
Identifying Insufficient Data Coverage for Ordinal
Continuous-Valued Attributes

Abolfazl Asudeh
University of Illinois at

Chicago
asudeh@uic.edu

Nima Shahbazi
University of Illinois at

Chicago
nshahb3@uic.edu

Zhongjun Jin
University of Michigan
markjin@umich.edu

H. V. Jagadish
University of Michigan

jag@umich.edu

ABSTRACT

Appropriate training data is a requirement for building goodmachine-

learned models. In this paper, we study the notion of coverage for

ordinal and continuous-valued attributes, by formalizing the in-

tuition that the learned model can accurately predict only at data

points for which there are "enough" similar data points in the train-

ing data set.

We develop an efficient algorithm to identify uncovered regions

in low-dimensional attribute feature space, by making a connection

to Voronoi diagrams. We also develop a randomized approximation

algorithm for use in high-dimensional attribute space. We evaluate

our algorithms through extensive experiments on real datasets.

KEYWORDS

Responsible Data Science; Trustworthy AI; Fairness in Machine

Learning; Bias Detection

ACM Reference Format:

Abolfazl Asudeh, Nima Shahbazi, Zhongjun Jin, and H. V. Jagadish. 2021.

Identifying Insufficient Data Coverage for Ordinal Continuous-Valued At-

tributes. In Proceedings of the 2021 International Conference on Management

of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3457315

1 INTRODUCTION

Machine learning (ML) and predictive analytics are shaping every

corner of human life, from autonomous vehicles to healthcare, and

even in predictive policing and data-driven sentencing. A critical

question for the decision maker, especially in applications that may

impact human life, is how much to trust the outcome of the model.

It is easy to see that the accuracy of ML model prediction de-

pends on the data used for training: after all, the model learns the

phenomena that training data represent. As a first step, we may

desire that the data should represent the underlying data distri-

bution from which the production data will be drawn. But that is

not enough, since it only tells us about model performance in the

aggregate. For any query point, what we want is that the training

data should include enough examples similar to it. Otherwise, the

model predicts the query point according to points not similar to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457315

the query. If the “behavior” of the query point is similar to the train-

ing data, the model (luckily) may provide a good outcome. Even so,

the model outcome is not trustworthy in these situations, at least

for critical decision making.

To consider one recent example in the news, Amazon developed

software to screen employment applications based on predicted

success. Because the training data set had so few successful women

in it, the program would downgrade women in its predictions [23].

While the model may have worked well for male applicants, it

was clearly unsuited for women applicants, and was ultimately not

used by Amazon in production. Similarly, using a real dataset of

criminals [1], an ML model with more than 75% overall accuracy

had a performance worse than random guess for Hispanic Females

(because the training data did not contain enough samples from

this category) [13]. In short, given a query point, we may not trust

the output (such as prediction or classification) of an ML model

about this point only if there are not enough points in the training

data set for the ML model that are "similar" to the query point. This

concept has been known as coverage in the literature [13, 38, 45, 47].

Poor coverage does not necessarily imply poor models. In a

classification setting, for instance, having poor coverage in regions

far from the boundary is likely to be immaterial since those points

may not contribute to refining the boundary. However, as we show

experimentally in § 6.2, poor coverage creates a risk that there may

be a poor model. More specific analyses may be able to assess this

risk, given additional information. However, the results become

specific to the type of model being considered. Our goal here is

to investigate datasets independent of the type of model being

constructed. Furthermore, we note that poor model performance

could be due to reasons (e.g. poorly labeled data for a minority

group) other than lack of coverage.

Existingwork is limited to categorical attributes with low-cardin-

ality. In this paper, we extend this concept to the more challenging

context of continuous-valued attributes. Returning to the example

of Amazon’s model for scoring job applicants, the detected bias was

on a simple low-cardinality discrete attribute: sex. It is possible that

the model also discriminates based on age, since most tech workers,

and job applicants, are young. Simple solutions like binning age into

"young" and "old" can lead to coarse groupings that are sensitive to

thresholds chosen. For example, it may be inappropriate to treat a

35-yo as young but a 36-yo as old.

In short, we may not trust the result of a given query if the query

point is not covered by the training data. One can make a pass

over the training data to check if the given query point is covered.

But this requires (i) access to the full training data set and (ii) the

time to verify the coverage based on it, neither of which may be

feasible. Therefore, our challenge is to mark out in advance, for

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

129

https://doi.org/10.1145/3448016.3457315
https://doi.org/10.1145/3448016.3457315

every possible query point, whether it is covered. We propose to

address this challenge by identifying, in advance, the uncovered

region in the feature-vector space, and to encode these in a manner

that makes it inexpensive to determine which region any query

point is in.

Identifying uncovered region up-front enables crucial benefits

and two action items. First, uncovered region shows potential defi-

ciencies in the (training) data set. Annotating a data set with cov-

erage information informs the data scientist about the uncovered

regions when the model is being constructed as a signal to inves-

tigate the fitness of data for the model [58, 61]. Second, at query

time, it generates a warning that the outcome might not be trust-

worthy when a point is queried in an uncovered region. Whether

to consider the outcome and how to take action is left to the model

user.

Summary of contributions. In summary, our contributions in

this paper are as follows:

• We formally define the notions of coverage over ordinal and

continuous-valued attributes. Based on this, we define the prob-

lem of identifying uncovered regions of a given dataset. (§ 2)

• Making a connection to the Voronoi diagrams [14], we design an

efficient algorithm for identifying uncovered regions for the two-

dimensional case. We also provide a logarithmic search algorithm

for checking if a query point belongs to an uncovered region.

(§ 3)

• The problem search space size explodes as the number of dimen-

sions increases. For higher dimensions, we design a randomized

approximation algorithm based on the geometric notion of ε-

net. We first provide a theoretical upper-bound on the number

of required samples for the adversarial case, which is exponen-

tial to the number of dimensions. Fortunately, it turns out in

practice that the actual number of samples required for iden-

tifying the uncovered region is significantly smaller than the

provided theoretical upper-bound. We design an algorithm based

on exponential-search to identify the right number of samples

for a given setting. We study how to report the uncovered region

in multi-dimensional cases to the user. (§ 4)

• Finally, we conduct extensive experiments on real datasets to

evaluate our proposed algorithms. (§ 6)

2 PROBLEM DEFINITION

2.1 Data Model

Consider a dataset D with n tuples, each consisting of d ordinal

attributes X = {x1,x2, · · · ,xd }. Attribute values may be discrete

ordinal (e.g. population) or continuous-valued (e.g. height). In either

case, we normalize attribute values to lie in the range [0, 1], with
values drawn from the set of rational or real numbers. For every

tuple t ∈ D, we use the notation t[i] to show the value of t on

attribute xi ∈ X . In practice, the data scientist may be interested

to study coverage over a subset of attributes, called “attributes of

interest”. In such cases, we assume X is the set of attributes of in-

terest. The dataset also contains target attributes Y = {y1, · · · ,yd ′ }
that are not considered for the coverage problem.

2.2 Coverage Model

Given a query point q ∈ [0, 1]d , where q[i] shows the value of q
with regard to xi ∈ X , the dataset D is not representative for q,

if there are not “enough” data points in D that are “similar” to q.

In such cases, we say q is not covered by D. We use the simplest

possible interpretations for "similar" and "enough" to obtain the

following formal definition:

Definition 1 (Coverage of a Point). Given a dataset D with

d attributes X = {x1,x2, · · · ,xd }, query point q ∈ [0, 1]d , a distance
function Δ : Rd × Rd → R, a vicinity value ρ, and a threshold value
k , the coverage of q by D is verified as follows:

Covρ,k (q, D) =

{
true if | {t ∈ D | Δ(t, q) ≤ ρ } | ≥ k

false otherwise

In the rest of the paper, we simplify the notation to Cov(q,D)
when ρ and k are clear by the context. Also, in the rest of the paper

use �2 norm as the distance measure.

We rely on the domain knowledge of the data scientists to specify

the vicinity and threshold, since these values are application specific

and may vary by context. One can use techniques we shall propose

in § 5, for tuning the parameters. We also evaluate experimentally

the impact of these parameter choices in § 6. Using Definition 1,

we now define the uncovered regions as follows.

Definition 2 (Uncovered Region). Given a dataset D with d

attributes X = {x1,x2, · · · ,xd }, a distance function Δ : Rd × Rd →
R, a vicinity value ρ, and a threshold value k , the uncovered region

U is the set of points (value combinations) that are not covered by D.

Formally,U = {q ∈ [0, 1]d | Cov(q,D) = f alse}.

Figure 1(a) shows a sample dataset with two attributes x1 and

x2. Every tuple t in the dataset is shown as a black dot in the figure.

For each tuple t ∈ D, let, ◦t be the circle with radius ρ centered at

it, as drawn in the figure. Note that any point within the circle ◦t
has the distance less than ρ from t . As a result, every point in the

space that falls within less than k circles contains less than k tuples

in its neighborhood and, according to Definition 1, is uncovered.

Setting k to be 2, the uncovered region in the example of Fig-

ure 1(a) is colored in red. As shown in the figure, the uncovered

region is a collection of disjoint shapes, not convex in general, and

with borders identified by arcs, each belonging to the proximity

circle of a tuple.

2.3 Problem Formulation

Our challenge is to address two tasks: first, given a data set, to

find the uncovered region; and second, given a query point, to

determine whether it is in an uncovered region. Formally, we define

the following problems:

Problem 1 (Uncovered Region Discovery). Given dataset D
with n tuples over d attributes, and the values ρ and k , identify the

uncovered regionU as defined in Definition 2.

Problem 2 (Uncovered Query Answering). Given dataset D,

the values ρ and k , and a query point q check if q is uncovered. That

is, to identify if |{t ∈ D | Δ(t ,q) ≤ ρ}| < k .

Note that Problems 2 and 1 are related. In particular, identifying

the uncovered region in Problem 1, enables answering Problem 2 by

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

130

(a) uncovered region (red), k = 2 (b) 1st order voronoi diagram (c) 2nd order voronoi diagram

Figure 1: Illustration of 100 random points in range [0, 1] × [0, 1]. (a) For every tuple t , ◦t is the circle centered at t .

checking if the query point belongs to the identified region. How-

ever, one might be able to answer Problem 2 without identifying the

uncovered region first. Similarly, an efficient solution for Problem 2

enables approximately answering Problem 1 by traversing through

a discretized search space.

Lack of coverage is only one of several signals that are important

in determining the trustworthiness of an analysis outcome based

on the data. It is informative when considered along with other

factors [7] such as basic performance, robustness [43] or stabil-

ity [9] of outcome, and explainability [52]. For example, one may

use the consistency of the outcomes of multiple model ensembles

as a signal for trust. As such, we seek only to provide coverage

information, whether by identifying uncovered regions in a data

set or by flagging poor coverage for a specific query, as an indicator

to be used by the data scientist or data user in conjunction with

other information and in the context of the particular application.

In the following, we provide algorithms for Problems 1 and 2 for

the two-dimensional (d = 2) case and the general multi-dimensional

case, respectively. Before moving to the technical details though, we

would like to provide a high-level discussion about the output com-

plexity of the uncovered region that, setting aside the complexity of

the discovery algorithm, may be challenging. As discussed earlier

and observed in Figure 1(a), the uncovered region can be expressed

by its border, the union of d-dimensional arcs each belonging to

the proximity circle of a tuple. That is, complexity of the region is

determined by the number of arcs contributing to the border of the

region. In following sections, we shall use computational geometry

notions Voronoi diagrams (Lemma 1) and VC-dimensionality (The-

orem 3) to bound the output complexity of the uncovered region. In

particular, following Lemma 1, the number of arcs at the border of

uncovered region in 2D are at most k times more than the number

of k-voronoi cells.

3 TWO DIMENSIONAL COVERAGE

In this section, we study the two dimensional case where X =

{x1,x2}. Figure 1(a) shows an example of such case. As discussed in

the previous section, we use ◦t to represent the circle with radius ρ

around the tuple t . For every query point q, it is easy to observe that

it is uncovered, i.e.Cov(q,D) =false, iff |{t ∈ D | q is inside ◦t }| <
k . Using this observation, the brute-force approach for finding the

uncovered region draws the circles ◦t for each tuple t ∈ D and

considers the partitioning of the space by the arrangement [28] of

the circles. For each cell in the partition, the algorithm counts the

number of circles inside which the partition falls in. If the num-

ber is less than k , it marks the cell as uncovered. For example, in

Figure 1(a) the circle of each tuple is drawn around it. The intersec-

tions of the circles partition the space to different cells. Every cell

is the intersection of multiple circles. Any point inside a cell is in

ρ-vicinity of its circle. The algorithm marks as uncovered any cell

that is the intersection of less than k circles – painted in red in the

figure. This algorithm, however, is not practical. First, constructing

the arrangement of circles on the space is not straightforward, let

alone easy to implement efficiently. Second, the quadratic com-

plexity of the number of cells in the arrangement of circles makes

the algorithm inefficient. Finally, it is not clear how to organize

and index the cells to later answer coverage queries (Problem 2)

efficiently.

Therefore, in the rest of this section, our aim is to design efficient

algorithms for Problems 1 and 2 in 2D. To do so, we make a key

connection to the well-studied concept of voronoi diagrams [14–

16, 29–31].

3.1 Review: k-th Order Voronoi Diagrams

Consider a dataset D in R2. For a pair of tuples ti and tj , let

h(ti , tj) be the line h(i, j) = {q | Δ(q, ti) = Δ(q, tj)}. Also, let
the half-space h+(i, j) be the side of the line the includes ti , i.e.

h+(i, j) = {q | Δ(q, ti) ≤ Δ(q, tj)}. The locus of the points closer to
ti than any other points in D, denoted by V(i) = ∩

∀i�j
h+(i, j). The

convex polygon V(i) is called the voronoi cell of tuple ti . Follow-

ing this, the collection of voronoi cells for all tuples in D is called

the (first order) voronoi diagram of the dataset. Figure 1(b) shows

the voronoi diagram for sample points in Figure 1. A (first order)

voronoi diagram contains n cells, simply because there exists only

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

131

one cell per each tuple. Also, it has been shown that the diagram

contains at most 3n − 6 edges and 2n − 5 vertices [29].

Higher order voronoi diagrams [4, 20, 21, 42] extend the voronoi

diagrams fromnearest neighbor tok-nearest neighbors. Ak-voronoi

cell V(S) is associated with a set S ⊆ D where |S | = k and

the k nearest neighbors of any point in V(S) are S . Formally,

V(S) = {q | ∀ti ∈ S, tj ∈ D\S : Δ(q, ti) ≤ Δ(q, tj)}. The k-th
order voronoi diagram (denoted as Vk (D)) is the collection of all k-

voronoi cells ofD. Formally,Vk (D) = {V(S) : S ⊆ D, |S | = k}. An
example of 2nd order voronoi diagram is presented in Figure 1(c).

The k-th order voronoi diagram of a dataset D in 2D contains

O(k(n − k)) cells [20, 42]. In [42], D. T. Lee proposed an algorithm

for finding the k-order voronoi diagrams that runs inO(k2n log(n))
and has a space complexity of O(k2(n − k)).

3.2 Discovering the Uncovered Region

We use the k-th order voronoi diagrams for discovering the un-

covered region. Lemma 1 makes the necessary foundation for our

algorithm design.

Lemma 1. Consider a dataset D and its corresponding k-th order
voronoi diagram. For every tuple t ∈ D, let ◦t be the d-dimensional
sphere (d-sphere) with radius ρ centered at t . Consider a k-voronoi cell
V(S) in the k-th order voronoi diagramVk (D). Any point q inside the
intersections of the d-spheres of tuples in S , i.e. q ∈ ∩ ◦t

∀t ∈S
, is covered,

while all other points in the region are uncovered. Formally:

∀q ∈ V(S) : Covρ,k (q, D) =
⎧⎪⎪⎨⎪⎪⎩
true if q ∈ ∩ ◦t

∀t∈S
false otherwise

Proof. Let R be the intersection ∩ ◦t ,∀t ∈ S . Every point falling

inside a d-sphere ◦t has the distance of at most ρ from the corre-

sponding tuple t . Therefore, the distance of any point in R is at

most ρ from all tuples in S and since |S | = k , is covered. Now con-

sider a point q ∈ (V(S) \ R). First, since q is in V(S), for any tuple

t ′ that belongs to (D \ S), the distance of t ′ to q is not less than

the maximum distance of S to q, i.e., Δ(q, t ′) ≥ max∀t ∈S Δ(q, t).
Next, since q � R, there exists at least one tuple t in S such that

ΔM = Δ(q, t) > ρ. Following this, ∀t ′ ∈ (D \ S),

Δ(q, t ′) ≥ ΔM > ρ

Consequently, since |S\{t}| < k , q is not covered. �

According to Lemma 1, for identifying the uncovered points in

a region R of the k-th order voronoi diagram it is enough to only

consider the tuples in SR . We use this as the key observation for

designing Algorithm 1 for discovering the uncovered region in the

two dimensional case. The algorithm starts by constructing the

k-th order voronoi diagram of the dataset, using [42] or any other

efficient algorithm. Then for each voronoi cellV(S) in the diagram,

it computes the intersection of the circles of the tuples in S and

marks the portion of V(S) that falls outside it as uncovered. The
algorithm’s correctness follows Lemma 1. First, since the k-voronoi

diagram partitions the space, every query point q should belong to

one and only one cell. According to the lemma, if q is uncovered,

it should fall outside the intersection of the corresponding tuples

for the cell and hence discovered by Algorithm 1. After identifying

Algorithm 1 uncovered-2d

Input: dataset D, k , ρ

1: function Identify(D, k , ρ)

2: V ← Vk (D); U ← {}
3: for V(S) ∈ V do

4: C ← ∩ ◦t ∀t ∈ S

5: U.add(V(S)\C)
6: return U,V
7: function Report(U)

8: map← 2D map of [0, 1] × [0, 1]
9: for 〈x1,x2〉 ∈map do

10: if 〈x1,x2〉 ∈ U then color[x1,x2] ← red

11: else color[x1,x2] ← green

12: functionQuery(q,V) // is q uncovered?

13: find V(S) ∈ V such that q ∈ V(S)
14: for t ∈ S do

15: if Δ(t ,q) > ρ then

16: return true; //q is uncovered

17: return false

the uncovered region, similar to Figure 1, we use the 2D map of

{x1,x2} value combinations to report the region to the user.

Lemma 2. uncovered-2d-Identify runs in O(k2n logn).

Proof. Finding k-th order voronoi diagram is in O(k2n logn)
[42]. For every cell in the diagram we take the intersection of k

circles. Since the upper-bound on the number of cells in the diagram

is O(kn logn) [4, 20, 42], this takes O(k2n logn). �

Wewould like to note that, following Lemma 1, since the number

of k-voronoi cells in 2D is O(k(n − k)), the output complexity of

uncovered region is bounded as O(k2(n − k)). The minimal rep-

resentation of the uncovered region, though, is achieved by the

exact number of arcs defining the border of the region. We use the

voronoi diagram in 2D because its complexity is linear in n and it

enables a logarithmic query answering algorithm we shall explain

next.

3.3 Query Answering

In addition to identifying uncovered region, we also rely on the rich

literature of voronoi diagrams for efficiently checking if a query

point is uncovered. In particular, instead of explicitly indexing the

uncovered region, we only index the k-voronoi diagram during

the preprocessing time. During the query time, the first step is to

identify the voronoi cells that the query point q belongs to. This is

done in O(logn) [4, 42]. Let V(S) be the k-voronoi cell q belongs

to. Note that for every tuple t ′ ∈ D\S , Δ(t ′,q) ≥ max(Δ(t ,q), ∀t ∈
S). Hence, since |S | = k , if there exists a tuple t ∈ S such that

Δ(t ,q) > ρ, then q is uncovered. This step requiresO(k) operations.
Consequently, the Query function of Algorithm 1 is inO(k + logn).

4 MULTI-DIMENSIONAL COVERAGE

So far in this paper, we considered the special 2D case where the

coverage is studied over two attributes. In this section, we relax

this assumption to the general case where d ≥ 2.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

132

The extension of the 2D case provides an exact algorithm for

detecting the uncovered region: following Algorithm 1, construct

the k-th order voronoi diagram in MD and, within every cell V(S),
find the points outside the intersection of the hyper-circles of S .

This algorithm can indeed be used effectively for low-dimensional

spaces. Unfortunately, due to the curse of dimensionality, the exact

algorithm described above is not practical when d , the number of

attributes, is not a small constant. Therefore, in this section, we

turn our attention to designing approximation algorithms.

4.1 Approximating the Uncovered Region

In this section we design a geometric approximation algorithm for

identifying the uncovered regions in MD. But first, let us review

some of the necessary concepts in the following.

Consider a range space (χ ,R) where χ is the universe of points

and R is the set of ranges, each containing a subset of points in

χ . For example, χ can be R2 and R the set of disks in the plane.

The VC-dimension of a range space is the maximum cardinality of

S ⊆ χ shattered by R. It means, for every set s ⊆ S , there exists a

range r ∈ R that include s and no point from S\s .
A set N ⊆ χ is an ε-net for χ , if for any range r ∈ R, if |r ∩ χ | >

ε |χ |, then r contains at least one point of N (i.e., |r ∩ N | � ∅). Let
δ be a the VC-dimension of a range space (χ ,R). For such a range

space, an i.i.d. sample of size

O
(1
ε

(
δ log

1

ε
+ log

1

ϕ

))
(1)

from the χ is an ε-net for the range space, with probability of

at least (1 − ϕ) [34]. We use this for approximately learning the

uncovered region.

Let net be an ε-net for the d dimensional query space [0, 1]d .
Let us label every sample point in the net as +1 if it is uncovered

and -1 otherwise. Consider the region induced by the samples as

the uncovered region; that is the (non-convex) hull Ua around the

+1 points that does not include any of the -1 points. In other words,

a classifier with no misclassification error on the samples. Now

consider the exact uncovered region U. Let r = U ⊕ Ua be the

difference between U and Ua , i.e., the set of points that are mis-

classified as either covered or uncovered using Ua . Clearly, any

query point in r gets mis-classified by Ua . Since net is an ε-net,

if |r ∩ χ | > ε |χ |, then r contains at least one point of net. In other

words, the error induced by the approximation is bounded by ε .

In the following, we focus on the VC-dimension of the uncovered

region, provide a theoretical upper-bound, and design a practical

solution.

4.1.1 A theoretical upper-bound. The VC-dimension of the uncov-

ered region play the critical role in constructing the ε-net for our

algorithm. In the following, we first use our findings in § 3 and the

available results on the complexity of voronoi diagrams to find an

upper-bound in Theorem 3.

Theorem 3. The VC-dimension of the uncovered region in Rd is

bounded by O
(
(d + 1)n �d/2�k �d/2�+1) .

Proof. It is known that any finite sequence of combining (union,

intersection, and complementing) range spaces with finite VC-

dimension, results in a range space with finite VC-dimension [34].

We use this to find an upper-bound on the VC-dimension of the

uncovered region. Following Lemma 1, for every k-voronoi cell

V(S), the points inside the intersections of the spheres (with radius

ρ) of tuples in S are covered and the points outside those belong to

the uncovered region. As a result, for every k-voronoi cell, we can

consider the covered points as a range that is the intersection of k

d-spheres (d-dimensional spheres). The VC-dimension of ad-sphere

is d + 1 [34]. For instance, VC-dimension of disks in the plane is

3, since it is the maximum number of points disks on the plane

it can shatter. Therefore, the covered points inside a cell have the

VC-dimension k(d + 1). The number of cells of a k-voronoi diagram

is bounded byO
(
n �d/2�k �d/2�) [29]. Since the set of covered points

is identified as the union of the covered points in each k-voronoi

cells, the VC-dimension of the covered region is bounded by

k(d + 1) O
(
n �d/2�k �d/2�)

= O
(
(d + 1)n �d/2�k �d/2�+1)

The uncovered region is the complement of the covered region and

has the same VC-dimension. �

Theorem 3 provides an upper-bound on the VC-dimension of

the uncovered region. This, however, is an upper-bound for the

adversarial cases that (as we shall experimentally observe) are far

from practice. In our experiments samples of significantly smaller

sizes are enough to create the ε-net. We first note that Theorem 3

uses the theoretical upper-bound the number ofk-voronoi cells. Still,

perhaps more importantly, it assumes that all voronoi cells contain

some covered and uncovered points which seems very adversarial.

In practice a substantial portion of the cells are either fully covered

(resp. uncovered), i.e. any point in those regions are covered (resp.

uncovered) and does not add to the complexity (VC-dimension) of

the uncovered region. As a result, much smaller sample sizes are

enough to build the ε-net. We shall experimentally evaluate this in

§ 6.

4.1.2 A practical solution. The upper-bound in Theorem 3 uses

the number of k-voronoi cells to bound the VC-dimension. Alter-

natively we can use the complexity of the shape of the uncovered

region for finding the VC-dimension. Looking at Figure 1(a), one

can confirm that the border between the uncovered and covered re-

gion is described as the union of a set of d-dimensional arcs (d-arcs).

Every d-arc is part of a d-sphere, having a VC-dimension of d + 1.

Therefore, if the border of uncovered region is the union of Narc d-

arcs, the VC-dimension of the uncovered region is δ = (d + 1)Narc .

The number ofd-arcs in the border of the uncovered region, how-

ever, is data dependant. That is, depending on the data distribution

and the value of ρ: the maximum distance between neighboring

points. If data is distributed such that large clusters of data points

are in each others neighborhood, most of such clusters are fully

covered and most of the points in such region do not contribute

to the complexity of the VC-dimension. Similarly, for the higher

values of ρ, the chance of large regions being fully covered is higher

and this makes the border of the region less complex. Also, if ρ is

very small, almost all points belong to the uncovered region and,

again, the uncovered region will be less complex.

Finding the number of d-arcs in the border of the uncovered re-

gion is challenging. On the other hand, the theoretical upper-bound

in Theorem 3 required large numbers of samples and, depending

on n and d , might not be practical. Therefore, in the following

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

133

Algorithm 2 uncovered-md

Input: dataset D, k , ρ, ε , and ϕ

1: function Identify(D, k , ρ, ε , ϕ)

2: T ← a set of i.i.d samples according to ϕ

3: NS ← an initial value // based on n, d

4: repeat

5: S ← Ns i.i.d samples from [0, 1]d
6: for s ∈ S do

7: if |{t ∈ D | Δ(t , s) ≤ ρ}| ≥ k then �[s] ← +1

8: else �[s] ← -1

9: Ua ← classifier(S, �)
10: Error← error(Ua ,T); Ns ← 2 × Ns

11: until Error≤ ε

12: return (Ua ,S, �)
13: function Report(S, �)
14: T ← DecisitonTree(S, �); desc ← {}
15: for l ∈ T .leaves do

16: if l .label= +1 then

17: add (PathFromRoot(l), l .entropy) to desc
18: return desc

19: function Query(q) return Ua (q)

we suggest an alternative approach for finding the right number

of samples that satisfy the user-provided misclassification error ε .

Specifically, we use an exponential search strategy: starting from an

initial value for the number of samples, we iteratively double the

number of samples until we find a proper number of samples.

4.1.3 Identifying the Uncovered Region. The function Identify for

approximating the uncovered region when d > 2 is provided in

Algorithm 2. The algorithm identifies the uncovered region in the

form of a classifier Ua that, given a query point q, identifies if

q belongs to the uncovered region. The algorithm uses T , a set

of i.i.d samples from the query space, as the test set to verify the

misclassification error ofUa . As we previously explained, we use

iterative sampling and the exponential search strategy to identify

the right number of samples. The algorithm starts by setting the

sample set sizeNs to an initial value. It then collects Ns i.i.d samples

from the query space and labels them as +1 if those are covered by

the dataset and -1 otherwise.

Recall from § 4.1 that we identify Ua as the (non-covex) hull

around the -1 points that does not include any of the +1 (covered)

points. In other words, viewing S as an ε ′-net, a classifier with no

mis-classification error onS, is guaranteed to have the classification
error of at most ε ′. Algorithm 2 uses this observation and builds

such classifier around S.
After building the classifier, the algorithm checks if it satisfies

the error requirement by the user; that is, if Ua has the miss-

classification error (Error) of at most ε . To check this, the model

uses the test set T . If Error > ε , the algorithm doubles the sample

size and repeats the process until it reaches the right sample size

for Ns .

4.1.4 Complexity analysis of function Identify of Algorithm 2. The

function uses exponential search in order to find the proper number

of samples. Let N be the final number of samples. Since, starting

from an initial value larger than 1, the algorithm doubles the sample

size at each iteration, the total number of iterations is bounded by

O(logN). At every iteration, the algorithm selects a sample set of

size Ns and for each of them check if it is covered by the dataset.

This, in worst-case, is in O(nd) as for every tuple in the dataset,

the algorithm requires to compute the distance between the sample

point that the tuple. Of course, any of the off-the-shelf techniques

and indices such as Local Sensitive Hashing can be used for effi-

cient counting. After collecting the samples, the algorithm needs to

train a classifier and compute its mis-classification error. Therefore,

usingTc as the time required for training/testing the classifier for a

sample set of size N , the total time complexity for approximately

identifying the uncovered region is O
((
N nd +Tc

)
logN

)
.

4.2 Reporting the Uncovered Region in MD

The next step after identifying the uncovered region is to report

it to the user. In 2D, we could create a map to visually present the

region. This however is not possible, in particular when d > 3.

While there are different choices to make, we believe while human

being might not be very good at understanding complex geometric

shapes, data scientists understand the axis-parallel range cubes1.

For example, it seems easy to understand that the points in range

〈x1 : [.46, .58],x2 : [.12, .18],x3 : [.67, .81]〉 are uncovered.
Ideally, we would like to identify a set R = {R1, · · · ,Rχ } of

axis-parallel hypercubes that best describe the uncovered region.

That is, the number of uncovered points outside the hypercubes is

minimized, and similarly the number of covered points within each

hypercube is minimized. In other words, we would like to minimize

(∪χ
i=1Ri) ⊕ U. It turns out this problem is not “easy” to solve and

exactly solving it is out of the scope of this paper.

Instead, as an approximation heuristic, we draw the connection

to decision trees, as those are widely used for explaining black-

box and complex AI models [25]. A decision tree is tree-structure

classifier that expresses the target variable as a function of the

values of other attributes. Every branch from a node in the tree is a

“rule” based on an attribute which can be viewed as an axis-parallel

hyperplane that splits the space in two halves. Following the cuts

enforced by each of the branches, every leaf node in the tree describe

an axis-parallel hypercube identified by the branches in the path

from the leaf to the root of the tree. The arrangement of decision

tree is such that (almost) all tuples in a leaf node have the same class

label. A well-known approach for finding the tree partitions the

space at every node greedily, based on a measure of entropy [53].

Following this argument, we build a decision tree using the samples

and labels (S, �) drawn for identifying the uncovered region. As

shown in the function Report in Algorithm 2, the corresponding

ranges for +1 leaf nodes, together with their entropy, are reported

as the description of uncovered regions to the user.

4.3 Query Answering

As specified in the function Query of Algorithm 2, the classifier

Ua is being used to identify if a query point q is covered by the

dataset D. It approximates the uncovered region U and returns -1

if the queried point is uncovered.

1We recognize that other alternatives, such as reporting the center and the radius of
hyper spheres covering the uncovered region could also be used here.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

134

5 TUNING THE PARAMETERS ρ AND k

Similar to many other concepts such as clustering and frequent

item-sets mining, the notion of coverage requires parameter tuning.

In order to identify if a point is uncovered, we need to set the

vicinity value ρ and the threshold k in Definition 1 (coverage). The

techniques proposed in this paper are agnostic to the choice of these

parameters. Nevertheless, in this section we present some heuristics

for setting these parameters, prior to using these techniques.

The first parameter to determine is k : the minimum number of

points in a neighborhood for a query point to be considered as

covered. That is, the k points in the neighborhood of the point

are the minimum representative to enable meaningful analysis

about it. Following statistics and central limit theorem, the rule of

thumb suggests the number of representatives should be around

30. For example, [60] suggests that a minimum of 20 to 50 samples

is necessary.

The second parameter is the radius ρ, which defines the size

of neighborhood considered. In the following, we propose two

approaches for determining the value of ρ.

5.1 Absolute Choice Principle

Our first strategy is an absolute choice principle in which the pa-

rameters are chosen independently from how the data is distributed.

The goal is to determine ρ: the maximum distance between two

points to be considered in the neighborhood of each other. The

smaller the parameter ρ is the more similar the neighboring points

are. The value of ρ should be specified in a way that the tuples in

the vicinity of a query point are similar enough to have similar

“behaviors” with it. If so, the tuples in the ρ-neighborhood can be

considered as the observation subgroup for learning and analyzing

the behavior of the query point. Of course, the domain knowledge

may be necessary for identifying the adjacency radius.

As a heuristic to identify the radius ρ, we consider the expected

number of tuples in a neighborhood if the tuples were uniformly

distributed. Let n be the number of tuples in D. Knowing that all

features have been normalized in range [0, 1], the expected volume

to contain k points is k/n. Using this argument, for a small constant

c ≥ 1 (e.g. c = 2), we can say if the volume of the neighborhood

is c times larger than k/n, it should contain at least k tuples in it.

The ρ-neighborhood of a point q in the d dimensional space is a

d dimensional hypersphere with radius ρ. The volume of such a

d-sphere [44] is

Vd (ρ) =
πd/2

Γ(d/2 + 1)
ρd (2)

Specifically, for d = 2 and d = 3 the volumes are V2(ρ) = πρ2 and

V3(ρ) = 4/3πρ3, respectively. Setting Vd (ρ) as ck/n, ρ is computed

as:

ρ =
1
√
π

(c k Γ(d/2 + 1)
n

) 1
d

(3)

5.2 Sensitive Region Analysis

Our next heuristic for determining ρ follows a relative choice prin-

ciple. That is, rather than finding the uncovered region, we aim to

find the “most uncovered” region.

For a small value of ρ a large portion of the value space may be

uncovered. As the value of ρ increases the volume of the uncov-

ered region decreases. Specifically, moving from ρ = 0 to ρ = 1

the volume of the uncovered region decreases from one to zero.

Apparently, the points that still remain uncovered while increasing

ρ are more problematic as the tuples in the dataset are not similar

to those. In addition, at least for the purpose of reporting dataset

deficiencies to the data scientist, reporting all (or none of the) pos-

sible points as uncovered is not informative. Ideally, a data scientist

may want to see a small-enough ratio of value space as the most

uncovered (most problematic) region. This is similar to clustering

where putting all points in one cluster (or each point in a separate

cluster) may not seem beneficial; a “good” clustering is supposed

to return a few clusters.

Following the above argument, given a value 0 < α < 1 (e.g.

α = 0.1), our objective to find a value of ρ such that a portion α

of the value space (e.g. ten percent) is uncovered. In order to find

the value of ρ, we pay attention to the fact that α monotonically

decreases as ρ increases. This allows us to apply binary search for

finding the corresponding value ρ for α . Let T be the time required

to identify the uncovered region for the given values of ρ and k .

The binary search calls the uncovered region identification function

log 1
ϵ times and hence it runs in O(T log 1

ϵ).

6 EXPERIMENTS

We conducted comprehensive experiments on real datasets both

to validate our proposal and to evaluate the performance of our

algorithms.

6.1 Experiments Setup

The experiments were conducted using a 2.5 GHz Quad-Core Intel

Core i7 processor, 16 GB memory, running macOS. The algorithms

were implemented in Java and Python.

We used four real datasets for our experiments.

• 3D Road Network (RN) Dataset [39] is a benchmark dataset for re-

gression that was constructed by adding elevation information to

a 2D road network in North Jutland, Denmark. It includes 434,874

records with attributes Latitude, Longitude, and Altitude.

• City of Chicago’s Food Inspections (FI) Dataset [51] contains inspec-

tions of restaurants and other food establishments in Chicago

from Jan. 2010 to June 2018. The dataset contains 210,268 tuples

and 17 features, including Latitude and Longitude.

• NBA dataset [2] contains the points for each combination of

player/team/season up to 2009. It contains 21, 961 tuples and the

ordinal attributes gp, minutes, pts, oreb, dreb, etc.

• US Department of Transportation flights database (DOT) [3] is

widely used for identifying on-time flight performance. After re-

moving records with missing values, the dataset contains 457,892

records, for all flights conducted in the last months of 2017, over

8 scalar attributes, including Dep-Delay, Taxi-Out, and Air-time.

All values used for studying coverage are normalized in the range

[0, 1], using (vi −min)/(max−min).

Evaluation plan and performance measures: We evaluate the

performance of our algorithms uncovered-2d and uncovered-md

in this section. Time is our main metric. Unlike uncovered-2d,

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

135

Figure 2: Cat Image, Illustration of classifier’s failure on FN rate

for uncovered region

uncovered-md is an approximation algorithm whose performance

depends on the number of samples required for building the ε-

net. Here. we report the number of samples uncovered-md takes,

using its exponential search strategy. In addition, we also report

the coverage ratio, i.e., the fraction of the query space occupied by

covered regions, where every point is covered by the dataset.

Default values: To evaluate the performance of our algorithms

under different settings, we vary the value of a parameter, while

fixing the value of other ones. The default value for k is 30 and ρ is

set to 0.1 for 2D and 0.15 for MD. The default misclassification error

is e = 0.01. That is, we aim to approximate the uncovered region

U withUa such that e = |U ⊕Ua | ≤ 0.01. The default value for d

(number of attributes) is 3. Default value of n for the FI, NBA, and

DoT datasets is 10K, 100K, and 20K, respectively.

6.2 Proof of Concept

We begin our experiments with a demonstration of why coverage

matters. We select a classification and a regression task that are both

easy to visualize. In both cases, we show that (a) lack of coverage

can cause low performance of the model, and (b) resolving lack of

coverage resolves the poor performance of the model for uncovered

region.

6.2.1 Classification. Consider a classification task to label a query

point on the x-y plane, as belonging to the body of a cat image

or to the background. We selected the image shown in Figure 2

with a resolution of 4106 × 2720. We generated the training data

of size 11K by randomly sampling from the image with a sampling

ratio of 0.001 and labeling each sample point as +1 if inside the

cat body, -1 otherwise. Next, we intentionally removed the sample

points in the training data that belong to the patch highlighted in

the figure to make it uncovered. Following the same procedure,

we generated 30 datasets and repeated each experiment 30 times,

using different datasets. Using this as the training data, we tried

different classification models, namely, Decision Tree (DT), Random

Forest (RF), Logistic Regression (LR), kNN, and SVM. The linear

classifiers LR and SVM did not perform well. DT had the highest

overall performance compared to other classifiers and all classifiers

failed to work for the uncovered region. On average, the overall

F1 measure for the DT classifier was 95% but it was 62% for the

uncovered region. In particular, while the overall FN rate was less

than 5%, it was as high as 54% for the uncovered region. To further

investigate this, in Figure 2, we painted the parts of the patch that

model mistakenly labeled as -1 in red. The figure is self-explanatory.

Relying on its training data, it created the decision boundary by

connecting the two edges of the cat body, missing its ear. As a

result, the query points that belong to the ear are misclassified as

background, resulting in the high FN rate. Next, in order to confirm

the issue was due to the lack of coverage, we gradually added 1%,

10% and 100% of sample points from the uncovered region back

to the training data. The results are provide in Figure 3. Looking

at the figure, adding sample to the patch increased the coverage

ratio in the patch from 0.6 to 1. At the same time the F1 and FN

rate measures converged to the same numbers as other regions. In

particular, after resolving the lack of coverage, FN rate for the patch

moved from 39% down to less than 2%.

6.2.2 Regression. As our next experiment, we considered a regres-

sion task, using the RN dataset. Given a query point in form of (long,
lat), the objective is to predict the altitude. We build the model, ran-

domly sampling the dataset with a ratio of 10%, we generated 30

training datasets of size 43K. Similar to the previous example, we

removed the samples from a cell in the range 10<longitude<10.6

and 57.1<latitude<57.6 to make it uncovered. We intentionally se-

lected this cell since the altitude fluctuations was high in that cell.

Using the training data, we tried three different predictive models,

namely (1) ElasticNet, (2) DT, and (3) kNN. DT outperformed the

other models while all three models had high prediction error for

the uncovered region. While the mean squared error was close to

zero, it was 714.8 for the uncovered region. Next, in Figure 4 we

gradually added sample points from the uncovered patch to the

training data. Upon adding the sample points, the coverage ratio

increased from 2% up to 92% and, hence, MSE dropped down to 29.

Before concluding this section, we would like to reiterate lack of

coverage does not necessarily mean that the model will perform

poorly for those regions. For example, in our classification experi-

ment if the uncovered region were fully inside (or outside) the cat

body, the classifier could have performed well even for the uncov-

ered region. However, one cannot in general know whether we are

in a problematic “ear-like” region or not, without additional infor-

mation beyond the available training data. Furthermore, whether

this matters is also task-specific. So, at the least, an uncovered query

point should come with a warning that users can choose to heed or

ignore based on other knowledge available to them.

6.3 Performance Evaluation

In the following, we provide our experiment results, using the

aforementioned settings. First in § 6.3.1, we evaluate a baseline

adapted from the existing work [13]. Next in § 6.3.2, we evaluate

the uncovered-2d algorithm, using FI and RN datasets. Finally, in

§ 6.3.3, we conduct the performance evaluation for uncovered-md

using the NBA and DoT datasets.

6.3.1 Baseline. Before evaluating our algorithms, we first consider

adapting the existing [13] for identifying uncovered region in (low-

cardinality) discrete attributes. Since the space is continuous here,

we first discretize it using grids of different granularity. Then, we

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

136

10-2 10-1 100

Sample Ratio of Patch (rho=0.05, k=5)

0

0.2

0.4

0.6

0.8

1

P
er

ce
n

ta
g

e

F1
Coverage
FNR

Figure 3: Cat Image, impact of lack of cover-

age for Classification

10-3 10-2 10-1 100

Sample Ratio of Patch (rho=0.01, k=20)

0

200

400

600

800

1000

M
S

E

0

0.2

0.4

0.6

0.8

1

C
o

ve
ra

g
e

R
at

io

Uncovered Patch Error
Overall Error
Coverage Ratio

Figure 4: RN, impact of lack of coverage for

Regression

4 6 8 10
Number of grid buckets

0.5

0.6

0.7

0.8

0.9

1

F
N

 r
at

e

Figure 5: RN, DeepDiver’s error in detecting

Uncovered points

102 103 104 105

n -- logscale (rho=0.1, k=30)

100

101

102

103

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

UNCOVERED-2D
UNCOVERED-MD

Figure 6: FI, impact of n on time

103 104 105

n -- logscale (rho=0.1, k=30)

2

4

6

8

10

12

14

n
u

m
b

er
 o

f
sa

m
p

le
s

104

0.3

0.4

0.5

0.6

0.7

co
ve

ra
g

e
ra

ti
o

Figure 7: FI, impact of n on sample size and

coverage

10 20 30 40 50
k (n=10000, rho=0.1)

101

102

103

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

UNCOVERED-2D
UNCOVERED-MD

Figure 8: FI, impact of k on time

10 20 30 40 50
k (n=10000, rho=0.1)

0

2

4

6

n
u

m
b

er
 o

f
sa

m
p

le
s

104

0.5

0.55

0.6

0.65

0.7

co
ve

ra
g

e
ra

ti
o

Figure 9: FI, impact of k on sample size and

coverage

0.05 0.1 0.15 0.2 0.25
rho (n=10000, k=30)

0

200

400

600

ti
m

e
(s

ec
)

UNCOVERED-2D
UNCOVERED-MD

Figure 10: FI, impact of ρ on time

0.05 0.1 0.15 0.2 0.25
rho (n=10000, k=30)

0

2

4

6

n
u

m
b

er
 o

f
sa

m
p

le
s

104

0.5

0.6

0.7

0.8

0.9

1

co
ve

ra
g

e
ra

ti
o

Figure 11: FI, impact of ρ on sample size and

coverage

use the algorithm DeepDiver in order to discover the uncovered

region in form of maximal uncovered patterns (MUPs). The union

of the space covered by the MUPs is considered as the uncovered

region. DeepDiver requires a parameter k for defining coverage.

Since it is not clear how to transfer (ρ,k) to k in discrete space,

to have a fair comparison, for every setting we first discover the

uncovered region using our algorithms in this paper and then apply

a binary search on the value of k , to find the setting that best

matches the continuous uncovered region.

Using a random subset of size 900 from RN, we used this algo-

rithm on different grid granularities for d = 3 in order to find the

uncovered region for ρ = 0.02 and k = 10. We then used a test

set of 100 query point randomly sampled from RN to evaluate the

performance of the algorithm. In order to find if a query point is

uncovered, we need to traverse among the MUPs to see if it matches

any of those patterns. This can become inefficient for fine-grained

where the number of MUPs can be as high as the number of buckets

to the power of d . Efficiency aside, this baseline approach failed to

discover a large portion of uncovered points, as shown in Figure 5.

Looking at the figure, in all cases, the algorithm mistakenly labeled

more than 58% of uncovered points as covered. Also, even though

increasing the number of buckets initially helped to reduce the

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

137

104 105 106

n -- logscale (rho = 0.1, k = 30, d=3)

101

102

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

UNCOVERED-MD

Figure 12: DOT, impact of n on time

104 105

n -- logscale (rho = 0.1, k = 30, d=3)

0

2000

4000

6000

8000

10000

n
u

m
b

er
 o

f
sa

m
p

le
s

0

0.005

0.01

0.015

0.02

co
ve

ra
g

e
ra

ti
o

Figure 13: DOT, impact of n on sample size

and coverage

3 4 5 6 7 8
d (rho = 0.15, k = 30, n = 20K)

100

102

104

ti
m

e
(s

ec
)

--
 lo

g
ss

ca
le

UNCOVERED-MD

Figure 14: NBA, impact of d on time

3 4 5 6 7 8
d (rho = 0.15, k = 30, n = 20K)

0

1

2

3

n
u

m
b

er
 o

f
sa

m
p

le
s

105

0

0.05

0.1

0.15

0.2

0.25

co
ve

ra
g

e
ra

ti
o

Figure 15: NBA, impact of d on sample size

and coverage

10 20 30 40 50
k (rho = 0.15, n = 20K, d=5)

0

100

200

300

400

500

ti
m

e
(s

ec
)

UNCOVERED-MD

Figure 16: NBA, impact of k on time

10 20 30 40 50
k (rho = 0.15, n = 20K, d=5)

0

2

4

6

8

n
u

m
b

er
 o

f
sa

m
p

le
s

105

0

0.1

0.2

0.3

0.4

co
ve

ra
g

e
ra

ti
o

Figure 17: NBA, impact of k on sample size

and coverage

0.05 0.1 0.15 0.2 0.25
rho (k = 30, n = 20K, d=5)

0

200

400

600

800

ti
m

e
(s

ec
)

UNCOVERED-MD

Figure 18: NBA, impact of ρ on time

0.05 0.1 0.15 0.2 0.25
rho (k = 30, n = 20K, d=5)

2

4

6

8

10

n
u

m
b

er
 o

f
sa

m
p

le
s

105

0

0.1

0.2

0.3

0.4

co
ve

ra
g

e
ra

ti
o

Figure 19: NBA, impact of ρ on sample size

and coverage

0.02 0.04 0.06 0.08 0.1
error (rho = 0.15, k = 30, n = 20K, d=5)

0

10

20

30

ti
m

e
(s

ec
)

0

1

2

3

4

n
u

m
b

er
 o

f
sa

m
p

le
s

104

Figure 20: NBA, impact of error e on time

and sample size

error, after 6 bucket the error increased again up to 92%. The reason

is that as the cells get very small, the corresponding number of

samples they should contain for coverage reduces. As k decreases,

the algorithm has increased error in detecting uncovered regions,

particularly near the borders.

6.3.2 2D Experiments. In this section, we use the RN and FI datasets

(using Latitude and Longitude as the attributes) to evaluate the

uncovered-2d algorithm. We obtained similar results with almost

identical plots for the two datasets. Therefore, in the following we

present the results for one of the datasets (FI) with different settings.

Varying n: In this experiment, we study the impact of the number

of items in the performance of the algorithm and in the cover-

age. To do so, we change n from 100 to 100K. We then use our

exact uncovered-2d algorithm and the sampling-based algorithm

uncovered-md for identifying the uncovered region. The results

are provided in Figures 6 and 7. As expressed in Lemma 2, using

the advanced algorithms such as [42] for finding the k-th order

voronoi diagram, uncovered-2d is in O(k2n logn). We used off-

the-shelf implementations for constructing the k-th order voronoi

diagram which scaled up to n = 10K within a few minutes. The

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

138

uncovered-md algorithm, on the other hand, efficiently approxi-

mated the uncovered region with 99% accuracy in less than aminute

in all settings. Increasing the dataset sizes increases the chance that

a given query has enough items in its neighborhood to become

covered. This is confirmed in Figure 7. The left-y-axis in this plot

(and other similar plots in this section) shows the number of sam-

ples uncovered-md used for identifying the uncovered region and

the right-y-axis (and the dashed orange line) show the coverage

ratio. From the figure, increasing n from 1K to 100K, the coverage

ratio increases up to 0.7. The increase in the coverage ratio makes

the border of the uncovered region less complex, resulting in less

number of samples required. Note that this is in contrary with

our adversarial upper-bound in Theorem 3. The reason is that even

though increasing n increases the number of voronoi cells, but most

of them become completely covered, resulting in a less complex

uncovered region.

Varying k and ρ: In our next experiments, we study the impact

of varying the coverage parameters, i.e., the vicinity value ρ and

the count threshold k . Figures 8 and 9 show the results for varying

k (while fixing the other parameters to their default values). First,

increasing the value of k increases the number of voronoi cells

and, hence, the time taken by the uncovered-2d algorithm. The

performance of uncovered-md, on the other hand, depends on

the number of samples required by the algorithm. The increase

in k reduces the chance of a query point to be covered by the

dataset, hence reducing the ratio of covered region to 65%. As a

result, more voronoi cells become partially uncovered, increasing

the complexity of the border of the uncovered region, resulting in

the need for more number of samples. The other parameter that

impacts the uncovered region is ρ. The results for varying this

parameter are provided in Figures10 and 11. The value of ρ does

not impact the number of voronoi cells, hence not impacting the

uncovered-2d runtime. The vicinity radius, however, does impact

the coverage ratio and the complexity of the uncovered region,

which impacts the number of samples required by uncovered-

md. Increase the value of ρ increases the chance of an arbitrary

query point to become covered by the dataset, hence increases the

coverage ratio. As more and more voronoi cells become completely

covered, the uncovered region becomes less complex and requires

less number of samples to identify it.

6.3.3 MD experiments. We use the NBA dataset and DoT dataset

for studying the performance of uncovered-md, when d > 2. In

particular, we use the DoT dataset for varying the number of items

up to 0.5 million, and the NBA dataset for the other settings. In all

the settings, we aim to satisfy the mis-classification error of 1%.

Varying n: In this experiment, we use the DoT dataset to study the

impact of vary the number of items up to half a million. The exper-

iment results are provided in Figure 12 and 13. Similar to our Food

Inspection experiment, the uncovered-md algorithm could scale to

the large settings, finishing in a few minutes for n = 0.5M . We also

observed a similar performance for the NBA dataset. Besides evalu-

ating the performance of the algorithm, this experiment highlights

the major coverage issue of the DoT dataset. Looking at the right-

y-axis of Figure 13, one can observe even in a dataset with half a

million items, more than 98% of the query space is uncovered. This

0 2000 4000 6000 8000 10000
Number of Points

10-4

10-3

10-2

10-1

ti
m

e
(s

ec
)

--
 lo

g
sc

al
e

UNCOVERED-2D
BRUTEFORCE
UNCOVERED-MD

Figure 21: RN, Query time comparison.

is because, all items have very similar values. Note that the large

portion of the uncovered region does not mean that a large ratio

of query points are going to be uncovered. Assuming that training

data and the query points follow the underlying distribution, most

of the query points should be covered. We verified this for a test set

of 200 random samples and all of them were covered, even though

98% of the space was uncovered. The values are even closer to zero

for the attributes such as departure-delay and arrival-delay. As a

result, while almost all the dataset records are condensed around

the origin, most value combinations (possible query points) had

less than 30 items in their neighborhoods, resulting in the signifi-

cantly large uncovered region. Note that, increasing the number

of attributes, the coverage ratio gets further decreased. We also

observed that decreasing the values of k or increasing the value of

ρ did not significantly change the coverage ratio. Therefore, for the

rest of the experiments we use the NBA dataset.

Varying d , k , ρ, and the error threshold: In this experiment, we

use the NBA dataset and, setting the other parameters to their

default values, vary the number of attributes d , the coverage param-

eters k and ρ, and the error threshold for the algorithm. Figures 14

and 15 show the results for varying d from 3 to 8. Increasing the

number of dimensions increases the distance between the points

in the space, resulting in a quick decrease in the coverage ratio. As

the coverage ratio decreases, more and more voronoi cells become

completely uncovered. Hence the uncovered region becomes less

complex, requiring less number of samples for identifying it which

results in the decrease in the running time of uncovered-md. The

results for varying k (resp. ρ) are provided in Figures 16 and 17

(resp. Figures 18 and 19). Increasing the value of k did not signif-

icantly reduce the coverage ratio, and therefore, the number of

samples and the running time of uncovered-md did not signifi-

cantly change. The increase in the value of ρ, on the other hand,

increased the coverage ratio from less than 10% to around 40%. The

increase in the coverage ratio initially increased the complexity of

the uncovered region, causing an increase in the running time of

uncovered-md. After the coverage ratio of 25%, the increase in the

ratio, did not add to the complexity of the uncovered region, not

meaningfully changing the running time. Finally, Figure 20 shows

that, as expected, the approximation error threshold has a major

impact on the running time of uncovered-md and the number

of samples required for approximately identifying the uncovered

region.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

139

Query time comparison: After evaluating the performance of the

uncovered-2d and uncovered-md algorithms in identifying un-

covered regions, we evaluate the query time of the two algorithms,

using the RN dataset and 100 random queries for each setting. Ad-

ditionally, we considered the brute-force approach that (assuming

the availability of the training data at run-time), traversing through

the training data, counts the number of neighbors of a point and

stops as soon as it realizes the point is covered. Figure 21 shows the

query time for different values of n. Having a logarithmic run-time,

uncovered-2d significantly outperformed the linear brute-force

algorithm in all cases. In all cases uncovered-md was even faster

than uncovered-2d. Both algorithms were fast enough to be con-

sidered for online query answering.

7 RELATEDWORK

The general topic of responsible data science has recently become

timely across different research communities and the conference

ACM FAccT (previously FAT*) has been dedicated to this topic.

In particular, in past few years the database community has made

several advancement to this topic [8, 10–13, 32, 33, 37, 38, 41, 45, 54–

56, 59, 61, 63, 64].

Bias in data have been looked at for a long time in statistical

community [49] but social data presents different challenges [17,

18, 26, 40, 50]. The diversity and representativeness of data have

been widely studied [27], in fields such as social science [19, 24, 57],

political science [62], and information retrieval [5]. Related work

also includes [46–48] that aim to identify the largest empty hyper-

rectangles in a dataset. To do so, they sequentially add data points to

the region and cut the empty regions containing them in two smaller

ones. The notion of coverage over low-dimensional categorical

attributes has been proposed in [13, 38, 45]. In particular, uncovered

regions are identified in form of value combinations (e.g. Hispanic

Females) called patterns. A pattern is uncovered if there are less than

k samples matching it. [22] analyzes the training set coverage of the

protected attribute contributing to machine learning discrimination.

Still, to the best of our knowledge, our paper is the first to extend

the notion of coverage to continuous-valued attributes.

The techniques proposed in this paper heavily rely on the exten-

sive research and advanced algorithms for voronoi diagrams [14–

16, 20, 29–31, 42] and approximation geometric algorithms [34].

8 EXTENSIONS AND FUTUREWORK

Combination of continuous and discrete attributes: In this

paper, we so far assumed all attributes ordinal and normalized in the

range [0, 1]. Extending our notion of coverage to a mix of ordinal

and non-ordinal attributes requires defining a proper notion of

distance in away that “neighborhood” becomesmeaningful.We rely

on existing work for such extension. In particular, [6, 36] defined

a distance measure by combining the square Euclidean distance

for numeric variables and simple matching distance for categorical

variables. Similarly, a generalized distance measure to combine

numeric, categorical, and binary attributes has been proposed in

[35]. After defining the distance function, Definitions 1 and 2, as

well as the MD algorithms in § 4, naturally extend. The extension

of the 2D algorithm, however, depends on the complexity and the

existence proper k-Voronoi diagrams for the new distance measure.

Further investigation, in future work, may find more improvements.

High dimensional coverage: As reflected in Theorem 3, due to

the curse of dimensionality, the MD algorithm proposed in this

paper may not scale to very high dimensions. Still, we note that it is

popular for such cases to first apply dimension reduction techniques

such as PCA. We leave algorithm design for high dimensional cases

for future work.

Coverage improvement: In this paper we proposed the notion of

coverage over ordinal attributes and proposed algorithms to identify

the uncovered region. An interesting question for future work is

how to effectively mitigate this lack of coverage when acquiring

labeled data is expensive.

9 CONCLUSION

Good data preparation is central to getting good results from AI

and data science. Ensuring adequate coverage of feature space in

the training data is one important aspect of good data preparation.

Coverage has previously been studied only in discrete categorical

feature spaces. In this paper, we showed how to think about cover-

age in continuous space, and developed efficient algorithms both

to identify poorly covered regions of space at model learning time

and to issue warnings of poor coverage when appropriate at query

time. We believe addressing such problems is central to data science

and AI, and are among the many contributions data management

experts can make to these fields.

10 ACKNOWLEDGEMENTS

Abolfazl Asudeh was supported in part by Google Research Scholar

Award. H. V. Jagadish was supported in part by NSF grants No.

1741022 and 1934565.

REFERENCES
[1] [n. d.]. COMPAS Recidivism Risk Score Data and Analysis. www.propublica.org/

datastore/dataset/compas-recidivism-risk-score-data-and-analysis.
[2] [n. d.]. NBA players statistics. www.databasebasketball.com/. Accessed: 2016.
[3] [n. d.]. US Department of Transportation. www.transtats.bts.gov/DL_SelectFields.

asp?. Accessed: 2018.
[4] Pankaj K Agarwal, Mark De Berg, Jirí Matousek, and Otfried Schwarzkopf. 1998.

Constructing levels in arrangements and higher order Voronoi diagrams. SIAM
journal on computing 27, 3 (1998), 654–667.

[5] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.
Diversifying search results. InWSDM. ACM, 5–14.

[6] Amir Ahmad and Lipika Dey. 2007. A k-mean clustering algorithm for mixed
numeric and categorical data. Data & Knowledge Engineering 63, 2 (2007), 503–
527.

[7] Matthew Arnold, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep
Mehta, A Mojsilović, Ravi Nair, K Natesan Ramamurthy, Alexandra Olteanu,
David Piorkowski, et al. 2019. FactSheets: Increasing trust in AI services through
supplier’s declarations of conformity. IBM Journal of Research and Development
63, 4/5 (2019), 6–1.

[8] Abolfazl Asudeh. 2021. Enabling Responsible Data Science in Practice. ACM
SIGMOD Blog (January 2021).

[9] Abolfazl Asudeh, HV Jagadish, Gerome Miklau, and Julia Stoyanovich. 2018.
On obtaining stable rankings. Proceedings of the VLDB Endowment 12, 3 (2018),
237–250.

[10] Abolfazl Asudeh, HV Jagadish, Gerome Miklau, and Julia Stoyanovich. 2019. On
Obtaining Stable Rankings. PVLDB 12, 3 (2019).

[11] Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and Gautam Das. 2019. De-
signing fair ranking schemes. In SIGMOD. 1259–1276.

[12] Abolfazl Asudeh and H. V. Jagadish. 2020. Fairly evaluating and scoring items in
a data set. PVLDB 13, 12 (2020), 3445–3448.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

140

www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
www.transtats.bts.gov/DL_SelectFields.asp?
www.transtats.bts.gov/DL_SelectFields.asp?

[13] Abolfazl Asudeh, Zhongjun Jin, and HV Jagadish. 2019. Assessing and remedying
coverage for a given dataset. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE). IEEE, 554–565.

[14] Franz Aurenhammer. 1991. Voronoi diagrams-a survey of a fundamental geomet-
ric data structure. ACM Computing Surveys (CSUR) 23, 3 (1991), 345–405.

[15] Franz Aurenhammer and Rolf Klein. 2000. Voronoi diagrams. Handbook of
computational geometry 5, 10 (2000), 201–290.

[16] Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. 2013. Voronoi diagrams and
Delaunay triangulations. World Scientific Publishing Company.

[17] Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2019. Fairness and machine
learning: Limitations and opportunities. fairmlbook.org.

[18] Solon Barocas and Andrew D Selbst. 2016. Big data’s disparate impact. Calif. L.
Rev. 104 (2016), 671.

[19] Ellen Berrey. 2015. The enigma of diversity: The language of race and the limits of
racial justice. University of Chicago Press.

[20] Cecilia Bohler, Panagiotis Cheilaris, Rolf Klein, Chih-Hung Liu, Evanthia Pa-
padopoulou, and Maksym Zavershynskyi. 2013. On the complexity of higher
order abstract Voronoi diagrams. In International Colloquium on Automata, Lan-
guages, and Programming. Springer, 208–219.

[21] Bernard Chazelle and Herbert Edelsbrunner. 1987. An improved algorithm for
constructing kth-order Voronoi diagrams. IEEE Trans. Comput. 100, 11 (1987),
1349–1354.

[22] Irene Chen, Fredrik D Johansson, and David Sontag. 2018. Why is my classifier
discriminatory?. In NeurIPS. 3539–3550.

[23] Jeffrey Dastin. 2018. Amazon scraps secret AI recruiting tool that showed bias
against women. San Fransico, CA: Reuters. Retrieved on October 9 (2018), 2018.

[24] Frank Dobbin and Alexandra Kalev. 2016. Why diversity programs fail and what
works better. Harvard Business Review 94, 7-8 (2016), 52–60.

[25] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. 2018. Explainable artificial
intelligence: A survey. In MIPRO. IEEE, 0210–0215.

[26] Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. 2017.
Diversity in big data: A review. Big data 5, 2 (2017), 73–84.

[27] Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. 2017.
Diversity in big data: A review. Big data 5, 2 (2017).

[28] Herbert Edelsbrunner, Nany Hasan, Raimund Seidel, and Xiao Jun Shen. 1989.
Circles through two points that always enclose many points. Geometriae Dedicata
32, 1 (1989), 1–12.

[29] Herbert Edelsbrunner and Raimund Seidel. 1986. Voronoi diagrams and arrange-
ments. Discrete & Computational Geometry 1, 1 (1986), 25–44.

[30] Steven Fortune. 1987. A sweepline algorithm for Voronoi diagrams. Algorithmica
2, 1-4 (1987), 153.

[31] Steven Fortune. 1995. Voronoi diagrams and Delaunay triangulations. In Com-
puting in Euclidean geometry. World Scientific, 225–265.

[32] Lise Getoor. 2019. Responsible Data Science. In SIGMOD.
[33] Yifan Guan, Abolfazl Asudeh, Pranav Mayuram, HV Jagadish, Julia Stoyanovich,

Gerome Miklau, and Gautam Das. 2019. Mithraranking: A system for responsible
ranking design. In SIGMOD. 1913–1916.

[34] Sariel Har-Peled. 2011. Geometric approximation algorithms. Number 173. Ameri-
can Mathematical Soc.

[35] Sandhya Harikumar and PV Surya. 2015. K-medoid clustering for heterogeneous
datasets. Procedia Computer Science 70 (2015), 226–237.

[36] Zhexue Huang. 1997. Clustering large data sets with mixed numeric and categor-
ical values. In Proceedings of the 1st pacific-asia conference on knowledge discovery
and data mining,(PAKDD). Citeseer, 21–34.

[37] HV Jagadish, Francesco Bonchi, Tina Eliassi-Rad, Lise Getoor, Krishna Gummadi,
and Julia Stoyanovich. 2019. The Responsibility Challenge for Data. In SIGMOD.
412–414.

[38] Zhongjun Jin, Mengjing Xu, Chenkai Sun, Abolfazl Asudeh, and HV Jagadish.
2020. MithraCoverage: A System for Investigating Population Bias for Intersec-
tional Fairness. In Proceedings of the 2020 ACM SIGMOD International Conference

on Management of Data. 2721–2724.
[39] Manohar Kaul, Bin Yang, and Christian S Jensen. 2013. Building accurate 3d

spatial networks to enable next generation intelligent transportation systems. In
2013 IEEE 14th International Conference on Mobile Data Management, Vol. 1. IEEE,
137–146.

[40] Jon Kleinberg. 2019. Fairness, Rankings, and Behavioral Biases. FAT*.
[41] Caitlin Kuhlman and Elke Rundensteiner. 2020. Rank aggregation algorithms for

fair consensus. PVLDB 13, 12 (2020), 2706–2719.
[42] Der-Tsai Lee. 1982. On k-nearest neighbor Voronoi diagrams in the plane. IEEE

transactions on computers 100, 6 (1982), 478–487.
[43] Jerry Zheng Li. 2018. Principled approaches to robust machine learning and beyond.

Ph.D. Dissertation. Massachusetts Institute of Technology.
[44] Shengqiao Li. 2011. Concise formulas for the area and volume of a hyperspherical

cap. Asian Journal of Mathematics and Statistics 4, 1 (2011), 66–70.
[45] Yin Lin, Yifan Guan, Abolfazl Asudeh, and HV Jagadish. 2020. Identifying insuffi-

cient data coverage in databases with multiple relations. Proceedings of the VLDB
Endowment 13, 12 (2020), 2229–2242.

[46] Bing Liu, Wynne Hsu, and Shu Chen. 1997. Using General Impressions to Analyze
Discovered Classification Rules. In KDD. 31–36.

[47] Bing Liu, Liang-Ping Ku, and Wynne Hsu. 1997. Discovering interesting holes in
data. In IJCAI. Springer, 930–935.

[48] Elsa Loekito and James Bailey. 2006. Fast mining of high dimensional expressive
contrast patterns using zero-suppressed binary decision diagrams. In SIGKDD.
ACM, 307–316.

[49] Jerzy Neyman and Egon Sharpe Pearson. 1936. Contributions to the theory of
testing statistical hypotheses. Statistical Research Memoirs (1936).

[50] Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kiciman. 2019.
Social data: Biases, methodological pitfalls, and ethical boundaries. Frontiers in
Big Data 2 (2019), 13.

[51] Chicago Data Portal. [n. d.]. Food Inspections Dataset. https:
//data.cityofchicago.org/Health-Human-Services/Food-Inspections-1-1-
2010-6-30-2018/puke-h9vk. Accessed: 2016.

[52] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135–1144.

[53] Lior Rokach and Oded Maimon. 2005. Top-down induction of decision trees
classifiers-a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 35, 4 (2005), 476–487.

[54] Babak Salimi, Bill Howe, and Dan Suciu. 2020. Database Repair Meets Algorithmic
Fairness. ACM SIGMOD Record 49, 1 (2020), 34–41.

[55] Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. 2019. Interventional
fairness: Causal database repair for algorithmic fairness. In SIGMOD. 793–810.

[56] Nihar B Shah and Zachary Lipton. 2020. SIGMOD 2020 Tutorial on Fairness and
Bias in Peer Review and Other Sociotechnical Intelligent Systems. In SIGMOD.
2637–2640.

[57] Edward H Simpson. 1949. Measurement of diversity. Nature 163, 4148 (1949).
[58] Julia Stoyanovich and Bill Howe. 2019. Nutritional Labels for Data and Models.

IEEE Data Eng. Bull. 42, 3 (2019), 13–23.
[59] Julia Stoyanovich, Bill Howe, and HV Jagadish. 2020. Responsible data manage-

ment. PVLDB 13, 12 (2020), 3474–3488.
[60] Seymour Sudman. 1976. Applied sampling. Academic Press New York (1976).
[61] Chenkai Sun, Abolfazl Asudeh, HV Jagadish, Bill Howe, and Julia Stoyanovich.

2019. Mithralabel: Flexible dataset nutritional labels for responsible data science.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. 2893–2896.

[62] James Surowiecki. 2005. The wisdom of crowds. Anchor.
[63] Suresh Venkatasubramanian. 2019. Algorithmic fairness: Measures, methods and

representations. In PODS. 481–481.
[64] Ke Yang, Julia Stoyanovich, Abolfazl Asudeh, Bill Howe, HV Jagadish, andGerome

Miklau. 2018. A nutritional label for rankings. In SIGMOD. 1773–1776.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

141

fairmlbook.org
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections-1-1-2010-6-30-2018/puke-h9vk
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections-1-1-2010-6-30-2018/puke-h9vk
https://data.cityofchicago.org/Health-Human-Services/Food-Inspections-1-1-2010-6-30-2018/puke-h9vk

	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Data Model
	2.2 Coverage Model
	2.3 Problem Formulation

	3 Two Dimensional Coverage
	3.1 Review: k-th Order Voronoi Diagrams
	3.2 Discovering the Uncovered Region
	3.3 Query Answering

	4 Multi-Dimensional Coverage
	4.1 Approximating the Uncovered Region
	4.2 Reporting the Uncovered Region in MD
	4.3 Query Answering

	5 Tuning the Parameters and k
	5.1 Absolute Choice Principle
	5.2 Sensitive Region Analysis

	6 Experiments
	6.1 Experiments Setup
	6.2 Proof of Concept
	6.3 Performance Evaluation

	7 Related Work
	8 Extensions and Future Work
	9 Conclusion
	10 Acknowledgements
	References

