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Abstract

Background: DNA methylation is an epigenetic event involving the addition of a methyl-group to a cytosine-
guanine base pair (i.e., CpG site). It is associated with different cancers. Our research focuses on studying non-small
cell lung cancer hemimethylation, which refers to methylation occurring on only one of the two DNA strands.
Many studies often assume that methylation occurs on both DNA strands at a CpG site. However, recent
publications show the existence of hemimethylation and its significant impact. Therefore, it is important to identify
cancer hemimethylation patterns.

Methods: In this paper, we use the Wilcoxon signed rank test to identify hemimethylated CpG sites based on
publicly available non-small cell lung cancer methylation sequencing data. We then identify two types of
hemimethylated CpG clusters, regular and polarity clusters, and genes with large numbers of hemimethylated sites.
Highly hemimethylated genes are then studied for their biological interactions using available bioinformatics tools.

Results: In this paper, we have conducted the first-ever investigation of hemimethylation in lung cancer. Our
results show that hemimethylation does exist in lung cells either as singletons or clusters. Most clusters contain
only two or three CpG sites. Polarity clusters are much shorter than regular clusters and appear less frequently. The
majority of clusters found in tumor samples have no overlap with clusters found in normal samples, and vice versa.
Several genes that are known to be associated with cancer are hemimethylated differently between the cancerous
and normal samples. Furthermore, highly hemimethylated genes exhibit many different interactions with other
genes that may be associated with cancer. Hemimethylation has diverse patterns and frequencies that are
comparable between normal and tumorous cells. Therefore, hemimethylation may be related to both normal and
tumor cell development.

Conclusions: Our research has identified CpG clusters and genes that are hemimethylated in normal and lung
tumor samples. Due to the potential impact of hemimethylation on gene expression and cell function, these
clusters and genes may be important to advance our understanding of the development and progression of non-
small cell lung cancer.
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Background
Lung cancer is a leading cause of death in the United
States; more patients die of lung cancer than of breast,
prostate, and colon cancers combined. The American
Cancer Society predicts that in 2021 alone there will be
235,760 new cases of lung cancer diagnosed and 131,880
deaths in the United States [1]. The five-year survival
rate of lung cancer is much lower than many other
prominent cancers such as breast, colorectal, and pros-
tate, as only 19.4% of patients survive beyond 5 years of
having the disease. The rate of survival can be as high as
57.4% when the cancer is still localized. However, the
majority (57%) of patients are diagnosed in late stages,
and the five-year survival rate of these patients is only
5.2% [2].
In order to diagnose and treat lung cancer, it is im-

portant to identify genetic and epigenetic biomarkers.
One important epigenetic biomarker or event is DNA
methylation. It is the covalent bonding of a methyl
group (−CH3) to a CpG site in a mammalian cell; this is
an epigenetic alteration to the DNA, meaning the DNA
sequence does not change. A CpG site is the nucleotide
base cytosine bonded to the base guanine by a phos-
phate (5′-CpG-3′) [3]. The correlation between methyla-
tion patterns on specific CpG sites and gene expression
has been studied as methylation enhances or mutes
particular genes [4]. DNA methylation patterns are
maintained and changed mainly through two dynamic
processes: methylation maintenance and de novo methy-
lation [5, 6]. Methylation maintenance allows for preser-
vation of methylation patterns across replication
generations, maintaining valuable methylation levels. De
novo methylation occurs on symmetrically unmethylated
CpG sites and increases methylation levels over cell gen-
erations [5]. Demethylation is the action of a methyl
group being removed from a CpG site, and it can be ob-
served in two forms: passive and active [6]. Passive de-
methylation is an error during maintenance methylation,
resulting in bare or hypomethylated CpG sites on the
nascent strand, whilst the parent strand is methylated. In
contrast, active demethylation is the deliberate removal
of a methyl group from a CpG [7].
Both demethylation and de novo methylation can lead

to the development of hemimethylation, i.e., methylation
occurring on only one DNA strand of a CpG site but
not the other. Because demethylation and de novo
methylation are related to the loss and gain of methyla-
tion respectively, hemimethylation may be associated
with the changes of methylation patterns and levels as
cancer progresses [7]. That is, hemimethylation may be
closely related to abnormal hypermethylation and hypo-
methylation patterns found in a cancer genome. In fact,
Ehrlich and Lacey find that the study of hemimethyla-
tion provides valuable insight into cancer-associated

active demethylation and hypomethylation [5]. Exactly
how different hemimethylation patterns affect gene ex-
pression is not yet well documented, except for the re-
cent findings by Xu and Corces, who show that the
elimination of hemimethylation can reduce chromatic
interactions [8]. They also show that in inner cell mass
cells, there are a large number of hemimethylated CpG
sites on gene bodies. These hemimethylated sites play a
pleiotropic role on gene expression [8].
DNA methylation patterns and levels can vary as can-

cer progresses [7]. Abnormal hypermethylation and hy-
pomethylation are commonly known characteristics of
cancerous cells. Identification of these different states of
methylation can assist in the detection of cancerous cells
long before they would appear in clinical examinations
or before symptoms are apparent. Hemimethylation as a
transitional state or indicator of hypomethylation and
hypermethylation can help medical researchers to moni-
tor how far the disease has progressed. Knowledge of the
hemimethylation can allow for better comprehension of
certain cancers and provide better insight toward the de-
velopment of treatment methods. Therefore, it is im-
portant to investigate it in cancer. Hemimethylation has
been researched previously for breast cancer cell lines
[9], but not yet for lung cancer. Lung cancer is a great
candidate for this investigation as it is challenging to de-
tect early-stage lung cancer. Its symptoms are often ob-
scure or mistakable due to the consequence of previous
smoking habits. Utilizing hemimethylated genes to iden-
tify carcinogenic development may be beneficial in lung
cancer diagnosis. The purpose of this research study is
to identify hemimethylation patterns in both normal and
tumorous samples of non-small cell lung cancer patients
using publicly available methylation sequencing data.

Methods
In this study, to identify hemimethylation patterns, we
will analyze the methylation sequencing data generated
from tumor and adjacent normal tissues of 18 male non-
small cell lung cancer patients in their fifties to seven-
ties. The reduced representation bisulfite sequencing
(RRBS) datasets of these patients are publicly available
[10]. Sequencing reads are aligned to the hg38 reference
genome, and methylation signals are obtained using the
BRAT-bw software package [11]. All methylation data-
sets consist of the methylation signals of CpG sites.
These methylation levels are calculated based on the ori-
ginal or raw number of reads, that is, the methylation
level or ratio at each CpG site is calculated as the num-
ber of methylated reads divided by total number of
reads. Further analysis is then performed on CpG sites
with at least four methylation signals for both strands.
Hemimethylation is a particular kind of methylation

pattern. If a CpG is methylated on the forward strand
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but not on the reverse strand, it is defined as a MU
hemimethylation site. If a CpG is methylated on the re-
verse strand but not on the forward strand, it is defined
as a UM hemimethylation site. If a CpG exhibits no sig-
nificant hemimethylation, it is defined as an NS site. If
no data is available to be analyzed at a CpG, that site is
defined as an NA site. Hemimethylation occurs not only
at solitary CpG sites, but also at consecutive ones,
known as hemimethylation clusters. Such clusters can
manifest in one of two distinct patterns: regular or polar
[5, 7, 9, 12], see Fig. 1. A regular cluster can be observed
when sequential CpG sites are methylated on the same
strand but unmethylated on the other. A polar or polar-
ity cluster occurs when consecutive CpG sites are meth-
ylated on opposite strands. Next, we will explain in
detail how to identify these different hemimethylation
patterns.
The Wilcoxon signed rank test is utilized to investigate

if hemimethylation exists at each CpG site [9, 13]. This
particular test is selected instead of a regular statistical t-
test because the independence and normality assump-
tions are not satisfied. The null hypothesis is that, at
each CpG site, there is no methylation level difference
between the forward (or positive) and reverse (or nega-
tive) strands. For every CpG site, there are two methyla-
tion signals, one from the forward and one from the
reverse strand. That is, there are up to 18 pairs of
methylation signals at each CpG site as there are 18
samples. For each pair, the forward strand methylation
level is subtracted from the reverse strand methylation
level. The absolute value of the difference and the sign
of the difference (negative or positive) are recorded sep-
arately. Pairs with zero difference are discarded. The ab-
solute differences of the pairs are then ranked from
smallest to largest so that the pair with the smallest

absolute difference is ranked one. Lastly, a test statistic
is calculated by summing all of the ranks after multiply-
ing them by their respective signs (i.e., signed-ranks).
This test statistic follows a specific distribution, and it is
evaluated using a reference table. If the test statistic falls
into the rejection region that is determined by the crit-
ical value from the table, then the null hypothesis is
rejected. The rejection decision means that there is dif-
ference between the forward and reverse methylation
levels at a CpG site. If the null hypothesis is not rejected,
it shows that there is not a significant difference. The
Wilcoxon signed rank test is conducted for tumor and
normal samples separately. That is, we identify hemi-
methylated CpG sites for tumor and normal samples
separately and then compare them.
The test results are filtered based on two metrics: for-

ward and reverse strand methylation mean difference
and Wilcoxon test p-value. CpG sites with a large mean
difference in methylation levels and a p-value that is less
than 0.05 are identified as hemimethylated CpG sites.
Significant CpG sites are annotated to show which gene
promoter region or gene body they belong to. Addition-
ally, clusters of CpG sites are identified as either regular
or polar patterns. For example, MMM-UUU and MU-
UM are regular and polar clusters respectively, see Fig.
1. MMM-UUU means that at three consecutive CpG
sites, methylation occurs on the positive strands (i.e.,
MMM) but not on the reverse strand (i.e., UUU). MU-
UM means at two consecutive CpG sites, on the positive
strand they are methylated (M) and unmethylated (U)
respectively (i.e., MU), and on the reverse strand they
are unmethylated (U) and methylated (M) respectively
(i.e., UM). The CpG sites that are not in clusters are
called singletons. The lengths of all clusters in tumor
and normal cells are shown in histograms. The

Fig. 1 Examples of regular and polarity clusters shown on forward and reverse strands. CmG (or GCm) refers to a methylated (M) site; CG (or GC)
refers to an unmethylated (U) site
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percentages of CpG sites in regular clusters, polar clus-
ters, and singleton points are summarized. All these
summarized results of tumor and normal samples are
further compared using statistical tests. For those CpG
sites in clusters, DNA strands in the tumor and adjacent
normal cells are compared, and overlapping clusters are
identified. We’ll show the key findings in the Results
section.

Results
Hemimethylated CpG sites for both normal and tumor
cells are identified using the Wilcoxon tests. Table 1 de-
scribes the proportions of hemimethylation sites that are
in clusters based on the p-value (p < 0.05) and three
mean difference cutoff values. There are similar numbers
of hemimethylation sites in tumor and normal samples,
but the proportion in clusters is slightly higher in nor-
mal samples. When comparing the proportions between
normal and tumor, we get the following three p-values,
0.00039, 0.00035, and 0.277. These p-values correspond
to the three mean difference cutoff values 0.4, 0.6, and
0.8 respectively. For the rest of this paper, our analysis
will focus on the hemimethylation sites identified based
on the p-value of 0.05 and the absolute mean difference
greater than or equal to 0.4.
Tumor and normal samples’ hemimethylation CpG

sites are compared in Table 2. The first row of this table,
i.e., the T.MU row, indicates the total number of MU
hemimethylation CpG sites in tumor (T) cells. Among
these sites, 1697 of them are also hemimethylated in
normal cells (N.MU), 1688 of them are not significantly
hemimethylated in normal (N.NS), and 217 of them have
no data in normal cells (N.NA). The first column of
Table 2, i.e., the N.MU column, shows the total number
of MU hemimethylation CpG sites in normal (N) cells.
Among these sites, 1697 of them are also hemimethy-
lated in tumor cells (T.MU), 1728 of them are not sig-
nificantly hemimethylated in tumor (T.NS), and 268 of
them have no data in tumor cells (T.NA).
Tumor and normal samples’ hemimethylation clusters

are compared in Table 3. This table shows that most
clusters only have two or three CpG sites and cluster
frequency decreases with increased cluster length, mean-
ing large congregations of hemimethylation are infre-
quent. The length of a cluster is defined as the total

number of base pairs between the first and the last CpG
sites in the cluster. Figure 2 shows four histograms of
cluster lengths. These histograms display the length dis-
tributions of polarity patterns in tumor, polarity patterns
in normal, regular patterns in tumor, and regular pat-
terns in normal samples. Regular and polarity patterns
are analyzed separately because polarity clusters tend to
be much shorter. In fact, many of the polarity clusters
are less than 40 base pairs long, and a majority of them
are less than 10 base pairs long (see peaks in the top
panels of Fig. 2). Many of the regular clusters are rela-
tively short, i.e., less than 60 base pairs long, but a small
amount of them are longer than that with a maximum
length of around 100 to 120 base pairs. A Wilcoxon
rank-sum test is performed to compare the difference
between the lengths of clusters in normal and tumor
cells. The test result is insignificant (p-value = 0.12).
For the two main hemimethylation cluster patterns,

regular cluster and polarity cluster, we summarize them
in detail in Tables 4 and 5. Table 4 describes the propor-
tions of different regular clusters in normal and tumor
DNA. Table 5 describes the proportions of different po-
larity patterns in normal and tumor DNA. Polarity clus-
ters appear less frequently than regular patterns, as seen
by the difference in the number of sites between Tables 4
and 5. For example, tumor samples have a total of 477
regular clusters and only 36 polar clusters.
One way to detect which clusters may be related to

cancer is to compare the cluster locations between
tumor DNA and normal DNA. Some clusters may ap-
pear in the same sites in both tumor and normal

Table 1 Number of hemimethylated CpG sites and percentage of sites in clusters

|Mean
difference|

Normal Tumor

Total Sites in clusters Percentage Total Sites in clusters Percentage

≥0.4 7351 1510 20.54% 7330 1336 18.23%

≥0.6 2588 348 13.45% 2743 282 10.28%

≥0.8 723 53 7.33% 823 49 5.95%

Each row is for a mean difference level. The two panels (three columns each) are for normal and tumor samples respectively

Table 2 Comparison of normal and tumorous hemimethylation
site patterns

N.MU N.UM N.NS N.NA

T.MU 1697 0 1688 217

T.UM 0 1597 1892 239

T.NS 1728 1789 1,895,429 101,322

T.NA 268 272 98,209 27,295,013

Each row is for the tumor (T) sample and each column is for the normal (N)
sample with various hemimethylation types. T.MU refers to CpG sites that are
methylated (M) on the forward strand and unmethylated (U) on the reverse
strand in tumor (T) samples. N.MU refers to CpG sites with the MU
hemimethylation in normal (N) samples. T.NS and N.NS refer to CpG sites of a
corresponding tissue type that are not significantly hemimethylated. Similarly,
T.NA and N.NA refer to CpG sites that have no data for the given cell type
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samples, but others may be found only in tumor or only
in normal. In Fig. 3, we show two typical hemimethyla-
tion clusters: one that is only identified in tumor DNA
and one that is only identified in normal DNA. The first
two pairs of bars represent two CpG sites in normal
DNA. The second two represent two CpG sites in tumor
DNA. We see in the first (or left) plot that there is a
large difference between the forward and reverse strands
in the tumor CpG sites, whereas the normal CpG sites
are quite similar. This tells us that there is a cluster con-
taining two CpG sites that is found only in tumor DNA.
Similarly, the second (or right) plot describes a cluster
that appears only in normal DNA. In fact, there is al-
most no methylation in the tumor reverse strands, while
the normal reverse strands are almost fully methylated.
The forward strand methylation levels are similarly low
in tumor and normal DNA, so we observe normal-only
hemimethylation in the two sites.
In order to study hemimethylation patterns thor-

oughly, we compare the 513 tumor clusters with the 583

normal clusters and summarize the results in Table 6.
This table shows that multiple kinds of overlaps can be
found between tumor and normal. Hemimethylation
clusters that occur only in tumor or normal samples are
shown in Column B. 695 (313 tumor only and 382 nor-
mal only) clusters fall into these categories, and these
are the clusters or regions that may be associated with
cancer. Column C counts the number of clusters that
are exactly the same for normal and tumor. Column D
indicates the situations in which a tumor cluster begins
and ends within a normal cluster (i.e., a tumor cluster
contained within the bounds of a normal cluster), and
vice versa as shown in Column E. For example, a tumor
cluster’s start and end positions on a chromosome are
150 and 170 base pairs. It is located within a normal
cluster that has the start and end positions of 120 and
190 base pairs. Column D, which represents tumor clus-
ters that are embedded in normal clusters, shows differ-
ent counts for normal and tumor samples because there
are two instances of multiple normal clusters located in
one tumor cluster. Similarly, Column E, which repre-
sents normal clusters that are embedded in tumor clus-
ters, shows different counts because there are three
tumor clusters that are located in one normal cluster.
Column F represents all other kinds of overlap. For ex-
ample, there are two normal clusters that have some
overlap with the same tumor cluster.
The tumor data row of Table 6 shows that among the

513 tumor clusters, 313 of them belong to tumor only;
140 clusters also show up in normal samples; 25 tumor
clusters are short ones and they are located within long
normal clusters; 23 tumor clusters are long ones in
which short normal clusters are located; and 12 tumor
clusters are partially overlapped with normal clusters.
The normal data row of Table 6 shows that among the
583 normal clusters, 382 of them belong to normal only;
140 clusters also show up in tumor samples; 23 normal
clusters are long ones and they cover short tumor clus-
ters; 25 normal clusters are short ones and they are lo-
cated within long tumor clusters; and 13 normal clusters
are partially overlapped with tumor clusters. A detailed
version of Table 6 is shown in the Supplemental Table 1
of the Additional File 1, in which the number of differ-
ent clusters in each chromosome is listed for both tumor
and normal samples.
After identifying hemimethylated CpG sites, we may

also map them back to genes. That is, we provide the
annotation for each CpG site by providing the gene
name in whose gene body or promoter region a hemi-
methylation site is located. We call this analysis gene an-
notation, and summarizing such will provide the
frequency on how many hemimethylated CpG sites a
gene has. This annotation analysis is important because
highly hemimethylated genes may play an important

Table 3 Normal and tumor hemimethylation cluster patterns

Cluster Pattern Normal Tumor

MMMMMMMMMMMM-UUUUUUUUUUUU 1 1

MMMMMMMMMM-UUUUUUUUUU 1 1

MMMMMMMM-UUUUUUUU 2 2

MMMMMMM-UUUUUUU 2 2

MMMMMM-UUUUUU 5 3

MMMMM-UUUUU 6 7

MMMM-UUUU 18 13

MMM-UUU 55 32

MM-UU 168 153

MMU-UUM 0 1

MU-UM 28 32

UMM-MUU 1 0

UM-MU 7 4

UUM-MMU 1 0

UU-MM 195 172

UUU-MMM 52 44

UUUU-MMMM 22 22

UUUUU-MMMMM 9 14

UUUUUU-MMMMMM 3 4

UUUUUUM-MMMMMMU 0 1

UUUUUUU-MMMMMMM 4 3

UUUUUUUM-MMMMMMMU 1 0

UUUUUUUU-MMMMMMMM 2 2

Total 583 513

The first column is the cluster pattern, separating forward and reverse strands
by “-”. The second and third columns are the counts of such patterns in
normal and tumor samples respectively
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role. Table 7 shows the frequency of hemimethylated
CpG sites in gene bodies. Each column shows how many
genes have n hemimethylated CpG sites in their gene
bodies, where n is given in the first row. The second row
describes the distribution for tumor genes and the third
row describes the distribution for normal genes. Simi-
larly, Table 8 describes the frequency of hemimethylated
CpG sites in promoter regions. Table 7 displays that the
large majority of gene bodies have at most three hemi-
methylated CpG sites in both tumor and normal sam-
ples, but a few have more than 10. When looking at
promoter regions, Table 8 shows none have 10 or more
and the large majority of genes have one or two hemi-
methylated CpG sites.
With the gene annotation analysis, we can identify

genes that have relatively more hemimethylation sites. In
particular, we select the genes that have at least five

hemimethylation sites in tumor only, in normal only,
and in both normal and tumor samples. These genes are
summarized in Tables 9, 10, and 11 respectively. Note,
there are not many genes with a large number of hemi-
methylated sites. Therefore, we choose a relatively small
number (i.e., five) to find a reasonable number of genes
that meet this criterion for us to do further analysis. In
addition, the datasets used in this project are generalized
using the RRBS method. For this method, only a small
percent of the CpG sites in a genome are sequenced [12,
16]. If the methylation sequencing datasets used in this
study are generated based on the whole genome bisulfite
sequencing method, more hemimethylated CpG sites
can be found in different genes.
There are 41 genes with the most hemimethylation in

tumor DNA, see Table 9. Among these genes, TP73
[17–19], GNAS [20–24], and NOTCH1 [25, 26] are not-
able ones with known relations to cancer. Table 9 shows
that among these 41 genes, one is a tumor suppressor
(WT1), three are oncogenes (GNAS, NOTCH1, and

Fig. 2 Length of clusters for both normal and tumor samples

Table 4 Regular clusters with corresponding percentages

Regular Clusters Normal Tumor

MM-UU 168 30.66% 153 32.075%

UU-MM 195 35.58% 172 36.059%

Bigger cluster 185 33.76% 152 31.866%

Total 548 100% 477 100%

Bigger clusters (see the fourth row) are the ones with 3 or more
hemimethylated CpG sites

Table 5 Polarity clusters with corresponding percentages

Polarity Clusters Normal Tumor

MU-UM 28 80% 32 88.89%

UM-MU 7 20% 4 11.11%

Total 35 100% 36 100%
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PRDM16), and of those three, two are translocated
cancer genes (NOTCH1 and PRDM16). There are also
eight transcription factors in this table (HDAC4, IRX2,
NFATC1, PRDM16, RUNX3, SIX3, TP73, and WT1).
Table 10 shows 35 genes with the most hemimethylation
in normal DNA. Among these genes, four are oncogenes
(CBFA2T3, GNAS, PDGFB and PRDM16). Of the
oncogenes, three are translocated cancer genes
(CBFA2T3, PDGFB and PRDM16). There are also seven
transcription factors in this table (CBFA2T3, HOXA3,
IRX2, MEIS1, NFIC, PRDM16, and ZFPM1). Note that
no tumor suppressor genes are hemimethylated in the
normal cells. For genes belonging to two key gene fam-
ilies (i.e., transcription factor and oncogene), we have
compared their proportions in tumor and normal sam-
ples using statistical tests. The test p-values are 0.96 for
the transcript factor family and 0.54 for the oncogene

family. There is no significant difference. Table 11 shows
36 genes with the most hemimethylation in both normal
and tumor DNA. Among these genes, two are oncogenes
and also translocated cancer genes (CBFA2T3 and
PRDM16). There are also six transcription factors in this
table (KLF5, HOXA2, CBFA2T3, HOXA3, ISL2, and
PRDM16). All three gene tables have some transcription
factor genes, which may affect the gene expression of
other cancer-related genes that are not found to be
hemimethylated.
In order to understand the functions and relationships

of these genes, we further analyze their biological inter-
actions using the ConsensusPath Database (CPDB) soft-
ware package [27–29], see Figs. 4, 5, 6, and 7. Figure 4
describes the different types of biological relationships
between genes based on the CPDB software. A gene with
a black label is known to be hemimethylated (i.e.,

Fig. 3 Examples of clusters found in either tumor or normal samples, but not both. The labels beneath each pair of bars describe their exact
positions in the genome. The orange red bars represent the percentage of methylation in the forward strand and the cyan blue bars represent
the percentage of methylation in the reverse strand. A large disparity between the orange red and cyan blue bars is an indication
of hemimethylation

Table 6 Tumor and normal cluster comparison results

A B C D E F

Tumor Total Tumor Only Exact Overlap Tumor in Normal Normal in Tumor Other Overlap

513 313 140 25 23 12

Normal Total Normal Only Exact Overlap Tumor in Normal Normal in Tumor Other Overlap

583 382 140 23 25 13

Columns are for different overlap (or non-overlap) patterns. The two rows are for tumor and normal, respectively
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identified by our analysis). A gene with a purple label is
not provided in our hemimethylation gene list but inter-
acts with one of the known genes. Figure 4 is the legend
for Figs. 5, 6, and 7. This legend figure summarizes the
relationships for gene lists in Tables 9, 10, and 11 as
shown in Figs. 5, 6, and 7, respectively. These figures
show the extent to which these highly hemimethylated
genes interact and possibly affect the cell function of re-
lated genes.
Figure 5 shows genetic interactions between genes

with the most hemimethylation in tumor samples, and
these genes are recorded in Table 9. The gene network
in Fig. 5 contains a number of hub genes with complex
interactions. These hub genes include GNAS, NFATC1,
NOTCH1, MAPK1, HOAC4, TP73, and EGR1. We can
see that if a hub gene like MAPK1 is hemimethylated, it
may interact with dozens of other genes. Some of these
genes, e.g., EGR1 [30–33] and UNC5B [34–37], are
known to be associated with different cancers, including
lung cancer. EGR1 has a promoting effect on cancer me-
tastasis in OCT4-overexpressing lung cancer [38]. The
pseudogene DUXAP8 may act as an oncogene in non-
small cell lung cancer, and it may play this role by silen-
cing EGR1 and RHOB transcription via binding with
EZH2 and LSD1 [39]. The expression of UNC5A,
UNC5B, or UNC5C is down-regulated in multiple can-
cers including lung cancer [40], and UNC5B has also
been indicated as a putative tumor suppressor [41].
Figure 6 shows genetic interactions between genes

with the most hemimethylation in normal DNA, and
these genes are recorded in Table 10. In this figure, we
can see that GNAS is a hub gene interacting with many
other genes that may not be hemimethylated themselves.
GNAS is observed in both tumor and normal samples,
as well as in the hemimethylation study for breast cancer
cell lines [9]. MEIS1 is also a hub gene that interacts
with genes like KMT2A [42] and TK1 [43]. While these
genes are not hemimethylated in our samples, they are
known to be associated with cancer. KMT2A and
hTERT are positively correlated in melanoma tumor tis-
sues, and KMT2A promotes melanoma cell growth by

targeting the hTERT signaling pathway [44]. KMT2A
has an epigenetic regulation role on NOTCH1 and
NOTCH3, and this mechanism is essential for inhibiting
glioma proliferation [45]. TK1 plays a moderate role as a
diagnostic tumor marker for cancer patients [46], and it
is a potential clinical biomarker for the treatment of
lung, breast, and colorectal cancer [47]. A systematic re-
view shows that TK1 overexpression is associated with
the poor outcomes of lung cancer patients [48]. MEIS1
inhibits non-small cell lung cancer cell proliferation
[49]. MEIS1 plays a crucial role in normal development
[15] and it is also reported as an important gene related
to leukemia [50–52]. Therefore, it is possible that the
hemimethylation of hub genes like MEIS1 affects pro-
tein, biochemical, or regulatory functions of genes that
are associated with cancer.
Figure 7 shows genetic interactions between genes

with the most hemimethylation on identical locations in
tumor and normal samples. These genes are recorded in
Table 11. This means that the hemimethylation of CpG
sites in this network is unchanged or unaffected by the
formation of cancer. The HNRNPL gene is a major hub
in this gene network. While we do not detect any hemi-
methylation in this gene, it directly interacts with 10
genes that we know to be hemimethylated. Some of
these genes, like PTPRN2 and MAD1L1, can also be
found in the tumor gene network, see Fig. 5. There ap-
pears to be no common genes between Fig. 6 (hemi-
methylated genes in normal samples) and Fig. 7
(hemimethylated genes in both tumor and normal sam-
ples). Therefore, genes that have a large number of
hemimethylated CpG sites found only in normal DNA
seem to have few CpG sites that remain the same when
cancer forms.
In addition to the above analysis, we have conducted

gene set enrichment analysis using the molecular signa-
ture database and the related software package provided
by the Broad Institute [14]. Of the most hemimethylated
genes in tumor DNA (Table 9), six are also significantly
represented in cancer module 163 (with p-value < 0.05).
This module is a collection of genes known to be

Table 7 Hemimethylation frequency measured in gene bodies for both tumor and normal samples

No. of Hemimethylation sites per gene body (n) 1 2 3 4 5 6 7 8 9 ≥10

Tumor 1133 250 79 37 17 4 7 2 0 4

Normal 1118 229 73 32 11 4 3 1 1 5

Table 8 Hemimethylation frequency measured in promoter regions for both tumor and normal samples

No. of Hemimethylation sites per promoter region (n) 1 2 3 4 5 6 7 8

Tumor 223 23 5 6 0 2 0 1

Normal 256 36 13 3 2 1 1 0
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Table 9 For genes with at least five hemimethylation sites in tumor samples

Gene name Count Family Gene Description

RGS14 17 – regulator of G protein signaling 14

MEX3A 16 – mex-3 RNA binding family member A

WT1 11 TF, TS WT1 transcription factor

PRDM16 10 OG, TF, TCG PR/SET domain 16

ZDHHC9 10 – zinc finger DHHC-type containing 9

AGAP2 8 – ArfGAP with GTPase domain, ankyrin repeat and PH domain 2

GNAS 8 OG GNAS complex locus

EXOC3L2 8 – exocyst complex component 3 like 2

PTPRN2 7 – protein tyrosine phosphatase receptor type N2

FANK1 7 – fibronectin type III and ankyrin repeat domains 1

UNC93B1 7 – unc-93 homolog B1, TLR signaling regulator

IGSF9B 7 – immunoglobulin superfamily member 9B

GNAS-AS1 7 – GNAS antisense RNA 1

MAD1L1 7 – mitotic arrest deficient 1 like 1

TSPAN9 7 – tetraspanin 9

PTPRM 7 – protein tyrosine phosphatase receptor type M

TP73 6 TF tumor protein p73

IFT140 6 – intraflagellar transport 140

NFATC1 6 TF nuclear factor of activated T cells 1

DGKA 6 – diacylglycerol kinase alpha

FMNL1 6 – formin like 1

CACNA1I 6 – calcium voltage-gated channel subunit alpha1 I

LOC101927636 6 – RNA Gene affiliated with the lncRNA class

HDAC4 5 TF histone deacetylase 4

IRX2 5 TF, HP iroquois homeobox 2

ANKRD33B 5 – ankyrin repeat domain 33B

LINC00537 5 – Long Intergenic Non-Protein Coding RNA 537

NOTCH1 5 OG, TCG notch receptor 1

ANO2 5 – anoctamin 2

CACNA1H 5 – calcium voltage-gated channel subunit alpha1 H

RUNX3 5 TF runt related transcription factor 3

SIX3 5 TF, HP SIX homeobox 3

FZD7 5 – frizzled class receptor 7

ADGRA2 5 – adhesion G protein-coupled receptor A2

IFFO1 5 – intermediate filament family orphan 1

CHTF18 5 – chromosome transmission fidelity factor 18

TMEM204 5 – transmembrane protein 204

RECQL5 5 – RecQ like helicase 5

SMIM5 5 – small integral membrane protein 5

MAPK1 5 PK mitogen-activated protein kinase 1

SYN1 5 – synapsin I

The gene name, corresponding number of hemimethylated sites (i.e., count), specified gene family, and a description of the gene are formatted in the table’s
respective columns. Descriptions are derived from the Molecular Signature Database [14] and the GeneCards database [15]. Certain genes are indicated as
members of specific gene families, as shown in the third column: “TF” for transcription factor, “TS” for tumor suppressor, “OG” for oncogene, “HP” for
homeodomain protein, “TCG” for translocated cancer gene, and “PK” for protein kinase
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overrepresented in cancer pathways and is reported by
the Stanford research group (http://robotics.stanford.
edu/~erans/cancer/modules/). The six genes are IFT140,
IFFO1, SYN1, FMNL1, NOTCH1, and RGS14. There are
no such overly represented genes and cancer modules
among genes shown in Table 10 (for normal samples)
and Table 11 (for both tumor and normal samples).

Discussion
It was previously believed that hemimethylation appears
only in a transient state [4]. However, Shao et al. have
reported hemimethylated sites and patterns in ovarian
cancer [7]. Sun et al. have identified hemimethylation
patterns in breast cancer cell lines [9]. Furthermore, Xu
and Corces have shown that some hemimethylation sites

Table 10 For genes with at least five hemimethylation sites in normal samples

Gene name Count Family Gene Description

ZFPM1 14 TF zinc finger protein, FOG family member 1

GNAS 13 OG GNAS complex locus

RGPD2 12 – RANBP2 like and GRIP domain containing 2

SHANK3 11 – SH3 and multiple ankyrin repeat domains 3

IRX2 10 TF, HP iroquois homeobox 2

LTB4R 9 – leukotriene B4 receptor

CPEB3 8 – cytoplasmic polyadenylation element binding protein 3

PTPRN2 7 – protein tyrosine phosphatase receptor type N2

MIR1268A 7 – microRNA 1268a

GNAS-AS1 7 – GNAS antisense RNA 1

CYP26C1 7 – cytochrome P450 family 26 subfamily C member 1

TBL1XR1 6 – transducin beta like 1 X-linked receptor 1

HOXA3 6 TF, HP homeobox A3

CACNA1H 6 – calcium voltage-gated channel subunit alpha1 H

NPEPPS 6 – aminopeptidase puromycin sensitive

SEMA6B 6 CGF semaphorin 6B

HOMER3 6 – homer scaffold protein 3

PINLYP 6 – phospholipase A2 inhibitor and LY6/PLAUR domain containing

GDI1 6 – GDP dissociation inhibitor 1

HS3ST2 6 – heparan sulfate-glucosamine 3-sulfotransferase 2

PRDM16 5 TF, OG, TCG PR/SET domain 16

PLK3 5 PK polo like kinase 3

GREM2 5 CGF gremlin 2, DAN family BMP antagonist

MEIS1 5 TF, HP Meis homeobox 1

MEIS1-AS2 5 – MEIS1 antisense RNA 2

POLH 5 – DNA polymerase eta

HOXA-AS2 5 – HOXA cluster antisense RNA 2

EBF3 5 – EBF transcription factor 3

CBFA2T3 5 TF, OG, TCG CBFA2/RUNX1 translocation partner 3

RPL13 5 – ribosomal protein L13

NFIC 5 TF nuclear factor I C

CDH4 5 – cadherin 4

PDGFB 5 OG, TCG cytokine or growth factor, platelet derived growth factor subunit B

CCNT1 5 – cyclin T1

SNORD68 5 – small nucleolar RNA, C/D box 68

The gene name, corresponding number of hemimethylated sites (i.e., count), specified gene family, and a description of the gene are formatted in the table’s
respective columns. Descriptions are derived from the Molecular Signature Database [14] and the GeneCards database [15]. Certain genes are indicated as
members of specific gene families, as shown in the third column: “TF” for transcription factor, “TS” for tumor suppressor, “OG” for oncogene, “HP” for
homeodomain protein, “TCG” for translocated cancer gene, and “PK” for protein kinase
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can be inherited across cell divisions. They have also
shown that hemimethylated CpG sites account for 4–
20% of the DNA methylome in different cell types [53].
Therefore, hemimethylation may serve as a stable epi-
genetic mark. In addition, recent papers show that hemi-
methylation is a characteristic of secondary differential

methylation regions that are associated with imprinted
genes [54–56]. That is, hemimethylation is a novel epi-
genetic modification functional for genomic imprinting.
All these recent findings challenge the previous pre-
vailing view of hemimethylation. It is unlikely that all
hemimethylation sites in a genome are transient;

Table 11 For genes with at least five hemimethylation sites in both tumor and normal samples

Gene name Count Family Gene Description

RGPD5 16 – RANBP2 like and GRIP domain containing 5

RGPD8 16 – RANBP2 like and GRIP domain containing 8

ROCK1P1 13 – Rho associated coiled-coil containing protein kinase 1 pseudogene 1

THAP4 8 – THAP domain containing 4

SGTA 8 – small glutamine rich tetratricopeptide repeat containing alpha

PTPRN2 7 – protein tyrosine phosphatase receptor type N2

CNTNAP3 7 – contactin associated protein like 3

NUTM2A-AS1 7 – NUTM2A antisense RNA 1

RBFOX3 7 – RNA binding fox-1 homolog 3

ESPNP 6 – espin pseudogene

FOXK1 6 – forkhead box K1

HOXA3 6 HP, TF homeobox A3

LMF1 6 – lipase maturation factor 1

USP45 6 – ubiquitin specific peptidase 45

LOC101928782 6 – RNA Gene affiliated with the lncRNA class

PRDM16 5 OG, TF, TCG PR/SET domain 16

RGPD4 5 – RANBP2 like and GRIP domain containing 4

MERTK 5 PK MER proto-oncogene, tyrosine kinase

FAM160A1 5 – family with sequence similarity 160 member A1

PRKAR1B 5 – protein kinase cAMP-dependent type I regulatory subunit beta

MAD1L1 5 – mitotic arrest deficient 1 like 1

HOXA2 5 HP, TF homeobox A2

DPP6 5 – dipeptidyl peptidase like 6

DIP2C 5 – disco interacting protein 2 homolog C

FANK1 5 – fibronectin type III and ankyrin repeat domains 1

GAL3ST3 5 – galactose-3-O-sulfotransferase 3

FLJ12825 5 – RNA Gene affiliated with the lncRNA class

KLF5 5 TF Kruppel like factor 5

ISL2 5 HP, TF ISL LIM homeobox 2

CBFA2T3 5 OG, TF, TCG CBFA2/RUNX1 translocation partner 3

SBNO2 5 – strawberry notch homolog 2

GIPR 5 – gastric inhibitory polypeptide receptor

SCAF1 5 – SR-related CTD associated factor 1

COL6A1 5 – collagen type VI alpha 1 chain

NEXMIF 5 – neurite extension and migration factor

GK5 5 – glycerol kinase 5

The gene name, corresponding number of hemimethylated sites (i.e., count), specified gene family, and a description of the gene are formatted in the table’s
respective columns. Descriptions are derived from the Molecular Signature Database [14] and the GeneCards database [15]. Certain genes are indicated as
members of specific gene families, as shown in the third column: “TF” for transcription factor, “TS” for tumor suppressor, “OG” for oncogene, “HP” for
homeodomain protein, “TCG” for translocated cancer gene, and “PK” for protein kinase
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instead, certain hemimethylation sites or patterns may
have a stable and important impact on the overall
methylation.
DNA methylation is closely related to other genetic

events or patterns, e.g., mutation. There is a significantly
positive correlation between differential methylation and
tumor mutation burden (i.e., the frequency of certain
mutations) as shown in a recent non-small cell lung can-
cer study [57]. Differential methylation sites are also
identified between T53 mutated and T53 wild type tu-
mors [58]. In addition, we have compared our hemi-
methylated genes in Tables 9 and 10 with mutated genes
obtained from publicly available databases. When

comparing with mutated cancer driver genes from the
Integrative Onco Genomics [59], we find some of these
genes in our Tables 9 and 10. In particular, four tumor-
only genes from our Table 9 (NOTCH1, GNAS,
MAPK1, WT1) and five normal-only genes from our
Table 10 (GNAS, TBL1XR1, CPEB3, NPEPPS,
CBFA2T3) are in this cancer driver gene list. Thus,
about 10% of our hemimethylated genes are also mu-
tated cancer driver genes. When comparing with the
lung cancer mutation genes obtained from the database
DriverDBv3 [60], we find that 13 tumor-only genes (in
Table 9) and 10 normal-only genes (in Table 10) are in
this gene list. That is, about 1/3 of our top

Fig. 4 Key for gene relationship diagrams in Figs. 5, 6, and 7

Fig. 5 Relationship between genes with ≥5 hemimethylation sites in tumor samples
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hemimethylated genes are lung cancer mutation genes.
Note, the 13 tumor-only genes from Table 9 are
FMNL1, RGS14, WT1, IFT140, CACNA1H, AGAP2,
CACNA1I, ADGRA2, SYN1, GNAS, NFATC1,
PRDM16, and MAD1L1. The 10 normal-only genes
from Table 10 are CACNA1H, RGPD2, SEMA6B,
CYP26C1, GNAS, EBF3, PRDM16, CDH4, MEIS1, and
TBL1XR1. The above findings show that methylation
and mutation are closely related. It is likely that hemi-
methylation and mutation are associated as well.
The mean difference cutoff values are 0.4, 0.6 and 0.8

as used in a previous research [9]. Results are narrowed
down to the 0.4 cutoff level to allow more results to be
viewed, as the higher cutoff values restricted the avail-
able hemimethylated CpG sites from being identified.
The number of both tumor and normal clusters detected
decreases rapidly as we increase the mean cutoff value at
each CpG site as shown in Table 2. With more strict cri-
teria, the methylation difference between the two DNA
strands at each CpG site must exist in order for us to
consider hemimethylation at a CpG site. This rapid de-
crease may indicate certain hemimethylation

heterogeneity in lung cancer as cancer methylation pat-
terns are generally heterogeneous among multiple pa-
tients or cell lines [61].
For the 41 most hemimethylated genes in lung cancer

tumors, seven of them are also highly hemimethylated in
breast cancer cell lines, as reported by Sun et al. [9].
These seven genes are PRDM16, GNAS, PTPRN2,
MAD1L1, HDAC4, NOTCH1, and CACNA1H. The
remaining 34 highly hemimethylated genes in the lung
tumor sample are not highly hemimethylated in breast
cancer cell lines. It is possible that these genes are
unique to lung cancer; thus, it would be helpful when
diagnosing patients with lung cancer specifically, but fur-
ther research needs to be done.
Based upon the outcome of hemimethylation research

in breast cancer cell lines, the frequency of polarity clus-
ters is much higher than the one in this paper. The re-
sults of breast cancer hemimethylation analysis indicate
polarity clusters are more frequently found than regular
clusters [9]. However, the lung cancer analysis reflects
contrasting results; polarity clusters are less frequently
found than regular clusters for both tumor and normal

Fig. 6 Relationship between genes with ≥5 Hemimethylation sites in normal samples
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samples, as shown in Fig. 2, Tables 4 and 5. A couple of
factors may explain this difference. One factor could be
the type of cancer, as hemimethylation frequency may
be tissue specific. Another factor could be that the previ-
ous breast cancer study is performed using cell lines,
which are tumors grown in labs over a long period of
time; whereas, our current study uses primary tissues
directly from lung cancer patients. Due to the nature of
cell lines and our primary tissues, it is likely that hemi-
methylation patterns, especially polarity clusters, are
related to tumor growth. Polarity clusters are evidence
of active demethylation in cancer cells; DNA demethyla-
tion is closely related to cancer hypomethylation [7, 62].
Therefore, the identification of polarity clusters in can-
cer is of direct importance to the study of carcinogen-
esis. Future research on the pathological significance of
polarity clusters in different tumors may reveal more
insight into cancer studies.
After conducting statistical tests for a large number of

CpG sites, selecting the significant CpG sites is a crucial
step, and the multiple testing correction is important be-
cause using only the raw p-values may result in many
false positive sites. However, for the understudied hemi-
methylation pattern, the proper way of doing multiple
testing correction is not clear. In order to explore the

impact of different corrections, we have used three
methods: a simple moving-average based method, the
comb-p FDR method, and the comb-p SLK method.
Note, comb-p is a software package developed for com-
bining, analyzing, and correcting spatially correlated p-
values [63]. FDR stands for the Benjamini–Hochberg
false discovery correction [64]. SLK represents the Stouf-
fer–Liptak–Kechris correction [65]. After exploring vari-
ous correction methods, we conclude that the mean
difference plus p-value filtering method used in our
study can produce meaningful and interpretable results
when dealing with the multiple testing comparison prob-
lem for our hemimethylation analysis. For detailed com-
parative analysis results, see the Supplemental Tables 2,
3, and 4 and related explanation in the Additional File 1.
As for the criteria we used to identify hemimethylation

sites, in addition to p-values and mean differences, we
may add an additional one. That is, the methylation sig-
nal on one DNA strand is zero, and the methylation sig-
nal on the other strand is positive. Adding this criteria
will help us to identify hemimethylation sites more
strictly with no methylation on one strand but a high
methylation signal on another strand. This criterion is
ideal when the datasets are not very noisy and when the
samples are not heterogeneous. In this project, we

Fig. 7 Relationship between genes with ≥5 hemimethylation sites identical in both tumor and normal samples
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choose to only use p-value and mean difference for the
following reasons. First, we use these two criteria to
make a fair comparison between the previous breast
cancer results [9] and our new lung cancer results. Sec-
ond, the average methylation signals at most CpG sites
tend to be clustered around 0 or 1 [66]. Third, bisulfite
converted methylation sequencing data can be noisy,
and tumor samples’ methylation signals are very hetero-
geneous. We generally consider that the average methy-
lation signals around 0 to 0.2 (or 0.25) are still roughly
in the category of no or very low methylation signals
[61]. Therefore, most of the CpG sites we identified still
tend to have relatively high methylation signals on one
DNA strand and have relatively low or no methylation
signals on another strand.

Conclusion
Hemimethylation is an important but understudied pat-
tern in cancer. In this paper, we have conducted the
first-ever exploratory investigation of hemimethylation
in lung cancer. In particular, we have conducted statis-
tical analyses to identify hemimethylation patterns for
non-small cell lung cancer patients. We have identified
both singleton hemimethylation sites and different clus-
ters in normal and tumor cells. We have also conducted
bioinformatic analysis on the genes that have relatively
more hemimethylated sites in tumor, normal, and both
tumor and normal cells to see the biological interactions
of these genes. Our results show that not only does
hemimethylation exist in lung cells, but also with diverse
patterns and frequencies that are comparable between
normal and tumorous cells. We conclude that hemi-
methylation is related to both normal and tumor cell de-
velopment. This is also seen by its existence in the same
genes in normal and lung tumor cells. However, there
are certain genes that only have hemimethylated sites
for one type of cell, normal or tumor, but not both. Cer-
tain genes are previously known to be associated with
carcinogenesis. These genes exhibit existence in one cell
type and not the other. Hemimethylation existing in this
way may imply epigenetic changes in certain genes asso-
ciated with lung cancer. The development and progres-
sion of lung cancer may be tracked by the analysis of
epigenetic change (i.e., hemimethylation and methyla-
tion) in these regions.
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