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Abstract 

The extent to which visuocortical processing is altered when observers learn to categorize novel 

visual stimuli via labeling is not well understood. The present investigation used steady state 

visual evoked potential (ssVEP) frequency tagging to test the hypothesis that learning to 

categorize novel objects via labeling prompts a competitive advantage over concurrently 

presented stimuli. In the learning (label training) phase, participants (n=24) categorized objects 

according to two different species labels and faces according to gender. A control group (n=26) 

viewed the same stimuli without label learning. Before and after learning, faces and objects were 

superimposed and viewed concurrently while periodically turned on and off at unique temporal 

rates (5/sec or 6/sec). The spectral power of the ssVEP at each frequency was projected to an L2 

(minimum) norm estimated source space, and competition between faces and objects was 

compared using permutation-controlled mass univariate t-tests. Results showed that, only in the 

training group, learning to label novel objects led to a competitive advantage over faces across a 

network of occipito-temporal and fronto-parietal cortical regions. These changes were more 

pronounced in participants showing more improvement across the label learning phase. 

Together, the findings support the notion that learning to label novel object categories affects 

neural competition though recurrent neural interactions in regions commonly associated with 

visual perception and selective attention.  

   

Keywords: Attention; Visual Selective Attention; Visual Perception, Categorization, 

Visuocortical Processing; Electroencephalography (EEG); Steady State Visual Evoked Potentials 

(ssVEPs).  
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Significance Statement: The present study demonstrates that learning to categorize novel 

visual stimuli via labeling amplifies the visual representation of the novel stimuli. This neural 

amplification  competes with neural processing of existing categories (here: male and female 

faces) in visual cortex, and in frontoparietal networks that are often linked to selective attention. 

These changes were greater in participants who showed more evidence of learning. The findings 

suggest that visuocortical selection is affected by learning labels, supporting theoretical notions 

that emphasize an active role of sensory cortex in higher-order cognition. They also highlight the 

potential usefulness of indices of neural competition in studies of education, training, and in 

interventions.  
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Introduction 
 

Humans recognize and categorize familiar faces and objects quickly and efficiently (e.g., 

Barragan-Jason, Cauchoixa & Barbeaub, 2015; Miyakoshi, Nomura & Ohira, 2007; Nemrodov 

et al., 2016; Pierce et al., 2011; Thorpe et al. 1996), even when obscured or embedded in noisy, 

complex scenes (e.g., Burton et al., 1999).  Fast and accurate visual discrimination is facilitated 

after objects are paired with a specific verbal label or name (e.g., Scott et al., 2006; 2008; Jones 

et al., 2018).  However, it is unclear how the brain supports these attentional, perceptual and 

conceptual processes.  Here, we test the hypothesis that learning to categorize novel visual 

stimuli via label training alters visuocortical processing. The findings reported here can be used 

to inform computational models of vision and have potential practical applications.  For 

example, quantifying the locus and nature of neural changes as observers learn to discriminate 

objects, locations, or features can be used to monitor and potentially enhance, through 

neuromodulation or feedback, performance in cognitive domains including memory, spatial 

navigation, and recognition (e.g., Dowsett et al. 2016). 

A body of work examining the acquisition of perceptual expertise used laboratory training 

interventions to train novices to recognize objects from natural (birds, Devillez et al., 2019; 

Tanaka, Curran & Sheinberg, 2005; Scott et al., 2006), human-made (cars: Scott et al., 2008) and 

artificial categories (Gauthier & Tarr, 1997; Gauthier et al., 1998; Jones et al., 2018). Findings 

from these training studies consistently demonstrated the efficiency of laboratory training for 

increasing visual discrimination of object exemplars across stimulus categories (Wong, Palmeri, 

& Gauthier, 2009; Tanaka, Curran & Sheinberg, 2005; Scott et al., 2006; 2008; Jones et al., 

2018). These behavioral changes co-varied with both immediate and lasting neural changes 

(Scott et al., 2006; 2008). In addition, training that included labeling at specific levels of 
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abstraction increased perceptual discrimination of within-group exemplars and led to differential 

occipital-temporal neural responses (Scott et al., 2006; 2008; Jones et al., 2018). For example, 

learning a specific subordinate-level label for each species led to increased discrimination and 

differential neural processing relative to learning basic-level labels (e.g., all the species within a 

family are “other”; Scott et al., 2006).   

Based on these previous investigations, verbal or written labels have been hypothesized 

to differentially direct attention and perceptual processing of visual objects.  This hypothesis is 

supported by a previously proposed framework of the development of face processing that 

predicts mechanistic interactions between attention and perceptual learning processes in the 

service of acquiring conceptual knowledge (Markant & Scott, 2018).  However, it is unclear 

whether label learning impacts selection of a labeled stimulus among other visual stimuli, i.e., 

how competition is resolved at the level of visuocortical processing.  

  One approach for quantifying the extent to which learning to associate a label with a 

novel object category impacts visuocortical selection is to measure whether learning to label 

novel objects results in altered visuocortical competition between these newly acquired 

categories and existing categories.  This approach has been used in perceptual expertise research 

and shows interference and heightened competition between faces and objects of expertise 

(Curby & Gauthier, 2014; Gauthier & Curby, 2005; Gauthier et al., 2003; Rossion et al., 2004; 

2007; McGugin et al., 2012; 2014). For example, face selective neurons in the fusiform face area 

(FFA) respond to cars in car experts more so than novices (McGugin, et al., 2012; 2014). 

Additionally, McGugin and colleagues (2015) reported that diverted attention reduces, but does 

not eliminate, car expertise effects in car experts. By contrast, a task that induces competition 

between cars with faces, another domain of expertise, eliminates car expertise effects across 
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much of the occipital temporal cortex. In another investigation, concurrent presentations of faces 

and cars reduced the N170 event-related potential (ERP) amplitude to faces in car experts, but 

not in novices (Rossion et al., 2007). These competition and interference effects are consistent 

with shared, but limited capacity, neural mechanisms. If acquiring perceptual expertise through 

label learning contributes to heightened neural competition between faces and objects seen in 

expert observers, we expect a competitive advantage for novel objects to emerge after a label 

learning intervention in non-experts. To address this question, we measured neural responses to 

concurrently presented faces and novel objects before and after a brief (i.e., 5 minutes), 

experimentally controlled, label training intervention. Changes in competition between the 

concurrently presented stimuli were quantified using frequency-tagged steady state visual evoked 

potentials (ssVEPs; Wieser et al., 2016; Norcia et al., 2015). To leverage the spatial information 

in the dense-array EEG signal, scalp potentials were projected to a source space using a 

minimum norm estimation algorithm (Hauk et al., 2002; 2004).  

Steady-state visual evoked potentials (ssVEPs) are large-scale oscillatory brain responses 

to stimuli that are rapidly and periodically modulated in luminance (i.e., flickered) or in contrast 

(Norcia, Appelbaum, Ales, Cottereau, & Rossion, 2015; Vialatte, Maurice, Dauwels, & 

Cichocki, 2010). The ssVEP is extracted from scalp-recorded EEG signals in the frequency 

domain at the exact stimulus presentation frequency (Wieser, Miskovic, & Keil, 2016). In ssVEP 

frequency tagging, multiple stimuli are flickered at different frequencies (Wang et al., 2007).  

Frequency tagging allows for separate quantification of the degree of large-scale visuocortical 

engagement for each stimulus. In the present study, objects and faces were turned on and off at a 

rate of 5Hz and 6Hz (frequency counterbalanced) against a Brownian noise background. 

Frequency tagging has been previously used for quantifying competitive or synergistic 
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interactions between visuocortical representations evoked by fully overlapping stimuli differing 

in task-relevance or intrinsic saliency (e.g., Wieser & Keil, 2011; Moratti & Keil, 2009; Thigpen 

et al., 2019). For example, using a change detection task with grating stimuli and overlapping 

faces or scenes, Wieser and Keil (2011) reported early increased ssVEPs to detected target 

gratings, followed by a reduction, whereas no temporal change was found for non-target or non-

detected target stimuli. These results suggest that the population activity in visual cortex is 

sensitive to task-based competition dynamics.  They also demonstrate that frequency tagging of 

concurrently presented stimuli is useful for quantifying neural competition, especially in lower-

tier visual areas near the occipital pole.  

In addition to being a useful measure of visual attention and neural competition, the 

ssVEP signal has excellent signal-to-noise ratio (SNR), making it well suited for source space 

analyses, which require high-SNR data. The present study leverages this favorable property of 

ssVEPs to analyze sources using L2 (minimum) norm estimation (MNE).  By comparing source 

configurations across frequency tagging conditions, we can identify cortical regions in which 

competitive interactions between faces and objects exist, and how competition differs before and 

after object label training. Because ssVEP frequency tagging yields independent estimates of 

neural mass activity linked to multiple concurrent stimuli, it allows the precise characterization 

of the nature of competition between them. If a region is characterized by a fixed limited 

capacity, then increase of one stimulus representation will be at the cost of the competing 

stimulus. Other competitive interactions would be expected under a flexible capacity assumption, 

where competition may be resolved by selectively facilitating one stimulus while leaving the 

representation of the competing stimulus unaffected (Thigpen et al., 2019). Here, we use 
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complementary analytical approaches to characterize regions in which these different types of 

competitive interactions are observed.   

In the present investigation a label training intervention was used to promote 

categorization of novel objects and examine learning related visuocortical changes.  It should be 

noted that other forms of categorization learning exist, which do not involve label learning (e.g., 

Smith et al., 2015), and although not tested here may or may not prompt similar changes. In the 

present study, it was predicted that a brief label training intervention would prompt competitive 

interactions in visuocortical brain networks between concurrently displayed faces and novel 

objects. No predictions were made regarding the laterality of these effects. These competitive 

interactions were expected to change with training and be primarily driven by changes in object, 

but not face representations. Competitive interactions were not expected for untrained faces and 

objects in a comparison group in which observes viewed faces and objects twice but did not 

complete label training for these stimuli. If supported, the presence of competitive interactions 

for faces and novel objects after label training would suggest that learning labels for novel object 

categories heightens their visuocortical representation.  This heighted representation taps into 

limited capacity systems that also represent faces, and thus prompting increased interference and 

competition between the two stimuli.    

 

Materials and Methods 

Participants  

Two different groups of participants were tested.  One group received label training for 

objects and faces and the other group did not receive label training.  All participants in both 

groups reported normal or corrected-to-normal vision, no personal or familial history of seizures, 
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and  (3 in the training group) of 50 participants included in the study reported being left-handed. 

All participants provided informed consent and received course credit for participation. All 

procedures and methods used in this study were approved by the Institutional Review Board of 

the University of Florida.  

Label training group: Twenty-six (14 women, 12 men) undergraduate students 

participated in the current study. Two participants were excluded from the analysis due to 

equipment failure (1 participant) and participant fatigue (1 participant).  The remaining 24 

participants (13 female, 11 male; aged 18 to 29 years; M = 20.08, Median age = 19.5, SD = 2.36; 

71% White, 21% Asian, 4.2% Native Hawaiian or other Pacific Islander, and 25% Hispanic) 

were included in analyses.  

No-training group: In a separate sample, twenty-six (13 women, 13 men) undergraduate 

students participated in a similar study using the same pre- and post-training task.  The same 

objects were used, however they were shown in full color.  In this experiment, participants did 

learn to label the objects that were presented at pre- and post-training. No participants were 

excluded from this group (13 female, 13, male; aged 18 to 26 years; M=18.9, Median age =18, 

SD = 1.67; 65% White, 15% Black, 15% Asian and 23% Hispanic).     

Stimuli 

The visual stimuli used in this experiment included 70 grayscale pictures of human faces 

(35 male, 35 female) and 70 grayscale pictures of novel objects (Figure 1). Pictures of human 

faces were chosen from the Karolinska Directed Emotional Faces (KDEF) database and were 

forward facing portraits with neutral expressions. The novel objects, ‘Sheinbugs’ were 

previously used by Jones et al. (2018) and were originally created and edited using Modo© 

(Luxology, LLC).  To minimize effects of low-level physical stimulus features, each stimulus 
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was normalized to have the same mean luminance (64 cd/m2) and contrast (both assessed by 

means of a Gossen MavoSpot luminance meter), as well as the same mean and standard 

deviation of grayscale values, using functions from the MATLAB image processing toolbox. All 

stimuli spanned a visual angle of 6.82º vertically and 7.57º horizontally, with participants’ eyes 

at a 100 cm distance from the presentation monitor. The novel objects were divided into two 

categories based on their distinctive physical characteristics (including body shape and the 

shape/size/number/position of appendages, see Jones et al., 2018) and were labeled as Species 1 

and Species 2. Thirty-five images from each category (Species 1 and Species 2) were used in the 

experiment.                           
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Figure 1. Stimuli included 70 neutral male and female faces from the Karolinska Directed 
Emotional Faces database and 70 novel object images called Sheinbugs (Jones et al., 2018) 
divided into two subset “Species.” 
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Experimental Procedure 

Label training group. The experimental task lasted approximately 35 minutes and 

consisted of a pre-training (baseline) phase, training phase, and post-training (test) phase. Each 

participant was seated in an electrically shielded and dimly lit room and a 129 channel geodesic 

EEG recording net (Philips EGI, OR, USA) was placed on the head, used to record neural 

activity. Participants viewed all stimuli on a 23” 3D-LED (Samsung LS23A950, refresh rate of 

120 Hz) monitor located 100 cm away from the participant’s eyes. Stimulus presentation and 

response registration was controlled by MATLAB code using functions from the Psychtoolbox 

suite of programs (Brainard, 1997).  The baseline phase and test phase were identical in design, 

using the same 140 images, each shown once, and with equal numbers of male/female faces 

superimposed with concurrently presented Sheinbugs of each species. The order of stimuli 

presented, as well as the assignment of faces to be paired with Sheinbugs was randomized, with 

the constraint that equal proportions of male and female faces were assigned to be shown 

concurrently with species 1 and species 2 exemplars. Thus, participants passively viewed 

different superpositions of concurrent stimuli.  

During the baseline and test phases, the faces and novel objects (Sheinbugs) were 

concurrently presented, fully spatially overlapping with each other, and rapidly contrast-

modulated. To implement ssVEP frequency-tagging, we used two different temporal rates, 5 Hz 

and 6 Hz, one used for faces and one for objects, with the tagging frequency corresponding to 

faces versus objects counterbalanced across participants. This type of stimulation primarily 

drives luminance-sensitive neurons in occipital cortex, but also engages higher-order cortices 

sensitive to stimulus content (Norcia et al., 2015). To minimize effects of stimulus edges or 

systematic shape differences between faces and Sheinbugs on the ssVEP, both stimuli 

periodically emerged at their respective tagging frequency from a same-size Brownian noise 
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(spatial noise with a 1/f2 characteristic) patch with the same mean luminance and contrast as the 

experimental stimuli. The noise patch was randomly generated in each trial, to ensure the 

absence of edges and spatial concentration of high contrast in specific locations of the visual 

field. Thus, this approach reduces the presence of visuocortical signals in the ssVEP that are not 

specific to the stimulus of interest. To achieve this, each stimulus was demeaned and the residual 

gray values (with their sign) added to the grayscale values of the Brownian patch. 

Phenomenologically, this creates an impression of faces and objects “appearing within the 

noise”.  

Each trial (see Figure 2 for a timeline) began with the presentation of a gray screen for an 

inter-trial interval randomly (drawn from a rectangular distribution) varying between 3 and 5 

seconds. Then the Brownian noise patch generated for this trial was presented alone, for the 

duration of 1 second, to minimize any transient brain responses to a compound stimulus onset 

(noise, face, and object) which would contaminate the ssVEP segment. Subsequently, one face 

and one object were added periodically to the Brownian noise, each at its specific tagging 

frequency, for a duration of 6000 ms. The overall trial structure and trial number was identical in 

for the baseline and test phase of the experiment, but both phases contained different, 

randomized sequences of random face-object pairs, to minimize any memory or repetition 

effects.  
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Figure 2.  Stimuli concurrently emerged from a Brownian noise (spatial noise with a 1/f2 
characteristic) background with the same mean luminance and contrast as the experimental 
stimuli. Each trial was 6 seconds long.  Presentation Frequency was counterbalanced between 
subjects, who passively viewed the stimuli, while maintaining fixation. 

Throughout, participants were encouraged to remain focused on the center of the screen, 

to restrict eye blinking to times when visual stimuli were not being presented, and to keep their 

head and extremity movements to a minimum, while viewing the stimuli. No other task was 

required during the baseline and test phases.  

At the beginning of the training phase, participants were serially presented with five 

examples (freely randomized order) from each species that were not part of the experimental 

stimulus set (total of 10 exemplars) and given explanations of how they differed in terms of key 

features such as overall shape, location and size of appendages, pattern, etc. Then, six practice 

trials were completed in which the participant discriminated Sheinbugs of both species. 

Explanation and additional training trials were given as needed. In the subsequent main portion 
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of the training, participants were asked to complete a discrimination task that included all 70 

human faces (35 male; 35 female) and all 70 Sheinbugs (35 species 1; 35 species 2). During the 

task, each image appeared in the center of the screen with two written answer choices on each 

side of the screen. If a face image was presented, the response options were “male” and 

“female.” If a Sheinbug image was presented, the response options were “species 1” and “species 

2.” Participants selected a response option by clicking on it with a standard computer mouse. 

This setup was used instead of a two-key choice response to allow future studies to use more 

than two species. Participants were instructed to emphasize accuracy over speed.  If the question 

was answered incorrectly, a non-aversive sound (i.e., “beep”) was played for incorrect responses. 

For each stimulus, the selection latency (from picture onset to mouse click) and accuracy were 

recorded.  

No-training group. The no-training group completed the same task as the label training 

group, with two differences. First, there was no label training intervention between the first and 

second session; second, the objects and faces were shown in color instead of grayscale. We 

include this non-training group as a reference point for effects related to repeated viewing of the 

same stimulus material in two sessions, without label training, and provide a non-parametric 

comparison of the effects seen in both groups. 

EEG Recording. EEG was continuously recorded using an Electrical Geodesic (EGI) 

HCGSN 129 channel high-density sensor net. Electrode impedances were kept below 60 kΩ and 

the vertex sensor (Cz) was used as the recording reference. All channels were digitized at a rate 

of 500 Hz and were filtered online using Butterworth filters with 3dB points set at 0.1 Hz (high-

pass) and 50 Hz (low-pass). All additional data processing was completed offline.  
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EEG Data Processing and Analyses. Preprocessing and artifact handling were 

conducted using the ElectroMagnetoEncephalography (EMEGS) toolbox for MATLAB (Peyk, 

De Cesarei, & Junghofer, 2011), version 2.8. In these analyses, the EEG was first digitally 

filtered to eliminate non-ssVEP signals, by means of a 20-Hz low-pass (12th order Butterworth) 

and a 1-Hz high-pass (4th order Butterworth) filters. Stimulus-locked segments were extracted 

from continuous EEG data, containing 400 ms pre- and 7400 ms post-stimulus onset for both the 

pre and post training phases. Channels and trials for data that contained artifacts were then 

identified using the distribution of three statistical parameters (Junghöfer et al., 2000): the 

absolute value of the voltage, the maximum standard deviation of the voltage, and the maximum 

temporal differential. These were calculated across channels as well as across trials and resulted 

in data quality histograms, the tails of which (defined as 3 standard deviations above the median) 

were discarded (trials), or interpolated from the full channel set (channels). The original 

recording reference (Cz) was first used to detect channels that were contaminated, followed by 

detecting bad channels per trial. The maximum of interpolated channels was 12, with the mean 

across participants being 8.0 interpolated channels. A trial was rejected if interpolated channels 

clustered in the same scalp region. To this end, the emegs algorithm compares a forward model 

with the full channel set to the channel set without bad channels and discards a trial if the 

discrepancy between the two forward solutions exceeds a critical value. Next, the data were 

arithmetically re-referenced to the common average, and trial-specific artifacts were detected 

using the same three statistical metrics, calculated for each trial-channel combination, and bad 

trials rejected. Data were then referenced to the average reference. After artifact rejection, an 

average of 76% (range: 59% to 91%) of the trials in the baseline, and 70% (range: 55% to 88%) 

of the trials in the test phase were retained. Time domain averages across artifact-free trials were 
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submitted to source space estimation.  Data and code for this study is freely available on the 

Open Science Framework 

(https://osf.io/a53s9/?view_only=1966f70fac954bac886381f908c7a275).  

Source Space Projection. To address the central hypothesis of the study, namely that 

competition between objects and faces changes in specific brain regions after a brief labeling 

intervention, we conducted source estimation using the L2 (minimum) norm method. The 

minimum norm estimation (MNE) approach leverages the dense sensor montage, using a simple 

and conservative inverse projection onto a source space that in the present implementation 

consisted of 4 concentric spherical shells approximating the brain volume, at radii corresponding 

to the brain surface, the cortex, and two deep shells modeling any contributions from deep 

sources. Using the algorithm described in Hauk et al., (2002) and Hauk (2004), we first 

calculated a leadfield matrix, mapping the weights for each of 655 model dipoles equidistantly 

located on the 4 spheres relative to each sensor of the 129-channel montage, in three directions, 1 

radial (perpendicular) direction, and 2 tangential directions relative to the surface of each 

spherical shell. Then the inverse of the leadfield was estimated using Tikhonov-Philips 

regularization and multiplied to the data to yield MNE time series reflecting source densities for 

each model dipole and orientation/direction, on each shell. The regularization parameter lambda 

used for Tikhonov-Philips regularization (0.021) was determined for the group-level data by 

plotting spatial variance and goodness of fit (residual variance) across all trials and participants, 

and finding the turning point, i.e., the L-curve method. Because the scalp EEG primarily reflects 

radial source activity, the tangential information was discarded, and the MNE time series 

representing the radial orientation from the outer shell (350 dipoles) were submitted to discrete 

Fourier transform (see below). For visualization, power values, differences, and statistical 
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parameters were mapped onto a standard brain, which was normalized to the same coordinates, 

using the fiducial positions (nasion, inion, left and right periauricular points) co-registered with 

the standard sensor locations of the 129-channel net, by means of MATLAB functions 

implemented in fieldtrip software.  

Frequency Domain Analyses. Only the ssVEP period of each epoch was used for the 

frequency-domain analyses, and only fundamental frequencies (the driving frequencies of 5 Hz 

and 6 Hz) were analyzed. An exploration of other frequencies of potential interest such as higher 

harmonics or so-called intermodulation frequencies (see e.g., Boremanse, Norcia, and Rossion, 

2013) showed that these signals were relatively small in the present study, showed a different 

topography than the fundamental frequencies, and were therefore not included in the present 

analysis. A cosine-square window with a 50 ms taper was applied to the beginning and end of 

this time segment. After multiplication with the window function, the data were submitted to 

Discrete Fourier Transform, and power obtained as the norm of the real and imaginary Fourier 

coefficients, normalized by the number of sample points entering the Fourier transform. The 

resulting normalized spectrum had a resolution of 0.166 Hz, reflecting the length of the ssVEP 

segment, i.e., 6000 ms. The power at the tagging frequency for each stimulus was then extracted 

for each dipole, and the respective power map stored according to the frequency tagging 

condition (i.e., the frequency for the face and object; counterbalanced across participants), 

separately for both phases of the experimental session. Thus, for pre- and for post-training, two 

topographical maps were obtained, one representing the response evoked by the face and one the 

response evoked by the object, for each participant and dipole location. These maps entered the 

permutation controlled statistical comparisons described in the next paragraph. In addition, to 

assess data quality, we computed the signal-to-noise ratio (SNR) for each participant and tagging 
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frequency, by dividing the spectral power at each tagging frequency by the mean power 

measured at 6 adjacent frequencies (3 higher, 3 lower), leaving out the two immediately 

neighboring frequencies respectively.  

Sample Size Estimation and Statistical Analyses. Traditional power analysis is limited 

in repeated-measures designs for which the inter-variable correlations are not known a-priori. 

We therefore used a simulation based approach to determine trial numbers and sample sizes. 

Using trials from an existing frequency tagging data set (Wieser & Keil, 2011), we determined 

the trial count needed to obtain a signal to noise ratio > 6 dB in each participant, considered 

satisfactory. We also calculated the sample size necessary to observe a phase (before vs after 

training) by stimulus interaction in a repeated measures ANOVA design by randomly selecting 

trials and participants, while changing the effect size of the interaction effect. Using this method, 

we determined that 46 trials were needed per condition. To accommodate artifacts, 70 trials were 

run per condition in the present experiment. Assuming 46 good trials per subjects, the 

simulations showed that to detect a difference between stimuli across blocks corresponding to a 

partial omega square of 0.1 (a medium sized effect), 16 participants are needed. When a 

permutation controlled t-test model applied to each dipole was used instead of ANOVA, 20 

participants were needed to robustly detect the same effect size. Following extant 

recommendations for powering studies, we ran 26 participants in each group, to accommodate 

any data loss.  

The overall analytical strategy was to first conduct the same analyses in the two groups 

(label training group; no-training group). We then compared the effects seen in the no-training 

group with the effects seen in the label training group by means of non-parametric Mann-

Whitney U tests, comparing the competition maps for each dipole location as described below. 
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This approach accounts for the fact that both groups viewed slightly different stimuli but also 

allows us to assess the specificity of any effects, anywhere in the source space, for the label 

training group. Throughout this report, mass univariate permutation control is used to address 

alpha error accumulation in map comparisons, which involve many dipole locations.  

In order to determine the effectiveness of the brief labeling intervention, changes in 

accuracy (percent correct) and selection response time (RT) were examined during the training 

phase for face and object trials.  Here, RT was defined as the duration between the onset of each 

image and the choice selection made by each participant during the training phase. As discussed 

above, selection responses were executed using a mouse operation, thus adding variability to the 

selection response latency. RT measures are therefore reported in this study, but cannot be 

interpreted as choice RTs with standard response key setups. Averages comparing the first and 

second half of training were computed for each participant.  The first half included the first 70 

trials of training and the second half included the last 70 trials of training. 2 (object, face) x 2 (1st 

half, 2nd half) ANOVAs were computed separately for percent correct values and selection time.  

Follow-up analyses were corrected for multiple comparisons using the Bonferroni method.  

To directly assess the hypothesis that a brief training intervention changes the 

competitive interactions between concurrent visuo-cortical representations of novel objects 

(Sheinbugs) and faces, we conducted permutation-controlled mass univariate tests at each model 

dipole, separately for the label training group and the non-training group. To this end, we 

quantified the difference between objects and faces before and after training, by subtracting the 

spectral power at the face tag from the power measured at the object tag, separately for pre-

training and post-training. The resulting difference maps were then evaluated by t-tests 

comparing pre-intervention and post-intervention. The critical t-values (corresponding to a 
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significance level of .05) were obtained by calculating distributions of t-values on data shuffled 

between the conditions, within each participant (8000 permutations): Specifically, based on the 

procedure proposed by Blair and Karniski (1993), we randomly permuted the pre-intervention 

and post-intervention condition within each participant 1,000 times and computed t-values for 

each of the 350 model dipoles. Then, the tails of each permutation’s t-value distribution were 

determined and stored in a tmin and tmax distribution, respectively, each having 1,000 values 

corresponding to the 1,000 permutations. Finally, 2.5th and 97.5th percentiles from the resulting 

distribution of tmin and tmax values were used as critical t-values, and only empirical t-values 

crossing that threshold were considered statistically significant.  

To further characterize the nature of the differences that led to the permutation-controlled 

effects in the difference-of-difference maps, we used two follow-up strategies. First, we 

conducted post-hoc t-tests comparing pre- and post-training amplitudes for objects and faces 

separately, for each location identified, to explicitly test the hypothesis that changes in the 

difference-of-differences map reflected pre-to-post changes in object representations, but not 

face representations. Second, we calculated a simple index that reflects the trade-off aspect of 

competition. Trade-off competition effects in the present study would be present if a given brain 

region shows post-training ssVEP power increase for objects that co-occurs with post-training 

power decrease for faces. To assess this specific type of competition, which implies limited 

capacity, we calculated a competition index (Boylan et al., 2019), based on the product of the 

amplitude changes across two blocks for each stimulus type: 

(Object ssVEPpost-training  – Object ssVEPpre-training) * (Face ssVEPpost-training – Face ssVEPpre-training) 

This index is negative if object-evoked power increases from pre- to post-training and there is 

concurrent power reduction in the face-evoked ssVEP, or vice versa (trade‐off). The index will 

be positive if both stimuli display amplitude reduction or amplitude enhancement from pre-
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training to post-training. For both follow-up strategies, the analysis was conducted at each 

dipole, and the resulting maps were thresholded using the same permutation-controlled t-tests as 

discussed above. We also used the competition index maps to conduct an exploratory analysis, 

comparing competition between the two groups (label training versus no training), calculating 

Wilcoxon Rank-Sum tests for each dipole location in the MNE source volume. Here, a large 

positive Wilcoxon z-score would suggest that competition indices were consistently higher for 

the training group in a given region, whereas larger negative z-scores would indicate greater 

competition indices for the no-training (control) group.   

In order to examine the extent to which neural competition was associated with 

discrimination accuracy, rank correlations (Spearman’s Rho) were computed across participants, 

for each dipole location. To this end, the relation between the change in neural competition 

directed by the novel object from before to after training (i.e., the difference-of-difference maps 

as described above) and the change in object species discrimination accuracy from the first half 

to the second half of training was examined. The resulting rank correlations maps were again 

thresholded with the same permutation approach (i.e., Rhomax distribution based on 1000 random 

permutations of condition labels within subject).  

 

Results 

Response time (RT) and accuracy  

For analyses of accuracy, there were significant main effects of stimulus type, F(1, 23) = 

13.486, p = .001, ηp2 = .370, and half of training F(1, 23) = 7.709, p = .011, ηp2 = .251, as well as 

a significant interaction between stimulus type and half of training F(1, 23) = 5.398, p = .029, ηp2 

= .190. The main effect of stimulus type was due to greater accuracy for faces than objects (see 
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Table 1). The main effect of half was due to increased accuracy in the second half of the 

intervention compared to the first half for species.  The interaction between stimulus type and 

half of training was driven by increased accuracy identifying objects in the second half of trials 

compared to the first half, t(23) = -2.923, p = .008, (Bonferroni corrected p<.05; see Table 1). 

There was no significant accuracy difference between the first half and second half of trials for 

faces. Accuracy also was significantly greater for faces in the first half when compared with 

objects t(23) = 4.190, p < .001 (Bonferroni corrected p<.005), but no significant difference was 

found between faces and objects in the second half of trials. 

Analyses of RT showed main effects of stimulus type,  F(1, 23) = 31.009, p < .000, ηp2 = 

.574,  and half of training, F(1, 23) = 37.778, p = .000, ηp2 = .622. The main effect of stimulus 

type was due to faster RT to faces than objects (see Table 1 for Means and SE). The main effect 

of half of training was due to faster RTs during the second half relative to the first half of trials.  

There were no significant interactions for RT.  RT was significantly less (participants responded 

faster) for faces than objects in the first half t(23) = -4.392, p < .001(Bonferroni corrected 

p<.005), and in the second half of trials t(23) = -2.600, p = .016 (Bonferroni corrected p<.05). 

 
Table 1 
Percent correct and average response times during training (Mean +/-SEM). 
 

Percent Correct Average Response Time (ms) 

Stimulus 1st Half 2nd Half 1st Half 2nd Half 

Faces 98.452 ± 0.45 98.571 ± 0.42 1603.490 ± 92.33 1326.074 ± 95.93 

Objects 93.691 ± 1.17 96.786 ± 0.97 2153.256 ± 167.78 1568.344 ± 110.18 

 
Steady-state visual evoked potentials: Label training group 
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The frequency-tagged stimulus array prompted robust ssVEP signals in all participants, with 

SNRs for each participant and experimental condition exceeding 3.2 dB. Figure 3A shows the 

mean spectrum for the pre-intervention session in the label training group, averaged across 12 

participants in the same tagging group, to illustrate the satisfactory data quality attained with this 

paradigm, and with the present source estimation method. Power for both stimulus types, pre- 

and post-intervention, displayed a strong occipital maximum, as illustrated in Figure 3B. The raw 

difference maps (objects minus faces) are shown in Figure 3C, evincing overall greater responses 

to faces compared to objects at mid-occipital locations, but greater responses to novel objects at 

anterior sites.  

 

Figure 3.  A. Averaged frequency spectrum from a model dipole located at the occipital pole, 
during the pre-intervention session in one of two tagging groups (n=12), where faces were 
tagged at 5 Hz, and objects tagged at 6 Hz. B. Grand mean (n=24) ssVEP power in response to 
both faces and objects during the pre- and post- intervention sessions. C. Grand mean (n=24) 
difference maps illustrating object minus face power differences in source space.   
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When comparing post- and pre-intervention competition maps using paired t-tests, we 

found that a total of 19 dipole locations out of 350 exceeded the conservative permutation-based 

threshold of tcrit = 3.17 (corresponding to p < .05) for the post > pre comparison of the 

competition map defined as the difference of ssVEPobjects minus ssVEPfaces (Figure 4). A control 

analysis with three left-handed individuals excluded showed the same pattern of results.  

 

 

Figure 4.  Top panel: Dipole locations exceeding the permutation-based threshold when 
comparing post- and pre-intervention competition maps. Bottom panel: Dipole locations in 



NEURAL COMPETITION   26 

which the unitless competition indices were different from zero (permutation controlled t-test 
against 0). The competition index is the product of the post-training minus pre-training 
differences for each stimulus, thus rendering negative numbers when one response (i.e. object) 
increases, and the other decreases. It is positive when both decrease or increase with training. 
Only negative values were observed in the present data set, and all were related to increase in 
object-evoked ssVEPs.  

Table 2 shows all significant regions and the distributions of ssVEP power values in 

source space. No dipole location exceeded the threshold for the difference in the opposite 

direction, i.e. greater competitive advantage for the faces compared to the objects after training 

compared to before training. No dipole location showed a significant ssVEP amplitude increase 

from pre- to post-training for faces (all ts<2.41). Out of 19 dipole location showing significant 

changes in the object minus face difference from pre- to post-training, 16 showed significant 

amplitude enhancement (from pre- to post-training) in object-evoked ssVEPs, with 3 

supramarginal gyrus dipole locations not reaching the permutation-controlled threshold.  
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Table 2  
Competitive Dipole Locations 

   

Hemisphere 

Focus point  

MNI coordinates  

 

Statistic 

(dipoles) 

Cortical region Brodmann’s 

area 

 x y z T 

Inferior occipital 

gyrus 

18 L -22 -82 -5 3.46 (2) 

       

Middle occipital 

gyrus 

19, 39 L -43 -76 14 3.23 (2) 

       

Inferior temporal 

gyrus 

37, 19 L -51 -66 -8 3.55 (1) 

       

Supramarginal 

gyrus 

40, 1, 3, 2 R 67 -18 26 3.21 (2) 

 40, 39 L -52 -37 29 3.66 (2) 

       

Postcentral gyrus 4, 3b, 1 R 64 -6 19 3.33 (1) 

       

Precentral gyrus 6, 44 R 58 6 23 3.40 (1) 

 6 L -59 5 35 3.47 (2) 

       

Middle frontal 

gyrus 

10, 9 R 52 40  22 3.33 (2) 

 9, 8 L -47 26 36 4.01 (4) 

Note. Dipole locations with significant changes in competition indices (ssVEP differences 
sheinbug minus faces), from pre- to post-intervention. Focus points (where the largest t-values 
was observed) within each region are given in MNI coordinates, along with the number of 
dipoles crossing the threshold of t=3.17 in that region. 

 

  
Dipoles from the left inferior occipital gyrus and left middle frontal gyrus dipoles are 

shown in Figure 5. Consistent with the competition maps, and the results reported above, they 

illustrate a selective increase in ssVEP power for objects, compared to faces, after the 

intervention, with 18 participants showing interaction effects consistent with selective facilitation 

of object representations after training, compared to pre-training. When comparing the two 



NEURAL COMPETITION   28 

tagging groups (face tagged at 5 Hz, face tagged at 6 Hz), neither significant main effects of 

group nor group by condition interactions emerged (all Fs < 3).  

 

Figure 5. Illustration of data from two regions (Left Middle Frontal Gyrus (top); Left Inferior 
Occipital Gyrus (bottom) showing a selective increase in ssVEP power (in source space) for 
objects, compared to faces from pre-intervention to post-intervention. The bar plots include the 
mean (dark line) and 95% CI (box) as well as individual data points. Individual power 
differences between faces and objects are shown in the boxes on the right at pre-test and post-test 
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for each region. Note that these plots are given to further illustrate the results of the 
topographical analysis in Figure 4, but do not represent a separate or additional statistical test.    
 
Steady-state visual evoked potentials: No-training group 

The competition analyses described above were repeated in the non-training group, which also 

showed satisfactory SNRs and clear occipital maxima in the MNE projection across all 

experimental conditions (See Figure 6A). Likewise, the overall pattern visible in the competition 

maps (Figure 6B) paralleled those from the label training group in that they showed an occipital 

dominance of face-evoked responses over object-evoked responses (blue hues), and greater 

object-evoked responses (red hues) at lateral sites. In contrast to the label training group 

however, when comparing post- and pre-intervention difference maps using paired t-tests, none 

of the t-tests crossed the permutation controlled critical value of 3.13. The distribution of all t-

values is shown in Figure 6C. Session did not affect competition between objects and faces in the 

non-training group. An exploratory comparison of competition index maps for the label training 

group and the no-training group (Figure 6D) showed that the competition in the training group 

was greater than in the no-training group, at 5 left occipital dipole sites, where competition was 

most pronounced for the training group. At these 5 contiguous locations, z-scores exceeded the 

threshold of 2.90, determined by permuting group labels, as described above.    
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Figure 6. Data from the no-training group. A. Grand mean (n=26) ssVEP power projected to 
MNE space in response to both faces and objects during the pre-break and post-break sessions. 
B. Grand mean ( n=26) competition map illustrating object minus face power difference in 
source space, again shown for the sessions before and after the break. C. Histogram of t-values 
from the competition analysis, which examined changes in competition  (objects minus faces) 
from pre- to post-break sessions. No location in the 350-source space exceeded the threshold 
determined by permutation (3.13) D. Exploratory comparison of competition indices in the label-
training group and in the no-training group, using Wilcoxon Rank-Sum tests at each dipole 
location.     

 

Neural Competition and Behavior: Label training group 

To quantify the extent to which altered competition from before to after training was related to 

differences in discrimination accuracy, we related the competition change maps to the change in 

accuracy for object species discrimination, recorded during the training phase. Using Spearman’s 

Rho, a strong positive correlation would indicate that participants with high ranks in object 

discrimination improvement also had high ranks in terms of increased neural competition 
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towards objects, and vice versa. The permutation-controlled .975 quantile of the Rhomax 

distribution was .40, used as a threshold for the resulting correlation map, shown in Figure 8. 

Three clusters of dipoles crossed this threshold, 6 dipoles in left occipital cortex, 5 dipoles in 

right parietal cortex, and 3 dipoles in left precentral gyrus. No dipoles showed a negative 

relationship between change in accuracy and change in competition.  

 
Figure 7. Rank correlation map between change in neural competition towards objects from 
before to after training and discrimination accuracy in the label training group. Top panel: Left 
view of the correlation map in the estimated source space, projected to a standard brain. A scatter 
plot of the change in competition in left occipital dipoles (circled) and change in detection 
accuracy during training is shown. Bottom panel: Back view of the correlation map in the 
estimated source space, projected to a standard brain. A scatter plot of the change in competition 
in right parietal (circled) and change in detection accuracy during training is shown. 
 

Discussion 

The primary aim of the current investigation was to determine the extent to which neural 

competition between objects and faces changes after an object labeling intervention in which 
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adults learned to categorize exemplars of novel objects into two different species. Results 

suggest that object label training prompted a competitive advantage for exemplars from newly 

learned object categories over faces. Competition, assessed as the difference of the ssVEP power 

values evoked by concurrently viewed objects and faces, was altered selectively in left occipital, 

as well as left and right fronto-parietal cortical areas. When operationalizing competition more 

narrowly as occupation of a limited capacity, we found strong trade-off effects between novel 

objects and faces, only in occipital cortices. In these areas, most pronounced in the left 

hemisphere, labeling-related increases in object-evoked responses were associated with 

decreases in face-evoked responses. A comparison group in which observers viewed the same 

type of display without intervening label training did not show these changes in large-scale 

neural competition. Thus, learning to categorize novel objects via labeling prompts changes in 

large-scale competition. Future research is necessary to determine the extent to which 

categorization in the absence of labeling is sufficient to prompt changes in neural competition.   

Behavioral performance (accuracy and selection time) from the first half of training was 

compared to the second half of training in order to determine whether the brief label training 

intervention impacted behavior (see Table 1 for results).  As expected, accuracy as measured by 

percent correct responses was greater for categorizing gender compared to the novel objects. 

Accuracy also improved over the course of the training session, reflected in an increase in mean 

accuracy from the first to the second half of trials. No such increase was found for faces, for 

which performance was at ceiling. Overall, discrimination accuracy results suggest that 

participants in this study showed rapid learning from pre-intervention to post-intervention for 

categorizing the novel objects, with many observers being near-ceiling within the first half of 

training. We also related these behavioral changes to neural data: Left occipital and right parietal 
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areas showed greater competitive advantages for objects after training in those with greater 

discrimination performance improvement, further supporting the notion that competitive 

advantage at the neural level accompanies successful label learning. 

Frequency-tagging of overlapping faces and novel objects presented against Brownian 

noise evoked robust and reliable ssVEP signals associated with each specific stimulus category 

(face, object). The purpose of the Brownian noise used in this study was to minimize 

visuocortical engagement that is not specific to the faces and objects respectively. The presence 

of Brownian noise minimizes the effects of low level features such as edges, luminance, and 

non-specific contrast and emphasizes processing object and face-specific information. The 

acquisition of robust ssVEP signals allowed us to quantify the competition between the fully 

overlapping faces and objects. After a short instruction and label training intervention, cortical 

representations of novel objects, but not faces, significantly increased across a distributed 

network of neural regions including the left inferior and middle occipital gyri, and inferior 

temporal gyrus as well as bilateral supramarginal, postcentral, and middle frontal gyri, and right 

postcentral gyrus.  In occipital cortex, these interactions took the form of competition for a fixed 

limited capacity: Pre- to post-training increase in ssVEP power for objects was associated with a 

decrease in ssVEP power evoked by faces. By contrast, frontal and parietal regions showed a 

selective increase of object-evoked ssVEP signals that was not at the expense of the concurrent 

face stimulus. This pattern of findings suggests that label learning facilitates the representation of 

labeled stimulus in lower tier visual cortex, where receptive fields are small and overlapping 

stimuli compete for limited capacity. By contrast, higher-order, anterior cortices do not show this 

bottleneck for spatially overlapping stimuli. Previous work has identified heightened competitive 

advantages of a stimulus in visual regions as a strong correlate of attentive selection, based on 
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conceptual (Reynolds & Heeger, 2009) and empirical grounds (Andersen, Müller, & Hillyard, 

2009; Wieser & Keil, 2011). Anterior brain regions showing selective changes in the present 

study have been linked with working memory, object categorization, motor and language 

processing, and selective attention (Gazzaley & Nobre, 2015). Specifically, frontal networks, 

including the prefrontal cortex, may be biasing downstream sensory regions in a top-down 

manner (e.g., Miller & Cohen, 2001; D’Esposito & Postle, 2015). Top-down modulation of face 

specific neural activity is consistent with previous FFA activity and N170 ERP responses 

(Gazzaley et al., 2005). Furthermore, the results presented here converge with work in other 

areas of associative learning, most notably Pavlovian conditioning (Gruss, Langee, & Keil, 

2016). Specifically, conditioning-induced changes in competition have been shown to prompt re-

entrant fronto-parietal signals that enhance or suppress information in occipital-temporal regions, 

which are capacity limited (Petro et al., 2017).  Similar re-entrant signals may bias visual 

attention to the novel objects in the context of the present labeling intervention, and increase 

their competitive strength relative to faces. Future work may use multimodal imaging and 

directional analyses to examine this hypothesis.     

 The unpredicted left lateralized selective increase in ssVEP power for objects after label 

training (see Table 2 and Figures 5) is consistent with findings from a range of investigations 

reporting a distributed left lateralized network of regions involved in language processing 

(Friederici, 2012).  The network of regions reported in the present investigation have been linked 

visual language perception (McCandliss et al., 2003) and semantic processing (Bookheimer, 

2002; Pulvermüller, 2018; Tomasello, Garagnani, Wennekers & Pulvermüller, 2017). Left 

lateralized responses and a broad network of regions are consistent with one recent 

neurocomputational model (Tomasello et al., 2017) which implements Hebbian learning across 
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frontal and temporal cortical regions as well as a previous proposal that includes a combination 

of top-down and bottom-up predictive processes involved in language comprehension 

(Friederici, 2012). The idea that associating a verbal label with a class of object aids in 

representation of the object by enriching the feature space overlaps conceptually with the label-

as-feature hypothesis (Gliozzi et al., 2009; Sloutsky, 2010) discussed in developmental studies.  

The present findings are also consistent with previous reports of competition and 

interference effects in real-world perceptual experts (e.g., Curby & Gauthier, 2014; Gauthier & 

Curby, 2005; Gauthier et al., 2003; Rossion et al., 2004; 2007; McGugin et al., 2012; 2014). 

However, these results extend the network of regions involved in cortical competition to include 

distributed regions in frontal as well as occipital temporal regions.  In addition, the present 

investigation shows competition between face and object representations within minutes of 

learning. Since ssVEPs were measured during an free viewing period instead of in the context of 

a task it is difficult to determine whether the changes we report from pre-test to post-test reflect 

momentary changes in allocation of visual selective attention or the initial stages of expert-like 

perceptual indices of visual perceptual expertise.  Future work, following adults across several 

training sessions with difficult expert-level discriminations and experimental manipulations of 

attention would allow for an unfolding of the time course of cortical competition underlying the 

role of selective attention in the acquisition of expertise. Finally, based on the present data it is 

unclear whether the specificity of the label plays an important role in competitive cortical 

processing.  For example, if another family of artificial objects was trained but the two species 

were simply labeled “other” would competition between faces and objects decrease? It is also 

possible that labels are just one of many ways to promote categorization, individuation and 

neural competition (see Bukach et al., 2012).  In a similar vein, objects other than the biological-
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appearing “Sheinbug” species used here may prompt different patterns of competition. Previous 

work, for example. has found neural competition between faces and objects to be stronger when 

competing objects were more “facelike”, i.e., when they resembled a human face (Lochy et al., 

2017). The ssVEP frequency tagging method coupled with source estimation holds significant 

promise for addressing these issues. Future work, replicating and extending the present findings, 

is needed to establish the extent to which label-learning-induced changes in neural competition 

follow the pattern observed here.   

The present study is consistent with broader conceptual models suggesting that learning 

to label exemplars from novel categories involves interactions between attention, perception, and 

conceptual processing (Markant & Scott, 2018). The results reported here highlight the potential 

role of a broad network of frontoparietal cortical regions during the course of label learning. The 

selective facilitation of novel objects in frontoparietal and visuocortical regions is consistent with 

selective attention weighting and biasing of sensory processing towards the novel and recently 

learned category at the cost of an existing category (gender of faces). In addition, crosstalk 

between visuocortical areas and frontoparietal regions may result in optimized visuocortical 

tuning to the object features that are critical for the accurate recognition of exemplars from 

newly acquired categories (Mcteague, Gruss, & Keil, 2015). Visual features including color and 

spatial frequency have been previously associated with recognition and discrimination 

advantages in real world experts (Hagen et al., 2014, 2016) and after extensive laboratory 

training (Devillez et al, 2019;  Jones et al, 2018). Thus, manipulation of these and other visual 

features using frequency tagging before and after label learning may allow for a more detailed 

understanding of how attention to these perceptual features is modulated by label learning as 
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well as the extent to which features, like color and spatial frequency, compete with each other 

across this distributed network.   
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Figure Captions 

Figure 1. Stimuli included 70 neutral male and female faces from the Karolinska Directed 

Emotional Faces database and 70 novel object images called Sheinbugs (Jones et al., 2018) 

divided into two subset “Species.” 

 

Figure 2.  Stimuli concurrently emerged from a Brownian noise (spatial noise with a 1/f2 

characteristic) background with the same mean luminance and contrast as the experimental 

stimuli. Each trial was 6 seconds long.  Presentation Frequency was counterbalanced between 

subjects, who passively viewed the stimuli, while maintaining fixation. 

 

Figure 3.  A. Averaged frequency spectrum from a model dipole located at the occipital pole, 

during the pre-intervention session in one of two tagging groups (n=12), where faces were 

tagged at 5 Hz, and objects tagged at 6 Hz. B. Grand mean (n=24) ssVEP power in response to 

both faces and objects during the pre- and post- intervention sessions. C. Grand mean (n=24) 

difference maps illustrating object minus face power differences in source space.   

 

Figure 4.  Top panel: Dipole locations exceeding the permutation-based threshold when 

comparing post- and pre-intervention competition maps. Bottom panel: Dipole locations in 

which competition indices were different from zero (permutation controlled t-test against 0). The 

competition index is the product of the post-training minus pre-training differences for each 

stimulus, this rendering negative numbers when one response (i.e. object) increases, and the 

other decreases. It is positive when both decrease or increase with training. Only negative values 

were observed in the present data set, and all were related to increase in object-evoked ssVEPs.  

Figure 5. Illustration of data from two regions (Left Middle Frontal Gyrus (top); Left Inferior 

Occipital Gyrus (bottom) showing a selective increase in ssVEP power (in source space) for 
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objects, compared to faces from pre-intervention to post-intervention. The bar plots include the 

mean (dark line) and 95% CI (box) as well as individual data points. Individual power 

differences between faces and objects are shown in the boxes on the right at pre-test and post-test 

for each region. Note that these plots are given to further illustrate the results of the 

topographical analysis in Figure 4, but do not represent a separate or additional statistical test.    

Figure 6. Data from the no-training group. A. Grand mean (n=26) ssVEP power projected to 

MNE space in response to both faces and objects during the pre-break and post-break sessions. 

B. Grand mean ( n=26) competition map illustrating object minus face power difference in 

source space, again shown for the sessions before and after the break. C. Histogram of t-values 

from the competition analysis, which examined changes in competition  (objects minus faces) 

from pre- to post-break sessions. No location in the 350-source space exceeded the threshold 

determined by permutation (3.13) D. Exploratory comparison of competition indices in the label-

training group and in the no-training group, using Wilcoxon Rank-Sum tests at each dipole 

location.     

Figure 7. Rank correlation map between change in neural competition towards objects from 

before to after training and discrimination accuracy. Top panel: Left view of the correlation map 

in the estimated source space, projected to a standard brain. A scatter plot of the change in 

competition in left occipital dipoles (circled) and change in detection accuracy during training is 

shown. Bottom panel: Back view of the correlation map in the estimated source space, projected 

to a standard brain. A scatter plot of the change in competition in right parietal (circled) and 

change in detection accuracy during training is shown. 
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