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Abstract. In this paper, we study the product of orders of composition factors of odd order
in a composition series of a finite linear group. First we generalize a result by Manz and
Wolf about the order of solvable linear groups of odd order. Then we use this result to
find bounds for the product of orders of composition factors of odd order in a composition
series of a finite linear group.

1 Introduction

The order of a finite group is perhaps the most fundamental quantity in group the-
ory one can study. Accordingly, the concept of bounding the order of a finite group
is a very natural one and has long been a subject of vigorous research. For exam-
ple, Manz and Wolf obtained the following result [9, Theorem 3.5] in bounding
the order of a solvable linear group by the size of the vector space on which it acts.
For the rest of this paper, we let � D 3

p
24 and let

˛ D .3 � log.48/C log.24//=.3 � log.9// � 2:25:

Theorem 1.1. Let G be a finite solvable group, and let V ¤ 0 be a finite, faithful,
completely reducible G-module with char.V / D p > 0. Then

(a) jGj � jV j˛=�.

(b) If 2 − jGj or if 3 − jGj, then jGj � jV j2=�.

(c) If 2 − jGj and p ¤ 2, then jGj � jV j3=2=�.
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In light of this result, it is natural to ask whether one can extend (b) and (c)
to a similar result for the order of a subgroup H of a completely reducible linear
group G (note that H need not be completely reducible on V ).

It should be pointed out that several recent advances have improved the previous
theorem. For instance, Guralnick, Maróti and Pyber [5] found a bound for the prod-
uct of abelian composition factors of a primitive permutation group, and Halasi and
Maróti [6] generalized part (a) of the above theorem to p-solvable groups.

Inspired by the above results and a sequence of papers written by the fifth au-
thor [8, 11], we consider the product of the orders of certain abelian composition
factors. By combining the techniques used in [8, 9], we obtain an upper bound for
the product of the orders of the odd order (abelian) composition factors of an ar-
bitrary linear group, which generalizes part of Theorem 1.1 to an arbitrary finite
linear group.

We define a.G/ to be the product of orders of composition factors of odd order
in a composition series of a finite group G. By the Jordan–Hölder theorem, we see
that this quantity is independent of the choice of composition series.

Our main result is the following.

Theorem 1.2. Let G be a finite group acting on V faithfully and completely re-
ducibly, where V is of characteristic p. Then the following hold.

(1) a.G/ � jV j2=�.

(2) If p ¤ 2, then a.G/ � jV j3=2=�.

The paper is organized as follows. In Section 2, we prove a slight generalization
of [9, Theorem 3.5 (b) and (c)] which includes the solvable case of Theorem 1.2.
In Section 3, we prove some properties of simple groups that are needed to reduce
the general case to solvable groups. In Section 4, we prove a related result about
permutation groups and then prove the main theorem of the paper.

We will use the following notation for the remainder of the paper. All groups
in this paper are assumed to be finite. Given a group G, we use F.G/ to denote
the Fitting subgroup of G, and F �.G/ to denote the generalized Fitting subgroup
of G. The layer of G is denoted by E.G/, and Out.G/ is the outer automorphism
group of G. In addition, for a prime p, we denote the order of Hall p0-subgroups
of G by jGjp0 .

2 The solvable case

In this section, we generalize [9, Theorem 3.5 (b) and (c)] to a subgroup H of G
that satisfies the respective conditions. We note that the action ofH on V need not
be completely reducible, and thus the generalization is not trivial.



On the odd order composition factors 1059

Proposition 2.1. Let G be a finite solvable group, and let V ¤ 0 be a finite, faith-
ful, completely reducible G-module with char.V / D p > 0. Let H be a subgroup
of G.

(1) If 2 − jH j or if 3 − jH j, then jH j � jV j2=�.

(2) If 2 − jH j and p ¤ 2, then jH j � jV j3=2=�.

Proof. Since G is solvable, we only need to consider the Hall 20-subgroup or the
Hall 30-subgroup of G. The proof follows the arguments in [9, Theorem 3.5] with
some slight adjustments in each of the steps. For consistency, we will adopt the
notation used in [9, Theorem 3.5]. Step 1 shows that V is irreducible and the argu-
ment here is unchanged. Step 2 shows that V is quasi-primitive, and the argument
there is unchanged as well. Step 3 shows that if we set jV j D pn, then we may
assume that n � 2 and pn � 16. The calculation remains the same.

In step 4, we show that G 6� �.pn/, n > 3, and if p D 2, then n � 8. All the
arguments are the same with the exception of proving n > 3 for statement (2).
Assume n D 2; we note that e D 2, 2 j p � 1 and p � 5. We have

jGj20 � 1=2 � .p � 1/ � 3 � p3=3 � jV j3=2=�:

When n D 3, we have e D 3, p � 7, and thus jV j � p3. Thus

jGj D jT jjF=T jjG=F j j .p � 1/ � 9 � 24:

We observe that jGj20 �
p�1
2
� 27 � p4:5=� � jV j3=2=�.

In step 5, by examining the proof of [9, Theorem 3.5] carefully, we only need
to check a few cases when e is small for case (2).

(1) If e D 2, then jGj is divisible by 8 and A=F � GL.2; 2/. Thus jA=F j20 � 3.
Since jV j � 81, we have

jGj20 D .jG=AjjA=F jjF=T jjT j/20 � 3jU j2 � 3jV j �
jV j3=2

3
:

(2) If e D 3, then jA=F j � GL.2; 3/, p � 4. Thus jA=F j20 � 3. Since jV j � 256,
we have

jGj20 D .jG=AjjA=F jjF=T jjT j/20 � 27 � jU j2 � 27 � jV j2=3 �
jV j3=2

3
:

(3) If e D 4, we note that jA=F j20 � 15 and jV j � 81. Thus we have

jGj20 � .jG=AjjA=F jjF=T jjT j/20 � 15 � jU j2 � 15 � jV j1=2 �
jV j3=2

3
:

This completes the proof.
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3 Properties of simple groups

The following property about the odd order subgroups of simple groups is needed
for the reduction of the main theorem to the solvable case, which also has some
applications to the study of quantitative aspects of orbit structure of linear groups.

The general outline of the following proof is, for most finite simple groups of
Lie type, we use results related to Zsigmondy primes to find two prime divisors
L1 and L2 of jGj such that there exist subgroups H1, H2 with Hi D SylLi

.G/

satisfying the conditions required. There are some exceptional cases when either
the rank or the size of the finite field is small. In these cases, one cannot find
suitable Zsigmondy primes. We handle these exceptional cases by checking the
bounds via direct calculation.

Lemma 3.1. LetG be a finite non-abelian simple group, and let r be a fixed prime.
Then there exists a solvable subgroup H of G such that

.jH j; r/ D 1 and jH j20 � 2jOut.G/j20 :

Proof. We now go through the Classification of Finite Simple Groups.
(1) Let G be one of the alternating groups An, n � 5. It is well known that

jOut.An/j D 2 except when n D 6 and jOut.A6/j D 4. Thus jOut.An/j20 D 1 .
Since 5 j jAnj and 3 j jAnj, the result follows.

(2) Let G be one of the sporadic or Tits groups. Then jOut.G/j � 2, and the
result can be confirmed by [2].

For simple groups of Lie type, we go through various families of Lie type. To
illustrate the method, [8, Proposition 4.1] gives a detailed analysis for An.q/ and
shows how to handle most cases. For those finitely many exceptional cases, we
will check that the required inequalities hold by direct calculation. Since these
arguments are similar, for the remaining families of simple groups of Lie type,
there is a table in [8, Proposition 4.1] that handles all the exceptional cases.

(3) Let G D A1.q/, where q D pf . We have

jGj D q.q C 1/.q � 1/d�1;

where d D .2; q � 1/ and jOut.G/j D df .
Case (a). Suppose that q is even. Then d D 1 and jOut.G/j D f .

Assume there exists a Zsigmondy prime L1 for p2f � 1. Then L1 j p2f � 1,
and thus L1 j pf C 1 and L1 � 2f D 2jOut.G/j � 2jOut.G/j20 .

Assume there exists a Zsigmondy primeL2 j pf � 1, whereL2 � f . It is clear
that L1 ¤ L2. If L2 � 2f , then we are done. Otherwise, if L22 j p

f � 1, we con-
sider the Sylow L2-subgroup L. Then jLj � 2f . However, we have the following
exceptions by [8, Lemma 3.1].



On the odd order composition factors 1061

(i) f D 4, thus jOut.G/j D 4, and jOut.G/j20 D 1. Since 24 C 1 D 17 and
24 � 1 D 15 D 3 � 5, we may choose L1 D 17 and L2 D 5.

(ii) f D 6, thus jOut.G/j D 6 and jOut.G/j20 D 3. Since 26 C 1 D 65 D 5 � 17
and 26 � 1 D 63 D 7 � 32, we may choose L1 D 13 and L2 D 7.

(iii) f D 12, thus jOut.G/j D 12 and jOut.G/j20 D 3. Since

212 C 1 D 4097 D 17 � 241 and 212 � 1 D 4095 D 32 � 5 � 7 � 13;

we may choose L1 D 17 and L2 D 7.

Case (b). Suppose that q is odd. Then d D 2 and jOut.G/j D 2f , implying that
jOut.G/j20 D f . We apply the same idea as before,

L1 j p
f
C 1 and L1 � 2f D 2jOut.G/j20 :

There exists an L2 j pf � 1, where L2 � f and L1 ¤ L2. If L2 � 2f , then
we are done. Otherwise, if L22 j p

f � 1, we consider the Sylow L2-subgroup L.
Then jLj � 2f . The following case is the exception by [8, Lemma 3.1]:

(i) When p D 3, f D 4, thus jOut.G/j20 D 1. Since 34 C 1 D 82 D 2 � 41 and
34 � 1 D 80 D 24 � 5, we may choose L1 D 41 and L2 D 5.

(4) Let G D An.q/, where q D pf and n � 2. SetmD
Qn
iD1.q

iC1 � 1/. Then
jGj D d�1qn.nC1/=2m, jOut.G/j D 2fd , where d D .nC 1; q � 1/.

With the exception of a finite number of cases, there exists a Zsigmondy prime
L1 for pf .nC1/ � 1 such that L1 � 2f .nC 1/ or L21 j p

f .nC1/ � 1. It follows
that L21 � 2f .nC 1/. Let H1 be a Sylow L1-subgroup G. By [8, Lemma 3.2],
with the exception of a finite number of cases, there exists a Zsigmondy prime
L2 for pf n � 1 such that L2 � 3f n � 2f .nC 1/ or L22 j p

f n � 1. This implies
that L22 � 3f n � 2f .nC 1/. Let H2 be a Sylow L2-subgroup of G. Notice that
L1 ¤ L2.

Since jOut.G/j D 2fd , jOut.G/j20 � fd . Also, nC 1 � d D .nC 1; q � 1/,
and jH1j; jH2j � 2jOut.G/j20 . Therefore, the result follows. The exceptions are
listed in Table 1 (by [8, Lemma 3.2]).

(5) Let G D 2An.q2/, where n � 2. Note that if n D 2, then q > 2. Set

m D

nY
iD1

.qiC1 � .�1/iC1/; q2 D pf and d D .nC 1; q C 1/:

Then jGj D d�1mqn.nC1/=2, and jOut.G/j D df . By [4, Theorem A] and [8,
Lemma 3.2], there exists a Zsigmondy primeL1 j pf .nC1/=2 � .�1/nC1 such that
L1 � 2.nC 1/f � 2df or

L21 j p
f .nC1/=2

� .�1/nC1 and L21 � 2.nC 1/f � 2df:
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p n f d jOut.G/j20 jH1j jH2j

2 3, 4, 6, 8, 12, 20 1 1 1 divides 2.nC1/ � 1 divides 2n � 1
2 2 2 3 3 9 7
2 2 3 1 3 73 7
2 3 2 1 1 7 17
2 2 4 3 3 17 13
2 4 2 1 1 31 17
2 2 6 3 9 73 19
2 3 4 1 1 257 17
2 4 3 1 3 151 31
2 6 2 1 1 127 43
2 2 10 3 15 331 151
2 4 5 1 5 31 11
2 5 4 1 1 31 11
2 10 2 1 1 31 11
3 2 2 1 1 7 5
3 2 3 1 3 13 7
3 3 2 4 1 41 13

Table 1. Exceptional cases for An.q/.

Moreover, by [4, Theorem A] and [8, Lemma 3.2], with the exception of a finite
number of cases, there exists a Zsigmondy primeL2 j pf n=2 � .�1/nC1 such that
L2 �

5
2
.nC 1/f � 2.nC 1/f � 2df or

L22 j p
f n=2

� .�1/nC1 and L22 �
5

2
.nC 1/f � 2.nC 1/f � 2df:

For all the exceptional cases, we can check the results via direct calculation and
by considering the order of the group G and Out.G/ (see Table 2).

We now provide a table (Table 3) for the simple groups of Lie types other than
An.q/ and 2A.q2/. The second and the third columns in the table are two large
prime divisors that correspond to Sylow subgroups.

4 Composition factors of odd order

In this section, we prove the main result of the paper. Before doing so, we need the
following proposition about permutation groups.
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p n f=2 d jOut.G/j20 jH1j jH2j

2 3 1 1 1 9 5
2 2 2 1 1 13 5
2 4 1 1 1 13 5
2 2 3 3 9 243 19
2 3 2 1 1 13 5
2 6 1 1 1 43 7
2 2 4 1 1 241 17
2 4 2 5 5 41 25
2 8 1 3 3 19 17
2 2 5 3 15 331 31
2 5 2 1 1 7 5
2 10 1 1 1 31 11
2 2 6 1 3 37 13
2 3 4 1 1 241 17
2 4 3 1 3 13 11
2 6 2 1 1 7 5
2 12 1 1 1 7 5
2 2 9 3 27 87211 73
2 3 6 1 3 37 13
2 6 3 1 3 19 7
2 9 2 5 5 41 31
2 18 1 1 1 19 7
2 2 10 1 5 61 41
2 4 5 1 5 31 11
2 5 4 1 1 13 9
2 10 2 1 1 31 11
2 20 1 3 3 41 31
2 2 14 1 7 127 43
2 4 7 1 7 71 43
2 7 4 1 1 257 17
2 14 2 5 5 41 17
2 28 1 1 1 59 17
3 3 1 4 1 5 13
3 2 2 1 1 73 5

Table 2. Exceptional cases for 2An.q2/.
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p n f=2 d jOut.G/j20 jH1j jH2j

3 4 1 1 1 61 5
3 2 3 1 3 13 7
3 3 2 2 1 73 41
3 6 1 1 1 13 7
5 2 2 1 1 601 13
5 4 1 1 1 3 313

Table 2 (continued).

Type L1 L2 Exceptional cases

Bn.q/, q D pf pf .2n/ � 1 pf .2n�2/ � 1 .f D 1; n D 2/;
.p D 2; f D 3; n D 2/;
.p D 2; f D 1; n D 3/

Cn.q/, q D pf pf .2n/ � 1 pf .2n�2/ � 1 .f D 1; n D 2/;
.p D 2; f D 3; n D 2/;
.p D 2; f D 1; n D 3/

Dn.q/, q D pf pf .2n�2/ � 1 pf .2n�4/ � 1 .p D 2; f D 1; n D 5/;
.p D 2; f D 2; n D 5/;
.p D 2; f D 1; n D 3/;
.p D 2; f D 1; n D 4/;
.p D 2; f D 3; n D 4/;
.p D 3; f D 1; n D 4/;
.p D 5; f D 1; n D 4/

2Dn.q
2/, q2 D pf pf .n�1/ � 1 pf .n�2/ � 1 .p D 3; f D 2; n D 3; 4/;

.p D 5; f D 2; n D 4/

E6.q/, q D pf p12f � 1 p8f � 1

E7.q/, q D pf p18f � 1 p14f � 1

E8.q/, q D pf p30f � 1 p24f � 1

F4.q/, q D pf p12f � 1 p8f � 1

G2.q/, q D pf p6f � 1 p2f � 1 .p D 2; f D 1; 2; 3/
2E6.q/, q2 D pf p6f � 1 p4f � 1
3D4.q

3/; q3 D pf p4f � 1 p2f � 1 .p D 2; f D 3; 5; 7/
2B2.2

2nC1/ 24.2nC1/ � 1 2.2nC1/ � 1
2F4.2

2nC1/ 24.2nC1/ � 1 2.2nC1/ � 1
2G2.3

2nC1/ 33.2nC1/ C 1 3.2nC1/ � 1

Table 3. Other Lie type groups.
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Proposition 4.1. Let G be a group of permutations on a set � of order n. Then
a.G/ is at most 2n�1.

Proof. We first check that the result is true for n � 4 (jS2j20 � 2, jS3j20 � 4,
jS4j20 � 8). We may assume that n � 5. We shall proceed by induction on jGj.

We first suppose that G is intransitive on �. Write � D �1 [ �2 for nonempty
subsets �i of� such thatG permutes �1 and also �2. Write ni D j�i j for i D 1; 2,
so clearly n1 C n2 D n. Let L be the kernel of G on �1 so that L acts faithfully
on �2. By induction, we then have a.G=L/ � 2n1�1 and a.L/ � 2n2�1, and so
a.G/ � 2n1�1 � 2n2�1 D 2n�2 < 2n�1, as desired. So now, we may assume that
G is transitive on �.

Suppose that G is imprimitive on �. Then there is a nontrivial decomposi-
tion� D

S
i �i with G permuting X D ¹�1; : : : ; �rº and NG.�1/ acting prim-

itively on �1, where j�1j D m and n D mr . Let � be the permutation represen-
tation of G on X and K D ker� . Set

K0 D K and KiC1 D ¹g 2 Ki j g acts trivially on �iC1º:

We note that a.G/ D a0a1 : : : ar , where a0 D a.G=K/ and ai D a.Ki�1=Ki /
for i � 1. By induction, a0 � 2r�1 and ai � 2m�1 for i � 1. It is easy to see that
a.G/ � 2n�1.

Thus we may assume G is primitive; then we know that G either contains An
or is one of the groups in the exceptional list by [10, Corollary 1.4]. If G con-
tains An, then the result is clear since n � 5. Otherwise, G is one of the groups in
the exceptional list; we verify the result in Table 4.

With this result and the work done in the previous sections, we now can prove
the main result.

Proof of Theorem 1.2. Let S be the maximal normal solvable subgroup ofG. Con-
sider NG D G=S . It is easy to see that F. NG/ D 1. Therefore,

F �. NG/ D F. NG/E. NG/ D E. NG/:

Moreover, we know that Z.E. NG// is trivial; otherwise, S is not maximal. Since
E. NG/=Z.E. NG// is the unique largest semi-simple subgroup of NG, E. NG/ is the
product of simple non-abelian subgroups.

Let NC D C NG.E. NG//. Since F �.G/ is self-centralizing, we have NC < F �.G/.
LetK D NG= NC . ThenK acts faithfully onE. NG/. We may assume thatK acts tran-
sitively on L1 D E11 � � � � �E1k1

, where E11; : : : ; E1k1
are non-abelian simple

components of E. NG/. Let K1 D CK.L1/. We may assume that K1 acts tran-
sitively on L2 D E21 � � � � �E2k2

, where E21; : : : ; E2k2
are non-abelian sim-
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G jGj20 n 2n�1

AGL.1; 5/ 5 5 16
AGL.3; 2/ 21 8 128
AGL.2; 3/ 27 9 256
AGL.4; 2/ 315 16 32768
A�L.1; 8/ 21 8 128
24 W A7 315 16 32768
PSL.2; 5/ 15 6 32
PSL.3; 2/ 21 7 64
PSL.2; 7/ 21 8 128
PSL.3; 3/ 351 13 4096
PSL.4; 2/ 315 15 16384
PGL.2; 5/ 15 6 32
PGL.2; 7/ 21 8 128
PGL.2; 9/ 45 10 512
P�L.2; 8/ 189 9 256
P�L.2; 9/ 45 10 512
M10 45 10 512
M11 495 11 1024
M11 495 12 2048
M12 1485 12 2048
M23 79695 23 4194304
M24 239085 24 8388608
S6 45 10 512

Table 4. List of exceptional primitive groups not containing An.

ple components of E. NG/. Let K2 D CK1
.L2/, and inductively, we may define

L3; K3; : : : ; Lt ; Kt . Then E. NG/ D L1 � � � � � Lt , and Ki�1=Ki acts transitively
on Li .

Since G acts on V completely reducibly and S is a normal subgroup of G,
we know that S acts on V completely reducibly. Since E1; : : : ; Em are non-
abelian simple subgroups, there exists a solvable subgroup H D H1 � � � � �Hm
by Lemma 3.1, whereHi < Ei such that .Hi ; p/ D 1 and jHi j20 � 2jOut.Ei /j20 .
Therefore, jH j20 D

Q
i jHi j20 � 2mjOut.E. NG//j20 .

Moreover,K is a permutation group permutingE1; : : : ;Em. By Proposition 4.1,
the product of the orders of all the odd order composition factors of K is less than
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2m�1. Thus jH j20 � 2mjOut.E. NG//j20 , which is greater than the product of the
orders of all the odd order composition factors of K and the 20 part of the outer
automorphism of E. NG/.

Let �WG ! G=S be the canonical homomorphism. Since .jH j; p/ D 1, we
know that ��1.H/ acts on V completely reducibly by the generalized Maschke
theorem (cf. [7, Problem 1.8]). Therefore, by Proposition 2.1, we have

j��1.H/j20 � jV j2=�;

and if p ¤ 2, then j��1.H/j20 � jV j3=2=�.
We observe that the odd order composition factors of G are distributed in the

maximal normal solvable subgroup S , the outer automorphism of the direct prod-
uct of simple groups E. NG/, and the odd order composition factors of the permuta-
tion group NG= NC . Therefore, a.G/ � j��1.H/j20 , and the result follows.

From this result, we derive the following corollary.

Corollary 4.2. Let G be a finite group acting on V faithfully and completely re-
ducibly (V is possibly of mixed characteristic). Then a.G/ � jV j2=�.

Bibliography

[1] F. Buekenhout and D. Leemans, On the list of finite primitive permutation groups of
degree � 50, J. Symbolic Comput. 22 (1996), no. 2, 215–225.

[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite
Groups, Oxford University, Eynsham, 1985.

[3] J. D. Dixon and B. Mortimer Permutation Groups, Grad. Texts in Math. 163,
Springer, New York, 1996.

[4] W. Feit, On large Zsigmondy primes, Proc. Amer. Math. Soc. 102 (1988), no. 1,
29–36.

[5] R. M. Guralnick, A. Maróti and L. Pyber, Normalizers of primitive permutation
groups, Adv. Math. 310 (2017), 1017–1063.

[6] Z. Halasi and A. Maróti, The minimal base size for a p-solvable linear group, Proc.
Amer. Math. Soc. 144 (2016), no. 8, 3231–3242.

[7] I. M. Isaacs, Character Theory of Finite Groups, Dover Publications, New York,
1994.

[8] T. M. Keller and Y. Yang, Abelian quotients and orbit sizes of linear groups, Sci.
China Math. 1 (2019), https://doi.org/10.1007/s11425-018-9460-2.

[9] O. Manz and T. R. Wolf, Representations of Solvable Groups, London Math. Soc.
Lecture Note Ser. 185, Cambridge University, Cambridge, 1993.

https://doi.org/10.1007/s11425-018-9460-2


1068 A. Betz, M. Chao-Haft, T. Gong, A. Ter-Saakov and Y. Yang

[10] A. Maróti, On the orders of primitive groups, J. Algebra 258 (2002), no. 2, 631–640.

[11] G. Qian and Y. Yang, Large orbit sizes in finite group actions, J. Pure Appl. Algebra
1 (2020), https://doi.org/10.1016/j.jpaa.2020.106458.

Received December 1, 2019; revised June 6, 2020.

Author information

Alexander Betz, Department of Mathematics, Le Moyne College,
1419 Salt Springs Road, Syracuse, NY 13214, USA.
E-mail: betzas@lemoyne.edu

Max Chao-Haft, Department of Mathematics, Harvey Mudd College,
340 East Foothill Boulevard, Claremont, CA 91711, USA.
E-mail: mchaohaft@g.hmc.edu

Ting Gong, Department of Mathematics, University of Notre Dame,
255 Hurley, Notre Dame, IN 46556, USA.
E-mail: tgong@nd.edu

Anthony Ter-Saakov, Department of Mathematics & Statistics, Boston University,
111 Cummington Mall, Boston, MA 02215, USA.
E-mail: antter@bu.edu

Yong Yang, Department of Mathematics, Texas State University,
601 University Drive, San Marcos, TX 78666, USA.
E-mail: yang@txstate.edu

https://doi.org/10.1016/j.jpaa.2020.106458
mailto:betzas@lemoyne.edu
mailto:mchaohaft@g.hmc.edu
mailto:tgong@nd.edu
mailto:antter@bu.edu
mailto:yang@txstate.edu

