2021 IEEE 37th International Conference on Data Engineering (ICDE) | 978-1-7281-9184-3/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICDE51399.2021.00184

2021 IEEE 37th International Conference on Data Engineering (ICDE)

Patterns Count-Based Labels for Datasets

Yuval Moskovitch
University of Michigan
yuvalm@umich.edu

Abstract—Counts of attribute-value combinations are central
to the profiling of a data set, particularly in determining fitness
for use and in eliminating bias and unfairness. While counts of
individual attribute values may be stored in some data set profiles,
there are too many combinations of attributes for it to be practical
to store counts for each combination. In this paper, we develop
the notion of storing a “label” of limited size that can be used
to obtain good estimates for these counts. A label, in this paper,
contains information regarding the count of selected attribute-
value combinations (which we call ’patterns”) in the data. We
define an estimation function, that uses this label to estimate the
count of every pattern. We present the problem of finding the
optimal label given a bound on its size and propose a heuristic
algorithm for generating optimal labels. We experimentally show
the accuracy of count estimates derived from the resulting labels
and the efficiency of our algorithm.

I. INTRODUCTION

Data-driven decision systems are increasingly being used
in a wide range of domains, where data-driven algorithmic
decision-making may affect human life. For instance, risk
assessment tools, which predict the likelihood of a defendant
to re-offend, are widely used in courtrooms across the US [4]
to make decisions about bail. The data on which these systems
depend, as in much of data science, are often “found data”,
namely, data that was not collected as part of the development
of the analytics pipeline, but was acquired independently,
possibly assembled by others for different purposes. When the
decision is made by a machine-learned model, the correctness
and quality of the decision depend centrally on the data
used in the model training phase. In particular, the use of
improper, unrepresentative, or biased data may lead to unfair
decisions, algorithmic discrimination (such as racism), and
biased models [8].

ProPublica, a non-profit newsroom that produces investiga-
tive journalism in the public interest, conducted a study on
the risk assessment scores output by a widely used software
program developed by Northpointe, Inc. They found that the
program discriminated based on race: blacks were scored at
greater risk of re-offending than the actual, while whites were
scores at lower risk than actual. Further analysis [5] showed
issues with other groups as well. For example, the error rate
for Hispanic women is very high because there aren’t many
Hispanic women in the data set. It is not only that there are
fewer Hispanics than blacks and whites, and fewer women then
men, but also fewer Hispanic women than one would expect if

This research has been supported in part by NSF grants 1741022 and
1934565.

H. V. Jagadish
University of Michigan
jag@umich.edu

these attribute values were independently distributed. A judge
sentencing a Hispanic woman presumably would like to be
informed about this low count of Hispanic women in the data
set and the consequent likelihood of greater error in the risk
assessment.

Information regarding the attributes’ values such as their
type, distribution statistics, common patterns, and attributes
correlations and dependencies may assist in mitigating misuse
of data and reduce algorithmic bias and racism. This flavor of
information can be extracted in the process of data profiling, a
standard step performed by analysts when using “found data”.
While informative and useful, data profiling is hard to do well,
is usually not automated, and requires significant effort. To
help both the data analyst and the data user, the notion of
a “nutrition label” has been suggested [7], [9], [10], [14]-
[16]. The basic idea of a nutrition label is to capture, in a
succinct label, data set properties of interest. Perhaps the single
most important such property is a profile of the counts of
various attribute value combinations. For instance, an analyst
may wish to ensure a (close) to real-world distribution in
the attribute’s values of the data, such as an equal number
of males and females. Another concern may be the lack of
adequate representation in the data for a particular group [5],
such as divorced African-American females, or contrarily, too
high a percentage of data that represents the same group (data
skew) [6]. The count information may also reveal potential
dependent or correlated attributes. As a simple example, if
all tuples representing individuals under 20 years old are also
single, this may point out a possible connection between age
and marital status.

In this paper, we propose to label datasets with information
regarding the count of different patterns (attributes values
combinations) in the data. Storing individual counts for each
possible combination is likely to be impossible as their number
is exponential in the number of attributes. To this end, we focus
on techniques to estimate these counts using only a limited
amount of information. Given a dataset, if we do not know
anything about value distributions in it, a common assumption
to make is that of independence between attributes. Under this
assumption, count estimation of attribute-value combinations
can be done using only the counts of individual attribute
values. However, this defeats the central purpose of profiling
— we only get information about individual attributes (the
“marginal distributions”) but nothing about any correlations. In
the study of discrimination, there is a considerable examination
of intersectionality, the whole point of which is to understand

978-1-7281-9184-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00184

1961

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 26,2021 at 15:49:08 UTC from IEEE Xplore. Restrictions apply.

how the social consequence of being a member of a protected
class on multiple axes is not simply the “sum” of each alone.
For example, to understand the discrimination faced by black
women it is not enough to understand independently the
impact of race alone and gender alone. In other words, we
have to ensure that our estimates for the count of any pattern
in the database are at least approximately correct.

Our problem, intuitively, is to choose a small number
of patterns (limited by a given space budget), among the
exponential number, that can be used to estimate the count for
any pattern with minimal error. We envisage this information
being made available as meta-data with each data set. In
deference to the idea of a nutrition label, we call our stored
information a “label”. An important feature of our model that
is missing in previously proposed models for data labeling is
the ability to generate the labels in a fully automated manner.

We define our notion of data labels with respect to a subset
of attributes .S, as the count information of all possible values
combination of attributes in S appearing in the data. The
size of the label is then determined by the space required
for the count information. We present a model for pattern
count estimation using a label. Given the estimation procedure,
each label entails an error with respect to the real count of
patterns in the data. The problem of finding an optimal label
within a given bound on the label size is NP-hard (see [12]
for details). A naive algorithm for the problem would traverse
over all possible attribute subsets in increasing size order,
compute the size of the corresponding label for each set, and
choose the one that entails the minimal error within the space
budget. We argue that in practice, the labels generated with
a set of attributes S is preferable over labels generated using
any subset of .S, and build upon this property an optimized
heuristic for the problem of finding an optimal label. Our
experimental results demonstrate the high accuracy of the
labels generated, even with a very limited space budget, and
indicate the usefulness of our proposed optimized heuristic
compared to the naive algorithm.

II. LABELS AND PATTERN COUNT ESTIMATION

In this section, we present a novel model of label construc-
tion, based on counts. We assume the data is represented using
a single relational database, and that the relation’s attributes
values are categorical. Where attribute values are drawn from a
continuous domain, we render them categorical by bucketizing
them into ranges: very commonly done in practice to present
aggregate results. In fact, we may even group categorical
attributes into fewer buckets where the number of individual
categories is very large. We first define the notion of pattern,
which is the foundation for our label model.

Definition 2.1 (Patterns): Let D be a database with attributes
A={A1,...,A,} and let Dom(A;) be the active domain of
A; for i € [1..n]. A pattern p is a set {A;, = a1,...,A;, =
ar} where {A;,,...,A; } € Aand a; € Dom(A;;) for each
Ay, in p. We use Attr(p) to denote the set of attributes in p.

Example 2.2: Consider the fragment of the simplified ver-
sion of the COMPAS database [1] given in Figure 1. We use

1962

Gender ~ Age group Race Marital status
1 Female under 20 African-American single
2 Male 20-39 African-American divorced
3 Male under 20 Hispanic single
4 Male 20-39 Caucasian married
5 Female 20-39 African-American divorced
6 Male 20-39 Caucasian divorced
7 Female 20-39 African-American married
8 Male under 20 African-American single
9 Female 20-39 Caucasian divorced
10 Male under 20 Caucasian single
11 Male 20-39 Hispanic divorced
12 Female under 20 Hispanic single
13 Female 20-39 Hispanic married
14 Female under 20 Caucasian single
15 Female 20-39 Caucasian married
16 Male 20-39 Hispanic married
17 Male 20-39 African-American married
18 Female 20-39 Hispanic divorced

Fig. 1: Sample data from a simplified version of the COMPAS
dataset

g, a, r and m as abbreviations for gender, age group, race and
marital status. p ={g = female, a = 20-39, m = married} is a
possible pattern and Attr(p) ={g, a, m}.

Definition 2.3: We say that a tuple ¢t € D satisfies a pattern
p if t.A; = a; for each A; € Attr(p). The count cp(p) of a
pattern p is the number of tuples in D that satisfy p.

Example 2.4: Consider again the database given in Fig-
ure 1 and the pattern p given in Example 2.2. The count
of p is ep(p) = 3 since the tuples 7, 13 and 15 satisfy it.

Information regarding the count of patterns appearing in
the data can be useful to determine fitness for use. While the
full count of each pattern provides a detailed and accurate
description of the data, it can be extremely large. In fact, it
can have the same size as the data. To this end, we propose
an estimation function, which estimates a pattern count based
on partial count information, we refer to as a label.

A label is defined with respect to a subset S of the database
attributes, and it contains the pattern count (PC) for each
possible pattern over .S and value count (VC) of each value
appearing in D. Given a subset of attributes S C A we use Pg
to denote the set of all possible patterns over S (i.e., p with
Attr(p) = S) such that ¢p(p) > 0. The maximal number of
patterns in Ps is [], g |[Dom(A;)|.

Definition 2.5 (Label): Given a database D with attributes
A={Ay,...,A,}, and a subset of attributes S C A a label
Ls(D) of D using S contains the set PC' = {(p;,cp(pi))}
for each p; € Pg and the set VC = {({4; = a;},cp({A; =
a;}))} for each A; € A and a; € Dom(A;).

Example 2.6: Consider the database fragment given in
Figure 1, the label resulting from use of the attributes set .S =
{a, m} consists of the following:

PC = {({a = under 20, m = single}, 6),
({a = 20-39, m = married}, 6),
({a = 20-39, m = divorced},6)}

VC = {({g = female},9), ({g = male},9), ({a = under 20}, 6),
({a = 20-39},12), ({r = African-American}, 6),
({r = Hispanic}, 6), ({r = Caucasian}, 6), ({m = single}, 6),
({m = divorced}, 6), ({m = married}, 6)}

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 26,2021 at 15:49:08 UTC from IEEE Xplore. Restrictions apply.

The label resulting from use of the attributes set S = {g, a}
consists of the same VC set and the following PC' set:

PC = {({g = female, a = under 20}, 3),
({g = male, a = under 20}, 3), ({g = female, a = 20-39}, 6),
({g = male, a = 20-39},6)}

Note that for a given database D, the V C set is determined
and similar for every label of D.

Let D be a database with attributes A, and S; and S5 be
two subsets of attributes such that S; C Sy C A . Given a
pattern p € Ps,, we use plg, to denote the pattern that results
when p is restricted to include only the attributes of S;. Given
Lg, (D), we may estimate the count of each pattern in Pg,.

Definition 2.7 (Pattern Estimation): Let D be a database
with attributes A and S; C Sy C A be two subsets of
attributes. Given a label [= Lg, (D) the count estimate for a
pattern p € Pg, is

Est(p,1) = cp(pls,): H

A;€82\51

eo({4i = p-Ai})
>a;eDom(a,) c0({Ai = a;})

Example 2.8: Consider again the database given in Figure 1,
and the label [= Lg(D) generated using S ={a, m} shown
in Example 2.6. The estimate of the pattern p ={g = female,
a = 20-39, m = married} using [is

Est(p,1) = cp(a = 20-39, m = married)-

cp({g = female}) _s. 9 _ 5
ZajeDom(g) cp({g = a;}) 18
Using the label I’ = Lg/ (D) generated from S’ = {g, a}, with
a similar computation we obtain
Est(p,l') = c¢p(g = female, a = 20-39)-
cp({m = married}) . 6 9
>a;eDom(m c0({m =a;}) 18

We can then define the error of a label with respect to a
pattern and a set of patterns.

Definition 2.9 (Estimation Error): The error of a label [=
Lg(D) with respect to a pattern p is

Err(l,p) = |ep(p) — Est(p,1)]

Example 2.10: Reconsider the estimates Est(p,l) and
Est(p,l’) of the pattern p ={g = female, a = 20-39, m =
married} shown in Example 2.8. The count of the pattern p
in the database is 3, thus the error of [with respect to p is 0
and the error of !’ is 1.

Abusing notation, we use Err(l,P), for a set of patterns P,
to denote the maximum error in the estimate for any individual
pattern in P. We choose to focus on the maximum error
(rather than mean for instance), as this definition of error is
stiffer and gives us a sense of the error “bound” over a large
number of patterns in the database. Our problem definition, its
hardness and proposed solution holds also when using other
error measures, such as g-error [11], and we report the g-
error of our labels in the experiment in [12].

1963

We are now ready to define the optimal label problem.

Definition 2.11 (Optimal Label Problem): Given a database
D, with attributes A, a bound B, over the label size, and a
set of patterns P, the optimal label is

arg min Err(Lg(D), P) such that |Ps| < B,
SCA

Intuitively, the set of patterns P may be defined as P4 (i.e.,
the set of all possible patterns that include all the attributes
and every value for each attribute that appears in the data). In
this case |P| = |D| and an optimal label would be one that
minimizes the error with respect to the count of tuples in the
data. Our problem definition is more flexible, and allows the
user to define a different pattern set, e.g., patterns that include
only sensitive attributes.

To formally characterize the complexity of the optimization
problem, we further need to define a corresponding decision
problem. We define it as the problem of determining the
existence of a label with size limited by the given bound and
error which does not exceed a given error bound.

Definition 2.12 (Decision Problem): Given a database D,
with attributes A, a bound B, over the label size, a set of
patterns P, and an error bound B,, determine if there is a
label Lg(D) with |Ps| < B, and Err(Ls(D),P) < B,

We can show that (see proof in [12]).

Theorem 2.13: The decision problem is NP-hard.

III. OPTIMAL LABEL COMPUTATION

Given a database D with attributes A = {A;,...,A,}
and a bound B,, a naive algorithm for the optimal label
computation would operate as follows: iterate over possible
attributes sets, starting with sets of size 2. At each iteration,
compute the set of all possible labels with a fixed size,
namely, at the 7’th iteration the algorithm generates the labels
{Ls,(D),...,Ls, (D)}, where each S; for j € [1..k] is a
subset of attributes of size ¢ + 1. For each label generated,
compute its size and error, and record the optimal label
computed with size below the given bound. The algorithm
terminates if the size of all the labels generated in the same
iteration exceeds the bound (or when all possible subsets were
generated). Intuitively, if every attribute subset of size i leads
to a label with size greater than the given bound, then, every
label generated using any attributes subset of size > 7 would
also exceed the bound. The naive algorithm is unacceptably
expensive. Therefore we developed a much faster heuristic
solution for the optimal label problem.

Label estimation characterization: We start by character-
izing the count estimation for a given pattern using a given
label. Let D be a database with attributes A, S C A an
attributes set and | = Lg(D).

Definition 3.1: Given a pattern p, the estimate of p using
1 is an exact (over or under) estimation if Est(l,p) = cp(p)
(resp., Est(l,p) > cp(p) or Est(l,p) < cp(p)).

Clearly, for every pattern p if At¢tr(p) C S then the estimate
of p using [is an exact estimation. We can also show that:

Proposition 3.2: Given two attribute sets S; C S, C A
and I; = Lg,(D) the labels of D using S; for ¢ = 1,2

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 26,2021 at 15:49:08 UTC from IEEE Xplore. Restrictions apply.

{3

Tl m
{g,a} {g,7} {9, m} {a,r} {LTII,};TH}
{g,a,7} {g,a,m} {g,r,m} {a,r,m}
T\ //
{g,a,7,m}

Fig. 2: A label lattice

respectively, for every pattern p such that Attr(p) € Sy let
P = Plasr(p)ns, be the pattern resulting when restricting
p to include only the attributes appearing in So. If the
estimate of p’ using [is an over (under) estimation, and the
estimate of p using Iy is an over (resp., under) estimation then
Err(la,p) < Err(li,p).

Intuitively, for two attributes sets S7 and Sy, if S7 C So
the label generated using S has more details than the one
generated using S;. In fact, based on Proposition 3.2, it is
reasonable to assume that the pattern’s count estimation using
Lg, (D) is more precise than the one using Lg, (D). We show
that this assumption indeed holds in practice in [12]

Our solution is based on the above observation, and is
inspired by the Apriori algorithm [3] and the Set-Enumeration
Tree for enumerating sets in a best-first fashion [13]. We start
by defining a lattice over the possible labels, and then show
how it can be used to compute the optimal label.

Definition 3.3 (Labels lattice): Given a database D with
attributes A, let A* be the set of all possible subset of .A. The
label lattice of D is a graph G = (V, E), where V = A* and
E = {{Sl,SQ} | S1 C Sy and JA; € A s.t. Slu{Az} = 52}

Sy is a parent (child) of Sy if there is an edge {51, 52} and
Sl C SQ (SQ C Sl)

Intuitively, S; is a parent of Ss if So can be obtained from
S1 by adding a single attribute A € A\ S;. Figure 2 depicts
the label lattice of the database given in Figure 1.

We note that, due to the nature and purpose of the labels
(i.e., conciseness that allow for user friendly visualization),
the typical bound over the label size is small. Thus, a natural
way to scan the lattice is from the top down. Traversing the
lattice does not require explicit representation of the graph,
as children nodes can be generated on demand from their
respective parents. Moreover we can generate each node in
the label lattice exactly once in a top down scan as we next
show. To this end we define the operator gen(S) for a subset
of attributes S as follows.

Definition 3.4: Let D be a database with attributes A =
{Ai,...,A,}. We assume attributes are ordered, and for a
given subset of attributes S C A we use idz(S) to denote
the index of the attribute with maximal attribute index in .S,
namely idz(S) = max;({4; | A; € S}), we define

gen(S) ={S5" | &' = SU{A;} Vj s.t. idz(S) < j < n}
The set gen(S) C children(S) where children(S) is the set
of all children of S in the label lattice of D.

Example 3.5: For the attributes subset S ={g, r}, gen(S)

is {g, r, m}. Note that {g, a, r} is a child of S in the labels
lattice, but is not included in gen(S).

1964

Algorithm 1: Top down search

input : A database D, a set of patterns P and a bound Bs.
output: Optimal label.

Q = [gen({})]
cands =
while Q is not empty do
curr < Q.dequeue()
for ¢ € gen(curr) do
if labelSize (¢, D) < Bs then

LQ.enqueue(C)

removeParents (cands, c)
10 return Lg(D) for argminge .,pnqs Err(Ls(D), P)

[R Y N

cands < cands U {c}

Top down algorithm: Algorithm 1 finds the optimal label
using a top down traversal of the label lattice. The algorithm
gets as input a database D, a set of patterns, and a bound B;.
It uses a queue () to generate a candidate list of attributes
subset, cands, such that the size of the label generated using
each candidate in the list does not exceed the bound B,. By
traversing the lattice in a top down fashion using the gen
operator the algorithm generates each node in the lattice at
most once. Furthermore, the nodes generated are only attribute
sets that lead to labels with size below the given bound, and
(in the worst case) their children.

Proposition 3.6: Given a database D, a set of patterns P
and a bound By, Algorithm 1 generates each node in the label
lattice at most once.

Algorithm 1 avoids generating and exploring a large portion
of the labels lattice, and in particular most of the labels that
exceed the bound limit (which are the majority in practice, see
Section IV-B).

IV. EXPERIMENTAL EVALUATION

We conducted experiments on real data to assess the quality
of our proposed labels in estimating the data pattern’s count.
The key concerns are the label’s size and the error in estima-
tion. We evaluated this trade-off and considered the impact of
data set parameters. We compared our label’s accuracy to the
performance of a real DBMS estimator, and the conventional
approach of sample-based estimation using different error
measures. A second issue we studied is the performance of
the label generation algorithm. We examined scalability in
terms of label generation time as a function of (i) label’s
size bound, (ii) data size, and (iii) number of data attributes.
We also quantified the usefulness of the heuristic approach
compared to the naive algorithm. In this section, we report
part of these experimental results. The full detailed evaluation
is given in [12]. We begin with the set up we used.

A. Experimental setup

We used three real datasets with different numbers of tuples
and attributes as follows.
Blue Nile: An online jewelry retailer. We used the dataset
collected and used in [5] of diamonds catalog, containing
116,300 diamonds. The dataset has 7 categorical attributes.

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 26,2021 at 15:49:08 UTC from IEEE Xplore. Restrictions apply.

The COMPAS dataset: Collected and published by ProP-
ublica [1]. It contains 60,843 records that includes demograph-
ics, recidivism scores, and criminal offense information. The
total number of attributes in the original database was 29.
We removed id attributes (person id, assessment id, case id),
names (first, last and middle), dates and attributes with less
than 2 values or over 100 values. We added the attribute age,
with four age ranges, based on the date of birth attribute. The
resulting dataset contains 17 attributes.

Default of Credit Card Clients Dataset [2]: This dataset
contains information on default payments, demographic fac-
tors, credit data, history of payment, and bill statements of
credit card clients in Taiwan from April 2005 to September
2005. It has 24 attributes and 30,000 tuples. We bucketize each
numerical attribute into 5 bins.

In all the experiments we set P, the patterns set, to be Py
where A in the set of all attributes in the dataset; namely,
the set of possible patterns that include all the attributes and
every value for each attribute that appears in the data. The
experiments were executed on macOS Catalina, 64-bit, with
16GB of RAM and Intel Quad-Core i7 3.1 GHz processor. All
algorithms were implemented in Python 3.

B. Experimental results

Label accuracy: We assessed the quality of the generated
labels in estimating the data pattern’s count by examining the
error induced by the labels of varying size with respect to the
set of patterns appearing in the database. We varied the label’s
size bound from 10 to 100 to generate labels with different
size. Error was measured as the absolute value of difference in
count between the actual and estimated count for each pattern.
In [12] we report the g-error of the estimations.

We have compared the accuracy of our proposed pattern
count based label (PCBL, blue line in the graphs) to two
baseline approaches: (1) the PostgreSQL row estimation that
relies on 1D histograms. It stores statistical data about the
database in pg_statistic and random sampling while pro-
ducing statistics. (2) Uniform random sample with growing
size. The size of a sample that corresponds to the bound z is
x + |V C|. Given a sample S of size |S| for a dataset D, and
a pattern p, we use cg(p) - % to estimate the count of p in
D, where cg(p) is the count of p in S.

For all three datasets, we observed similar errors for the
label generated by the optimal heuristic and the one generated
by the naive algorithm (blue line in the graphs). In all cases
pg_statistic contained over 400 rows (429 in the BlueNile
dataset, 439 in the COMPAS dataset, and 446 in the Credit
Card). The accuracy is independent of the label size, and is
marked with a gray line in the graphs. For the sample based
estimation we report the average over 5 executions and the
results are marked in yellow.

Figure 3 shows the absolute max error (mean error values
are shown in parenthesis) as a function of the label size. The
maximal error is presented as a fraction of the data size.
For the BlueNile dataset, in the sample based estimation we
observed a small increase in the maximal error for a sample

1965

of 75 (corresponds to label with |PC| = 28, bound of 30).
This is because the sample size is significantly smaller that the
database size, thus % is larger that the count of all tuples in
the data, which results in over estimation for all tuples in the
sample, and estimation of 0 for the rest. In particular, if the
count of a pattern is greater than 2 (as in one of the executions
in this experiment) the overestimation is even higher. The
mean error of the sample based method decreased from 18.44
for the smallest sample size (x3 of the PCBL) to 17.04 in the
largest sample (over x4 of the PCBL).

In the Credit Card dataset, for a label with 92 pattern-
count pairs (generated with the bound set to 100), we obtain
maximum error of 607 (2.0%). The maximum observed error
remains 607 when we increased the label size bound from
70 to 100 (generating labels of size 70 and 92 respectively).
We note that the mean error decreased 2.2978 to 2.2974. To
further demonstrate the trend, we examine the error of labels
generated with bound set to 125 and 150, which generated
labels of size 121 and 139 respectively. The maximal error
of the average sample based estimation decreased from 789
to 453, which is slightly better than the results of the PCBL,
however the mean error was higher.

Label generation time: The next set of experiments
aims at studying the scalability of the algorithms for label
generation. We compared the performance of our proposed
optimized heuristic algorithm (dark blue) to a baseline naive
algorithm described in Section III (light blue). Figure 4 depicts
the running time as a function of the label’s size bound from
bound 10 and up to 100. As the bound grows, the number
of possible attributes subsets that may be used to generate
an optimal label increases, which affect the generation time
for both algorithms. The optimized heuristic outperform the
naive algorithm since the number of subsets it consider is
smaller. In the Credit Card dataset, the naive algorithm did
not terminate within 30 minutes beyond bound of 50. For
bound of 50 the naive algorithm running time was over 18
minutes. The optimal heuristics was able to compute the label
for bound of 50 with about 3.5 minutes, and the label for the
largest bound of 100 within 18 minutes.

Effect of optimization: Recall that our heuristic optimizes
the number of attribute sets examined during the search of
the optimal label. To quantify the usefulness of our heuristic,
we compared the number of attributes sets examined during
the label generation by the optimized heuristic and the naive
algorithm. We observed a gain of up to 99% in the number of
subsets examined as shown in Figure 5.

V. RELATED WORK

With increasing interest in data equity in recent years,
multiple lines of work have focused on labeling data and
models in order to improve transparency, accountability and
fairness in data science [7], [9], [10], [14]-[16].

Different data labeling models were studied in [7], [9],
[15]. Data nutrition labels [9] are composed of modules,
called widgets. Modules are stand-alone, and each provides

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 26,2021 at 15:49:08 UTC from IEEE Xplore. Restrictions apply.

BlueNile COMPAS Credit Card
175
3.00 2.50
1.50 2:4)
5 —e— PCBL 5 —o=— PCBL 5225 2.3 23)
L:J’é 2.00 Postgres ‘-‘g 125 Postgres ‘-‘g 200 2.3 2.3 03 23)
= Sample =100 Sample s PCBL
1.00 6.6). -~ o 374 30 o) 175 :ostg:'es
; . ample
ﬁ.(4 1) 3.0) 150
10 20 30 40 50 60 20 40 60 80 20 40 60 80 100 120 140
Label Size Label Size Label Size
Fig. 3: Absolute max error as a function of label size (mean values are shown in parenthesis)
BlueNile COMPAS Credit Card
Naive 125 Naive 1000 Naive /’
1.5~ == Optimized 0 =8= Optimized =8= Optimized ,/
T a = = 750 s
i Pras . - e
g - g g 500 P
- —— = 50 - F R
0.5 ,/-—_-.— 2% ___-—"’— 250 _-r
- ———— —_
v 0 m=— 0 wE——
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Bound Bound Bound
Fig. 4: Label generation runtime as a function of label size bound
BlueNile COMPAS Credit Card
10”
0 Naive Naive Naive
3 EEE Optimized 3 B Optimized 3 10° B Optimized
3 B g
& 60 510 5
S g g 10*
& & &
g1 £ E
0 | . I 10° — 10? -—
10 30 50 70 100 10 30 50 70 100 10 30 50 70 100
Bound Bound Bound
Fig. 5: Number of labels candidates examined as a function of label size bound

a different flavor of information: metadata, provenance, vari-
ables, statistics pair, probabilistic model and ground truth
correlations. The models vary in the manual effort required
for their generation and their technical sophistication. Overall,
the labels allow users to interrogate various aspects of the
dataset. Our proposed label model may be assimilated as a
widget or a module in the above models. Other works [10],
[16] have focused on model labeling.

While the idea of a nutritional label has been very nicely
argued for in work such as that cited above, the actual content
of the label is either manually generated, or at most has an
aspiration towards automated generation beyond the simplest
properties. Our work establishes the first critical widget that
provides substantive information about a data set and is
constructed in a completely automated manner.

VI. CONCLUSION

We have developed a “label” for a dataset that can be
used to determine the count for every pattern in the dataset.
These counts are typically central to determining fitness for
use, and thus avoid generating biased models and data-driven
algorithms. Our work is in line with the many recent proposals
for a data set label that allows users to determine fitness for
use and build trust.

REFERENCES

[1] Compas recidivism risk score data and analysis. https://www.propublica.
org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis.

1966

[2]
[3]
[4]
[5]
[6]
[71

[8]
[9]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

Default of credit card clients data set.
datasets/default+of+credit+card-+clients.
Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In VLDB. Morgan Kaufmann, 1994.
Julia Angwin, Jeff Larson, Lauren Kirchner, and Surya Mattu. Machine
bias, May 2016.

Abolfazl Asudeh, Zhongjun Jin, and H. V. Jagadish. Assessing and
remedying coverage for a given dataset. In ICDE, 2019.

Irene Y. Chen, Fredrik D. Johansson, and David A. Sontag. Why is my
classifier discriminatory? In NeurIPS, 2018.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman
Vaughan, Hanna M. Wallach, Hal Daumé III, and Kate Crawford.
Datasheets for datasets. CoRR, abs/1803.09010, 2018.

Jindong Gu and Daniela Oelke. Understanding bias in machine learning.
CoRR, abs/1909.01866, 2019.

Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia
Chmielinski. The dataset nutrition label: A framework to drive higher
data quality standards. CoRR, abs/1805.03677, 2018.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy
Vasserman, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and
Timnit Gebru. Model cards for model reporting. In FAT*, pages 220—
229. ACM, 2019.

Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. Preventing
bad plans by bounding the impact of cardinality estimation errors. Proc.
VLDB Endow., 2(1), 2009.

Yuval Moskovitch and H. V. Jagadish. Patterns count-based labels for
datasets [technical report]. CoRR, abs/2010.16340, 2020.

Ron Rymon. Search through systematic set enumeration. In KR. Morgan
Kaufmann, 1992.

Julia Stoyanovich and Bill Howe. Nutritional labels for data and models.
IEEE Data Eng. Bull., 42(3), 2019.

Chenkai Sun, Abolfazl Asudeh, H. V. Jagadish, Bill Howe, and Julia
Stoyanovich. Mithralabel: Flexible dataset nutritional labels for respon-
sible data science. In CIKM. ACM.

Ke Yang, Julia Stoyanovich, Abolfazl Asudeh, Bill Howe, H. V. Ja-
gadish, and Gerome Miklau. A nutritional label for rankings. In
SIGMOD. ACM, 2018.

https://archive.ics.uci.edu/ml/

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 26,2021 at 15:49:08 UTC from IEEE Xplore. Restrictions apply.

