Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Identifying Insufficient Data Coverage for Ordinal
Continuous-Valued Attributes

Abolfazl Asudeh Nima Shahbazi
University of Illinois at University of Illinois at
Chicago Chicago
asudeh@uic.edu nshahb3@uic.edu
ABSTRACT

Appropriate training data is a requirement for building good machine-
learned models. In this paper, we study the notion of coverage for
ordinal and continuous-valued attributes, by formalizing the in-
tuition that the learned model can accurately predict only at data
points for which there are "enough" similar data points in the train-
ing data set.

We develop an efficient algorithm to identify uncovered regions
in Jow-dimensional attribute feature space, by making a connection
to Voronoi diagrams. We also develop a randomized approximation
algorithm for use in high-dimensional attribute space. We evaluate
our algorithms through extensive experiments on real datasets.

KEYWORDS

Responsible Data Science; Trustworthy AI; Fairness in Machine
Learning; Bias Detection

ACM Reference Format:

Abolfazl Asudeh, Nima Shahbazi, Zhongjun Jin, and H. V. Jagadish. 2021.
Identifying Insufficient Data Coverage for Ordinal Continuous-Valued At-
tributes. In Proceedings of the 2021 International Conference on Management
of Data (SIGMOD °21), June 20-25, 2021, Virtual Event, China. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3457315

1 INTRODUCTION

Machine learning (ML) and predictive analytics are shaping every
corner of human life, from autonomous vehicles to healthcare, and
even in predictive policing and data-driven sentencing. A critical
question for the decision maker, especially in applications that may
impact human life, is how much to trust the outcome of the model.

It is easy to see that the accuracy of ML model prediction de-
pends on the data used for training: after all, the model learns the
phenomena that training data represent. As a first step, we may
desire that the data should represent the underlying data distri-
bution from which the production data will be drawn. But that is
not enough, since it only tells us about model performance in the
aggregate. For any query point, what we want is that the training
data should include enough examples similar to it. Otherwise, the
model predicts the query point according to points not similar to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3457315

129

Zhongjun Jin H. V. Jagadish
University of Michigan University of Michigan
markjin@umich.edu jag@umich.edu

the query. If the “behavior” of the query point is similar to the train-
ing data, the model (luckily) may provide a good outcome. Even so,
the model outcome is not trustworthy in these situations, at least
for critical decision making.

To consider one recent example in the news, Amazon developed
software to screen employment applications based on predicted
success. Because the training data set had so few successful women
in it, the program would downgrade women in its predictions [23].
While the model may have worked well for male applicants, it
was clearly unsuited for women applicants, and was ultimately not
used by Amazon in production. Similarly, using a real dataset of
criminals [1], an ML model with more than 75% overall accuracy
had a performance worse than random guess for Hispanic Females
(because the training data did not contain enough samples from
this category) [13]. In short, given a query point, we may not trust
the output (such as prediction or classification) of an ML model
about this point only if there are not enough points in the training
data set for the ML model that are "similar" to the query point. This
concept has been known as coverage in the literature [13, 38, 45, 47].

Poor coverage does not necessarily imply poor models. In a
classification setting, for instance, having poor coverage in regions
far from the boundary is likely to be immaterial since those points
may not contribute to refining the boundary. However, as we show
experimentally in § 6.2, poor coverage creates a risk that there may
be a poor model. More specific analyses may be able to assess this
risk, given additional information. However, the results become
specific to the type of model being considered. Our goal here is
to investigate datasets independent of the type of model being
constructed. Furthermore, we note that poor model performance
could be due to reasons (e.g. poorly labeled data for a minority
group) other than lack of coverage.

Existing work is limited to categorical attributes with low-cardin-
ality. In this paper, we extend this concept to the more challenging
context of continuous-valued attributes. Returning to the example
of Amazon’s model for scoring job applicants, the detected bias was
on a simple low-cardinality discrete attribute: sex. It is possible that
the model also discriminates based on age, since most tech workers,
and job applicants, are young. Simple solutions like binning age into
"young" and "old" can lead to coarse groupings that are sensitive to
thresholds chosen. For example, it may be inappropriate to treat a
35-yo as young but a 36-yo as old.

In short, we may not trust the result of a given query if the query
point is not covered by the training data. One can make a pass
over the training data to check if the given query point is covered.
But this requires (i) access to the full training data set and (ii) the
time to verify the coverage based on it, neither of which may be
feasible. Therefore, our challenge is to mark out in advance, for

https://doi.org/10.1145/3448016.3457315
https://doi.org/10.1145/3448016.3457315

Research Data Management Track Paper

every possible query point, whether it is covered. We propose to
address this challenge by identifying, in advance, the uncovered
region in the feature-vector space, and to encode these in a manner
that makes it inexpensive to determine which region any query
point is in.

Identifying uncovered region up-front enables crucial benefits
and two action items. First, uncovered region shows potential defi-
ciencies in the (training) data set. Annotating a data set with cov-
erage information informs the data scientist about the uncovered
regions when the model is being constructed as a signal to inves-
tigate the fitness of data for the model [58, 61]. Second, at query
time, it generates a warning that the outcome might not be trust-
worthy when a point is queried in an uncovered region. Whether
to consider the outcome and how to take action is left to the model
user.

Summary of contributions. In summary, our contributions in
this paper are as follows:

e We formally define the notions of coverage over ordinal and
continuous-valued attributes. Based on this, we define the prob-
lem of identifying uncovered regions of a given dataset. (§ 2)

e Making a connection to the Voronoi diagrams [14], we design an
efficient algorithm for identifying uncovered regions for the two-
dimensional case. We also provide a logarithmic search algorithm
for checking if a query point belongs to an uncovered region.
§3)

e The problem search space size explodes as the number of dimen-
sions increases. For higher dimensions, we design a randomized
approximation algorithm based on the geometric notion of ¢-
net. We first provide a theoretical upper-bound on the number
of required samples for the adversarial case, which is exponen-
tial to the number of dimensions. Fortunately, it turns out in
practice that the actual number of samples required for iden-
tifying the uncovered region is significantly smaller than the
provided theoretical upper-bound. We design an algorithm based
on exponential-search to identify the right number of samples
for a given setting. We study how to report the uncovered region
in multi-dimensional cases to the user. (§ 4)

e Finally, we conduct extensive experiments on real datasets to
evaluate our proposed algorithms. (§ 6)

2 PROBLEM DEFINITION
2.1 Data Model

Consider a dataset 9 with n tuples, each consisting of d ordinal
attributes X = {x1,x2, - ,xg4}. Attribute values may be discrete
ordinal (e.g. population) or continuous-valued (e.g. height). In either
case, we normalize attribute values to lie in the range [0, 1], with
values drawn from the set of rational or real numbers. For every
tuple t € D, we use the notation ¢[i] to show the value of ¢ on
attribute x; € X. In practice, the data scientist may be interested
to study coverage over a subset of attributes, called “attributes of
interest”. In such cases, we assume X is the set of attributes of in-
terest. The dataset also contains target attributes Y = {y1,--- ,yg}
that are not considered for the coverage problem.

130

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

2.2 Coverage Model

Given a query point g € [0,1]¢, where g[i] shows the value of ¢
with regard to x; € X, the dataset D is not representative for g,
if there are not “enough” data points in 9 that are “similar” to g.
In such cases, we say g is not covered by D. We use the simplest
possible interpretations for "similar" and "enough" to obtain the
following formal definition:

DEFINITION 1 (COVERAGE OF A POINT). Given a dataset D with
d attributes X = {x1,x2,- -+ ,xq}, query point q € [0, 1]d, a distance
function A : RYxR? 5 R, a vicinity value p, and a threshold value
k, the coverage of q by D is verified as follows:
if {t € DAt g) < p}l > k
otherwise

true

C , D) =
ovp,k(q) {false

In the rest of the paper, we simplify the notation to Cov(q, D)
when p and k are clear by the context. Also, in the rest of the paper
use {3 norm as the distance measure.

We rely on the domain knowledge of the data scientists to specify
the vicinity and threshold, since these values are application specific
and may vary by context. One can use techniques we shall propose
in § 5, for tuning the parameters. We also evaluate experimentally
the impact of these parameter choices in § 6. Using Definition 1,
we now define the uncovered regions as follows.

DEFINITION 2 (UNCOVERED REGION). Given a dataset D with d
attributes X = {x1,x2,- -+ ,xq}, a distance function A : RY x R4 —
R, a vicinity value p, and a threshold value k, the uncovered region
U is the set of points (value combinations) that are not covered by D.
Formally, U = {q € [0,1]¢ | Cov(q, D) = false}.

Figure 1(a) shows a sample dataset with two attributes x; and
x7. Every tuple t in the dataset is shown as a black dot in the figure.
For each tuple t € D, let, o; be the circle with radius p centered at
it, as drawn in the figure. Note that any point within the circle o;
has the distance less than p from ¢. As a result, every point in the
space that falls within less than k circles contains less than k tuples
in its neighborhood and, according to Definition 1, is uncovered.

Setting k to be 2, the uncovered region in the example of Fig-
ure 1(a) is colored in red. As shown in the figure, the uncovered
region is a collection of disjoint shapes, not convex in general, and
with borders identified by arcs, each belonging to the proximity
circle of a tuple.

2.3 Problem Formulation

Our challenge is to address two tasks: first, given a data set, to
find the uncovered region; and second, given a query point, to
determine whether it is in an uncovered region. Formally, we define
the following problems:

ProBLEM 1 (UNCOVERED REGION DI1SCOVERY). Given dataset D
with n tuples over d attributes, and the values p and k, identify the
uncovered region U as defined in Definition 2.

PROBLEM 2 (UNCOVERED QUERY ANSWERING). Given dataset D,
the values p and k, and a query point q check if q is uncovered. That
is, to identify if |{t € D | A(t,q) < p}| < k.

Note that Problems 2 and 1 are related. In particular, identifying
the uncovered region in Problem 1, enables answering Problem 2 by

Research Data Management Track Paper

(a) uncovered region (red), k = 2

(b) 1st order voronoi diagram

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

100 points in 2-d space (k=2, p=0.10)

.

>0.50

010 = SIENE .
0.05

0.00
00 01 02 03

(c) 2nd order voronoi diagram

Figure 1: Illustration of 100 random points in range [0, 1] X [0, 1]. (a) For every tuple ¢, o, is the circle centered at ¢.

checking if the query point belongs to the identified region. How-
ever, one might be able to answer Problem 2 without identifying the
uncovered region first. Similarly, an efficient solution for Problem 2
enables approximately answering Problem 1 by traversing through
a discretized search space.

Lack of coverage is only one of several signals that are important
in determining the trustworthiness of an analysis outcome based
on the data. It is informative when considered along with other
factors [7] such as basic performance, robustness [43] or stabil-
ity [9] of outcome, and explainability [52]. For example, one may
use the consistency of the outcomes of multiple model ensembles
as a signal for trust. As such, we seek only to provide coverage
information, whether by identifying uncovered regions in a data
set or by flagging poor coverage for a specific query, as an indicator
to be used by the data scientist or data user in conjunction with
other information and in the context of the particular application.

In the following, we provide algorithms for Problems 1 and 2 for
the two-dimensional (d = 2) case and the general multi-dimensional
case, respectively. Before moving to the technical details though, we
would like to provide a high-level discussion about the output com-
plexity of the uncovered region that, setting aside the complexity of
the discovery algorithm, may be challenging. As discussed earlier
and observed in Figure 1(a), the uncovered region can be expressed
by its border, the union of d-dimensional arcs each belonging to
the proximity circle of a tuple. That is, complexity of the region is
determined by the number of arcs contributing to the border of the
region. In following sections, we shall use computational geometry
notions Voronoi diagrams (Lemma 1) and VC-dimensionality (The-
orem 3) to bound the output complexity of the uncovered region. In
particular, following Lemma 1, the number of arcs at the border of
uncovered region in 2D are at most k times more than the number
of k-voronoi cells.

3 TWO DIMENSIONAL COVERAGE

In this section, we study the two dimensional case where X =
{x1,x2}. Figure 1(a) shows an example of such case. As discussed in
the previous section, we use o, to represent the circle with radius p

131

around the tuple ¢. For every query point g, it is easy to observe that
it is uncovered, i.e. Cov(q, D) =false, iff |[{t € D | q is inside o;}| <
k. Using this observation, the brute-force approach for finding the
uncovered region draws the circles o; for each tuple t € D and
considers the partitioning of the space by the arrangement [28] of
the circles. For each cell in the partition, the algorithm counts the
number of circles inside which the partition falls in. If the num-
ber is less than k, it marks the cell as uncovered. For example, in
Figure 1(a) the circle of each tuple is drawn around it. The intersec-
tions of the circles partition the space to different cells. Every cell
is the intersection of multiple circles. Any point inside a cell is in
p-vicinity of its circle. The algorithm marks as uncovered any cell
that is the intersection of less than k circles — painted in red in the
figure. This algorithm, however, is not practical. First, constructing
the arrangement of circles on the space is not straightforward, let
alone easy to implement efficiently. Second, the quadratic com-
plexity of the number of cells in the arrangement of circles makes
the algorithm inefficient. Finally, it is not clear how to organize
and index the cells to later answer coverage queries (Problem 2)
efficiently.

Therefore, in the rest of this section, our aim is to design efficient
algorithms for Problems 1 and 2 in 2D. To do so, we make a key
connection to the well-studied concept of voronoi diagrams [14—
16, 29-31].

3.1 Review: k-th Order Voronoi Diagrams

Consider a dataset D in R?. For a pair of tuples ¢; and tj, let

h(ti, tj) be the line h(i,j) = {q | Alg.ti) = A(g.tj)}. Also, let

the half-space h*(i,j) be the side of the line the includes t;, i.e.

h*(i,) = {q | A(g. ;) < A(q.tj)}. The locus of the points closer to

t; than any other points in D, denoted by V(i) = V(l h*(i,)). The
i#]j

convex polygon V(i) is called the voronoi cell of tuple ¢;. Follow-
ing this, the collection of voronoi cells for all tuples in D is called
the (first order) voronoi diagram of the dataset. Figure 1(b) shows
the voronoi diagram for sample points in Figure 1. A (first order)
voronoi diagram contains n cells, simply because there exists only

Research Data Management Track Paper

one cell per each tuple. Also, it has been shown that the diagram
contains at most 3n — 6 edges and 2n — 5 vertices [29].

Higher order voronoi diagrams [4, 20, 21, 42] extend the voronoi
diagrams from nearest neighbor to k-nearest neighbors. A k-voronoi
cell V(S) is associated with a set S € D where |S| = k and
the k nearest neighbors of any point in V(S) are S. Formally,
V) = {q|Vti € S,tj € D\S : A(q.ti) < A(g.tj)}. The k-th
order voronoi diagram (denoted as Vi (D)) is the collection of all k-
voronoi cells of D. Formally, Vi.(D) = {V(S):S € D, |S| = k}. An
example of 2nd order voronoi diagram is presented in Figure 1(c).
The k-th order voronoi diagram of a dataset O in 2D contains
O(k(n — k)) cells [20, 42]. In [42], D. T. Lee proposed an algorithm
for finding the k-order voronoi diagrams that runs in O(k%nlog(n))
and has a space complexity of O(k?(n — k)).

3.2 Discovering the Uncovered Region

We use the k-th order voronoi diagrams for discovering the un-
covered region. Lemma 1 makes the necessary foundation for our
algorithm design.

LEmMA 1. Consider a dataset D and its corresponding k-th order
voronoi diagram. For every tuplet € D, let o; be the d-dimensional
sphere (d-sphere) with radius p centered at t. Consider a k-voronoi cell
V(S) in the k-th order voronoi diagram Vi.(D). Any point q inside the

intersections of the d-spheres of tuples in S, i.e. ¢ € N o, is covered,
VteS
while all other points in the region are uncovered. Formally:

true if g €Noy
Yq € V(S): Covy, (g, D) = vteS
false otherwise

ProOF. Let R be the intersection N o4, Vt € S. Every point falling
inside a d-sphere o; has the distance of at most p from the corre-
sponding tuple . Therefore, the distance of any point in R is at
most p from all tuples in S and since |S| = k, is covered. Now con-
sider a point g € (V(S) \ R). First, since g is in V(S), for any tuple
t’ that belongs to (D \ S), the distance of ¢’ to g is not less than
the maximum distance of S to ¢, i.e., A(g,t’) > maxyses A(g,).
Next, since q ¢ R, there exists at least one tuple ¢ in S such that
Ay = A(g,t) > p. Following this, V¢’ € (D \),

Ag.t') = Ay > p

Consequently, since |S\{t}| < k, q is not covered. O

According to Lemma 1, for identifying the uncovered points in
a region R of the k-th order voronoi diagram it is enough to only
consider the tuples in Sg. We use this as the key observation for
designing Algorithm 1 for discovering the uncovered region in the
two dimensional case. The algorithm starts by constructing the
k-th order voronoi diagram of the dataset, using [42] or any other
efficient algorithm. Then for each voronoi cell V(S) in the diagram,
it computes the intersection of the circles of the tuples in S and
marks the portion of V(S) that falls outside it as uncovered. The
algorithm’s correctness follows Lemma 1. First, since the k-voronoi
diagram partitions the space, every query point g should belong to
one and only one cell. According to the lemma, if g is uncovered,
it should fall outside the intersection of the corresponding tuples
for the cell and hence discovered by Algorithm 1. After identifying

132

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Algorithm 1 UNCOVERED-2D

Input: dataset D, k, p
1: function IDENTIFY(D, k, p)
2 Ve Vi(D)U—{}
3 for V(S) € Vdo
4: Ce—nNo; Vtes
5 U .add(V(S)\C)
return U,V
: function REPORT(U)
map < 2D map of [0, 1] x [0, 1]
for (x1,x2) emap do
10: if (x1,x2) € U then color[x1, x3] « red
11: else color[xy, x2] « green

6
7
8
9

12: function QUERY(q, V) // is q uncovered?
13: find V(S) € V such that g € V(S)
14: fort € Sdo

15: if A(t,q) > p then
16: return true; //q is uncovered
17: return false

the uncovered region, similar to Figure 1, we use the 2D map of
{x1,x2} value combinations to report the region to the user.

LEMMA 2. UNCOVERED-2D-IDENTIFY runs in O(k%nlogn).

Proor. Finding k-th order voronoi diagram is in O(k?nlog n)
[42]. For every cell in the diagram we take the intersection of k
circles. Since the upper-bound on the number of cells in the diagram
is O(knlog n) [4, 20, 42], this takes O(k?nlog n). O

We would like to note that, following Lemma 1, since the number
of k-voronoi cells in 2D is O(k(n — k)), the output complexity of
uncovered region is bounded as O(k?(n — k)). The minimal rep-
resentation of the uncovered region, though, is achieved by the
exact number of arcs defining the border of the region. We use the
voronoi diagram in 2D because its complexity is linear in n and it
enables a logarithmic query answering algorithm we shall explain
next.

3.3 Query Answering

In addition to identifying uncovered region, we also rely on the rich
literature of voronoi diagrams for efficiently checking if a query
point is uncovered. In particular, instead of explicitly indexing the
uncovered region, we only index the k-voronoi diagram during
the preprocessing time. During the query time, the first step is to
identify the voronoi cells that the query point g belongs to. This is
done in O(log n) [4, 42]. Let V(S) be the k-voronoi cell ¢ belongs
to. Note that for every tuple ¢’ € D\S, A(t’, q) > max(A(t,q), Vi €
S). Hence, since |S| = k, if there exists a tuple t € S such that
A(t,q) > p, then q is uncovered. This step requires O(k) operations.
Consequently, the Query function of Algorithm 1 is in O(k +1og n).

4 MULTI-DIMENSIONAL COVERAGE

So far in this paper, we considered the special 2D case where the
coverage is studied over two attributes. In this section, we relax
this assumption to the general case where d > 2.

Research Data Management Track Paper

The extension of the 2D case provides an exact algorithm for
detecting the uncovered region: following Algorithm 1, construct
the k-th order voronoi diagram in MD and, within every cell V(S),
find the points outside the intersection of the hyper-circles of S.
This algorithm can indeed be used effectively for low-dimensional
spaces. Unfortunately, due to the curse of dimensionality, the exact
algorithm described above is not practical when d, the number of
attributes, is not a small constant. Therefore, in this section, we
turn our attention to designing approximation algorithms.

4.1 Approximating the Uncovered Region

In this section we design a geometric approximation algorithm for
identifying the uncovered regions in MD. But first, let us review
some of the necessary concepts in the following.

Consider a range space (y, R) where y is the universe of points
and R is the set of ranges, each containing a subset of points in
x. For example, y can be R? and R the set of disks in the plane.
The VC-dimension of a range space is the maximum cardinality of
S C y shattered by R. It means, for every set s C S, there exists a
range r € R that include s and no point from S\s.

Aset N C yisan e-net for y, if for any range r € R, if [rN x| >
| x|, then r contains at least one point of N (i.e., [r N N| # 0). Let
d be a the VC-dimension of a range space (y, R). For such a range
space, an i.i.d. sample of size

1 1 1
O(;(élog; +log 5)) (1)
from the y is an ¢-net for the range space, with probability of
at least (1 — ¢) [34]. We use this for approximately learning the
uncovered region.

Let net be an e-net for the d dimensional query space [0, 1]¢.
Let us label every sample point in the net as +1 if it is uncovered
and -1 otherwise. Consider the region induced by the samples as
the uncovered region; that is the (non-convex) hull ¢, around the
+1 points that does not include any of the -1 points. In other words,
a classifier with no misclassification error on the samples. Now
consider the exact uncovered region U. Let r = U & U, be the
difference between U and U,, i.e., the set of points that are mis-
classified as either covered or uncovered using U,. Clearly, any
query point in r gets mis-classified by U,. Since net is an ¢-net,
if [r N y| > €| x|, then r contains at least one point of net. In other
words, the error induced by the approximation is bounded by .

In the following, we focus on the VC-dimension of the uncovered
region, provide a theoretical upper-bound, and design a practical
solution.

4.1.1 A theoretical upper-bound. The VC-dimension of the uncov-
ered region play the critical role in constructing the e-net for our
algorithm. In the following, we first use our findings in § 3 and the
available results on the complexity of voronoi diagrams to find an
upper-bound in Theorem 3.

THEOREM 3. The VC-dimension of the uncovered region in R? is
bounded by O((d + 1)nLd/21 g Td/21+1)

Proor. Itis known that any finite sequence of combining (union,
intersection, and complementing) range spaces with finite VC-
dimension, results in a range space with finite VC-dimension [34].

133

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

We use this to find an upper-bound on the VC-dimension of the
uncovered region. Following Lemma 1, for every k-voronoi cell
V(S), the points inside the intersections of the spheres (with radius
p) of tuples in S are covered and the points outside those belong to
the uncovered region. As a result, for every k-voronoi cell, we can
consider the covered points as a range that is the intersection of k
d-spheres (d-dimensional spheres). The VC-dimension of a d-sphere
is d + 1 [34]. For instance, VC-dimension of disks in the plane is
3, since it is the maximum number of points disks on the plane
it can shatter. Therefore, the covered points inside a cell have the
VC-dimension k(d + 1). The number of cells of a k-voronoi diagram
is bounded by O(nLd/ka [d/z]) [29]. Since the set of covered points
is identified as the union of the covered points in each k-voronoi
cells, the VC-dimension of the covered region is bounded by

k(d + 1) O(nl 421 [4/21) = O((d + 1)nl4/2 i Td/21+1)

The uncovered region is the complement of the covered region and
has the same VC-dimension. O

Theorem 3 provides an upper-bound on the VC-dimension of
the uncovered region. This, however, is an upper-bound for the
adversarial cases that (as we shall experimentally observe) are far
from practice. In our experiments samples of significantly smaller
sizes are enough to create the e-net. We first note that Theorem 3
uses the theoretical upper-bound the number of k-voronoi cells. Still,
perhaps more importantly, it assumes that all voronoi cells contain
some covered and uncovered points which seems very adversarial.
In practice a substantial portion of the cells are either fully covered
(resp. uncovered), i.e. any point in those regions are covered (resp.
uncovered) and does not add to the complexity (VC-dimension) of
the uncovered region. As a result, much smaller sample sizes are
enough to build the e-net. We shall experimentally evaluate this in

§ 6.

4.1.2 A practical solution. The upper-bound in Theorem 3 uses
the number of k-voronoi cells to bound the VC-dimension. Alter-
natively we can use the complexity of the shape of the uncovered
region for finding the VC-dimension. Looking at Figure 1(a), one
can confirm that the border between the uncovered and covered re-
gion is described as the union of a set of d-dimensional arcs (d-arcs).
Every d-arc is part of a d-sphere, having a VC-dimension of d + 1.
Therefore, if the border of uncovered region is the union of Ny d-
arcs, the VC-dimension of the uncovered region is § = (d + 1)Ngyc.

The number of d-arcs in the border of the uncovered region, how-
ever, is data dependant. That is, depending on the data distribution
and the value of p: the maximum distance between neighboring
points. If data is distributed such that large clusters of data points
are in each others neighborhood, most of such clusters are fully
covered and most of the points in such region do not contribute
to the complexity of the VC-dimension. Similarly, for the higher
values of p, the chance of large regions being fully covered is higher
and this makes the border of the region less complex. Also, if p is
very small, almost all points belong to the uncovered region and,
again, the uncovered region will be less complex.

Finding the number of d-arcs in the border of the uncovered re-
gion is challenging. On the other hand, the theoretical upper-bound
in Theorem 3 required large numbers of samples and, depending
on n and d, might not be practical. Therefore, in the following

Research Data Management Track Paper

Algorithm 2 UNCOVERED-MD

Input: dataset D, k, p, ¢, and ¢

1: function IDENTIFY(D, k, p, ¢, ¢)

2 7T « aset of i.i.d samples according to ¢
Ns « an initial value // based on n, d
repeat

S « N; iid samples from [0, Nk
fors € S do
if [{t € D | A(t,s) < p}| = k then {[s] « +1
else {[s] « -1
U, — classifier(S, ()
Error« error(U,, 7); Ns < 2 X Ng
11 until Error< ¢
return (U,, S,)
13: function REPORT(S, {)

14: T « DecisitonTree(S, ¢); desc «— {}

15: for [€ T.leaves do

16: if [.label= +1 then

17: add (PathFromRoot(l), l.entropy) to desc
18: return desc

19: function Query(q) return U,(q)

we suggest an alternative approach for finding the right number
of samples that satisfy the user-provided misclassification error ¢.
Specifically, we use an exponential search strategy: starting from an
initial value for the number of samples, we iteratively double the
number of samples until we find a proper number of samples.

4.1.3 Identifying the Uncovered Region. The function IDENTIFY for
approximating the uncovered region when d > 2 is provided in
Algorithm 2. The algorithm identifies the uncovered region in the
form of a classifier U, that, given a query point g, identifies if
q belongs to the uncovered region. The algorithm uses 7, a set
of i.i.d samples from the query space, as the test set to verify the
misclassification error of U,. As we previously explained, we use
iterative sampling and the exponential search strategy to identify
the right number of samples. The algorithm starts by setting the
sample set size N to an initial value. It then collects N i.i.d samples
from the query space and labels them as +1 if those are covered by
the dataset and -1 otherwise.

Recall from § 4.1 that we identify U, as the (non-covex) hull
around the -1 points that does not include any of the +1 (covered)
points. In other words, viewing S as an ¢’-net, a classifier with no
mis-classification error on S, is guaranteed to have the classification
error of at most ¢’. Algorithm 2 uses this observation and builds
such classifier around S.

After building the classifier, the algorithm checks if it satisfies
the error requirement by the user; that is, if U, has the miss-
classification error (Error) of at most ¢. To check this, the model
uses the test set 7. If Error > ¢, the algorithm doubles the sample
size and repeats the process until it reaches the right sample size
for Nj.

4.1.4 Complexity analysis of function IDENTIFY of Algorithm 2. The
function uses exponential search in order to find the proper number
of samples. Let NV be the final number of samples. Since, starting

134

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

from an initial value larger than 1, the algorithm doubles the sample
size at each iteration, the total number of iterations is bounded by
O(log N). At every iteration, the algorithm selects a sample set of
size N and for each of them check if it is covered by the dataset.
This, in worst-case, is in O(nd) as for every tuple in the dataset,
the algorithm requires to compute the distance between the sample
point that the tuple. Of course, any of the off-the-shelf techniques
and indices such as Local Sensitive Hashing can be used for effi-
cient counting. After collecting the samples, the algorithm needs to
train a classifier and compute its mis-classification error. Therefore,
using T¢ as the time required for training/testing the classifier for a
sample set of size N, the total time complexity for approximately

identifying the uncovered region is O((N nd+T;) log N)

4.2 Reporting the Uncovered Region in MD

The next step after identifying the uncovered region is to report
it to the user. In 2D, we could create a map to visually present the
region. This however is not possible, in particular when d > 3.
While there are different choices to make, we believe while human
being might not be very good at understanding complex geometric
shapes, data scientists understand the axis-parallel range cubes'.
For example, it seems easy to understand that the points in range
(x1 :[.46,.58],x2 : [.12,.18],x3 : [.67,.81]) are uncovered.

Ideally, we would like to identify a set R = {Ry,---,Ry} of
axis-parallel hypercubes that best describe the uncovered region.
That is, the number of uncovered points outside the hypercubes is
minimized, and similarly the number of covered points within each
hypercube is minimized. In other words, we would like to minimize
(UleRi) @ U. It turns out this problem is not “easy” to solve and
exactly solving it is out of the scope of this paper.

Instead, as an approximation heuristic, we draw the connection
to decision trees, as those are widely used for explaining black-
box and complex Al models [25]. A decision tree is tree-structure
classifier that expresses the target variable as a function of the
values of other attributes. Every branch from a node in the tree is a
“rule” based on an attribute which can be viewed as an axis-parallel
hyperplane that splits the space in two halves. Following the cuts
enforced by each of the branches, every leaf node in the tree describe
an axis-parallel hypercube identified by the branches in the path
from the leaf to the root of the tree. The arrangement of decision
tree is such that (almost) all tuples in a leaf node have the same class
label. A well-known approach for finding the tree partitions the
space at every node greedily, based on a measure of entropy [53].
Following this argument, we build a decision tree using the samples
and labels (S, ¢) drawn for identifying the uncovered region. As
shown in the function REPORT in Algorithm 2, the corresponding
ranges for +1 leaf nodes, together with their entropy, are reported
as the description of uncovered regions to the user.

4.3 Query Answering

As specified in the function QUERY of Algorithm 2, the classifier
U, is being used to identify if a query point g is covered by the
dataset D. It approximates the uncovered region U and returns -1
if the queried point is uncovered.

!We recognize that other alternatives, such as reporting the center and the radius of
hyper spheres covering the uncovered region could also be used here.

Research Data Management Track Paper

5 TUNING THE PARAMETERS p AND k

Similar to many other concepts such as clustering and frequent
item-sets mining, the notion of coverage requires parameter tuning.
In order to identify if a point is uncovered, we need to set the
vicinity value p and the threshold k in Definition 1 (coverage). The
techniques proposed in this paper are agnostic to the choice of these
parameters. Nevertheless, in this section we present some heuristics
for setting these parameters, prior to using these techniques.

The first parameter to determine is k: the minimum number of
points in a neighborhood for a query point to be considered as
covered. That is, the k points in the neighborhood of the point
are the minimum representative to enable meaningful analysis
about it. Following statistics and central limit theorem, the rule of
thumb suggests the number of representatives should be around
30. For example, [60] suggests that a minimum of 20 to 50 samples
is necessary.

The second parameter is the radius p, which defines the size
of neighborhood considered. In the following, we propose two
approaches for determining the value of p.

5.1 Absolute Choice Principle

Our first strategy is an absolute choice principle in which the pa-
rameters are chosen independently from how the data is distributed.
The goal is to determine p: the maximum distance between two
points to be considered in the neighborhood of each other. The
smaller the parameter p is the more similar the neighboring points
are. The value of p should be specified in a way that the tuples in
the vicinity of a query point are similar enough to have similar
“behaviors” with it. If so, the tuples in the p-neighborhood can be
considered as the observation subgroup for learning and analyzing
the behavior of the query point. Of course, the domain knowledge
may be necessary for identifying the adjacency radius.

As a heuristic to identify the radius p, we consider the expected
number of tuples in a neighborhood if the tuples were uniformly
distributed. Let n be the number of tuples in 9. Knowing that all
features have been normalized in range [0, 1], the expected volume
to contain k points is k/n. Using this argument, for a small constant
¢ > 1 (e.g. c = 2), we can say if the volume of the neighborhood
is ¢ times larger than k/n, it should contain at least k tuples in it.
The p-neighborhood of a point g in the d dimensional space is a
d dimensional hypersphere with radius p. The volume of such a
d-sphere [44] is

d/2

Va(p) = —————p?

Td/z+ 1)’ @

Specifically, for d = 2 and d = 3 the volumes are V3(p) = 7p? and
Vs(p) = 4/37p>, respectively. Setting V,(p) as ck/n, p is computed
as:

\r

5.2 Sensitive Region Analysis

= ®)

1 (ckr(d/zn))é

n

Our next heuristic for determining p follows a relative choice prin-
ciple. That is, rather than finding the uncovered region, we aim to
find the “most uncovered” region.

135

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

For a small value of p a large portion of the value space may be
uncovered. As the value of p increases the volume of the uncov-
ered region decreases. Specifically, moving from p = 0to p = 1
the volume of the uncovered region decreases from one to zero.
Apparently, the points that still remain uncovered while increasing
p are more problematic as the tuples in the dataset are not similar
to those. In addition, at least for the purpose of reporting dataset
deficiencies to the data scientist, reporting all (or none of the) pos-
sible points as uncovered is not informative. Ideally, a data scientist
may want to see a small-enough ratio of value space as the most
uncovered (most problematic) region. This is similar to clustering
where putting all points in one cluster (or each point in a separate
cluster) may not seem beneficial; a “good” clustering is supposed
to return a few clusters.

Following the above argument, given a value 0 < a < 1 (e.g.
a = 0.1), our objective to find a value of p such that a portion «
of the value space (e.g. ten percent) is uncovered. In order to find
the value of p, we pay attention to the fact that @ monotonically
decreases as p increases. This allows us to apply binary search for
finding the corresponding value p for a. Let T be the time required
to identify the uncovered region for the given values of p and k.
The binary search calls the uncovered region identification function
log % times and hence it runs in O(T log é)

6 EXPERIMENTS

We conducted comprehensive experiments on real datasets both
to validate our proposal and to evaluate the performance of our
algorithms.

6.1 Experiments Setup

The experiments were conducted using a 2.5 GHz Quad-Core Intel
Core i7 processor, 16 GB memory, running macOS. The algorithms
were implemented in Java and Python.

We used four real datasets for our experiments.

e 3D Road Network (RN) Dataset [39] is a benchmark dataset for re-
gression that was constructed by adding elevation information to
a 2D road network in North Jutland, Denmark. It includes 434,874
records with attributes Latitude, Longitude, and Altitude.

City of Chicago’s Food Inspections (FI) Dataset [51] contains inspec-
tions of restaurants and other food establishments in Chicago
from Jan. 2010 to June 2018. The dataset contains 210,268 tuples
and 17 features, including Latitude and Longitude.

NBA dataset [2] contains the points for each combination of
player/team/season up to 2009. It contains 21, 961 tuples and the
ordinal attributes gp, minutes, pts, oreb, dreb, etc.

US Department of Transportation flights database (DOT) [3] is
widely used for identifying on-time flight performance. After re-
moving records with missing values, the dataset contains 457,892
records, for all flights conducted in the last months of 2017, over
8 scalar attributes, including Dep-Delay, Taxi-Out, and Air-time.

All values used for studying coverage are normalized in the range
[0, 1], using (v; — min)/(max — min).

Evaluation plan and performance measures: We evaluate the
performance of our algorithms UNCOVERED-2D and UNCOVERED-MD
in this section. Time is our main metric. Unlike UNCOVERED-2D,

Research Data Management Track Paper

Figure 2: Cat Image, Illustration of classifier’s failure on FN rate
for uncovered region

UNCOVERED-MD is an approximation algorithm whose performance
depends on the number of samples required for building the e-
net. Here. we report the number of samples UNCOVERED-MD takes,
using its exponential search strategy. In addition, we also report
the coverage ratio, i.e., the fraction of the query space occupied by
covered regions, where every point is covered by the dataset.

Default values: To evaluate the performance of our algorithms
under different settings, we vary the value of a parameter, while
fixing the value of other ones. The default value for k is 30 and p is
set to 0.1 for 2D and 0.15 for MD. The default misclassification error
is e = 0.01. That is, we aim to approximate the uncovered region
U with U, such that e = |U & U,| < 0.01. The default value for d
(number of attributes) is 3. Default value of n for the FI, NBA, and
DoT datasets is 10K, 100K, and 20K, respectively.

6.2 Proof of Concept

We begin our experiments with a demonstration of why coverage
matters. We select a classification and a regression task that are both
easy to visualize. In both cases, we show that (a) lack of coverage
can cause low performance of the model, and (b) resolving lack of
coverage resolves the poor performance of the model for uncovered
region.

6.2.1 Classification. Consider a classification task to label a query
point on the x-y plane, as belonging to the body of a cat image
or to the background. We selected the image shown in Figure 2
with a resolution of 4106 X 2720. We generated the training data
of size 11K by randomly sampling from the image with a sampling
ratio of 0.001 and labeling each sample point as +1 if inside the
cat body, -1 otherwise. Next, we intentionally removed the sample
points in the training data that belong to the patch highlighted in
the figure to make it uncovered. Following the same procedure,
we generated 30 datasets and repeated each experiment 30 times,
using different datasets. Using this as the training data, we tried
different classification models, namely, Decision Tree (DT), Random
Forest (RF), Logistic Regression (LR), kNN, and SVM. The linear
classifiers LR and SVM did not perform well. DT had the highest
overall performance compared to other classifiers and all classifiers
failed to work for the uncovered region. On average, the overall
F1 measure for the DT classifier was 95% but it was 62% for the

136

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

uncovered region. In particular, while the overall FN rate was less
than 5%, it was as high as 54% for the uncovered region. To further
investigate this, in Figure 2, we painted the parts of the patch that
model mistakenly labeled as -1 in red. The figure is self-explanatory.
Relying on its training data, it created the decision boundary by
connecting the two edges of the cat body, missing its ear. As a
result, the query points that belong to the ear are misclassified as
background, resulting in the high FN rate. Next, in order to confirm
the issue was due to the lack of coverage, we gradually added 1%,
10% and 100% of sample points from the uncovered region back
to the training data. The results are provide in Figure 3. Looking
at the figure, adding sample to the patch increased the coverage
ratio in the patch from 0.6 to 1. At the same time the F1 and FN
rate measures converged to the same numbers as other regions. In
particular, after resolving the lack of coverage, FN rate for the patch
moved from 39% down to less than 2%.

6.2.2 Regression. As our next experiment, we considered a regres-
sion task, using the RN dataset. Given a query point in form of (long,
lat), the objective is to predict the altitude. We build the model, ran-
domly sampling the dataset with a ratio of 10%, we generated 30
training datasets of size 43K. Similar to the previous example, we
removed the samples from a cell in the range 10<longitude<10.6
and 57.1<latitude<57.6 to make it uncovered. We intentionally se-
lected this cell since the altitude fluctuations was high in that cell.
Using the training data, we tried three different predictive models,
namely (1) ElasticNet, (2) DT, and (3) kNN. DT outperformed the
other models while all three models had high prediction error for
the uncovered region. While the mean squared error was close to
zero, it was 714.8 for the uncovered region. Next, in Figure 4 we
gradually added sample points from the uncovered patch to the
training data. Upon adding the sample points, the coverage ratio
increased from 2% up to 92% and, hence, MSE dropped down to 29.

Before concluding this section, we would like to reiterate lack of
coverage does not necessarily mean that the model will perform
poorly for those regions. For example, in our classification experi-
ment if the uncovered region were fully inside (or outside) the cat
body, the classifier could have performed well even for the uncov-
ered region. However, one cannot in general know whether we are
in a problematic “ear-like” region or not, without additional infor-
mation beyond the available training data. Furthermore, whether
this matters is also task-specific. So, at the least, an uncovered query
point should come with a warning that users can choose to heed or
ignore based on other knowledge available to them.

6.3 Performance Evaluation

In the following, we provide our experiment results, using the
aforementioned settings. First in § 6.3.1, we evaluate a baseline
adapted from the existing work [13]. Next in § 6.3.2, we evaluate
the UNCOVERED-2D algorithm, using FI and RN datasets. Finally, in
§ 6.3.3, we conduct the performance evaluation for UNCOVERED-MD
using the NBA and DoT datasets.

6.3.1 Baseline. Before evaluating our algorithms, we first consider
adapting the existing [13] for identifying uncovered region in (low-
cardinality) discrete attributes. Since the space is continuous here,
we first discretize it using grids of different granularity. Then, we

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

=¥=Uncovered Patch Error
=X Overall Error
=+ Coverage Ratio

1 == - 1000
0.8 800
5. 5~
soeF —+~ SF1 w 600
S =+ Coverage g
504 HFNR 400
o
0.2 200
0 1 0
102 107 10° 107 102

Sample Ratio of Patch (rho=0.05, k=5)

Figure 3: Cat Image, impact of lack of cover-

-1
10
Sample Ratio of Patch (rho=0.01, k=20)

~
e o o 9=
A o @

Coverage Ratio

o
[N}

0
10°

Figure 4: RN, impact of lack of coverage for

6 8

Number of grid buckets

10

Figure 5: RN, DeepDiver’s error in detecting

age for Classification Regression Uncovered points
103 x10* 0.7 3 '9)
-© UNCOVERED-2D 14 _ 10
2 -5 UNCOVERED-MD 8 15 =" o
8, ?E>- i 0.6 o Q
10 E 1o , % g
: 1 5 8 05 & 1 10 -© UNCOVERED-2D
B ° .7 e n -©-UNCOVERED-MD
210 36 e s &
4 © ()
£ 5 4 T B
2 10!
10 0.3 q = B LE £
10? 10° 10° 10° 10° 10* 10° 10 20 30 40 50
n -- logscale (rho=0.1, k=30) n -- logscale (rho=0.1, k=30) k (n=10000, rho=0.1)
Figure 6: FI, impact of n on time Figure 7: FI, impact of n on sample size and Figure 8: FI, impact of k on time
coverage
x10* x10*
== 0.7 1
- ~
@ 6 Se=="« 600 @ 5 .
5 065 o 6—o—6—o—0 s L7109,
£ T o £ - B
© = 2 400 o - 0.8 =
24 g & S UNCOVERED-2D K - oy
6 06 § @ -EF UNCOVERED-MD o - o
=] E = 07 ©
k] g = k] . 3
E2 0.55 & 200 E2 . 3
> > 7’ 0.6
c [= 7
0 0.5 = =) =) E 0.5
10 20 30 40 50 0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25

k (n=10000, rho=0.1)

Figure 9: FI, impact of k on sample size and
coverage

use the algorithm DeepDiver in order to discover the uncovered
region in form of maximal uncovered patterns (MUPs). The union
of the space covered by the MUPs is considered as the uncovered
region. DeepDiver requires a parameter k for defining coverage.
Since it is not clear how to transfer (p, k) to k in discrete space,
to have a fair comparison, for every setting we first discover the
uncovered region using our algorithms in this paper and then apply
a binary search on the value of k, to find the setting that best
matches the continuous uncovered region.

Using a random subset of size 900 from RN, we used this algo-
rithm on different grid granularities for d = 3 in order to find the

rho (n=10000, k=30)

Figure 10: FI, impact of p on time

137

rho (n=10000, k=30)

Figure 11: FI, impact of p on sample size and
coverage

uncovered region for p = 0.02 and k = 10. We then used a test
set of 100 query point randomly sampled from RN to evaluate the
performance of the algorithm. In order to find if a query point is
uncovered, we need to traverse among the MUPs to see if it matches
any of those patterns. This can become inefficient for fine-grained
where the number of MUPs can be as high as the number of buckets
to the power of d. Efficiency aside, this baseline approach failed to
discover a large portion of uncovered points, as shown in Figure 5.
Looking at the figure, in all cases, the algorithm mistakenly labeled
more than 58% of uncovered points as covered. Also, even though
increasing the number of buckets initially helped to reduce the

Research Data Management Track Paper

-
2
©
9102
D
o
o
Q
@2
(]
E
10 - UNCOVERED-MD
10* 10° 108

n -- logscale (rho = 0.1, k = 30, d=3)

Figure 12: DOT, impact of n on time

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

0.02 10*
, 10000 K/m\‘l o £ UNCOVERED-MD
k] ™
S 8000 7 10015 o 2
£ ’ = o
% 6000 . o 2
5 L, 001 9 ! 102
- = o
5 4 o)
é o -7 I 0.005 § &
- . [
3 2000, - £
o 5 0 10° ¥]
10 10 3 4 5 6 7 8

n -- logscale (rho = 0.1, k = 30, d=3) d (rho = 0.15, k = 30, n = 20K)

Figure 13: DOT, impact of n on sample size
and coverage

Figure 14: NBA, impact of d on time

5 5
10 0.25 x10 0.4
500 8
3\]
° 02 aoff = 03 o
\ =4 =4
£21", E o3 £ g
s 015 5 8 200 - b
— \ > - — e 02 O
ol e 2 5, -028
£ 1Sy
1 g =0 3
£ N o E, 01 0©
2 N 0.05 100 3
Sl
0 0 0 0 0
3 4 5 6 7 8 10 20 30 40 50 10 20 30 40 50

d (rho = 0.15, k = 30, n = 20K)

Figure 15: NBA, impact of d on sample size
and coverage

k (rho = 0.15, n = 20K, d=5)

Figure 16: NBA, impact of k on time

k (rho = 0.15, n = 20K, d=5)

Figure 17: NBA, impact of k on sample size
and coverage

5
800 10 x10
3
600 ?EL
o
8 &
2 400 5
E] 5
20 £
t 5
c
0
0.05 0.1 0.15 0.2 0.25 0.05 0.1

rho (k = 30, n = 20K, d=5)

Figure 18: NBA, impact of p on time
and coverage

error, after 6 bucket the error increased again up to 92%. The reason
is that as the cells get very small, the corresponding number of
samples they should contain for coverage reduces. As k decreases,
the algorithm has increased error in detecting uncovered regions,
particularly near the borders.

6.3.2 2D Experiments. In this section, we use the RN and FI datasets
(using Latitude and Longitude as the attributes) to evaluate the
UNCOVERED-2D algorithm. We obtained similar results with almost
identical plots for the two datasets. Therefore, in the following we

present the results for one of the datasets (FI) with different settings.

0.15
rho (k = 30, n = 20K, d=5)

Figure 19: NBA, impact of p on sample size

138

4

0.4 30 310

3

R 3

T 520 £

y 3 &

? 3 25

) £ o

3 =10 é

o 1 5

c
0 0 0
0.2 0.25 0.02 0.04 0.06 0.08 0.1

error (rho = 0.15, k = 30, n = 20K, d=5)

Figure 20: NBA, impact of error e on time
and sample size

Varying n: In this experiment, we study the impact of the number
of items in the performance of the algorithm and in the cover-
age. To do so, we change n from 100 to 100K. We then use our
exact UNCOVERED-2D algorithm and the sampling-based algorithm
UNCOVERED-MD for identifying the uncovered region. The results
are provided in Figures 6 and 7. As expressed in Lemma 2, using
the advanced algorithms such as [42] for finding the k-th order
voronoi diagram, UNCOVERED-2D is in O(k%nlog n). We used off-
the-shelf implementations for constructing the k-th order voronoi
diagram which scaled up to n = 10K within a few minutes. The

Research Data Management Track Paper

UNCOVERED-MD algorithm, on the other hand, efficiently approxi-
mated the uncovered region with 99% accuracy in less than a minute
in all settings. Increasing the dataset sizes increases the chance that
a given query has enough items in its neighborhood to become
covered. This is confirmed in Figure 7. The left-y-axis in this plot
(and other similar plots in this section) shows the number of sam-
ples uNcovERED-MD used for identifying the uncovered region and
the right-y-axis (and the dashed orange line) show the coverage
ratio. From the figure, increasing n from 1K to 100K, the coverage
ratio increases up to 0.7. The increase in the coverage ratio makes
the border of the uncovered region less complex, resulting in less
number of samples required. Note that this is in contrary with
our adversarial upper-bound in Theorem 3. The reason is that even
though increasing n increases the number of voronoi cells, but most
of them become completely covered, resulting in a less complex
uncovered region.

Varying k and p: In our next experiments, we study the impact
of varying the coverage parameters, i.e., the vicinity value p and
the count threshold k. Figures 8 and 9 show the results for varying
k (while fixing the other parameters to their default values). First,
increasing the value of k increases the number of voronoi cells
and, hence, the time taken by the UNCOVERED-2D algorithm. The
performance of UNCOVERED-MD, on the other hand, depends on
the number of samples required by the algorithm. The increase
in k reduces the chance of a query point to be covered by the
dataset, hence reducing the ratio of covered region to 65%. As a
result, more voronoi cells become partially uncovered, increasing
the complexity of the border of the uncovered region, resulting in
the need for more number of samples. The other parameter that
impacts the uncovered region is p. The results for varying this
parameter are provided in Figures10 and 11. The value of p does
not impact the number of voronoi cells, hence not impacting the
UNCOVERED-2D runtime. The vicinity radius, however, does impact
the coverage ratio and the complexity of the uncovered region,
which impacts the number of samples required by UNCOVERED-
MD. Increase the value of p increases the chance of an arbitrary
query point to become covered by the dataset, hence increases the
coverage ratio. As more and more voronoi cells become completely
covered, the uncovered region becomes less complex and requires
less number of samples to identify it.

6.3.3 MD experiments. We use the NBA dataset and DoT dataset
for studying the performance of UNCOVERED-MD, when d > 2. In
particular, we use the DoT dataset for varying the number of items
up to 0.5 million, and the NBA dataset for the other settings. In all
the settings, we aim to satisfy the mis-classification error of 1%.

Varying n: In this experiment, we use the DoT dataset to study the
impact of vary the number of items up to half a million. The exper-
iment results are provided in Figure 12 and 13. Similar to our Food
Inspection experiment, the UNCOVERED-MD algorithm could scale to
the large settings, finishing in a few minutes for n = 0.5M. We also
observed a similar performance for the NBA dataset. Besides evalu-
ating the performance of the algorithm, this experiment highlights
the major coverage issue of the DoT dataset. Looking at the right-
y-axis of Figure 13, one can observe even in a dataset with half a
million items, more than 98% of the query space is uncovered. This

139

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

iy
o
N

-

- =t

-

-
S
)

© UNCOVERED-2D
3 =+ BRUTEFORCE
=X UNCOVERED-MD

time (sec) -- logscale
=
&

iy
o

x
|
|
|
|

¥

D

= O
_____ %

o

2000 4000 6000 8000 10000
Number of Points

Figure 21: RN, Query time comparison.

is because, all items have very similar values. Note that the large
portion of the uncovered region does not mean that a large ratio
of query points are going to be uncovered. Assuming that training
data and the query points follow the underlying distribution, most
of the query points should be covered. We verified this for a test set
of 200 random samples and all of them were covered, even though
98% of the space was uncovered. The values are even closer to zero
for the attributes such as departure-delay and arrival-delay. As a
result, while almost all the dataset records are condensed around
the origin, most value combinations (possible query points) had
less than 30 items in their neighborhoods, resulting in the signifi-
cantly large uncovered region. Note that, increasing the number
of attributes, the coverage ratio gets further decreased. We also
observed that decreasing the values of k or increasing the value of
p did not significantly change the coverage ratio. Therefore, for the
rest of the experiments we use the NBA dataset.

Varying d, k, p, and the error threshold: In this experiment, we
use the NBA dataset and, setting the other parameters to their
default values, vary the number of attributes d, the coverage param-
eters k and p, and the error threshold for the algorithm. Figures 14
and 15 show the results for varying d from 3 to 8. Increasing the
number of dimensions increases the distance between the points
in the space, resulting in a quick decrease in the coverage ratio. As
the coverage ratio decreases, more and more voronoi cells become
completely uncovered. Hence the uncovered region becomes less
complex, requiring less number of samples for identifying it which
results in the decrease in the running time of UNCOVERED-MD. The
results for varying k (resp. p) are provided in Figures 16 and 17
(resp. Figures 18 and 19). Increasing the value of k did not signif-
icantly reduce the coverage ratio, and therefore, the number of
samples and the running time of UNCOVERED-MD did not signifi-
cantly change. The increase in the value of p, on the other hand,
increased the coverage ratio from less than 10% to around 40%. The
increase in the coverage ratio initially increased the complexity of
the uncovered region, causing an increase in the running time of
UNCOVERED-MD. After the coverage ratio of 25%, the increase in the
ratio, did not add to the complexity of the uncovered region, not
meaningfully changing the running time. Finally, Figure 20 shows
that, as expected, the approximation error threshold has a major
impact on the running time of UNCOVERED-MD and the number
of samples required for approximately identifying the uncovered
region.

Research Data Management Track Paper

Query time comparison: After evaluating the performance of the
UNCOVERED-2D and UNCOVERED-MD algorithms in identifying un-
covered regions, we evaluate the query time of the two algorithms,
using the RN dataset and 100 random queries for each setting. Ad-
ditionally, we considered the brute-force approach that (assuming
the availability of the training data at run-time), traversing through
the training data, counts the number of neighbors of a point and
stops as soon as it realizes the point is covered. Figure 21 shows the
query time for different values of n. Having a logarithmic run-time,
UNCOVERED-2D significantly outperformed the linear brute-force
algorithm in all cases. In all cases UNCOVERED-MD was even faster
than UNCOVERED-2D. Both algorithms were fast enough to be con-
sidered for online query answering.

7 RELATED WORK

The general topic of responsible data science has recently become
timely across different research communities and the conference
ACM FAccT (previously FAT*) has been dedicated to this topic.
In particular, in past few years the database community has made
several advancement to this topic [8, 10-13, 32, 33, 37, 38, 41, 45, 54—
56, 59, 61, 63, 64].

Bias in data have been looked at for a long time in statistical
community [49] but social data presents different challenges [17,
18, 26, 40, 50]. The diversity and representativeness of data have
been widely studied [27], in fields such as social science [19, 24, 57],
political science [62], and information retrieval [5]. Related work
also includes [46-48] that aim to identify the largest empty hyper-
rectangles in a dataset. To do so, they sequentially add data points to
the region and cut the empty regions containing them in two smaller
ones. The notion of coverage over low-dimensional categorical
attributes has been proposed in [13, 38, 45]. In particular, uncovered
regions are identified in form of value combinations (e.g. Hispanic
Females) called patterns. A pattern is uncovered if there are less than
k samples matching it. [22] analyzes the training set coverage of the
protected attribute contributing to machine learning discrimination.
Still, to the best of our knowledge, our paper is the first to extend
the notion of coverage to continuous-valued attributes.

The techniques proposed in this paper heavily rely on the exten-
sive research and advanced algorithms for voronoi diagrams [14-
16, 20, 29-31, 42] and approximation geometric algorithms [34].

8 EXTENSIONS AND FUTURE WORK

Combination of continuous and discrete attributes: In this
paper, we so far assumed all attributes ordinal and normalized in the
range [0, 1]. Extending our notion of coverage to a mix of ordinal
and non-ordinal attributes requires defining a proper notion of
distance in a way that “neighborhood” becomes meaningful. We rely
on existing work for such extension. In particular, [6, 36] defined
a distance measure by combining the square Euclidean distance
for numeric variables and simple matching distance for categorical
variables. Similarly, a generalized distance measure to combine
numeric, categorical, and binary attributes has been proposed in
[35]. After defining the distance function, Definitions 1 and 2, as
well as the MD algorithms in § 4, naturally extend. The extension
of the 2D algorithm, however, depends on the complexity and the

140

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

existence proper k-Voronoi diagrams for the new distance measure.
Further investigation, in future work, may find more improvements.

High dimensional coverage: As reflected in Theorem 3, due to
the curse of dimensionality, the MD algorithm proposed in this
paper may not scale to very high dimensions. Still, we note that it is
popular for such cases to first apply dimension reduction techniques
such as PCA. We leave algorithm design for high dimensional cases
for future work.

Coverage improvement: In this paper we proposed the notion of
coverage over ordinal attributes and proposed algorithms to identify
the uncovered region. An interesting question for future work is
how to effectively mitigate this lack of coverage when acquiring
labeled data is expensive.

9 CONCLUSION

Good data preparation is central to getting good results from Al
and data science. Ensuring adequate coverage of feature space in
the training data is one important aspect of good data preparation.
Coverage has previously been studied only in discrete categorical
feature spaces. In this paper, we showed how to think about cover-
age in continuous space, and developed efficient algorithms both
to identify poorly covered regions of space at model learning time
and to issue warnings of poor coverage when appropriate at query
time. We believe addressing such problems is central to data science
and Al and are among the many contributions data management
experts can make to these fields.

10 ACKNOWLEDGEMENTS

Abolfazl Asudeh was supported in part by Google Research Scholar
Award. H. V. Jagadish was supported in part by NSF grants No.
1741022 and 1934565.

REFERENCES

[n. d.]. COMPAS Recidivism Risk Score Data and Analysis. www.propublica.org/
datastore/dataset/compas-recidivism-risk- score-data-and-analysis.

[n. d.]. NBA players statistics. www.databasebasketball.com/. Accessed: 2016.
[n. d.]. US Department of Transportation. www.transtats.bts.gov/DL_SelectFields.
asp?. Accessed: 2018.

Pankaj K Agarwal, Mark De Berg, Jiri Matousek, and Otfried Schwarzkopf. 1998.
Constructing levels in arrangements and higher order Voronoi diagrams. SIAM
Jjournal on computing 27, 3 (1998), 654-667.

Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.
Diversifying search results. In WSDM. ACM, 5-14.

Amir Ahmad and Lipika Dey. 2007. A k-mean clustering algorithm for mixed
numeric and categorical data. Data & Knowledge Engineering 63, 2 (2007), 503—
527.

Matthew Arnold, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep
Mehta, A Mojsilovi¢, Ravi Nair, K Natesan Ramamurthy, Alexandra Olteanu,
David Piorkowski, et al. 2019. FactSheets: Increasing trust in Al services through
supplier’s declarations of conformity. IBM Journal of Research and Development
63, 4/5 (2019), 6-1.

Abolfazl Asudeh. 2021. Enabling Responsible Data Science in Practice. ACM
SIGMOD Blog (January 2021).

Abolfazl Asudeh, HV Jagadish, Gerome Miklau, and Julia Stoyanovich. 2018.
On obtaining stable rankings. Proceedings of the VLDB Endowment 12, 3 (2018),
237-250.

Abolfazl Asudeh, HV Jagadish, Gerome Miklau, and Julia Stoyanovich. 2019. On
Obtaining Stable Rankings. PVLDB 12, 3 (2019).

Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and Gautam Das. 2019. De-
signing fair ranking schemes. In SIGMOD. 1259-1276.

Abolfazl Asudeh and H. V. Jagadish. 2020. Fairly evaluating and scoring items in
a data set. PVLDB 13, 12 (2020), 3445-3448.

www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
www.transtats.bts.gov/DL_SelectFields.asp?
www.transtats.bts.gov/DL_SelectFields.asp?

Research Data Management Track Paper

(13

[14]

[15]

[20]

[21]

[22]

Abolfazl Asudeh, Zhongjun Jin, and HV Jagadish. 2019. Assessing and remedying
coverage for a given dataset. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE). IEEE, 554-565.

Franz Aurenhammer. 1991. Voronoi diagrams-a survey of a fundamental geomet-
ric data structure. ACM Computing Surveys (CSUR) 23, 3 (1991), 345-405.

Franz Aurenhammer and Rolf Klein. 2000. Voronoi diagrams. Handbook of
computational geometry 5, 10 (2000), 201-290.

Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. 2013. Voronoi diagrams and
Delaunay triangulations. World Scientific Publishing Company.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2019. Fairness and machine
learning: Limitations and opportunities. fairmlbook.org.

Solon Barocas and Andrew D Selbst. 2016. Big data’s disparate impact. Calif. L.
Rev. 104 (2016), 671.

Ellen Berrey. 2015. The enigma of diversity: The language of race and the limits of
racial justice. University of Chicago Press.

Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evanthia Pa-
padopoulou, and Maksym Zavershynskyi. 2013. On the complexity of higher
order abstract Voronoi diagrams. In International Colloquium on Automata, Lan-
guages, and Programming. Springer, 208-219.

Bernard Chazelle and Herbert Edelsbrunner. 1987. An improved algorithm for
constructing kth-order Voronoi diagrams. IEEE Trans. Comput. 100, 11 (1987),
1349-1354.

Irene Chen, Fredrik D Johansson, and David Sontag. 2018. Why is my classifier
discriminatory?. In NeurIPS. 3539-3550.

[23] Jeffrey Dastin. 2018. Amazon scraps secret Al recruiting tool that showed bias

[24]

[25

[26]
[27]

[28]

[29

[30]

[32]
[33]

[34

[35]

[36]

[37]

[38]

against women. San Fransico, CA: Reuters. Retrieved on October 9 (2018), 2018.
Frank Dobbin and Alexandra Kalev. 2016. Why diversity programs fail and what
works better. Harvard Business Review 94, 7-8 (2016), 52-60.

Filip Karlo Dosilovi¢, Mario Bréi¢, and Nikica Hlupi¢. 2018. Explainable artificial
intelligence: A survey. In MIPRO. IEEE, 0210-0215.

Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. 2017.
Diversity in big data: A review. Big data 5, 2 (2017), 73-84.

Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. 2017.
Diversity in big data: A review. Big data 5, 2 (2017).

Herbert Edelsbrunner, Nany Hasan, Raimund Seidel, and Xiao Jun Shen. 1989.
Circles through two points that always enclose many points. Geometriae Dedicata
32, 1(1989), 1-12.

Herbert Edelsbrunner and Raimund Seidel. 1986. Voronoi diagrams and arrange-
ments. Discrete & Computational Geometry 1, 1 (1986), 25-44.

Steven Fortune. 1987. A sweepline algorithm for Voronoi diagrams. Algorithmica
2, 1-4 (1987), 153.

Steven Fortune. 1995. Voronoi diagrams and Delaunay triangulations. In Com-
puting in Euclidean geometry. World Scientific, 225-265.

Lise Getoor. 2019. Responsible Data Science. In SIGMOD.

Yifan Guan, Abolfazl Asudeh, Pranav Mayuram, HV Jagadish, Julia Stoyanovich,
Gerome Miklau, and Gautam Das. 2019. Mithraranking: A system for responsible
ranking design. In SIGMOD. 1913-1916.

Sariel Har-Peled. 2011. Geometric approximation algorithms. Number 173. Ameri-
can Mathematical Soc.

Sandhya Harikumar and PV Surya. 2015. K-medoid clustering for heterogeneous
datasets. Procedia Computer Science 70 (2015), 226-237.

Zhexue Huang. 1997. Clustering large data sets with mixed numeric and categor-
ical values. In Proceedings of the 1st pacific-asia conference on knowledge discovery
and data mining,(PAKDD). Citeseer, 21-34.

HYV Jagadish, Francesco Bonchi, Tina Eliassi-Rad, Lise Getoor, Krishna Gummadi,
and Julia Stoyanovich. 2019. The Responsibility Challenge for Data. In SIGMOD.
412-414.

Zhongjun Jin, Mengjing Xu, Chenkai Sun, Abolfazl Asudeh, and HV Jagadish.
2020. MithraCoverage: A System for Investigating Population Bias for Intersec-
tional Fairness. In Proceedings of the 2020 ACM SIGMOD International Conference

141

~
&

N
=

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

on Management of Data. 2721-2724.

Manohar Kaul, Bin Yang, and Christian S Jensen. 2013. Building accurate 3d
spatial networks to enable next generation intelligent transportation systems. In
2013 IEEE 14th International Conference on Mobile Data Management, Vol. 1. IEEE,
137-146.

Jon Kleinberg. 2019. Fairness, Rankings, and Behavioral Biases. FAT".

Caitlin Kuhlman and Elke Rundensteiner. 2020. Rank aggregation algorithms for
fair consensus. PVLDB 13, 12 (2020), 2706-2719.

Der-Tsai Lee. 1982. On k-nearest neighbor Voronoi diagrams in the plane. IEEE
transactions on computers 100, 6 (1982), 478-487.

Jerry Zheng Li. 2018. Principled approaches to robust machine learning and beyond.
Ph.D. Dissertation. Massachusetts Institute of Technology.

Shenggiao Li. 2011. Concise formulas for the area and volume of a hyperspherical
cap. Asian Journal of Mathematics and Statistics 4, 1 (2011), 66-70.

Yin Lin, Yifan Guan, Abolfazl Asudeh, and HV Jagadish. 2020. Identifying insuffi-
cient data coverage in databases with multiple relations. Proceedings of the VLDB
Endowment 13, 12 (2020), 2229-2242.

Bing Liu, Wynne Hsu, and Shu Chen. 1997. Using General Impressions to Analyze
Discovered Classification Rules. In KDD. 31-36.

Bing Liu, Liang-Ping Ku, and Wynne Hsu. 1997. Discovering interesting holes in
data. In IJCAL Springer, 930-935.

Elsa Loekito and James Bailey. 2006. Fast mining of high dimensional expressive
contrast patterns using zero-suppressed binary decision diagrams. In SIGKDD.
ACM, 307-316.

Jerzy Neyman and Egon Sharpe Pearson. 1936. Contributions to the theory of
testing statistical hypotheses. Statistical Research Memoirs (1936).

Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kiciman. 2019.
Social data: Biases, methodological pitfalls, and ethical boundaries. Frontiers in
Big Data 2 (2019), 13.

Chicago Data Portal. [n. d.]. Food Inspections Dataset.
//data.cityofchicago.org/Health-Human-Services/Food-Inspections-1-1-
2010-6-30-2018/puke-h9vk. Accessed: 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135-1144.

Lior Rokach and Oded Maimon. 2005. Top-down induction of decision trees
classifiers-a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 35, 4 (2005), 476—487.

Babak Salimi, Bill Howe, and Dan Suciu. 2020. Database Repair Meets Algorithmic
Fairness. ACM SIGMOD Record 49, 1 (2020), 34-41.

Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. 2019. Interventional
fairness: Causal database repair for algorithmic fairness. In SIGMOD. 793-810.
Nihar B Shah and Zachary Lipton. 2020. SIGMOD 2020 Tutorial on Fairness and
Bias in Peer Review and Other Sociotechnical Intelligent Systems. In SIGMOD.
2637-2640.

Edward H Simpson. 1949. Measurement of diversity. Nature 163, 4148 (1949).
Julia Stoyanovich and Bill Howe. 2019. Nutritional Labels for Data and Models.
IEEE Data Eng. Bull. 42, 3 (2019), 13-23.

Julia Stoyanovich, Bill Howe, and HV Jagadish. 2020. Responsible data manage-
ment. PVLDB 13, 12 (2020), 3474-3488.

Seymour Sudman. 1976. Applied sampling. Academic Press New York (1976).
Chenkai Sun, Abolfazl Asudeh, HV Jagadish, Bill Howe, and Julia Stoyanovich.
2019. Mithralabel: Flexible dataset nutritional labels for responsible data science.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 2893-2896.

James Surowiecki. 2005. The wisdom of crowds. Anchor.

Suresh Venkatasubramanian. 2019. Algorithmic fairness: Measures, methods and
representations. In PODS. 481-481.

Ke Yang, Julia Stoyanovich, Abolfazl Asudeh, Bill Howe, HV Jagadish, and Gerome
Miklau. 2018. A nutritional label for rankings. In SIGMOD. 1773-1776.

https:

fairmlbook.org
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections-1-1-2010-6-30-2018/puke-h9vk
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections-1-1-2010-6-30-2018/puke-h9vk
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections-1-1-2010-6-30-2018/puke-h9vk

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Data Model
	2.2 Coverage Model
	2.3 Problem Formulation

	3 Two Dimensional Coverage
	3.1 Review: k-th Order Voronoi Diagrams
	3.2 Discovering the Uncovered Region
	3.3 Query Answering

	4 Multi-Dimensional Coverage
	4.1 Approximating the Uncovered Region
	4.2 Reporting the Uncovered Region in MD
	4.3 Query Answering

	5 Tuning the Parameters and k
	5.1 Absolute Choice Principle
	5.2 Sensitive Region Analysis

	6 Experiments
	6.1 Experiments Setup
	6.2 Proof of Concept
	6.3 Performance Evaluation

	7 Related Work
	8 Extensions and Future Work
	9 Conclusion
	10 Acknowledgements
	References

