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A B S T R A C T   

The extension of Phase-based Video Motion Magnification into three-dimensions is presented in this work. The 
technique uses a 3D complex steerable pyramid to decompose volumetric frames of 4D dataset. The resulting 
decomposition can be processed to filter, amplify, or attenuate subtle motions occurring locally within the 4D 
data, before inversion of the transform is performed to recreate the volumetric images. Recent research has used 
Phase Based Video Motion Magnification to extract subtle motion from 2D slices of internal deformation data. 
This work demonstrates how Phase Based Video Motion Magnification can be extended to work on full volu
metric images to extract full 3D volumetric motions. The Volumetric Motion Magnification technique is 
demonstrated qualitatively, to amplify and extract the indiscernible motion of a cylinder for visual identification. 
Then, the ability of the technique to enhance the motion noise floor of Digital Volume Correlation by more than a 
factor of 10 is demonstrated.   

1. Introduction 

The study of structural deformation has been advanced in the past 
decade by the adaptation of optical motion measurement techniques to 
perform noncontact and full-field motion measurements. A major limi
tation of camera-based structural displacement measurement tech
niques is the necessity to maintain line of sight between cameras and the 
points of interest. For this reason, it is difficult or impossible to perform 
motion measurements of components internal to a structure. The ma
jority of the dynamics in complicated structures occur out of line of 
sight, and often in locations inaccessible to traditional instrumentation. 
Because of this limitation, an increasing area of research involves using 
non-optical electromagnetic imaging to capture internal structural 
characteristics over the full volume, which changes over time. In this 
way, noncontact motion measurements of otherwise inaccessible 
structures are obtainable. 

Complicated machines often have large numbers of tightly packaged 
components with unique structural behavior. For example, circuit 
boards buried in the heart of an assembly often fail due to vibration that 
is difficult to study experimentally in situ. These problems demand a 
volumetric imaging and motion analysis approach. This paper repre
sents an additional tool for the analysis of subtle internal dynamics 
through volumetric imaging. 

Volumetric Motion Magnification (VMM) is an extension of Phase- 
Based Video Motion Magnification (PBVMM) for use on full volumes 

sampled over time [1]. PBVMM is a technique using a complex steerable 
pyramid to extract spatially local motion at various spatial frequencies 
in the form of filter phase responses, within a video. The extracted filter 
phases are then filtered and amplified to create a new video with altered 
motion. PBVMM has been shown to have excellent noise handling 
characteristics and an outstanding ability to extract extremely subtle 
motion from video [2–5]. 

A large number of improvements and extensions to PBVMM have 
been made since its development in 2013. The focus of these de
velopments has been in a number of areas. First, extensive work has 
gone into the amplification of subtle motion in the presence of large 
motions [6–8] for system dynamics identification. Second, computa
tional efficiency of PBVMM has been explored through use of sophisti
cated filtering techniques [9–10]. And third, the ability to accurately 
reconstruct the video with the true subtle motion has been handled by 
work on improving artifact generation and noise handling of the 
PBVMM filters [11–12]. 

The application of PBVMM has become popular in the field of 
structural dynamics due to its promise to extract subtle motion from 
video with a lower noise floor than other algorithms commonly 
employed for video motion measurement in structural dynamics, such as 
Digital Image Correlation (DIC) or edge detection [13–15]. PBVMM has 
been applied as a preprocessing step in the extraction of structural 
motion using another optical flow algorithm because of its ability to 
improve the noise floor of the measurement by amplifying motion that is 
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below the noise floor of the final motion estimation algorithm [16]. This 
paper will give an explanation for why a noise floor improvement is 
achieved. Preprocessing video with PBVMM prior to DIC has been used 
on a several structures including wind turbine blades and rocket nozzels 
[16–18]. PBVMM has also been employed to study 3D motions using 
stereophotogrammetry [19–20]. In this case, PBVMM is applied to the 
output of the camera pair used for stereophotogrammetry prior to 
disparity calculations between each camera’s images. 

The noncontact study of internal volumetric motions has been widely 
used in the biomedical field with X-Ray Computed Tomography (CT) 
and Magnetic Resonance Imaging (MRI) to capture images of the heart 
and other organs deforming over time [21–22]. The adaption of these 
imaging techniques to other fields has led to the development of 
specialized algorithms for the extraction of motion from the volumetric 
images generated by these techniques. For use with CT, Digital Volume 
Correlation (DVC) an extension of DIC into 3D has been developed, and 
found widespread use in the study of material properties of composite 
structures [23–25]. DVC has been grown from developments in 2D DIC, 
with many of the improvements made in 2D algorithms, being gener
alized to the higher dimensional DVC case [44,45]. The special ability of 
MRI to tag volumes with spatially varying sinusoidal magnetic patterns 
has led to the development of the Harmonic Phase Algorithm (HARP) 
which tracks spatial motion of the induced patterns [26]. This technique 
is primarily used to study heart and brain motions [27–29]. Addition
ally, direct phase-based motion measurement has been develeoped for 
2D external structural measurments, using sinusoidal patterning, in a 
process similar to HARP [30]. PBVMM has been applied to look at subtle 
motion of the brain during impacts, with 2D video slices taken from 
volumes captured using MRI and ultrasound [31–32]. The desire to 
capture high speed internal events has led to the development of Echo 
MRI which can capture an MRI volume in 50 ms, and has allowed for the 
study of rapid deformations of the brain using HARP [33–34]. Also, the 
technique of Multi-Sector CT has allowed for the study of periodic mo
tions with effective sampling periods that have the potential to approach 
1 ms for regularly repeating motion without significant phase noise 
[35]. 

The use of PBVMM to study internal slices from MRI and ultrasound 
images in [31,32] along with the continued application of volumetric 
imaging to medical images [33,34] shows a clear need for VMM in the 
field of internal motion anlaysis. Since PBVMM is a useful tool for 
enhancing motion extraction in these applciations, the ability to analyze 
the full volume with VMM will be benifitial to this type of research. 

Part of the novel contribution of this work is the development of the 
3D complex steerable pyramid, which is a 3D phase-based motion esti
mation technique. Prior work on 3D phase-based motion estiamtion has 
focused primarily on the use of Gabor transforms for motion estimation 
[46,47,48]. No attempts have been made to use a 3D complex steerable 
pyramid for volumetric motion estimation, as in this work. The 2D 
complex steerable pyramid and other localized phase extraction filters 
have been used in multiple sources for motion estiamtion in video 
[49–51]. 

In mechanical engineering, internal motion measurement using x- 
ray imaging and DVC is a growing field particularly for material science. 
Material characterization and compononent deformation has been 
measured with DVC in order to obtain full volume material dynamic 
behavior [40–41]. Additionally, the technique of X-Ray stereo imaging 
has been explored to capture internal 3D images of a structure and the 
associated dynamics of internal components [42]. 

VMM has the potential to build alongside these volumetric imaging 
and analysis tools to improve the extraction of subtle internal motion 
leveraging the volume image acquisition tools and the volumetric mo
tion measurement tools that have been developed in the past. The 
technique presented in this paper is a novel method for analyzing 3D 
motion. The new approach represents an original extension of Phase- 
based Motion Magnification, which improves upon the state of the art 
in digital volumetric motion measurement with an order of magnitude 

lower motion noise than DVC. The effectiveness of VMM is compared to 
DVC and demonstrated both qualitatively and quantitatively on a 
representative volumetric structures. 

Following this introduction, the paper is organized with a back
ground, presenting relavent theory and the authors’ contribution to the 
theory. Then a qualitative demonstration of the proposed technique for 
the visualization of subtle volumetric motion is presented. Next a 
quantitative demonstration of the VMM algorithm for the measurement 
of subtle motion when paired with DVC is shown. Finally, conclusions 
and future work are provided. 

2. Background 

2.1. Three-dimensional complex steerable pyramid 

VMM makes use of a three-dimensional steerable pyramid based on 
the 2D steerable pyramid presented by Simoncelli et al. [36]. The 2D 
steerable pyramid creates a filter bank of localized orthogonal complex- 
valued filters by subdividing the Fourier spectrum in bands of orienta
tion and frequency. Fig. 1, shows the idealized steerable pyramid for 
octave subdivisions in frequency and 4 orientations of filters. 

The steerable pyramid in Fig. 1 can be extended to 3D space, using 
the same rules as for the 2D case. The filters remain related by rotations, 
dilations, and translations, with the 3D cases using an additional rota
tion direction to describe the filters. Fig. 2 shows a cutaway of the 3D 

Fig. 2. The idealization of a complex steerable pyramid in 3 dimensions. The 
filters shown here are constructed with 4 orientations in each direction of ro
tations and octave bandwidth in the radial frequency direction. Low pass re
sidual at the origin and high pass residual surrounding the shell of bandpass 
filters (dark blue). 

Fig. 1. The idealized filters of the complex steerable pyramid. The filters shown 
here are constructed with octave bandwidth in the radial frequency direction 
and 4 orientations. 
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Fourier domain overlaid with the idealized filters of the 3D complex 
steerable pyramid. 

The filters used to create the 3D complex steerable pyramid in this 
work follow the same criteria set in [35].  

i) Band limiting (to prevent aliasing in the sub sampling operation): 

L1(ω) = 0for|ω| >
π
2    

ii) Flat System Response: 

|H0(ω) |
2

+ |L0(ω) |
2[

|L1(ω) |
2

+ |B(ω) |
2 ]

= 1    

iii) Recursion: 

|L1(ω/2) |
2

= |L1(ω/2) |
2[

|L1(ω) |
2

+ |B(ω) |
2 ]

where H0and L0are high and low pass filters which pre-process the 
system, L1 is a recursively down sampled low pass filter, and B is a radial 
mask function. 

These rules serve as the template for defining the octave bandwidth 
complex steerable pyramid. By selecting a 3D filter set that satisfies 
these properties, the 3D complex steerable pyramid can be created with 
the same properties as the steerable pyramid of Simoncelli and 
Freedman. This filter bank is used in the VMM process to extract local 
phase information from volumes. 

To approximate the 3D filters which follow these rules, we use a 
raised cosine similar to that employed in [1] to better approximate a 
Gaussian curve. 

2.2. Phase-based motion magnification 

This work is a dimensional extension of PBVMM and as such the 
notation in deriving the theory will be consistent with those in [1]. 

Phase-Based Motion Magnification uses the response of the complex 
steerable pyramid to extract motion information based on the Fourier 
Shift Theorem, the principle that displacement of a signal is proportional 
to the phase output of the Fourier filter. Wadhwa et al. [1] demonstrates 
this principle in Equation (1) for the case of a Gaussian envelope with 
standard deviationσ, showing that the envelope shape does not affect the 
phase of the impulse response Sω(x, t)of the filter, and as such the 
calculation of phase under the filter is proportional to motionδ(t). 

Fig. 3. DVC subpixel motion measurement process. On the right, X(t) is the reference image, Y(τ) is the translated image at time t+τ, R is the cross power spectrum, r 
is the normalized cross correlation, φint is an interpolation kernel, k is the number of discrete sample points in the image dimension q. 

Fig. 4. Work flow diagram of volumetric motion magnification. First, a sequence of sequentially deforming volumetric images is collected. Second, each image is 
filtered by the complex steerable pyramid. Third, the phase of the complex response from the CSP is filtered. Finally, the modified phase information is used in the 
inverse CSP to construct a new volumetric image sequence with modified motion. 
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Sω(x, t) = e−(x−δ(t) )2/(2σ2)e2πi(x−δ(t) ) (1) 

The phase can then be processed over time by filtering or modula
tion, to separate, amplify, and attenuate motion present within an image 
sequence. This process produces a new imaginary filter response Ŝwith 
displacement modulated by (1 + α): 

Ŝω = eiω(x+(1+α)δ(t)) (2)  

where (1 + α) is the magnification coefficient. 
In reality, the filters used for motion magnification from the complex 

steerable pyramid are defined with a flat system response, not a 
Gaussian. If the filters used in the complex steerable pyramid do not 
have a linear phase impulse response, the resulting frequency dependent 
phase delay of the filter will result in phase response of the filter not 
being perfectly proportional to the true motion. This means that if the 
filter is not linear-phase, the motion isn’t guaranteed to be linearly 
separable from the filter response by its phase magnitude. 

The 3D complex steerable pyramid is applied as a simple convolution 
between a volumetric image and the bank of pyramid filters described 
above. The response of each filter is stored as the localized, oriented, 
complex response to the spatial filter applied. The differences in these 
filter responses between sequentially deformed images, reveals motion 
in proportion to phase change. 

Fig. 5. The visualization of otherwise invisible subtle motion using VMM. The 
data set shown is the artificial modal motion of a cylinder with surface defor
mation given by equation (16). a) The exaggeration of the subtle motion of the 
test data, A = 3pixels. b) The true motion of the test data, A = 1

100pixels. c) The 
result of applying VMM to the subtly deforming data of (b). VMM Parameters: 
300x phase amplification, complex steerable pyramid built with half-octave and 
10 orientations in each direction. 

Fig. 6. The first frame of the generated data set used for a DVC test of VMM. a) 
One frame of the volumetric test data. A cube made of spatially-band-limited 
noise embedded in a larger volume of visually opaque material. b) The cross 
section of the volume through the central x-y slice. 

Table 2 
Description of the test conducted to demonstrate the ability of VMM to quali
tatively extract subtle motion alongside DVC.  

Case Case Description Figure 

1 DVC is applied to the internally moving cube of Fig. 5 with motion 
defined by Table 1. 

6 

2 The results of DVC shown in Fig. 6 are band pass filtered around F 
= 0.2π rad/sample.  

7 

3 VMM is applied to the data set with 1200x phase magnification, 
and band pass filter around F = 0.2π rad/sample. DVC is then 
applied to the VMM result. Finally, the DVC results are band pass 
filtered around F = 0.2π rad/sample.  

8  

Table 1 
The motion applied to the internal cube.  

Applied Motion 

X-Motion 1
2

sin
2πt
64

+
1

1000
sin

2πt
10  

Y-Motion 3
4

cos
2πt
64

+
1

1000
cos

2πt
10  

Z-Motion sin
2πt
64

+
1

1000
cos

2πt
10   
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This section presents the basic processes of phase-based motion 
magnification. It describes how the phases derived from the complex 
steerable pyramid filtering of an image are modified to generate motion 
magnified images. 

2.3. Digital volume correlation 

A focus of this work is the use of VMM as a pre-processing step for 
volumetric digital motion measurement algorithms. Digital volume 
correlation (DVC) is a robust and well-validated volumetric motion 
measurement tool popular for the study of deformable bodies. DVC uses 
subpixel interpolation of a normalized 3D cross-correlation to derive 
relative motion between volumes over time. The DVC algorithm is 
outlined in Fig. 3. 

Many other interpolation schemes can be used to estimate the sub
pixel displacement at a location including iterative approaches and 
linear kernel based interpolation [37]. 

3. Discussion 

In this section, Video Motion Magnification is demonstrated on 
synthetic 4D data. Two separate tests are conducted to illustrate the 
effectiveness of the technique and the feasibility applied to enhance 
VMM. First, a qualitative example is shown on how VMM can be applied 
to visualize the subtle deformation of a 3D cylinder animated with 
subpixel modal deformations. Second, VMM is demonstrated as a tool 
for preprocessing a volume sequence prior to performing DVC in order to 
extract motion otherwise below the DVC noise floor. 

VMM is applied to a sequence of images following the work flow of 
Fig. 4. 

3.1. Qualitative visualization of subtle modal motion 

A cylinder was generated in slices by rotation of a line about an 
endpoint to create a stack of circles. Over time stepst, the radius of each 
slice’s circle was altered by interpolation based on vertical position z 
within the data set and time, so that the change in radius Δr of the 
cylinder was defined over time by 

Δr(z, t) = Acos
(

2πt
10

)

sin
(

2πz
L

)

(16)  

where Aisthemaximumamplitudeof the induced motion, L is the length of 
the cylinder, and t = 1,2,3⋯ 

A test structure was created using the defined normal modal motion 
of Equation (16) with A = 0.01pixels over 12-time steps. VMM was then 
applied to this data-set and the phase was amplified 300 times to pro
duce a new 4D data set with easily visualizable motion. Fig. 4 shows 
montages of: (a) the 300x exaggerated motion of the volume (what the 
data is really doing but exaggerated 300x for visualization), (b) The true 
motion over time with A = 0.01pixel, (c) The results of applying 300x 
VMM to the subtle motion data. 

Qualitatively, the VMM results contain the spatially smoothed de
formations that were applied in the artificial data set. The use of VMM in 
this case allows for the visual identification of subtle motions that are 
otherwise invisible in the raw data. Visible within Fig. 4c) are artifacts 
located at regions of largest displacement, resulting from filter ringing 
and spectral truncation as in PBVMM. 

3.2. Quantitative enhancement of the DVC noise floor using VMM 

A second test was conducted to demonstrate how VMM can be 
applied to a 4D data set in order to filter and increase the magnitude of 
subtle motion in the data, so it can be measured with DVC. DVC in this 
test is performed using the freely available and state-of-the-art algorithm 
of [37]. By using this algorithm for comparison with VMM, it can be seen 
how well VMM performs relative to the current state of the art in DVC. 

To emulate a tumor moving within a body, a cube of band-limited 
noise was embedded within a larger cube of constant intensity. A sin
gle volumetric frame of this data is shown in Fig. 5 along with a cross 
section of the volume. 

Fig. 7. Case 1: DVC is applied to the internally moving cube of Fig. 5 with 
motion defined by Table 1. The NRMSE for the x-y-z motion is also shown. (a) 
The orbit of the cube measured with DVC against the applied motion. (b) The 
time series of the x-y-z motion measured with DVC compared against the 
applied motion. (c) The x-y-z motion measured with DVC in the fre
quency domain. 
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Fig. 8. Case 2: The results of DVC shown in Fig. 6 are band pass 
filtered around F = 0.2π rad/sample. The goal of this is to extract 
the subtle motion at this frequency from the DVC results. (a) The 
orbit of the cube measured by filtering the DVC results against the 
filtered applied motion. (b) The time series of the x-y-z motion 
measured by filtering the DVC results, compared against the filtered 
applied motion. (c) The comparison of (b) in the frequency 
domain. The results show that the subtle high frequency content of 
the motion was not captured by DVC. Instead, because the motion 
was below the DVC noise floor, only band limited noise is obtained 
in the process.   
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The internal cube was then translated over time using spatial linear 
interpolation in 3 dimensions with the motion described in Table 1 to 
produce 256 frames of 3D data with internal deformation. Finally, 1% 
uniformly distributed spatial noise was added to the 4D data to simulate 
measurement error. This noise level is selected to be representative of 
extreme noise levels seen in MRI volumes [31,52]. 

The data set described was analyzed with DVC and VMM in the 3 test 
cases described in Table 2. The goal of these tests is to extract the subtle 
x-y-z motion at F = 0.2π rad/sample, applied to the internal cube by 
Table 1. 

The results are compared statistically based on the amplitude 
normalized root mean square error (NRMSE), defined here. The NRMSE 
is displayed on plot (a) of each of the following Figs. 6-8 to give a 
comparable measure of accuracy, between the test cases. Fig. 9. 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ [

xapplied − xmeasured
]2

√

⃒
⃒max

(
xapplied

)
− min

(
xapplied

)⃒
⃒

(17) 

The DVC Results of test case 1 were then band pass filtered around F 
= 0.2π rad/sample in an attempt to extract the subtle high frequency 
component of the applied motion, using a 3-pole Butterworth filter with 
poles at 0.15πand0.25πrad/sample. The last 40 points of the data are 
shown in Fig. 6, leaving out the transients induced by the filter on the 
short time series. 

Fig. 7 shows that the noise floor of the DVC for this data is in the 
region of a 10th of a pixel, an order of magnitude above motion at the 
normalized frequency of 0.2π radians/sample. This noise floor makes it 
impossible for DVC to capture the subtle motion of interest by itself. 

The next step (Case 3) was to apply VMM to the data set prior to 
performing DVC. The data set was decomposed into the 3D complex 
steerable pyramid, and the resulting phases were filtered using the same 
3-pole Butterworth filter with poles at 0.15πand0.25πrad/sample, then 
magnified by a factor of 1200. The pyramid was inverted and the result 
was analyzed with DVC. Finally, the DVC result was filtered again by the 
same 3-pole Butterworth filter described. The results of this procedure 
are shown in Fig. 8. Again, the last 40 data points are shown, leaving out 
the preceding data heavily corrupted by filter transients. 

The results of Fig. 8 show a significant improvement in the ability to 
extract the subtle motion of interest from the 4D data of the internally 
moving cube. Overall, an order of magnitude improvement in noise floor 
is achieved between test Case 2 and test Case 3. This shows that VMM is 
an effective tool for the extraction and quantification of subtle volu
metric motion. Using the presented technique, we were able to reduce 
the NRMSE of the subtle motion extracted with DVC from over 300% to 
less than 10%. This result represents an order of magnitude improve
ment in error, and demonstrates how VMM is able to lower the noise 
floor of digital volumetric motion measurement from DVC’s current 
state of the art. This is a considerable improvement that has the potential 
to open up previously under studied levels of internal motion and has the 
potential to be applied to a wide range of applications (e.g. biomedical 
imaging and dynamic material characterization). 

4. Conclusion 

This work develops Volumetric Motion Magnification, a novel 
extension of Phase-based Motion Magnification into three-dimensions. 
The effectiveness of Volumetric Motion Magnification is demonstrated 
both qualitatively and quantitatively for the extraction of subtle internal 
localized volumetric motion. The technique is demonstrated to be 
capable of extracting motion alongside Digital Volume Correlation with 
a noise floor an order of magnitude better than with Digital Volume 
Correlation alone. 

The main limitations of VMM are first, acquiring 4D data is expen
sive, time consuming, and produces data with poor time resolution. 
VMM is also limited in the same ways as PBVMM, computation times can 
be excessive (running into multiple days on a desktop computer), with 
large data sets of many gigabytes and similarly sized filter banks. Also, 
VMM suffers from generation of artifacts and degradation of recon
structed images due to the filtering process. Despite of the aforemen
tioned limitations of VMM, the proposed approach has shown to be an 
effective algorithm to greatly enhance the state of the art in subtle 
volumetric motion extraction. 

Fig. 9. Case 3: VMM is applied to the data set with 1200x phase magnification, 
and band pass filter around F = .2πrad/sample. DVC is then applied to the VMM 
result. Finally, the DVC results are band pass filtered around F = .2πrad/sample. 
The motivation is to use VMM to improve the motion amplitude and SNR of 
DVC so the subtle motion can be measured. (a) The orbit of the cube measured 
using VMM and DVC, compared against the exaggerated filtered applied mo
tion. (b) The time series of the x-y-z motion measured using VMM and DVC, 
compared against the exaggerated filtered applied motion. (c) The comparison 
of (b) in the frequency domain. This example shows how VMM can be used to 
preprocess a 4D data set prior to DVC in order to filter and extract subtle motion 
that is otherwise buried within the DVC noise floor. 
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In the future, analysis of real volumetric images is a desired exten
sion of this work, yet the biggest challenge for the application of the 
VMM algorithm to real data is the determination of appropriate time 
filters and modulation factors for the data set being examined. In the 
demonstration shown in this paper where motion properties are known, 
the selection of filters and amplification is relatively less challenging. 
For the case of the real 4D data set, the problem is more complicated. 
One possible solution is the use of additional contact sensors for the 
capture of motion frequency. For instance, an accelerometer placed on 
the casing of a structure of interest could reveal a power spectrum of 
vibration, which may be leveraged as a starting point for filter design. At 
this time, VMM will require an iterative approach to the estimation of 
amplification and filter parameters for the effective analysis of real 
world data. 

Overall, this work develops a powerful new tool for the study of 
internal motion. The advent of VMM will allow the study of subtle 
motions that are impossible to detect or measure with the state of the art. 
VMM is a novel development that has the potential to open new avenues 
of internal dynamics material research. 
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