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Abstract. In this paper, we study the product of orders of composition factors of odd order
in a composition series of a finite linear group. First we generalize a result by Manz and
Wolf about the order of solvable linear groups of odd order. Then we use this result to
find bounds for the product of orders of composition factors of odd order in a composition
series of a finite linear group.

1 Introduction

The order of a finite group is perhaps the most fundamental quantity in group the-
ory one can study. Accordingly, the concept of bounding the order of a finite group
is a very natural one and has long been a subject of vigorous research. For exam-
ple, Manz and Wolf obtained the following result [9, Theorem 3.5] in bounding
the order of a solvable linear group by the size of the vector space on which it acts.
For the rest of this paper, we let A = /24 and let

a = (3-1og(48) + log(24))/(3 -10g(9)) ~ 2.25.
Theorem 1.1. Let G be a finite solvable group, and let V' # 0 be a finite, faithful,
completely reducible G-module with char(V) = p > 0. Then
(@ |G = [V|*/A.
(b) If 2 4 |G| orif 3 4 |G|, then |G| < |V [*/A.
() If 2 4 |G| and p # 2, then |G| < |V|3/2/A.
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In light of this result, it is natural to ask whether one can extend (b) and (c)
to a similar result for the order of a subgroup H of a completely reducible linear
group G (note that H need not be completely reducible on V).

It should be pointed out that several recent advances have improved the previous
theorem. For instance, Guralnick, Maréti and Pyber [5] found a bound for the prod-
uct of abelian composition factors of a primitive permutation group, and Halasi and
Maréti [6] generalized part (a) of the above theorem to p-solvable groups.

Inspired by the above results and a sequence of papers written by the fifth au-
thor [8, 11], we consider the product of the orders of certain abelian composition
factors. By combining the techniques used in [8, 9], we obtain an upper bound for
the product of the orders of the odd order (abelian) composition factors of an ar-
bitrary linear group, which generalizes part of Theorem 1.1 to an arbitrary finite
linear group.

We define a(G) to be the product of orders of composition factors of odd order
in a composition series of a finite group G. By the Jordan—Hdolder theorem, we see
that this quantity is independent of the choice of composition series.

Our main result is the following.

Theorem 1.2. Let G be a finite group acting on V faithfully and completely re-
ducibly, where V' is of characteristic p. Then the following hold.

(1) a(G) < |V[*/x.
(2) If p # 2, then a(G) < |V[3/2/A.

The paper is organized as follows. In Section 2, we prove a slight generalization
of [9, Theorem 3.5 (b) and (c¢)] which includes the solvable case of Theorem 1.2.
In Section 3, we prove some properties of simple groups that are needed to reduce
the general case to solvable groups. In Section 4, we prove a related result about
permutation groups and then prove the main theorem of the paper.

We will use the following notation for the remainder of the paper. All groups
in this paper are assumed to be finite. Given a group G, we use F(G) to denote
the Fitting subgroup of G, and F*(G) to denote the generalized Fitting subgroup
of G. The layer of G is denoted by E(G), and Out(G) is the outer automorphism
group of G. In addition, for a prime p, we denote the order of Hall p’-subgroups
of G by |G|p.

2 The solvable case

In this section, we generalize [9, Theorem 3.5 (b) and (c)] to a subgroup H of G
that satisfies the respective conditions. We note that the action of H on V need not
be completely reducible, and thus the generalization is not trivial.
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Proposition 2.1. Let G be a finite solvable group, and let V # 0 be a finite, faith-
ful, completely reducible G-module with char(V) = p > 0. Let H be a subgroup
of G.

(1) If 24 |H|orif 3 + |H| then |H| < |V|*/A.
() If 2} |H|and p # 2, then |H| < |V |3/2/A.

Proof. Since G is solvable, we only need to consider the Hall 2’-subgroup or the
Hall 3’-subgroup of G. The proof follows the arguments in [9, Theorem 3.5] with
some slight adjustments in each of the steps. For consistency, we will adopt the
notation used in [9, Theorem 3.5]. Step 1 shows that V' is irreducible and the argu-
ment here is unchanged. Step 2 shows that V' is quasi-primitive, and the argument
there is unchanged as well. Step 3 shows that if we set |V | = p”, then we may
assume that n > 2 and p” > 16. The calculation remains the same.

In step 4, we show that G £ I'(p™), n > 3, and if p = 2, then n > 8. All the
arguments are the same with the exception of proving n > 3 for statement (2).
Assume n = 2; we note thate = 2,2 | p — 1 and p > 5. We have

IGly <1/2-(p—1)-3< p3/3 < |[V|3/2/A.
When n = 3, we have ¢ = 3, p > 7, and thus |V| > p3. Thus
G| = |T||F/T||G/F|| (p—1)-9-24.

We observe that |G|y < pT_l 27 < p*S A < V|32,
In step 5, by examining the proof of [9, Theorem 3.5] carefully, we only need
to check a few cases when e is small for case (2).
(1) If e = 2, then |G| is divisible by 8 and A/ F < GL(2,2). Thus |4/ F|y < 3.
Since | V| > 81, we have

1% 3/2
Gla = (G/AIIA/FI|F/TI|Ty < 3UP <3| < V)

(2) Ife = 3,then |A/F| < GL(2,3), p > 4. Thus |A/ F |, < 3. Since |V | > 256,

we have
(Glor = (G/A|A/F|[F/T|| Tl < 27U <27 V23 < @
(3) If e = 4, we note that |4/ F|,» < 15 and |V| > 81. Thus we have
Gl < (IG/A||A/F||F/T||T])y < 15-|U> < 15-[V|'/? < @

This completes the proof. |
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3 Properties of simple groups

The following property about the odd order subgroups of simple groups is needed
for the reduction of the main theorem to the solvable case, which also has some
applications to the study of quantitative aspects of orbit structure of linear groups.

The general outline of the following proof is, for most finite simple groups of
Lie type, we use results related to Zsigmondy primes to find two prime divisors
Ly and L; of |G| such that there exist subgroups Hy, Hy with H; = Syl; (G)
satisfying the conditions required. There are some exceptional cases when either
the rank or the size of the finite field is small. In these cases, one cannot find
suitable Zsigmondy primes. We handle these exceptional cases by checking the
bounds via direct calculation.

Lemma 3.1. Let G be a finite non-abelian simple group, and let r be a fixed prime.
Then there exists a solvable subgroup H of G such that

(|H|.r)=1 and |H[y = 2[0ut(G)|y.

Proof. We now go through the Classification of Finite Simple Groups.

(1) Let G be one of the alternating groups A,, n > 5. It is well known that
|Out(A;)| = 2 except when n = 6 and |Out(Ag)| = 4. Thus |Out(A,)|r =1 .
Since 5 | |An| and 3 | |A,|, the result follows.

(2) Let G be one of the sporadic or Tits groups. Then |Out(G)| < 2, and the
result can be confirmed by [2].

For simple groups of Lie type, we go through various families of Lie type. To
illustrate the method, [8, Proposition 4.1] gives a detailed analysis for A, (g) and
shows how to handle most cases. For those finitely many exceptional cases, we
will check that the required inequalities hold by direct calculation. Since these
arguments are similar, for the remaining families of simple groups of Lie type,
there is a table in [8, Proposition 4.1] that handles all the exceptional cases.

(3)Let G = A1(q), where ¢ = p/. We have

|G| =q(q + 1)(g—Dd ",

where d = (2,¢ — 1) and |Out(G)| = df .
Case (a). Suppose that ¢ is even. Then d = 1 and |Out(G)| = f.

Assume there exists a Zsigmondy prime L for pzf — 1. Then Ly | p2f -1,
andthus Ly | p/ + land L; > 2f = 2|0ut(G)| = 2|0ut(G)|.

Assume there exists a Zsigmondy prime L, | p/ — 1, where L, > f.Itis clear
that Ly # L,.If L, > 2, then we are done. Otherwise, if L% | pf — 1, we con-
sider the Sylow Lj-subgroup L. Then |L| > 2 f. However, we have the following
exceptions by [8, Lemma 3.1].
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(i) f =4, thus |Out(G)| = 4, and |Out(G)|or = 1. Since 2* + 1 =17 and
24 —1=15=3-.5 wemaychoose L; = 17 and L, = 5.

(i) f = 6,thus |Out(G)| = 6and |Out(G)|»y = 3.Since2® +1=65=5-17
and20 — 1 =63 =7-32, we may choose L; = 13 and L, = 7.

(iii) f = 12, thus |Out(G)| = 12 and |Out(G)|,» = 3. Since
212 1 1 =4097=17-241 and 22 —1=4095=132.5.7-13,

we may choose L1 = 17and L, = 7.

Case (b). Suppose that ¢ is odd. Then d = 2 and |Out(G)| = 2 f, implying that
|Out(G)|»r = f. We apply the same idea as before,

Li|pf +1 and Ly >2f =2/0ut(G)ly.

There exists an L, | pf — 1, where L, > f and L; # Ly. If L, > 2f, then
we are done. Otherwise, if L% | pf — 1, we consider the Sylow L,-subgroup L.
Then |L| > 2 f. The following case is the exception by [8, Lemma 3.1]:

(i) When p = 3, f = 4, thus |Out(G)|» = 1. Since 3* + 1 =82 =241 and
34 _-1=80=2%-5,we may choose L; = 41 and L, = 5.

(4)Let G = A, (q), where ¢ = p/ andn > 2. Setm = ]_[;’=1(q"+1 —1). Then
|G| = d~ 1"+t D/ 2 |Out(G)| = 2fd, whered = (n + 1,q — 1).

With the exception of a finite number of cases, there exists a Zsigmondy prime
Ly for p/@+D — 1 such that Ly > 2f(n + 1) or L2 | p/@+D — 1. 1t follows
that L2 > 2f(n + 1). Let H; be a Sylow L;-subgroup G. By [8, Lemma 3.2],
with the exception of a finite number of cases, there exists a Zsigmondy prime
Ly for p/™ — 1 suchthat Ly, > 3fn >2f(n+ 1) or L% | p/™ — 1. This implies
that L2 > 3fn > 2f(n + 1). Let Hy be a Sylow L,-subgroup of G. Notice that
Ly # L.

Since |Out(G)| = 2fd, |Out(G)|»r < fd. Also,n+1>d =n+ 1,9 —1),
and |H1|, |H>z| > 2|Out(G)|y. Therefore, the result follows. The exceptions are
listed in Table 1 (by [8, Lemma 3.2]).

(5) Let G = 2A,(¢?), where n > 2. Note that if n = 2, then ¢ > 2. Set

n
m=[]"" =D, ¢>=p/ and d=@+1.q+1).
i=1
Then |G| = d~'mg"®*+1/2 and |Out(G)| = df. By [4, Theorem A] and [8,
Lemma 3.2], there exists a Zsigmondy prime L | p/®+1D/2 _ (—1)"*+1 guch that
Ly >2n+1)f >2df or

L2 p/@+D/2 _—pyr U and L2 >2(m 4+ 1) f > 2df.
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P nf d |Ouw(G)ly | Hi| |H,|
2 3,4,6,8,12,20 1 1 1 divides 2"tD — 1 divides 2" — 1
2 2 2 3 3 9 7
2 2 3 1 3 73 7
2 302 1 1 7 17
2 2 4 3 3 17 13
2 4 2 1 1 31 17
2 2 6 3 9 73 19
2 3 4 1 1 257 17
2 4 3 1 3 151 31
2 6 2 1 1 127 43
2 2 10 3 15 331 151
2 4 5 1 5 31 11
2 5 4 1 1 31 11
2 0 2 1 1 31 11
3 2 2 1 1 7 5
3 2 3 1 3 13 7
3 3 2 4 1 41 13

Table 1. Exceptional cases for A, (q).

Moreover, by [4, Theorem A] and [8, Lemma 3.2], with the exception of a finite
number of cases, there exists a Zsigmondy prime L, | p/"/2 — (=1)"*! such that
Ly>2(n+1)f >2n+1)f >2df or

5
L3 p/? —(—1y"*! and L3> S+ Df =20+ 1)) = 2df.

For all the exceptional cases, we can check the results via direct calculation and
by considering the order of the group G and Out(G) (see Table 2).

We now provide a table (Table 3) for the simple groups of Lie types other than
Ay (q) and 2A(g?). The second and the third columns in the table are two large
prime divisors that correspond to Sylow subgroups. |

4 Composition factors of odd order

In this section, we prove the main result of the paper. Before doing so, we need the
following proposition about permutation groups.
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| Hy|

f/2 d |Ou(G)ly |Hil

n

4

13
13
243

19

13
43
241

17
25

41

17
31

19
331

15

11

31

10

13
17
11

37
241

13

12

73

27 87211

3

13

37

19
41

31

19
61

18

41

10

11

31

13
31

11

31

10
20

41

43

127

14

43

71
257

17
17
17
13

41

14
28

59

73

Table 2. Exceptional cases for 2A, (g2).
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p n f/2 d |Ou(G)ly [Hi| |Ha]
304 1 1 1 6l 5
32 3 1 313 7
33 2 2 173 4
36 1 1 113 7
52 2 1 1 601 13
5 4 1 1 1 3313
Table 2 (continued).
Type L, L, Exceptional cases
Bu(q).q = p’ prem —1 p/CD -1 (f=1n=2);
(p=2,f=3n=2);
(p=2f=1Ln=3)
Cu(q), q = pf pf(2n) -1 pf(2n—2) 1 (f=1,n=2);
(p=2,f=3n=2);
(p=2,f=1,n=3)
Dn(q).q = p’ pl@nD 1 plerH 1 (p=2, f=1n=5)
(p=2f=2,n=5)
(p=2,f=1n=3)
(p=2,f=1n=4)
(p=2,f=3,n=4)
(p=3,f=1Ln=4);
(p=5 f=1,n=4
2Dn(g®.q*> =p/  p/V -1 p/D 1 (p=3.f=2.n=34);
(p=5f=2,n=4)
Es(q).q = p/ pt -1 P -1
E1(q).q = p/ P -1 p -1
Es(q).q = p/ P —1 P -1
Fa(q).q = p’ p' —1 P -1
Ga(9). q = p” P —1 P —1 (p=2f=123)
2Ee(q).q*> = p/  p¥ —1 p* -1
3D4(g?).q> = p/ p* -1 p* -1 (p=2.f=3.57
2B, (220 +1) 24@2n+1) _ | H2n+1) _ |
2 Fy (2201 24@2n+1) _ | H2n+1) _ |
2G, (3211 33@n+1) 4 g 3@n+1) _ |

Table 3. Other Lie type groups.
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Proposition 4.1. Let G be a group of permutations on a set 2 of order n. Then
a(G) is at most 2" 1,

Proof. We first check that the result is true for n < 4 (|Sz|2 <2, [S3]|2 < 4,
|Sa]2r < 8). We may assume that n > 5. We shall proceed by induction on |G |.

We first suppose that G is intransitive on 2. Write Q2 = I'y U I'; for nonempty
subsets I'; of Q such that G permutes 'y and also I'2. Write n; = || fori = 1,2,
so clearly n; + np = n. Let L be the kernel of G on I'; so that L acts faithfully
on I'». By induction, we then have a(G/L) < 2" ~! and a(L) < 2”271, and so
a(G) <2m—1.pn=1 = on=2 ~ 7n=1 44 desired. So now, we may assume that
G is transitive on 2.

Suppose that G is imprimitive on 2. Then there is a nontrivial decomposi-
tion Q = J; ©; with G permuting X = {Qy,...,Q,} and NG () acting prim-
itively on Q1, where |21| = m and n = mr. Let & be the permutation represen-
tation of G on X and K = ker . Set

Ko=K and K;+1 ={g € K; | g acts trivially on Q;41}.

We note that a(G) = apa; ...ay, where ap = a(G/K) and a; = a(K;—1/K;)
for i > 1. By induction, ag < 2" Vanda; <2 Yfori > 1.1tis easy to see that
a(G) <21,

Thus we may assume G is primitive; then we know that G either contains A,
or is one of the groups in the exceptional list by [10, Corollary 1.4]. If G con-
tains A, then the result is clear since n > 5. Otherwise, G is one of the groups in
the exceptional list; we verify the result in Table 4. o

With this result and the work done in the previous sections, we now can prove
the main result.

Proof of Theorem 1.2. Let S be the maximal normal solvable subgroup of G. Con-
sider G = G/S. It is easy to see that F(G) = 1. Therefore,

F*(G) = F(G)E(G) = E(G).

Moreover, we know that Z(E(G)) is trivial; otherwise, S is not maximal. Since
E(G)/Z(E(G)) is the unique largest semi-simple subgroup of G, E(G) is the
product of simple non-abelian subgroups.

Let C = CG(E(G)). Since F*(G) is self-centralizing, we have C < F*(G).
Let K = G/C. Then K acts faithfully on E(G). We may assume that K acts tran-
sitively on L1 = Eq1 X --+ X Eqi,, where Eq1, ..., Ej, are non-abelian simple
components of E(G). Let K; = Cg(L1). We may assume that K; acts tran-
sitively on Ly = Ep1 X -+ X Epp,, where Ebq,..., Ey, are non-abelian sim-
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G |Gl n on=1
AGL(1, 5) 5 5 16
AGL(3.2) 21 8 128
AGL(2,3) 27 9 256
AGL(4,2) 315 16 32768
ATL(1, 8) 21 8 128
24 A 315 16 32768
PSL(2,5) 15 6 32
PSL(3,2) 21 7 64
PSL(2.7) 21 8 128
PSL(3,3) 351 13 4096
PSL(4,2) 315 15 16384
PGL(2, 5) 15 6 32
PGL(2,7) 21 8 128
PGL(2,9) 45 10 512
PTL(2,8) 189 9 256
PTL(2,9) 45 10 512
Mo 45 10 512
My 495 11 1024
My 495 12 2048
M, 1485 12 2048
Ma; 79695 23 4194304
Mo, 239085 24 8388608
Se 45 10 512

Table 4. List of exceptional primitive groups not containing A,,.

ple components of E(G). Let K = Ck, (L2), and inductively, we may define
L3,K3,...,Ls, K;. Then E(G_) = L1 x---x L, and K;_1/K; acts transitively
onL;.

Since G acts on V' completely reducibly and S is a normal subgroup of G,
we know that S acts on V completely reducibly. Since Eq,..., E,, are non-
abelian simple subgroups, there exists a solvable subgroup H = Hy X --- X Hy,
by Lemma 3.1, where H; < E; such that (H;, p) = 1 and |H;|» > 2|Out(E;)|o.
Therefore, |H |y = [];|Hi|z > 2™ |Out(E(G))|z.

Moreover, K is a permutation group permuting E1,. .., E,,. By Proposition 4.1,
the product of the orders of all the odd order composition factors of K is less than
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2= Thus |H |y > 2"|Out(E(G))|s, which is greater than the product of the
orders of all the odd order composition factors of K and the 2 part of the outer
automorphism of E(G).

Let ¢: G — G/S be the canonical homomorphism. Since (|H|, p) = 1, we
know that ¢~ 1(H) acts on V completely reducibly by the generalized Maschke
theorem (cf. [7, Problem 1.8]). Therefore, by Proposition 2.1, we have

o~ (H) |2 < |VI*/A,

and if p # 2, then |¢~L(H)|» < |V|3/2/A.

We observe that the odd order composition factors of G are distributed in the
maximal normal solvable subgroup S, the outer automorphism of the direct prod-
uct of simple groups E(G), and the odd order composition factors of the permuta-
tion group G /C. Therefore, a(G) < |¢~'(H)|y, and the result follows. o

From this result, we derive the following corollary.

Corollary 4.2. Let G be a finite group acting on V faithfully and completely re-
ducibly (V is possibly of mixed characteristic). Then a(G) < |V |?/A.
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