asymptotic behaviors. But 

the two methods share common diagrammatic features. 

 

Graph Elements and Loop Entropy Contributions  

      The secondary structural elements considered in this study are shown in Fig. 3. A dot represents a 

GC|CG helix. Its probability 𝑃• contains the pairing and stacking free energy, as well as the backbone 

entropy of the doublet. Circles with one, two or three holes represent the loops in a hairpin, a two-way 

junction and a three-way junction, respectively, and their probabilities 𝑃1, 𝑃2 and 𝑃3 contain the loop 

entropies. Hairpins and two-way junctions have been found in experimental thermodynamic studies (36) 

to be most relevant for (CNG) repeat sequences. In this study we also include three-way junctions to 

assess their relevance. In addition to these, quadruplexes, represented by the diagram with three loops 

emanating from a square core in Fig. 3, have also been included because they have been observed in 

experimental studies of other trinucleotide repeat sequences, noticeably (AGG) and (UCC) (36). The core 
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of each quadruplex contains a double-deck tetrad structure with eight G nucleotides bound with 

Hoogsteen base pairs and is represented diagrammatically by a solid square. Its probability 𝑃𝑞 contains 

the pairing and stacking free energy as well as the backbone entropy of the bases in the tetrad. Since 

only G can form tetrads, quadruplexes are possible only on (CGG) repeat sequence. For multibranch 

structures, while we have limited ourselves to 3-way junction in this paper, 4-, 5- or any higher multiway 

junctions may be added without complications, but the results will show that multiway junctions are of less 

importance for (CNG) repeats. The 5’ or 3’ unpaired ends of the chain, represented by the last diagram in 

Fig. 3, do not cost any extra entropy compared to an open chain. 

 

 

Figure 3. 
Dual graph representation of all structural elements included in this study: helix, hairpin, 2-way junction, 3-way 

junction, loops in a quadruplex, the quadruplex core, bridge and unpaired ends. 

 

      The loop entropies contained in each graph element are supplied by the data library in Refs. (48, 49). 

For example, the entropies of the two loops in a 2-way junction are dependent but their total can be 

expressed as a function of the sum of their lengths. The portions of the library relevant to (CNG) repeats 

are reproduced in Table 1 for total loop length in units of the number of repeats 𝑛. Loop entropy data for 

all relevant elements in Fig. 3 are given in Table 1. 

 

 Loops free energy as a function of total loop length (kcal/mol) 

Feature (nickname) 𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 > 3 

hairpin (1wj) ∞ 5.02 5.85 6.16 3.9 +  1.08 ln(3𝑛 + 1)  

two-way junction (2wj) 5.97 6.53 6.79 6.88 4.4 +  1.08 ln(3𝑛 + 2) 

three-way junction (3wj) 7.12 7.33 7.46 7.53 4.9 +  1.08 ln(3𝑛 + 3) 

quadruplex (quad) 15.5 17.6 19.0 19.9 ∞ 
 

 

Table 1. 
Contributions of loop entropies to the folding free energy at 310 K from the data library in Refs. (48, 49) (𝑅𝑇 = 

0.616 kcal/mol). Entropies of the loops in a multibranch junction are in general correlated, but their sum scales with 

the total junction lengths. Loop entropies of the junction internal to the branches are uncorrelated with the loops on 

the other sides of the branches. Empirically, higher multibranch structures cost more entropy. 
 

      The basic premise of the present work considers free energies of the loops to be a fundamental 

determinant of RNA structures. This is somewhat different from the traditional view, where base paired in 

helices, triplexes, quadruplexes or from tertiary interactions are considered the drivers. Both of these 

factors are of course present in any RNA system, but in some problems paired structures are more 

important, whereas in others loop entropies may outweigh pairs. For the type of problem studied in this 

paper, where the ensemble may be dominated by open instead of strongly paired structures, careful 
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consideration must be given to the loop entropies. Our results will show that for the (CNG) repeats, 

treating the loop entropies carefully is the key to understanding their conformational ensembles. 

 

Stabilities of GC|CG Helix Doublets and G-Quadruplexes  

      The core thermodynamic stabilities of pair structures, such as the helices and quadruplexes in Fig. 3, 

are taken from experiments. For example, to determine the free energy contribution from each duplex, we 

used the experimental Δ𝐺exp data reported by Sobczak et al. for (CNG)20 oligomers in 100mM NaCl (36) 

for N = A, C, G and U. The only conformation that was reported for (CNG)20 has the maximal hairpin 

structure analogous to that shown in Fig. 1(a). Using the loop entropy values from our library, and in 

conjunction with the experimentally observed Δ𝐺exp for the maximal hairpin, we determined free energies 

of the helix cores in each of the (CNG)20 repeats for N = A, C, G and U separately. The smallest came 

from N = C with Δ𝐺0(duplex) = −6.17 kcal/mol, followed by U (−6.39 kcal/mol), A (−6.57 kcal/mol), and G 

(−6.62 kcal/mol). In the results below, we will use the N = C Δ𝐺0(duplex) value as the reference, as this 

represents a lower bound to stability. The other results for N = A, G or U were obtained by applying the 

appropriate offset to the values for each duplex. For quadruplexes, experimental data from Sobczak et al. 

suggest that (UGG)17 and (AGG)17 can form quadruplexes, but (CGG) repeats cannot. To estimate the 

effects of including quadruplexes in the (CNG)n repeat ensembles, we used the experimental free 

energies of (UGG)17 and (AGG)17 and determined the free energy of a quadruplex core using the Δ𝐺exp 

for (UGG)17 and (AGG)17 in 100mM NaCl (36) These yielded an approximation for the quadruplex core 

free energy ~ −20.4 kcal/mol from (AGG)17 and (UGG)17. In our calculations, we varied the quadruplex 

stability from zero up to and beyond these values to examine how the potential formation of quadruplexes 

might affect the structures of (CNG) repeats. 

      The values of the duplex free energies derived from the experimental data of Sobczak et al. (36) 

using the method above are ~ 3 kcal/mol weaker per GC|CG helix compared to the nearest-neighbor 

model of Turner et al. (45, 53). Using Mfold (17) to calculate the free energy of a typical (CNG) repeat 

produces exclusively the maximal hairpin structure analogous to Fig. 1(a) as the only significant 

conformation. But using the helix free energies obtained according to the prescription in the last 

paragraph, structural alternatives to the maximal hairpin becomes more competitive. In general, non-

maximally paired structures enjoy higher entropies because loop segments in hairpins and junctions are 

less constrained compared to pair bases. In the results below, we will see the tradeoff between higher 

entropy in the more open structures versus the higher stability in the helices and quadruplexes in 

compact structures produce a mixed diverse ensemble for most (CNG) repeat sequences, rather than 

favoring a single dominant maximal hairpin structure. 

 

Diagrammatic Renormalization 
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     The graph approach described here share many features with those employed in field theory and in 

liquids, where diagrammatic techniques have been used extensively to manipulate graphs (54). Previous 

work have also applied diagrammatic techniques to study RNAs (13, 15, 20, 23–25, 44, 52).  

      The canonical partition function of the ensemble 𝑍(𝑛) as a function of the number of (CNG) repeats 𝑛 

is represented by diagrams. The generating function, 𝑍(𝜆) = ∑ 𝑍(𝑛) exp(−𝜆𝑛)∞
𝑛=0 , which is the grand 

canonical ensemble partition function allowing variable repeat lengths, can then be expressed in terms of 

the generating functions of the probabilities of the diagrammatic elements described above at 310K. 

Standard renormalization allows the graphs to be re-summed, giving 

𝑍(𝜆) = 1/[1 − 𝑒−𝜆 − 𝑅(𝜆)]  (3) 
 

where the root function 𝑅 is a sum over all irreducible diagrams. Recursion relations similar those in 

Eq. (3) have previously been described in the context of RNA structural studies (13–15, 20, 23–25, 42, 

44, 52). Pillsbury et al. reported similar recursion relations for RNA (42) as well as Reidys et al. (43), while 

the use of irreducible diagrams has been introduced by Orland et al. (20, 22, 24, 42) for studying RNA 

structures. The root function satisfies the Dyson equation (20, 22, 24, 42, 55), which is shown 

diagrammatically in Fig. 4. Including multibranch loops up to 3-way junctions, this self-consistent equation 

for the root function 𝑅3(𝜆) is quadratic. Recursion relations for 𝑍 have also been used by Liu and 

Bundschuh (44) to examine how the partition function scales with repeat lengths. 

 

 

Figure 4. 
Dyson equation for the root function 𝑅3 including hairpins, 2- and 3-way junctions, as well as quadruplexes. 

 

      The inputs, 𝑃•(𝜆), 𝑃1(𝜆),𝑃2(𝜆), 𝑃3(𝜆) and 𝑃𝑞(𝜆) were obtained from the loop free energies of duplexes, 

hairpins, 2- and 3-way junctions, as well as quadruplexes and the duplex and quadruplex stabilities 

described in the last subsection. The functional dependence of the loop free energies on the loop lengths 

were extended beyond the finite-length data available from the simulations by using the same scaling 

relationships that have been adopted by Turner, et al. in the nearest-neighbor model(45, 56, 57) which 

was based on Stockmayer et al.(58), yielding the following expressions at 𝑇 = 310 K:  

𝑃•(𝜆) =  𝑒
−(2𝜆− 

6.17
0.616

)
 

 
(4a) 

𝑃1(𝜆) = 𝑒−(𝜆+
5.016
0.616

)
+ 𝑒−(2𝜆+

5.848
0.616

)
+ 𝑒−(3𝜆+

6.159
0.616

)
+ 𝑒−(4𝜆+

5.086
0.616

)
⋅ Φ (𝑒−𝜆 , 1.75,

13

3
)   

 
(4b) 

𝑃2(𝜆) = 𝑄2(𝜆) − 𝑑𝑄2(𝜆)/𝑑𝜆 

 
(4c) 
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𝑄2(𝜆) ≡ 𝑒−(
5.970
0.616

)
+ 𝑒−(𝜆+

6.528
0.616

)
+ 𝑒−(2𝜆+

6.797
0.616

)
+ 𝑒−(3𝜆+

6.880
0.616

)
+ 𝑒−(4𝜆+

5.587
0.616

)
⋅ Φ (𝑒−𝜆, 1.75,

14

3
) 

 
(4d) 

𝑃3(𝜆) =
1

2
[2𝑄3(𝜆) − 3

𝑑𝑄3(𝜆)

𝑑𝜆
+

𝑑2𝑄3(𝜆)

𝑑𝜆2
] 

 

(4e) 

𝑄3(𝜆) ≡ 𝑒−(
7.124
0.616

)
+ 𝑒−(𝜆+

7.327
0.616

)
+ 𝑒−(2𝜆+

7.458
0.616

)
+ 𝑒−(3𝜆+

7.524
0.616

)
+ 𝑒−(4𝜆+

6.087
0.616

)
⋅ 𝛷 (𝑒−𝜆, 1.75,

15

3
) 

 
(4f) 

𝑃𝑞(𝜆) ≡ 𝑒−(4𝜆+
20.4

0.616
)

[𝑒
−(

15.5
0.616

)
+ 3𝑒−(𝜆+

17.6
0.616

)
+ 3𝑒−(2𝜆+

19.0
0.616

)
+ 𝑒−(3𝜆+

19.9
0.616

)
] 

 

(4g) 

𝑃𝑘(𝜆) ≡ 𝑒−(4𝜆+
12.34
0.616

)
[𝑒−(

13.2
0.616

)
+ 2𝑒−(𝜆+

14.0
0.616

)
+ 3𝑒−(2𝜆+

14.7
0.616

)
+ 4𝑒−(3𝜆+

15.0
0.616

)
] 

 
(4h) 

 

where Φ is the Lerch transcendent (59). 

 

 

RESULTS AND DISCUSSION 

      We have applied the calculations described in Methods and Materials to (CNG) repeats, where N = A, 

C, G or U, to compute the ensemble average number of secondary structure features associated with the 

conformations of the chains. The Dyson equation in Fig. 4 is quadratic in 𝑅3 and there are in general two 

roots. In all of the cases studied, we found only one of them to yield physical results, while the other root 

produced a negative value for the partition function 𝑍. Results from the physically-relevant solution are 

shown in Fig. 5. Since (CAG), (CCG) and (CUG) repeat sequence cannot physically produce 

quadruplexes but (CGG) repeats may, we have plotted the results as a function of the stability of the 

quadruplex core 𝜇𝑞
0/𝑅𝑇. While (CGG) repeat sequences can potentially form quadruplexes, experimental 

evidence shows little to no quadruplex structures on (CGG)17 or (CGG)20 sequences (36). On the other 

hand, (AGG) repeats have been found to fold predominantly into quadruplex-rich structures (36). We 

have employed experimental data for (AGG) repeats to establish an upper limit for how stable a 

quadruplex could be if it was to exist in (CGG) repeats. This upper limit is on the left side of the graphs in 

Fig. 5, and the quadruplex core stability decreases (i.e. 𝜇𝑞
0/𝑅𝑇 becomes more positive) moving to the 

right. (CAG), (CCG) and (CUG) repeats are therefore associated with the right side of Fig. 5. The 

expected structural features of (CNG)60 chains are displayed as a function of 𝜇𝑞
0/𝑅𝑇. 
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Figure 5. 
Ensemble averages of the number of helices (solid line), bridges (dashed lines), hairpin loops (open 

circles), 2-way junctions (dotted dashed lines), 3-way junctions (open triangles) and quadruplexes 

(squares) computed from the physically-relevant solution for a (CNG)60 repeat, as a function of 

quadruplex stability (stable on the left, unstable on the right). 

 

      Before discussing the results, we point out that what have been calculated are ensemble averages, 

and as such, they may contain contributions from a large number of different structures. When 

considering the data, it is therefore important to not associate the averages with a single conformation, 

keeping in mind that there may be many structures within each ensemble. For example, while the 

maximal hairpin structure depicted in Fig. 1(a) may be one of the prevalent structures in a (CNG) repeat 

ensemble, it may be only one of many. In fact, the ensembles we have computed are rather diverse, and 

the averages of all the structural features vary smoothly across the entire parameter space studied. 

      Fig. 5 shows that the structural characteristics of (CNG)60 is strongly dependent on the ability of the 

chain to make quadruplexes. When quadruplexes are unstable, the structures on the right side of Fig. 5 

correspond to an ensemble with largely open chains with high concentrations of bridges and hairpin loops 

and some 2-way junctions, but relatively few 3-way junctions and no quadruplexes. Interestingly, the 

number of hairpin loops is almost identical to the number of bridges on the right side of Fig. 5. This 

suggests that the structures in this ensemble are dominated by the “1+2” diagrams, an example of which 

is illustrated in Fig. 6. Furthermore, a large number of bridges is also indicative of largely open structures, 

but the number of helices observed here is somewhat less than the maximum number that could be 

sustained on a (CNG)60 repeat (theoretical maximum is 29). Instead of being driven by the favorable 
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enthalpy of formation of the helices, the formations in this ensemble seem to be dominated by loop 

entropies. 

 

 

Figure 6. 
Diagrams illustrating some of the structures observed in the results in Figs. 5 and 7. 

 

     Next, focusing on the left side of Fig. 5, we examine how the presence of quadruplexes alters the 

structural characteristics of the ensemble. As the stability of the quadruplex is increased (i.e. 𝜇𝑞
0/𝑅𝑇 going 

from right to left in Fig. 5), they begin to displace the helices. This is revealed by a decrease in the 

concentration of helices and a concomitant increase in the concentration of quadruplexes. The number of 

bridges on the chain also increases, while the number of 2- and 3-way junctions decreases. These 

changes occur because as the quadruplexes displace the helices, the chain must dissolve other 

structures in order to give way to the quadruplexes, since quadruplexes have a larger footprint on the 

sequence (one quadruplex takes up a minimum of four CNG repeats, whereas a helix only takes up two). 

Dissolution of the other structures creates more bridge segments. Based on these observations, we can 

conclude that the most relevant graphs in the stable-quadruplex limit (left side) of Fig. 5 are the “lei” 

diagrams in Fig. 5, where quadruplexes are distributed along a largely open chain. 

      Experimental evidence shows little to no quadruplex formation for short (CGG) repeat sequences 

(36). Based on this and the results in Fig. 5, we can estimate that the stability of a quadruplex on a (CGG) 

chain 𝜇𝑞
0/𝑅𝑇 must be at least ~ 6𝑅𝑇 lower than on a (AGG) chain. We indicate this estimate in Fig. 5 by a 

vertical dotted line. This suggests that a quadruplex in (CGG) repeats must be approximately 

> 3.7 kcal/mol less stable than in (AGG) repeats.  
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      Next, we examine the structures of (CNG) repeat in the absence of quadruplexes. As we have seen 

already, even though (CGG) repeats can form quadruplexes, quadruplexes in (CGG) repeat are expected 

to be ~ 3.7 kcal/mol less stable than those in (AGG) repeats. The other (CNG) repeats, N = A, C, U, 

cannot physically form quadruplexes. In Fig. 7, we show results for these (CNG) repeats after placing a 

large unfavorable bias against quadruplex formation on the chains. 

 

 

Figure 7. 
Ensemble averages of features computed for a (CNG)60 repeat as a function of extra stability added to 

each 2-way junction (favorable on the left, unfavorable on the right). 

 

      In actual (CNG) repeat sequences the ability of the N nucleotides to form noncanonical base pairs is 

expected to favor different structures depending on whether N = A, C, G or U. We can capture these 

effects in our model by assigning an extra bias to the 2-way junctions of those sequences where 

noncanonical base pair or stacking can add stability to the chain. The bias is applied to every 2-way 

junction regardless of size primarily to account for the propensity of stacking a N nucleotide against either 

of the helices on the junction. To easily ascertain these effects, the results in Fig. 7 are reported as a 

function of this bias 𝜇2/𝑅𝑇, where 𝜇2 is a chemical potential imposed on each 2-way junction. Negative 

value adds a bonus, and positive value assesses a penalty. Approximate values of the bias for N = G, A, 

U and C are indicated on the top of Fig. 7.  

      In the limit where 2-way junctions are very stable (left side of Fig. 7), the structures are dominated by 

a large number of helices and 2-way junctions but very few hairpins or bridges. This suggests that the 
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ensemble is characterized by closed and compact structures. These conformations correspond to the 

“necklace” diagrams in Fig. 6 that we have discussed in Materials and Methods. 

      Turning to the right side of Fig. 7, in the limit of a large bias imposed against the formation of 2-way 

junctions, the solutions correspond to the “bubble” diagrams in Fig. 6 and they are the hairpin-capped 

counterpart of the lei diagrams. They have almost as many bridge segments as hairpins but the number 

of helices is far from the theoretical maximum of 30. These chains are therefore largely open, and they 

are dominated by the entropies of the loop segments. Results from Fig. 7 suggest that noncanonical base 

pairs or favorable stacking of the N nucleotide within the junctions can produce a significant effect on the 

conformations of (CNG) repeats. The values of the bias 𝜇2/𝑅𝑇 used to generate the results in Fig. 7 

spans a range of only ~ 3.1 kcal/mol, but within this very narrow range, the structures in these ensembles 

vary drastically. 

      Fig. 8 shows a “phase diagram” summarizing all the findings from above, where variations in 

quadruplex stability from Fig. 5 are plotted along the vertical direction and variations in two-way junction 

stability from Fig. 7 are plotted along the horizontal direction. On this phase diagram, “(AGG)” and 

“(CGG)” indicate the approximate quadruplex stabilities in (AGG) versus (CGG) chains. Approximate 

values of the stability of 2-way junctions in (CNG) repeats for N = G, A, U and C are also indicated on the 

top of Fig. 8. Non-quadruplex-forming (CNG)60 repeat sequences occupy the center of this phase 

diagram, with most of their structures dominated by the 1+2 and bubble diagrams illustrated in Fig. 6, 

which are semi-open structures. A minor fraction of the ensemble is also made up of necklace structures, 

which are closed and compact. These results point to the existence of many potential structures of similar 

prevalence with contributions from both open and compact structures. Though crystallographic data of 

(CNG) repeats suggest the dominance of hairpin structures (32, 38, 38, 41), it leaves the question of how 

an ensemble of diverse structures could be detected in solution. Techniques such as small-angle X-ray 

scattering (SAXS) (60–63), UV melting (64), and Forster resonance energy transfer (FRET) (65) can all 

be used to probe the solution structure of RNA. While the use of thermodynamic data of Sobczak et al. 

(36) does provide a point of contact between the calculated free energies and experimental 

measurements, the ensemble predicted by our results is diverse enough that a one-to-one 

correspondence to specific structure(s) revealed by experiments is unlikely. Also important is that 

multiway junctions seem to be of low abundance because higher branching costs more entropy according 

to data in Table 1, so while multibranch structures higher than three-way can be included in the 

calculations, they are not likely to alter the results significantly. 
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Figure 8. 
A “phase diagram” summarizing the results from Fig. 5 and 7. The horizontal axis indicates 2-way junction stability, 

and the vertical axis quadruplex stability. Phases that have been identified by the calculations are labeled. See 

Fig. 6 for their graphical representations. Phase boundaries are approximate. Star shows position for which the 

scaling analysis in Fig. 9 was carried out.  

 

      The conformational ensembles are functions of the repeat length. This repeat length dependence is 

illustrated in Fig. 9 for a point on the phase diagram marked by the star in Fig. 8. Fig. 9(a) shows 

divergence of the partition function 𝑍(𝜆) when 𝜆 approaches the singular point 𝜆𝑐.The slope is ~ −1, 

suggesting that it is a simple pole. This result is expected because this problem is isomorphic to the 

enumeration all paths from the 5’ to 3’ end of the chain on the space the folding problem is embedded, 

and generating functions of paths all have the same dominant singularity, which is a simple pole (66). The 

scale on the top of Fig. 9(a) shows the average repeat lengths ⟨𝑛⟩ for each 𝜆, and repeats lengths 

approximately > 60 appear to be in the scaling region. Fig. 9(b) shows how each of the features as a 

fraction of the repeat length varies as a function of 𝜆, again with the scale on the top mapping ⟨𝑛⟩ to 𝜆. 

Short repeats and long repeats have very different structural compositions, and the crossover appears to 

occur between 30 to 60 repeats. Note that in the scaling limit, there are almost equal densities of bridges,  

hairpins and two-way junctions on the chain, and the ensemble is dominated by largely open structures. 
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Figure 9. 
(a) Divergence of the partition function 𝑍(𝜆) when 𝜆 approaches the singular point 𝜆𝑐. The scale on the 

top shows the average repeat lengths ⟨𝑛⟩ for each 𝜆. (b) Structural features as a fraction of the repeat 

length as a function of λ. The scale on the top maps ⟨𝑛⟩ to λ. Short repeats and long repeats have very 

different structural compositions, and the crossover appears to occur between 30 to 60 repeats. 

 

      Finally, since there is a significant discrepancy between the stability of the GC|CG duplexes predicted 

by NNDB compared to experimentally-derived results collected specifically from (CNG) repeat 

sequences, we want to know to what extent the stability of the duplexes may have on the computed 

results. Fig. 10 shows the structural characteristics of (CNG)60 as a function of a bias placed on the 

helices, more stable to the left, less stable to the right. Toward the right, as the helices become less 

stable, they are displaced by quadruplexes, which are the only structures other than helices that can cap 

the end of a branch. These map to the lei diagrams in Fig. 6. Toward the left, as the helices become more 

stable, they seed an increasing number of two- and three-way junctions in favor of hairpins. The resulting 

structures correspond to the necklace and “three-way tree” structures in Fig. 6. Notice that −3𝑅𝑇 on the 

left edge of Fig. 10 corresponds to only -1.8 kcal/mol of extra stability, and this small difference produces 

a significant change in structural compositions. Therefore, a more accurate experimental assessment on 

the thermodynamic stability of the GC|CG duplexes may be important for understanding (CNG) repeat 

structures. 
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Figure 10. 
Ensemble averages of features computed for a (CNG)60 repeat as a function of extra stability added to 

each helix (favorable on the left, unfavorable on the right). 

 

 

CONCLUSION 

      We have formulated a diagrammatic theory to study the conformational ensembles of (CNG)n RNA 

sequences. Transcripts of overexpanded microsatellites on the genome containing 60 to 100 (CNG) 

repeats have been implicated in a number of neurological diseases known as TREDs. To understand the 

structures of these (CNG) repeat sequences, we performed a series of calculations aimed at 

characterizing their equilibrium ensembles. With a diagrammatic representation of the partition function, 

our calculations are based on using graphs to annotate structural motifs on the chains, and in conjunction 

with evidence from previous simulation studies, these diagrammatic representations allowed us to easily 

factorize the graphs in order to re-express the free energy of each configuration as a sum of independent 

terms. Using generating function mathematics and diagrammatic re-summation techniques, we were able 

to derive a closed-form expression for the partition function in terms of a renormalized root function, which 

is the diagrammatic equivalence of the sum over all self-contained circuit diagrams. Employing a simple 

approximation for this root function, we derived analytical expressions for the partition function and its 

corresponding thermodynamic observables. Including hairpins, 2- and 3-way junctions, helices and 

quadruplexes in the root function, the partition function captures an infinite set of conformations with any 

number and any combination of these structural elements. Together with simulation data from a self-

consistent library of entropic costs previously obtained for the various graph elements, as well as 
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experimentally derived free energies for the helices and quadruplexes, we solved the resulting equations 

to arrive at numerical estimates for the ensemble expectation values of the number of structural features 

on the chain, including bridges, hairpin loops, 1-, 2- and 3-way junctions and quadruplexes. This enabled 

us to quantitatively characterize the structural diversity of different (CNG)n ensembles. 

      While most studies in the field have implicitly assumed that the ensemble of a (CNG)n sequence is 

dominated by a single structure having the maximal number of paired bases forming duplexes interposed 

by 2-way junctions between them, the results of this study suggest otherwise (27, 35, 36, 38, 39). The 

data show that the structural ensembles of (CNG)n repeat sequence with n ~ 60 are surprisingly diverse. 

The equilibrium number of duplexes, hairpins, junctions, bridges and quadruplexes on these sequences 

indicate that their secondary structure contents are far from the expected maximally paired conformation. 

To the contrary, the ensemble is dominated by a mixture of open and compact structures. We have 

mapped out the resulting structures as a function of the ability of the N nucleotide (N = A, C, G or U) in 

(CNG) repeats to make noncanonical pairs, as well as their ability to sustain stable quadruplexes. The 

“phase diagram” that emerges shows a diversity of different structures across this parameter space, 

demonstrating that ensembles of (CNG) repeat sequences can potentially contain many alternate 

conformations. The results show how perturbations in the form of biases on the stabilities of the various 

structural motifs - duplexes, junctions, hairpins and quadruplexes - could affect the secondary structures 

of the chains in either directions and how these structures may switch when they are perturbed, e.g. when 

they interact with or bind other molecules. This may in turn have implications on how these (CNG)n 

sequences could acquire unintended functions in the cell, leading to their cytotoxicity. 
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