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The extension of Phase-based Video Motion Magnification into three-dimensions is presented in this work. The
technique uses a 3D complex steerable pyramid to decompose volumetric frames of 4D dataset. The resulting
decomposition can be processed to filter, amplify, or attenuate subtle motions occurring locally within the 4D
data, before inversion of the transform is performed to recreate the volumetric images. Recent research has used
Phase Based Video Motion Magnification to extract subtle motion from 2D slices of internal deformation data.

This work demonstrates how Phase Based Video Motion Magnification can be extended to work on full volu-
metric images to extract full 3D volumetric motions. The Volumetric Motion Magnification technique is
demonstrated qualitatively, to amplify and extract the indiscernible motion of a cylinder for visual identification.
Then, the ability of the technique to enhance the motion noise floor of Digital Volume Correlation by more than a

factor of 10 is demonstrated.

1. Introduction

The study of structural deformation has been advanced in the past
decade by the adaptation of optical motion measurement techniques to
perform noncontact and full-field motion measurements. A major limi-
tation of camera-based structural displacement measurement tech-
niques is the necessity to maintain line of sight between cameras and the
points of interest. For this reason, it is difficult or impossible to perform
motion measurements of components internal to a structure. The ma-
jority of the dynamics in complicated structures occur out of line of
sight, and often in locations inaccessible to traditional instrumentation.
Because of this limitation, an increasing area of research involves using
non-optical electromagnetic imaging to capture internal structural
characteristics over the full volume, which changes over time. In this
way, noncontact motion measurements of otherwise inaccessible
structures are obtainable.

Complicated machines often have large numbers of tightly packaged
components with unique structural behavior. For example, circuit
boards buried in the heart of an assembly often fail due to vibration that
is difficult to study experimentally in situ. These problems demand a
volumetric imaging and motion analysis approach. This paper repre-
sents an additional tool for the analysis of subtle internal dynamics
through volumetric imaging.

Volumetric Motion Magnification (VMM) is an extension of Phase-
Based Video Motion Magnification (PBVMM) for use on full volumes
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sampled over time [1]. PBVMM is a technique using a complex steerable
pyramid to extract spatially local motion at various spatial frequencies
in the form of filter phase responses, within a video. The extracted filter
phases are then filtered and amplified to create a new video with altered
motion. PBVMM has been shown to have excellent noise handling
characteristics and an outstanding ability to extract extremely subtle
motion from video [2-5].

A large number of improvements and extensions to PBVMM have
been made since its development in 2013. The focus of these de-
velopments has been in a number of areas. First, extensive work has
gone into the amplification of subtle motion in the presence of large
motions [6-8] for system dynamics identification. Second, computa-
tional efficiency of PBVMM has been explored through use of sophisti-
cated filtering techniques [9-10]. And third, the ability to accurately
reconstruct the video with the true subtle motion has been handled by
work on improving artifact generation and noise handling of the
PBVMM filters [11-12].

The application of PBVMM has become popular in the field of
structural dynamics due to its promise to extract subtle motion from
video with a lower noise floor than other algorithms commonly
employed for video motion measurement in structural dynamics, such as
Digital Image Correlation (DIC) or edge detection [13-15]. PBVMM has
been applied as a preprocessing step in the extraction of structural
motion using another optical flow algorithm because of its ability to
improve the noise floor of the measurement by amplifying motion that is
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below the noise floor of the final motion estimation algorithm [16]. This
paper will give an explanation for why a noise floor improvement is
achieved. Preprocessing video with PBVMM prior to DIC has been used
on a several structures including wind turbine blades and rocket nozzels
[16-18]. PBVMM has also been employed to study 3D motions using
stereophotogrammetry [19-20]. In this case, PBVMM is applied to the
output of the camera pair used for stereophotogrammetry prior to
disparity calculations between each camera’s images.

The noncontact study of internal volumetric motions has been widely
used in the biomedical field with X-Ray Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI) to capture images of the heart
and other organs deforming over time [21-22]. The adaption of these
imaging techniques to other fields has led to the development of
specialized algorithms for the extraction of motion from the volumetric
images generated by these techniques. For use with CT, Digital Volume
Correlation (DVC) an extension of DIC into 3D has been developed, and
found widespread use in the study of material properties of composite
structures [23-25]. DVC has been grown from developments in 2D DIC,
with many of the improvements made in 2D algorithms, being gener-
alized to the higher dimensional DVC case [44,45]. The special ability of
MRI to tag volumes with spatially varying sinusoidal magnetic patterns
has led to the development of the Harmonic Phase Algorithm (HARP)
which tracks spatial motion of the induced patterns [26]. This technique
is primarily used to study heart and brain motions [27-29]. Addition-
ally, direct phase-based motion measurement has been develeoped for
2D external structural measurments, using sinusoidal patterning, in a
process similar to HARP [30]. PBVMM has been applied to look at subtle
motion of the brain during impacts, with 2D video slices taken from
volumes captured using MRI and ultrasound [31-32]. The desire to
capture high speed internal events has led to the development of Echo
MRI which can capture an MRI volume in 50 ms, and has allowed for the
study of rapid deformations of the brain using HARP [33-34]. Also, the
technique of Multi-Sector CT has allowed for the study of periodic mo-
tions with effective sampling periods that have the potential to approach
1 ms for regularly repeating motion without significant phase noise
[35].

The use of PBVMM to study internal slices from MRI and ultrasound
images in [31,32] along with the continued application of volumetric
imaging to medical images [33,34] shows a clear need for VMM in the
field of internal motion anlaysis. Since PBVMM is a useful tool for
enhancing motion extraction in these applciations, the ability to analyze
the full volume with VMM will be benifitial to this type of research.

Part of the novel contribution of this work is the development of the
3D complex steerable pyramid, which is a 3D phase-based motion esti-
mation technique. Prior work on 3D phase-based motion estiamtion has
focused primarily on the use of Gabor transforms for motion estimation
[46,47,48]. No attempts have been made to use a 3D complex steerable
pyramid for volumetric motion estimation, as in this work. The 2D
complex steerable pyramid and other localized phase extraction filters
have been used in multiple sources for motion estiamtion in video
[49-51].

In mechanical engineering, internal motion measurement using x-
ray imaging and DVC is a growing field particularly for material science.
Material characterization and compononent deformation has been
measured with DVC in order to obtain full volume material dynamic
behavior [40-41]. Additionally, the technique of X-Ray stereo imaging
has been explored to capture internal 3D images of a structure and the
associated dynamics of internal components [42].

VMM has the potential to build alongside these volumetric imaging
and analysis tools to improve the extraction of subtle internal motion
leveraging the volume image acquisition tools and the volumetric mo-
tion measurement tools that have been developed in the past. The
technique presented in this paper is a novel method for analyzing 3D
motion. The new approach represents an original extension of Phase-
based Motion Magnification, which improves upon the state of the art
in digital volumetric motion measurement with an order of magnitude
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2D-Complex Steerable Pyramid

Fig. 1. The idealized filters of the complex steerable pyramid. The filters shown
here are constructed with octave bandwidth in the radial frequency direction
and 4 orientations.

3D-Complex Steerable Pyramid

Fig. 2. The idealization of a complex steerable pyramid in 3 dimensions. The
filters shown here are constructed with 4 orientations in each direction of ro-
tations and octave bandwidth in the radial frequency direction. Low pass re-
sidual at the origin and high pass residual surrounding the shell of bandpass
filters (dark blue).

lower motion noise than DVC. The effectiveness of VMM is compared to
DVC and demonstrated both qualitatively and quantitatively on a
representative volumetric structures.

Following this introduction, the paper is organized with a back-
ground, presenting relavent theory and the authors’ contribution to the
theory. Then a qualitative demonstration of the proposed technique for
the visualization of subtle volumetric motion is presented. Next a
quantitative demonstration of the VMM algorithm for the measurement
of subtle motion when paired with DVC is shown. Finally, conclusions
and future work are provided.

2. Background
2.1. Three-dimensional complex steerable pyramid

VMM makes use of a three-dimensional steerable pyramid based on
the 2D steerable pyramid presented by Simoncelli et al. [36]. The 2D
steerable pyramid creates a filter bank of localized orthogonal complex-
valued filters by subdividing the Fourier spectrum in bands of orienta-
tion and frequency. Fig. 1, shows the idealized steerable pyramid for
octave subdivisions in frequency and 4 orientations of filters.

The steerable pyramid in Fig. 1 can be extended to 3D space, using
the same rules as for the 2D case. The filters remain related by rotations,
dilations, and translations, with the 3D cases using an additional rota-
tion direction to describe the filters. Fig. 2 shows a cutaway of the 3D
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DVC Flow Diagram

Initialization

Reference Frame and Deformed
Frames are selected

A 4

Initialization

A 4

Full Pixel Shift Measurement
Normalized Cross Correlation
performed between reference
and deformed images

Full Pixel Shift Measurement

E[(Xe — tty) * (Veyr — 1ty)"]
[X]-1Y]

ny(T) =

A 4

A 4

Sub Pixel Shift Measurement
Interpolation of the Cross
Correlation Spectrum to
determine subpixel displacement

Sub Pixel Shift Measurement

r@ = ) k)

keZd

Fig. 3. DVC subpixel motion measurement process. On the right, X(t) is the reference image, Y() is the translated image at time t+7, R is the cross power spectrum, r
is the normalized cross correlation, ¢;, is an interpolation kernel, k is the number of discrete sample points in the image dimension q.

Fourier domain overlaid with the idealized filters of the 3D complex
steerable pyramid.

The filters used to create the 3D complex steerable pyramid in this
work follow the same criteria set in [35].

i) Band limiting (to prevent aliasing in the sub sampling operation):

Ly(0) = Ofor|o| > g

ii) Flat System Response:

Ho() |+ |Lo(@) [ [|1 (@) [* + |B(@) [ ] = 1

iii) Recursion:
ILi(@/2) [ = |Li(@/2) P [|Li (@) [+ |B(w) ]

where Hpand Loare high and low pass filters which pre-process the
system, L, is a recursively down sampled low pass filter, and B is a radial
mask function.

Volumetric
Data Sequence

Spatial Filtering Time Filtering and
Through 3D-CSP

These rules serve as the template for defining the octave bandwidth
complex steerable pyramid. By selecting a 3D filter set that satisfies
these properties, the 3D complex steerable pyramid can be created with
the same properties as the steerable pyramid of Simoncelli and
Freedman. This filter bank is used in the VMM process to extract local
phase information from volumes.

To approximate the 3D filters which follow these rules, we use a
raised cosine similar to that employed in [1] to better approximate a
Gaussian curve.

2.2. Phase-based motion magnification

This work is a dimensional extension of PBVMM and as such the
notation in deriving the theory will be consistent with those in [1].

Phase-Based Motion Magnification uses the response of the complex
steerable pyramid to extract motion information based on the Fourier
Shift Theorem, the principle that displacement of a signal is proportional
to the phase output of the Fourier filter. Wadhwa et al. [1] demonstrates
this principle in Equation (1) for the case of a Gaussian envelope with
standard deviations, showing that the envelope shape does not affect the
phase of the impulse response S,(x, t)of the filter, and as such the
calculation of phase under the filter is proportional to motions(t).

VMM
Processed

Modulation Data Sequence

gw — eim(x+a(t)r$(t))

Fig. 4. Work flow diagram of volumetric motion magnification. First, a sequence of sequentially deforming volumetric images is collected. Second, each image is
filtered by the complex steerable pyramid. Third, the phase of the complex response from the CSP is filtered. Finally, the modified phase information is used in the

inverse CSP to construct a new volumetric image sequence with modified motion.
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Fig. 5. The visualization of otherwise invisible subtle motion using VMM. The
data set shown is the artificial modal motion of a cylinder with surface defor-
mation given by equation (16). a) The exaggeration of the subtle motion of the
test data, A = 3pixels. b) The true motion of the test data, A = ﬁpixels. ¢) The
result of applying VMM to the subtly deforming data of (b). VMM Parameters:

300x phase amplification, complex steerable pyramid built with half-octave and
10 orientations in each direction.
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Table 1
The motion applied to the internal cube.

Applied Motion

X-Motion l sin 2_m . 1 sin 2_7rt
2764 1000 10

Y-Motion gms 2nt 4 1 cos 2t
464 1000 10

Z-Motion sinzﬂJr 1 cosz—m
64 1000 10

Table 2
Description of the test conducted to demonstrate the ability of VMM to quali-
tatively extract subtle motion alongside DVC.

Case  Case Description Figure
1 DVC is applied to the internally moving cube of Fig. 5 with motion 6
defined by Table 1.
2 The results of DVC shown in Fig. 6 are band pass filtered around F 7
= 0.27 rad/sample.
3 VMM is applied to the data set with 1200x phase magnification, 8

and band pass filter around F = 0.2z rad/sample. DVC is then
applied to the VMM result. Finally, the DVC results are band pass
filtered around F = 0.2z rad/sample.

Central Slice

Aysuaqu| |9xid

Fig. 6. The first frame of the generated data set used for a DVC test of VMM. a)
One frame of the volumetric test data. A cube made of spatially-band-limited
noise embedded in a larger volume of visually opaque material. b) The cross
section of the volume through the central x-y slice.

Sw ( X, l) — o) )2 / (20‘2) Q2i(=6(1)) o

The phase can then be processed over time by filtering or modula-
tion, to separate, amplify, and attenuate motion present within an image

sequence. This process produces a new imaginary filter response Swith
displacement modulated by (1 + a):

Ew — eiu)(x+(l+a)5(t)) (2)

where (1 + ) is the magnification coefficient.

In reality, the filters used for motion magnification from the complex
steerable pyramid are defined with a flat system response, not a
Gaussian. If the filters used in the complex steerable pyramid do not
have a linear phase impulse response, the resulting frequency dependent
phase delay of the filter will result in phase response of the filter not
being perfectly proportional to the true motion. This means that if the
filter is not linear-phase, the motion isn’t guaranteed to be linearly
separable from the filter response by its phase magnitude.

The 3D complex steerable pyramid is applied as a simple convolution
between a volumetric image and the bank of pyramid filters described
above. The response of each filter is stored as the localized, oriented,
complex response to the spatial filter applied. The differences in these
filter responses between sequentially deformed images, reveals motion
in proportion to phase change.
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Fig. 7. Case 1: DVC is applied to the internally moving cube of Fig. 5 with
motion defined by Table 1. The NRMSE for the x-y-z motion is also shown. (a)
The orbit of the cube measured with DVC against the applied motion. (b) The
time series of the x-y-z motion measured with DVC compared against the
applied motion. (¢) The x-y-z motion measured with DVC in the fre-
quency domain.

This section presents the basic processes of phase-based motion
magnification. It describes how the phases derived from the complex
steerable pyramid filtering of an image are modified to generate motion
magnified images.
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2.3. Digital volume correlation

A focus of this work is the use of VMM as a pre-processing step for
volumetric digital motion measurement algorithms. Digital volume
correlation (DVC) is a robust and well-validated volumetric motion
measurement tool popular for the study of deformable bodies. DVC uses
subpixel interpolation of a normalized 3D cross-correlation to derive
relative motion between volumes over time. The DVC algorithm is
outlined in Fig. 3.

Many other interpolation schemes can be used to estimate the sub-
pixel displacement at a location including iterative approaches and
linear kernel based interpolation [37].

3. Discussion

In this section, Video Motion Magnification is demonstrated on
synthetic 4D data. Two separate tests are conducted to illustrate the
effectiveness of the technique and the feasibility applied to enhance
VMM. First, a qualitative example is shown on how VMM can be applied
to visualize the subtle deformation of a 3D cylinder animated with
subpixel modal deformations. Second, VMM is demonstrated as a tool
for preprocessing a volume sequence prior to performing DVC in order to
extract motion otherwise below the DVC noise floor.

VMM is applied to a sequence of images following the work flow of
Fig. 4.

3.1. Qualitative visualization of subtle modal motion

A cylinder was generated in slices by rotation of a line about an
endpoint to create a stack of circles. Over time stepst, the radius of each
slice’s circle was altered by interpolation based on vertical position 2
within the data set and time, so that the change in radius Ar of the
cylinder was defined over time by

2nt\ . (272
Ar(z,t) = Acos (E) sin (T) (16)

where Aisthemaximumamplitudeof the induced motion, L is the length of
the cylinder, and t = 1,2, 3.

A test structure was created using the defined normal modal motion
of Equation (16) with A = 0.01pixels over 12-time steps. VMM was then
applied to this data-set and the phase was amplified 300 times to pro-
duce a new 4D data set with easily visualizable motion. Fig. 4 shows
montages of: (a) the 300x exaggerated motion of the volume (what the
data is really doing but exaggerated 300x for visualization), (b) The true
motion over time with A = 0.01pixel, (c) The results of applying 300x
VMM to the subtle motion data.

Qualitatively, the VMM results contain the spatially smoothed de-
formations that were applied in the artificial data set. The use of VMM in
this case allows for the visual identification of subtle motions that are
otherwise invisible in the raw data. Visible within Fig. 4c) are artifacts
located at regions of largest displacement, resulting from filter ringing
and spectral truncation as in PBVMM.

3.2. Quantitative enhancement of the DVC noise floor using VMM

A second test was conducted to demonstrate how VMM can be
applied to a 4D data set in order to filter and increase the magnitude of
subtle motion in the data, so it can be measured with DVC. DVC in this
test is performed using the freely available and state-of-the-art algorithm
of [37]. By using this algorithm for comparison with VMM, it can be seen
how well VMM performs relative to the current state of the art in DVC.

To emulate a tumor moving within a body, a cube of band-limited
noise was embedded within a larger cube of constant intensity. A sin-
gle volumetric frame of this data is shown in Fig. 5 along with a cross
section of the volume.
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Fig. 8. Case 2: The results of DVC shown in Fig. 6 are band pass
filtered around F = 0.2x rad/sample. The goal of this is to extract
the subtle motion at this frequency from the DVC results. (a) The
orbit of the cube measured by filtering the DVC results against the
filtered applied motion. (b) The time series of the x-y-z motion
measured by filtering the DVC results, compared against the filtered
applied motion. (c) The comparison of (b) in the frequency
domain. The results show that the subtle high frequency content of
the motion was not captured by DVC. Instead, because the motion
was below the DVC noise floor, only band limited noise is obtained
in the process.
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Fig. 9. Case 3: VMM is applied to the data set with 1200x phase magnification,
and band pass filter around F = .2zrad/sample. DVC is then applied to the VMM
result. Finally, the DVC results are band pass filtered around F = .2zrad/sample.
The motivation is to use VMM to improve the motion amplitude and SNR of
DVC so the subtle motion can be measured. (a) The orbit of the cube measured
using VMM and DVC, compared against the exaggerated filtered applied mo-
tion. (b) The time series of the x-y-z motion measured using VMM and DVC,
compared against the exaggerated filtered applied motion. (c) The comparison
of (b) in the frequency domain. This example shows how VMM can be used to
preprocess a 4D data set prior to DVC in order to filter and extract subtle motion
that is otherwise buried within the DVC noise floor.

The internal cube was then translated over time using spatial linear
interpolation in 3 dimensions with the motion described in Table 1 to
produce 256 frames of 3D data with internal deformation. Finally, 1%
uniformly distributed spatial noise was added to the 4D data to simulate
measurement error. This noise level is selected to be representative of
extreme noise levels seen in MRI volumes [31,52].
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The data set described was analyzed with DVC and VMM in the 3 test
cases described in Table 2. The goal of these tests is to extract the subtle
x-y-z motion at F = 0.2z rad/sample, applied to the internal cube by
Table 1.

The results are compared statistically based on the amplitude
normalized root mean square error (NRMSE), defined here. The NRMSE
is displayed on plot (a) of each of the following Figs. 6-8 to give a
comparable measure of accuracy, between the test cases. Fig. 9.

2
\/E [xapplizd - xmeasured]

}max (-xapplird) — min (xappli('d) |

NRMSE = a7)

The DVC Results of test case 1 were then band pass filtered around F
= 0.2r rad/sample in an attempt to extract the subtle high frequency
component of the applied motion, using a 3-pole Butterworth filter with
poles at 0.15zand0.25zrad/sample. The last 40 points of the data are
shown in Fig. 6, leaving out the transients induced by the filter on the
short time series.

Fig. 7 shows that the noise floor of the DVC for this data is in the
region of a 10th of a pixel, an order of magnitude above motion at the
normalized frequency of 0.2z radians/sample. This noise floor makes it
impossible for DVC to capture the subtle motion of interest by itself.

The next step (Case 3) was to apply VMM to the data set prior to
performing DVC. The data set was decomposed into the 3D complex
steerable pyramid, and the resulting phases were filtered using the same
3-pole Butterworth filter with poles at 0.15zand0.25zrad/sample, then
magnified by a factor of 1200. The pyramid was inverted and the result
was analyzed with DVC. Finally, the DVC result was filtered again by the
same 3-pole Butterworth filter described. The results of this procedure
are shown in Fig. 8. Again, the last 40 data points are shown, leaving out
the preceding data heavily corrupted by filter transients.

The results of Fig. 8 show a significant improvement in the ability to
extract the subtle motion of interest from the 4D data of the internally
moving cube. Overall, an order of magnitude improvement in noise floor
is achieved between test Case 2 and test Case 3. This shows that VMM is
an effective tool for the extraction and quantification of subtle volu-
metric motion. Using the presented technique, we were able to reduce
the NRMSE of the subtle motion extracted with DVC from over 300% to
less than 10%. This result represents an order of magnitude improve-
ment in error, and demonstrates how VMM is able to lower the noise
floor of digital volumetric motion measurement from DVC’s current
state of the art. This is a considerable improvement that has the potential
to open up previously under studied levels of internal motion and has the
potential to be applied to a wide range of applications (e.g. biomedical
imaging and dynamic material characterization).

4. Conclusion

This work develops Volumetric Motion Magnification, a novel
extension of Phase-based Motion Magnification into three-dimensions.
The effectiveness of Volumetric Motion Magnification is demonstrated
both qualitatively and quantitatively for the extraction of subtle internal
localized volumetric motion. The technique is demonstrated to be
capable of extracting motion alongside Digital Volume Correlation with
a noise floor an order of magnitude better than with Digital Volume
Correlation alone.

The main limitations of VMM are first, acquiring 4D data is expen-
sive, time consuming, and produces data with poor time resolution.
VMM is also limited in the same ways as PBVMM, computation times can
be excessive (running into multiple days on a desktop computer), with
large data sets of many gigabytes and similarly sized filter banks. Also,
VMM suffers from generation of artifacts and degradation of recon-
structed images due to the filtering process. Despite of the aforemen-
tioned limitations of VMM, the proposed approach has shown to be an
effective algorithm to greatly enhance the state of the art in subtle
volumetric motion extraction.
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In the future, analysis of real volumetric images is a desired exten-
sion of this work, yet the biggest challenge for the application of the
VMM algorithm to real data is the determination of appropriate time
filters and modulation factors for the data set being examined. In the
demonstration shown in this paper where motion properties are known,
the selection of filters and amplification is relatively less challenging.
For the case of the real 4D data set, the problem is more complicated.
One possible solution is the use of additional contact sensors for the
capture of motion frequency. For instance, an accelerometer placed on
the casing of a structure of interest could reveal a power spectrum of
vibration, which may be leveraged as a starting point for filter design. At
this time, VMM will require an iterative approach to the estimation of
amplification and filter parameters for the effective analysis of real
world data.

Overall, this work develops a powerful new tool for the study of
internal motion. The advent of VMM will allow the study of subtle
motions that are impossible to detect or measure with the state of the art.
VMM is a novel development that has the potential to open new avenues
of internal dynamics material research.
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