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ABSTRACT

Influence maximization has been studied extensively from the per-
spective of the influencer. However, the influencer typically pur-
chases influence from a provider, for example in the form of pur-
chased advertising. In this paper, we study the problem from the
perspective of the influence provider. Specifically, we focus on in-
fluence providers who sell Out-of-Home (OOH) advertising on
billboards. Given a set of requests from influencers, how should an
influence provider allocate resources to minimize regret, whether
due to forgone revenue from influencers whose needs were not met
or due to over-provisioning of resources to meet the needs of influ-
encers? We formalize this as the Minimizing Regret for the OOH
Advertising Market problem (MROAM). We show that MROAM
is both NP-hard and NP-hard to approximate within any constant
factor. The regret function is neither monotone nor submodular,
which renders any straightforward greedy approach ineffective.
Therefore, we propose a randomized local search framework with
two neighborhood search strategies, and prove that one of them
ensures an approximation factor to a dual problem of MROAM.
Experiments on real-world user movement and billboard datasets
in New York City and Singapore show that on average our methods
outperform the baselines in effectiveness by five times.
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1 INTRODUCTION

Influence Maximization (IM) has been studied extensively [17]. A
typical problem setting is to maximize the influence subject to limits
on the expenditure or the number of seeded nodes. In a marketplace,
if customers request influence, they purchase it from some influence
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provider; the provider performs the services to provide influence
and earn profits. Most, if not all, existing literatures related to IM
study the problem from the perspective of a customer who requests
certain influence. Different from existing work, we investigate the
problem from the perspective of influence provider and aim to
maximize the influence provider’s profit. In the rest of this paper,
we use the following terms interchangeably: host and influence
provider; advertiser and customer.

Since the host-based optimization is much harder than that of the
advertiser, as we will demonstrate shortly, we strategically choose a
straightforward influence model, without follow-on network effects.
For concreteness, we describe our problem under the Out-of-Home
(OOH) advertising scenario, which has been studied extensively in
recent literatures [19, 24, 26, 27, 29]. The general applicability of
our problem will be illustrated later in this section.

Our Observation. Existing studies in the OOH scenario all share a
common objective: to help the single advertiser achieve the largest
influence under her budget constraint. However, a more challeng-
ing yet unexplored problem, as confirmed from real-world OOH
hosts [3, 13, 16], has the following setting: the host needs to deal
with multiple advertisers coming every day. It is a standard practice
for each advertiser to submit a campaign proposal to the host by
specifying a demanded influence and a corresponding committed
payment that will be fully paid only if her demand is achieved.

Our Problem. Motivated by this observation, we propose and
study the ad allocation problem from the host’s perspective, who is
responsible for assigning billboards to all advertisers. The host owns
large number of billboards, each with known influence, and each
advertiser seeks a subset of the billboards with aggregate influence
reaching her demand. The host gains the maximum payment if all
advertisers are satisfied. By following this rationale, we propose a
novel “regret” model to guide the host in assigning billboards to
advertisers. In particular, there are two types of regret that affect
profit, namely revenue regret and excessive influence regret. The
former case arises when the host cannot meet the demand of an
advertiser, while the latter case arises when the host overly satisfies
an advertiser. Note that both undesirable cases are independent and
they could occur together, as we present in Example 1.

ExXAMPLE 1. A host owns six billboards U = {o1, -+ ,06}, and
I(0;) indicates the influence of the billboard o;, as reported in Table 1.
Three advertisers, A = {a1, az, as}, approach the host for advertise-
ment services, with each requesting her demanded influence I and
the payment L she is willing to pay if the demand is satisfied, as listed
in Table 2. To serve these advertisers, the host needs to deploy a set of
billboards S; to each advertiser to satisfy her demand. Let us consider
two different deployment strategies, as shown in Table 3 and Table 4,
respectively. Strategy 1 fails to satisfy the advertiser a3 and hence the
host cannot collect the full payment from as. Besides, the host wastes

*Zhifeng Bao is the corresponding author.
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Table 1: Billboard Influence Table 2: Advertiser Contract

Uu 01| 02| 03| 04| 05/ 0g A | a | az | as
Ion 2|63 |7 11 I, |5 |7 |8
L; | $10] $11| $20

Table 3: Strategy 1 Table 4: Strategy 2

A a | ay| a3 A a; a | as

Si 02 04 | 01, 03,05, 0¢ Si 01,03| 04 | 02,05,0¢
Satisfy Y |Y|N Satisfy Y Y |Y
I(S)-I; | 1 0 | -1 I(S)-I; | 0 0|0

certain resources as S1 assigned to ay has its influence exceeding that
demanded by a1 . Ideally, the assigned billboards are expected to just
satisfy, but not exceed, the advertisers’ demanded influences, as the
exceeded influences could be assigned to other advertisers to bring in
additional revenues. Therefore, Strategy 2 is better.

Note that the host may suffer from revenue regret without any
excessive influence regret (for example, if 0, had an influence of 5
instead of 6 in strategy 2), or suffer from excessive influence regret
without revenue regret (for example, if o5 had an influence value of 2
instead of 1 in both strategies 1 and 2). Furthermore, to simplify our
illustration, here we calculate I(S) by simply aggregating I(o;), while
in the real case, how to calculate I(S) depends on concrete applications.

To this end, we formulate it as the Minimizing Regret for the
OOH Advertising Market (MROAM) problem.

Hardness. We prove that MROAM is not only NP-hard but also
NP-hard to approximate within any constant factor by using a
reduction from the numerical 3-dimensional matching problem [8].

Our Solutions. Since MROAM is not tractable in general, we pro-
pose four heuristic methods by providing end-users with different
levels of a trade-off between the efficiency and the regret value
to achieve. The first two are greedy methods as baselines, where
we assign the billboards based on a descending order of either the
budget-effectiveness of advertisers or the regret-effectiveness of
billboards. Without surprise, the greedy methods may produce a
poor local minimum because the objective function of MROAM is
non-monotone and non-submodular. To avoid the local minimum,
we propose a randomized local search framework that iteratively
samples a deployment plan and then performs a local search from
the sampled plan until no further improvement could be achieved.
In particular, it offers two local search methods: (1) advertiser-driven
local search, and (2) billboard-driven local search. The former tries
to exchange the set of billboards of one advertiser with the set of
billboards of another advertiser. The latter performs a fine-grained
search by examining whether any swap of two billboards can lead
to a better solution. We also prove that the billboard-driven method
guarantees an approximation factor to a dual problem of MROAM.

Empirical Evaluation. We use two real datasets to study how our
methods behave w.r.t. audiences of two different transport modes.
One dataset consists of taxi trips and roadside billboards in New
York City, while the other consists of bus trips and bus stop bill-
boards in Singapore. We also design the concept of demand-supply
ratio and average-individual demand ratio to set up the demand at
the macro-level (e.g., from low to excessive global demand) and
micro-level (e.g., big vs. small advertiser), respectively, which in
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turn well-capture a wide range of real scenarios. Last, we report
the evaluation results as well as insights on how and why different
deployment strategies would benefit the host in practice.

General Applicability. The regret formulation proposed in this
paper is applicable to many other scenarios where a company has to
provision resources to meet customer needs. If the company provi-
sions insufficient resources, it is unable to meet all customer needs;
if it provisions excessive resources, it wastes valuable resources.
The resources could be trucks for a logistics company, store loca-
tions for a large retail chain, or workers or staff at a temp agency.
The exact optimization function could differ slightly, based on spe-
cific application needs. However, we believe that the techniques
developed in this paper are applicable for different needs, with
appropriate minor modifications. For instance, in the telecommuni-
cation marketing [22], the host owns telecommunication towers
and mobile operators renting towers play the role of advertisers,
where the demand of an operator is the number of customers ac-
cessing its network. The regret occurs if the host provides excessive
or insufficient networking capability to the operator.

Main Contributions. First, we define a regret minimization frame-
work for the host. Specifically, we study billboard placement from
the host’s perspective when dealing with multiple advertisers,
which we call Minimizing Regret for OOH Advertising Market
(MROAM) (Section 3). Second, we prove that MROAM is not only
NP-hard but also NP-hard to approximate within a constant factor
(Section 4). Third, we design two greedy methods. The first one
satisfies advertisers based on the effective budget, while the sec-
ond one treats each advertiser equally and assigns billboards to
all advertisers synchronously (Section 5). Fourth, as these greedy
heuristics can fall into a poor local minimum, we propose a ran-
domized local search framework to cater to end-users with different
requirements on the trade-off between efficiency and quality of
the deployment strategies. We prove that one local search method
guarantees an approximation factor to a dual problem of MROAM
(Section 6). Finally, we design a novel setup to exhibit various
real-world demand-supply relationships, and conduct extensive
experiments on two real-world billboard and trajectory datasets
to verify the effectiveness and the efficiency of our methods over
different marketing conditions and transport modes (Section 7).

2 RELATED WORK

2.1 Regret Minimization in SVM

In the Social Viral Marketing (SVM) scenario, the host, such as
Twitter and Facebook, provides a service of promoting the influence
of ads on the social network to get payments from advertisers. It
adopts a cost per engagement (CPE) business model 7, 12, 23], where
the advertiser will pay the host for each click received by its ad.
Several studies on SVM [1, 2, 4] have been proposed recently.
The most relevant one [2] tries to minimize the regret of the host,
where unsatisfied or over-satisfied advertisers cause regrets. Each
advertiser specifies a demanded influence. For the unsatisfied case,
the advertiser only pays for the achieved influence; if the achieved
influence exceeds the demand, the advertiser does not pay for the
excessive influence. Consequently, both the underachieved pay-
ment from an advertiser and the excessive influence offered to
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an advertiser contribute to the regret of the host. The other two
studies [1, 4] aim to maximize the revenue under CPE model. The
revenue is defined as the sum of payments from advertisers, where
the payment of each advertiser is the sum of CPE of activated nodes.

There are two main differences between SVM and our MROAM.
(1) Business models: Unlike the CPE model adopted in SVM, in
MROAM the host could receive a substantially reduced payment,
and possibly even no payment at all if the demanded influence is
not achieved. (2) Influence models: In MROAM, the geographical
properties of billboards and users are utilized to build the influence
relationship—-a billboard influences all users who can “meet” that
billboard (i.e., users and billboards are geographically close enough
to each other), and the influence does not diffuse among users [26,
27, 29]. In contrast, regret minimization in SVM [2] is based on
diffusible and probabilistic models such as the Independent Cascade
model and the Linear Threshold model [5, 6, 9, 11, 14], under which
the ad will diffuse from one user to another following a probability.
Consequently, literatures in SVM mainly focus on how to efficiently
and accurately evaluate the node’s influence in a virtual social
network. Given the above, the respective optimization problems
under these two settings are fundamentally different.

2.2 OOH Influence Maximization

With an unprecedented increase in the availability and collection of
trajectory data [25], recent studies [26, 27, 29] initiate the problem
of maximizing the influence in OOH advertising. Although they
adopt slightly different influence measurements to cover different
business needs, they both stand in the advertiser’s shoes and share
a common goal of maximizing the influence for a single advertiser.
In particular, a billboard is considered to influence an audience only
if this billboard is close enough to the trajectory that this audience
travels along. To be more specific, the studies [26, 27] adopt the
traffic volume (with influence overlap considered). To avoid double-
counting the same user that may meet multiple billboards posting
the same ad; the study [29] considers the impression count (the
times that a user meets the same ad) to trigger an influence flag.

A major difference between this category of work and our work
is on the objectives to be served. In this work, we serve the host who
deals with multiple advertisers to minimize the “loss” of the host
and meanwhile provide “just-the-right” amount of influence to meet
all advertisers’ demands, while they simply focus on maximizing
the influence for a single advertiser.

There are also some loosely related studies. In [10, 18, 28], visual-
ization tools are designed to help an advertiser to select billboards.
The authors in [15] try to extract meaningful data from social media
and use them to improve the influence of targeted OOH advertising.

3 PROBLEM FORMULATION

3.1 Preliminaries

Billboard Influence. Given a billboards set S;, their influence
is denoted by I(S;). As reported in a recent work art [26], I(S;)
can be measured in various ways. We adopt the same influence
measurement as [26]. To avoid distracting the readers, we will
present details on measuring I(S;) later in Section 7.1.2. Note that
our approaches are orthogonal to the choices of measurements.
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Advertiser. Given an advertiser set A = {a1, ay, - - ,a|ﬂ|}, each
advertiser a; submits a campaign proposal to the host for deploy-
ing her ads. The proposal contains a payment L; and a minimum
demanded influence J; for a;.

3.2 Problem Definition

Without loss of generality, we argue that a regret model should
cater for the following two cases.

Case 1: Revenue Regret. The host can receive the full payment L;
from an advertiser a; only if the host assigns a billboard set S; that
meets her demand qg;.7;. Otherwise (i.e., a;.Z; > I(S;)), the host will
only receive partial payment and hence suffer from a revenue loss.

Case 2: Excessive Influence Regret. When the achieved influence
exceeds this advertiser’s demand (i.e., I(S;) > a;.Z;), the host does
not receive any additional payment. In this case, the host would
rather use such excessive influences to fulfill requests from other
advertisers. Hence, it renders an opportunity cost (i.e., excessive
influence regret) of the current plan, which is defined as L; - %
Regret Model. Following the above, we formulate the regret model
for the host to assign a billboard set S; to an advertiser a; as

Li(1- 13
R(S:) ={ syt
L; - ==

1

if a;.0; > 1(S;)

otherwise

(1)

where I(S;)/7; is the fraction of satisfied influence by required
influence, and y is the penalty ratio due to the unsatisfied demand.
When y = 1, the host can receive the fraction of payment as the
same fraction of influence that has been satisfied (i.e., I(S;)/Z;
); when y = 0, the host cannot receive any payment unless the
required influence is fully satisfied. The choice of y is orthogonal
to our problem. For more details on the selection of y, please refer
to the experiments reported in Section 7.4.
Finally, we are ready to present the MROAM problem.

DEFINITION 3.1. (MROAM.) Given a billboard database U, a
trajectory database T, and an advertiser set A, the goal of MROAM
is to find a billboard deployment strategy S = {S1,....S| A} for all
advertisers, which can minimize the total regret of the host, such that
each billboard is only assigned to at most one advertiser. Formally:

Z R(S;), subjectto: S;NS; =0

argmin R(S) =
S Si€s

Discussion. First, the problem of revenue maximization is actually
a subclass of regret minimization. Generally, the revenue is defined
as the income [1, 4]. In the unsatisfied case, the regret is the ‘lost’
revenue. In the over-satisfied case, the regret can essentially capture
the ‘free services’ provided by the host. Unfortunately, free services
cannot be captured by the revenue at all. Second, since the billboard
cost is a fixed portion in both satisfied and unsatisfied cases, we do
not incorporate it in the regret function, and it does not affect our
solution no matter whether the cost is considered or not. Last, the
billboard can be a digital one, where we treat each digital billboard
as “multiple billboards”, one for a certain time slot.

4 PROBLEM HARDNESS

In this section, we conduct a theoretical analysis on the hardness
of the MROAM problem.
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THEOREM 1. MROAM is NP-hard, and is NP-hard to approximate
within any constant factor.

We use a reduction from the numerical 3-dimensional matching
(N3DM) problem [8] to prove the hardness of MROAM. Let b denote
abound and X, Y and Z denote three multisets of integers respec-
tively, each containing n elements. The N3DM is a decision problem
that asks whether there is a matching relation M of X X Y X Z such
that every integer in X, Y and Z occurs exactly once, and for every
triple (x;j, yi, zi) € M, we have x; + y; + z; = b hold. This problem
is known to be NP-complete. It is noted that the matching exists
onlyifb=(XX+XY+>YZ)/n

We reduce the N3DM decision problem to MROAM with the
following process:

(1) Set the number of billboards in U to be 3n. Set the number

of advertisers in A to be n. Set y = 0.
(2) We divide billboards into three disjoint sets D1, D2 and D3

equally, and map each element in X, Y and Z in the N3DM
problem to a billboard of the three sets. Then, |X| = |Y| =
|Z| = n,|D1| = |D2| = |Ds3| = n,and b = (X X+ X Y+, Z)/n.

(3) For each billboard o; € U, let o; influence a disjoint set of
trajectories. The influence of o; is set as the integer value of
the corresponding element in the N3DM. To facilitate proofs,
we use 0; to denote its influence in this section only.

(4) Let c be a large number. We revise the influence value of all
billboards as Yo; € Dy,0; <= c+0;j,Yo; € D3,0j < 3-c+o0j,
and Yoy € Ds3,0p < 9 - ¢ + of. After the revision, we set the
demanded influence of all advertisers to be 7; = b + 13 - c.
Note that, when ¢ — oo, the minimum regret value 0 is
achieved for the above setting only if for all S; € S, S;
{(0i,05,0¢)|0i € D1,0j € Da,0f € D3}.

Clearly, the reduction can be done in polynomial time. Next, we
are ready to prove the hardness of MROAM.

Proor. We show that the answer to the MROAM decision prob-
lem is YES (if the minimum regret value is zero) if and only if the
answer to the N3DM decision problem is YES.

The If Direction. When the answer to the MROAM decision prob-
lem is YES, there must exist S such that R(S) = 0. This implies that
for every billboard set S; € S, R(S;) = 0,1i.e., Z; = I(S;). It is because
(1) I(D1 U D2 U D3) = ¥s,es1(Si), and (2) for 1 < i < j < n,
I; = 1;.If for any billboard set S; € S, I(S;) > 7;, then there must
exist at least one billboard set S; where I(Sj) < I}, which implies
R(S;) > 0. Since each element x; € X, y; € Y and z; € Z is mapped
to the influence value of the corresponding billboard, for each triple
(xi,yivzi) €M, (xi+yi+zi) =I1(Si) —13-¢c=1; —13-c=b. Asa
result, the answer to the N3DM decision problem is YES.
The Only-if Direction. When the answer to the N3DM decision
problem is YES, there must exist M € X X Y X Z such that, for all
(xi, yi, zi) € M, (xj + y; + z;) = b. Since the value of each x;, yj, z;
is mapped to the influence value of the corresponding billboard, for
the corresponding billboard set S; € S, I(S;) = b+ 13- ¢ = 1;. We
have R(S) = 0 as R(S;) = 0 for all S; € S. Hence the answer to the
decision problem of MROAM is YES.

Based on the above arguments, the N3DM decision problem is
equivalent to deciding whether there is a billboard deployment
strategy to achieve zero regret. Since the N3DM decision problem
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Algorithm 1: Budget-Effective Greedy

Input: U, 7, A
Output: S

11 Order each advertiser a; € A based on descending order of L;/;

12 Initialize S « {Sy, ..., |7 }

13 foreach a; € A do

while U # 0 A I; > I(S;) do
Select o € U that maximizes
Si « SiU {o}
U — U\ {o}

14
R(Si)-R(S;U{o})

13 T({o})

1.6
1.7

18 return S

is NP-complete, the decision problem of MROAM is NP-complete,
and the optimization problem is NP-hard, even if |77| is restricted
to be the number of polynomial value |U/]|.

Approximation Hardness. We next show: if MROAM can be ap-
proximated with any factor in polynomial time, then the N3DM
decision problem can be solved in polynomial time. Let OPT,, de-
note the number of triples whose summations are not b in N3DM.
Let OPT,, denote the instance of MROAM to which the N3DM
problem matching is reduced. We can conclude OPT,, = 0 if and
only if OPT,;, = 0. Suppose ALG is an algorithm that approximates
MROAM within a factor of 7. Then, the minimum R(S) achieved
by ALG on any instance of MROAM is smaller than 7 - OPT,,,
ie., R(S) < r- OPTy,. Hence, when OPT,, = OPT,, = 0, we have
R(S) = 0; when OPT,, # 0, we have R(S) > OPT,, > 0. Based on
the above, we can solve N3DM within polynomial time by checking
whether R(S) = 0, which is impossible unless NP=P. Hence, it is
NP-hard to approximate MROAM within any constant factor. 0O

5 TWO GREEDY HEURISTICS

The hardness of MROAM implies that efficient algorithms with the-
oretical guarantee w.r.t. the optimal regret do not exist unless NP=P.
Given its hardness, we first propose an efficient greedy heuristic
that orders the advertisers based on their budget-effectiveness, and
then prioritizes more budget-effective ones in the deployment (Sec-
tion 5.1). However, as all ideal billboards will likely be assigned to
a few budget-effective advertisers, advertisers with lower budget-
effectiveness might be unsatisfied due to lack of ideal billboards.
Hence, we propose an improved greedy heuristic by deploying ideal
billboards to all advertisers synchronously (Section 5.2).

5.1 Budget-effective Greedy

Algorithm 1 is an efficient greedy heuristic. In Line 1.1, we order
all advertisers by their budget-effectiveness L;/7;, (i.e., budget over
demand). Then, we initialize an empty set of billboard sets for
each advertiser (Line 1.2). Next, a greedy heuristic is employed
to keep assigning the billboard that can best reduce the regret
(i.e., maximizing (R(S;) — R(S; U {0}))/I({0})) to fulfill the next
budget-effective advertiser a; (Lines 1.3-1.7). After all advertisers
are satisfied or the host runs out of billboards, the billboard sets S
will be returned (Line 1.8).

5.2 Synchronous Greedy

The above greedy method may fall into a trap where most of the
ideal billboards are exhausted first. Subsequently, the rest of the
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Algorithm 2: Synchronous Greedy

Algorithm 3: Randomized Local Search

Input: U, T, A,S™ (S = {Si", ., Sli;l\ )
Output: S
21 S « Sin

2.2 while TRUE do

23 foreach a; € A do

24 if 7; > I(S;) then

2.5 if U + 0 then

2.6 Select 0 € U that maximizes W
2.7 Si — SiU{o}

2.8 U — U\ {o}

2.9 if more than two a; € A are not satisfied then

2.10 Release S; € S such that 7; > I(S;) and has minimum

Li/Z;

211 A — A\{a;}
2.12 else

2.13 ‘ return S

advertisers whose demands have not yet been satisfied may not
have ideal billboard deployment strategies. Therefore, we extend
Algorithm 1 by assigning ideal billboards to all advertisers syn-
chronously. In Lines 2.3-2.8, we assign one billboard that can maxi-
mize (R(S;) —R(S;U{o}))/I({o}) to each advertiser whose demand
has not been satisfied. During the iterations, if there is no more
billboard, we iteratively release billboards from the least budget-
effective advertiser a; (Line 2.10) and remove g; from A (Line 2.11),
until the billboards are enough for the rest of advertisers. Even-
tually, with the decrease of |A|, the while loop breaks as fewer
than two advertisers are unsatisfied (Line 2.13). In Algorithm 2,
the input sin = {Sin, e Sli’;l”}; Sf” denotes the billboards assigned
to advertiser g;. In this algorithm, $* is an empty set, but it is

non-empty when this algorithm is invoked as a routine by the local
search methods to be presented in Sections 6.

6 A LOCAL SEARCH FRAMEWORK

The greedy heuristic can generate results with a constant approxi-
mation ratio to the optimal solution only when the objective func-
tion is monotone and submodular. Unfortunately, the objective R(S)
of MROAM is neither monotone nor submodular, as shown in the
following counterexample.

ExXAMPLE 2. Given two billboard sets S1 and Sy, where I(S1) = 8
andI(Sy) =9, and S1 C Sy, and a billboard o1 such thatoy & S1 U Sz,
we assume I(S; U {o1}) =9 and I(Sy U {o1}) = 10. Now we have an
advertiser such that I =10 and L = 10. Obviously, R(S1) = 10 — 8y,
R(S1U{o1}) = 10-9y, R(S2) = 10 -9y, and R(S2 U{o}) = 0. Hence,
R(S1) = R(S1 U {01}) < R(Sz) — R(Sz2 U {01}). Let S; = Sz U {o1},
foranyoz ¢ S}, 1(S;U{oz2}) > 10. Hence, R(S; U {02}) > 0 = R(S}).
Therefore, the objective R(S) is neither monotone nor submodular.

As a result, Algorithm 2 can easily produce a poor local mini-
mum. To enhance the result quality, we introduce a local search
framework where two local search methods are designed to pro-
vide different levels of a trade-off between the quality of the result
and the efficiency of the search. In particular, we first propose
a randomized greedy heuristic with a local search strategy that
swaps deployment plans between advertisers (Section 6.1). We then

Input: U, 7, A
Output: SPest
31 Sbest «SynchronousGreedy(U, 7, A, 0)
32 while the number of iterations < a preset count do

33 U —U

34 for a; € Ado

35 S; « {arandom billboard 0 € U*}
3.6 U — U\ {o}

3.7 S «— {Sl,,S‘y{‘}
3.8 S* « SynchronousGreedy(U*, T, A, S)
3.9 S§¢€an « Advertiser-drivenLocalSearch(U*, T, S*)

3.10 if R(S¢9") < R(S?¢s?) then
3.11 ‘ sbest _ gecan

Sbest

3.12 return

introduce a fine-grained local search method that swaps the assign-
ments of billboards to enhance the solution quality (Section 6.2). We
also prove that our fine-grained local search method can provide
theoretical guarantees for a dual problem of MROAM (Section 6.3).

6.1 Advertiser-driven Local Search (ALS)

Our randomized local search strategy is presented in Algorithm 3.
In Line 3.1, we initialize the current best plan using the synchronous
greedy (i.e., Algorithm 2). Subsequently, we generate a number of
baseline plans (S* in Line 3.8 denotes a baseline plan) and execute
the local search starting from S* (Lines 3.2-3.9). In the following,
we explain how to generate a baseline plan S* and how to perform
a local search based on S™.

The generation of a baseline plan consists of two steps. First,
we randomly assign a billboard o to an advertiser (Lines 3.4-3.7).
In other words, we form a non-empty initial plan Sf” by assign-
ing a random billboard to each advertiser. Second, we execute the
greedy search developed previously (i.e., Algorithm 2) to assign the
remaining billboards to the advertisers. This two-step process is
expected to generate a baseline plan with a reasonable regret value,
and it incorporates probabilistic assignments to escape from a local
minimum. Note that, the input Sf" to Algorithm 2 is not empty.

For each generated baseline plan, we perform a local search to
explore its “neighborhood” search space by exchanging the set
of billboards assigned to one advertiser with the set of billboards
assigned to another advertiser. We name this local search strategy
as the advertiser-driven local search, and present it in Algorithm 4.
It iteratively selects a pair of advertisers and checks the two sets
of billboards assigned. If the exchange of the two sets of billboards
can lead to a smaller regret of S°", the exchange is executed and
sbest s replaced by S€4" (Lines 4.4-4.8). The local search terminates
once no further improvement can be achieved from any candidate
neighborhood plan.

6.2 Billboard-driven Local Search (BLS)

The advertiser-driven local search can escape a local minimum
when an advertiser occupies a large number of billboards. However,
releasing all the billboards allocated to an advertiser is a coarse-
grained optimization and could miss a potentially better solution,
as shown in the following example.
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Algorithm 4: Advertiser-driven Local Search (ALS)

Algorithm 5: Billboard-driven Local Search (BLS)

Input: U, 7, Sbest
Output: §Pest
41 while TRUE do

42 sean Sbest

43 foreach a; € A do

44 foreach a; € A\{a;} do

4.5 if Exchange S; with S; will reduce R(S°“") then
4.6 ‘ Exchange S; with S;

a7 if R(S°9™) < R(SP¢5¢) then

48 ‘ Sbest « gcan

4.9 else
4.10 ‘ return 5?est

ExAMPLE 3. Assume we have two advertisers a1 and ay, such that
1 =x,L1 =x,1) =x—1,and Ly = x — 1, where x > 3, and
three billboards 01, 02 and 03, where 01 influences {t1,- - ,tx—1}, 02
influences {t1,- - - , tx—2, tx}, and o3 influences {tx, tx+1}. Let S; =
{01,02} and Sz = {03} be two plans to serve two advertisers a; and
ay. Accordingly, we have I(S1) = x, and I(S2) = 2. The total regret
R(S) = R(S1) + R(S2) = x — 1 — 2y. Exchanging S1 with So will lead
to a larger regret R(S) = x + 1 — 2y. However, if we only exchange o1
with 03, then S1 = {02,03} and Sp = {o01}. Subsequently, I(S1) = x,
and I(Sz) = x — 1. Consequently, we are able to achieve a smaller
regret as R(S) = R(S1) + R(S2) = 0.

Motivated by this drawback, we propose a fine-grained local
search approach by only exchanging two billboards, instead of two
sets of billboards, at a time, as shown in Algorithm 5. In particu-
lar, given a current best billboard assignment Sb¢s?
the neighborhood search space around $?¢%! by performing the

following four moves as long as they could help reduce the regret.

, We examine

(1) Exchange a billboard assigned to an advertiser with another
billboard assigned to a different advertiser (Lines 5.4-5.6).

(2) Replace a billboard assigned to an advertiser with an unas-
signed billboard (Lines 5.7-5.8).

(3) Release a billboard assigned to an advertiser (Lines 5.9-5.10).

(4) Allocate unassigned billboards (Lines 5.11-5.13).

The local search terminates once no further improvement can
be achieved from the moves.

6.3 Theoretical Analysis

Since MROAM cannot be approximated by an efficient algorithm,
we rewire the minimum regret problem to a maximum revenue
problem to facilitate the proof on the approximation ratio. We show
that under the rewired problem, the billboard-driven local search
(BLS) method can achieve an approximation factor. We define the
rewired objective R’ = Y5, s R'(S;) as follows:

1(S:) .

L;- =%~ if a;.Z; > I(S;

R/(Si) _ i 7; -1 i-4i ( l) (2)
Li-Li- =—— otherwise

R’ mimics R as R(S;) = 0 iff R’(S;) = L;. Furthermore, R(S;) +
R’(S;) = L; for any I(S;). Thus, minimizing R and maximizing R are
dual problems when the demanded influence can be achieved. We
note that the rewired objective R’ remains to be neither monotone
nor submodular. Hence, we do not oversimplify the problem to
make the analysis easier.

Input: U, T, SPest
Output: SPest
51 while TRUE do

5.2 sean sbest
5.3 foreach S; € S°9" do
54 foreach S; € 54" \ S; do
5.5 if 3o,, € Si A op € Sj such that Exchange(om, o)
will decrease R(S°“™ ) then
5.6 ‘ Exchange(0,,, 05)
5.7 if 3o, € Si A 0, € U such that Exchange(o,, o) will
decrease R(S°4™) then
5.8 ‘ Exchange(om, 05)
5.9 if 3o, € S; such that releasing o,, will decrease R(S°*")
then
5.10 ‘ Release o0,, € S;
5.11 S « SynchronousGreedy(U, 7, A, S°4")
5.12 if R(S) < R(S°%"*) then
513 ‘ §ean  §
5.14 The same as Lines 4.7-4.10

Next, we analyze the approximation factor of BLS if the objective
is to maximize R’. To simplify the presentation, we study the case
for one advertiser but the analysis procedure can be easily extended
to support the case of multiple advertisers.

We define the local maximum obtained by BLS as the following:

DEFINITION 6.1. A deployment plan S is called a (1+r)-approximate
local maximum, if (1+r)R’(S) = R’(S\{o}) for any billboard o € S,
and (1+r)R’(S) > R’(SU {o}) foranyo ¢ S.

Next, we prove the following lemma to demonstrate the proper-
ties of the local maximum S obtained by BLS.

LEMMA 6.1. IfS is a (1 + r)-approximate local maximum, for any
deployment plan 'V,

RI(V) < max((1+r|’L[|),(l -1//)—‘"“‘) R'(S) 3)

where = max,cqq I({TOD denotes the ratio of the maximum influ-
ence of one billboard to the demanded influence of the advertiser.

ProOF. Let V. =V; C Vo C V3 C ... C Vi and V;\Vi—1 = {o;}.
Let us consider two cases: (a) I(S) < Z;and (b) I(S) > 1.

In case (a), if S € V, then we can always find V,; = S for some
a < k. There also exists a Vj, where a < b < k such that R’ (V) >
R’(V) and R’(V;) < R’(Vp) for all i < b. Further, we have R’ (V;) —
R'(Vi—1) < R'(SU{o0i}) —R'(S) < r-R/(S) fora < i < b. The first
inequality is due to the submodularity of the minimization part of
R’ whereas the second inequality is due to the local maximum of S.
By summing up the inequalities between indices a and b, we get
R’ (V)-R’(S) < r(b—a)R’(S).Hence,R’ (V) < [1+r(b-a)]R'(S) <
(1+r|U|)R’(S). Using a symmetric argument, we can also show
that R”(V) < (14 r|U|)R’(S) when V C S.

In case (b), if S C V, it is trivial to see that R’(V) < R’(S). If
VCSletV =V, CViyy C... CViyp =S Wehave R'(Vj—1) —
R’(V;) < ¢ - R’(Vi—1) and then lead to R’ (Vi—1) < (1 —¢)"'R"(V}),
for k < i < k + p. By recursively applying the inequalities between
indices k < i < k + p times, we have R’(V) = R'(V;) < (1 -
V) PR (Vi) < (1= 9) " IHIR (5).

By combining cases (a) and (b), we prove the lemma. O
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Table 5: Statistics of Datasets

|71 |U| | AvgDistance | AvgTravelTime
NYC | 1.7x10° | 1462 2.9km 569s
SG | 2.2x10° | 4092 4.2km 1342s

Given Lemma 6.1, we are now ready to prove the approximation
guarantee for BLS.

THEOREM 2. The BLS method returns an approximation factor of
p =max[(1+r|U|),(1- lﬁ)_‘w] for maximizing R’.

Proor. Consider an optimal plan OPT and let BLS swap bill-
boards only if the improvement ratio is r. If the algorithm termi-
nates, the set S obtained is a (1 + r)-approximate local maximum.
We have the following inequalities: p - R’(S) > p - R'(SU OPT) >
R’(OPT). The first inequality is due to the fact that S is a local min-
imum and adding more billboards only results in a lower R’ value.
The second inequality holds since OPT is also a local minimum. 0O

7 EXPERIMENT

We conducted experiments to determine how well the various algo-
rithms did in minimizing regret, and also how much computational
time they required. Additionally, we highlight two key questions:

\

e Q1: What will happen if the global demand of all the adver-
tisers is (far) below, close to, or over the maximum supply of
the host?

e Q2: Which type of advertisers is better for the host in terms
of minimizing the regret? A small number of big advertisers
with high individual demand or a large number of small
advertisers with low individual demand?

\ v

Since this is the first work on regret minimization for OOH
advertising, there is no existing method to evaluate against. Instead,
we provide extensive investigation of these two questions, thereby
providing guidance on how to minimize the regret under different
real-world scenarios. Please note that, in the rest of this section, we
will use ‘supply’ as supplied influence for short, and ‘demand’ as
demanded influence for short.

A straightforward setup is to select different numbers of adver-
tisers |A|, and then randomly set a demand 7Z; for each advertiser
a; € A from an estimated range, say [1000, 100000]. However, we
want to gain a deeper understanding of how the global demand
affects regret. Consequently, we plan to change the ratio between
the global demand and the supply to simulate different workloads
and to study how different algorithms perform. An adjustable pa-
rameter Demand-Supply Ratio « is introduced to facilitate the
study of Q1. Using this ratio saves us from finding and justifying
proper absolute values for demand or supply, which are highly
dependent on multiple factors (e.g., the market share of the host)
and vary from case to case. In addition, we introduce the Average-
Individual Demand Ratio p(I™) in order to answer Q2. Given a
global demand, we can control the number of advertisers to adjust
the individual demand of advertisers represented by p(I*).

In the following, we first introduce the datasets, settings of the
above two parameters, running environment and performance met-
rics; we then present the major experimental results and our in-
sights gained under different real scenarios.
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Figure 1: Influence Distribution on NYC and SG
7.1 Experiment Setup

7.1.1  Datasets.

We carefully choose two real datasets, New York City (NYC) and
Singapore (SG), as reported in Table 5. They enable us to study our
problem when facing audiences from two representative transport
modes in reality (i.e., taxis vs. buses, respectively). For NYC, same
as [26, 27, 29], we crawled the billboard dataset from LAMAR [16],
one of the largest OOH advertising companies worldwide. The
trajectory dataset contains two million taxi trajectories from the
publicly available TLC trip records [21]. For SG [20], we use the
EZ-link (smart cards used in SG for cashless public transport) data
to obtain trajectories and billboards. The trajectories are from bus
stops to bus stops, and each bus stop is also the location of a bill-
board operated by JCDecaux [13].

We plot several unique features of these two datasets in Figure 1.

Figure 1a lists the influence distribution of billboards: the x-axis
presents different influences of billboards in descending order, and
the y-axis reports the proportion of an influence over the maximal
influence. Figure 1b reports the impression counts achieved by the
set of selected billboards, where the impression count of a billboard
set is the number of trajectories influenced by the billboards. We sort
all the billboards in descending order of their influences and report
the impression counts when a certain percentage of billboards are
selected. Instead of reporting the exact values of the impression
counts, we use the percentage (i.e., impression count/total trajectory
count) for ease of illustration.
Observation. NYC has more high-influence billboards than SG,
while trajectories that are influenced by these high-influence bill-
boards are highly overlapping in NYC. That explains why the yellow
curve in Figure 1b increases slower than the purple one.

7.1.2  Billboard.

Billboard Influence. Each billboard o has a location loc. The bill-
board influence can be measured in various ways, and we follow
the same setting of the existing work [26, 27] that is briefly ex-
plained below. Each trajectory t = {p1,---, p||} is a set of points
recording an audience’s movement. A Bernoulli random variable
p(o,t) is used to denote the state whether a trajectory ¢ meets a
billboard o: p(o,t) = 1iff Ip; € t such that dist(t.p;, 0.loc) < A.
Here, dist(-) is the Euclidean distance between p; and o.loc, and
A is a given distance threshold. We denote the influence of a bill-
board o; to a trajectory t; as I(0;, tj) = p(0;,tj). Accordingly, we
denote the influence of a billboard set S; to a trajectory ¢; as I(S;, t}):
I(Si,tj) =1=[lpes, (1 =1(o,t;)). Finally, we define the influence
of a billboard set S; as the sum of influence from S; to all trajectories:
I(Si) = Yreq I(Si,t).
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Billboard Cost. All companies such as LAMAR and JCDecaux do
not provide the exact cost of billboards. As reported in the latest
studies [26, 29], a billboard’s cost is proportional to its influence, so
we follow the same setting here: 0.w = |7 X I(0)/10], where 7 is a
factor randomly chosen from 0.9 to 1.1 to simulate the fluctuation,
and I (o) is the number of trajectories influenced by a billboard o.

7.1.3  Key Parameters.
All key parameters are summarized in Table 6, including the demand-

supply ratio @, the average-individual demand Ratio p(I*), the
unsatisfied penalty ratio y used in Equation 1, and the distance
threshold A that determines the maximum distance in which a bill-
board could influence a trajectory. In each set of experiments, we
vary only one parameter and set the remaining parameters to their

default values (highlighted in bold).

Demand-Supply Ratio a. It refers to the proportion of the global
demand over the host’s supply, i.e., @ = I /T*, where I = ¥, c 4 I;
represents the global demand, and I* = )} ,cq; I({0}) is the host’s
supply. We simulate five different situations of «, i.e., low, normal,
high, full, and excessive global demand. The corresponding « is
set to 40%, 60%, 80%, 100% and 120%, respectively.

Average-Individual Demand Ratio p(ﬁ). It is the percentage
of average individual demand of advertisers over the host’s supply,
ie., p(Iﬁ) = I?/I*, where [A = I7Y)| A is the average individual
demand of advertisers. By controlling its value, we could adjust the
demand of individual advertisers.

Advertiser’s Demand 7. Once the Average-Individual Demand
Ratio p(ﬁ) is fixed, the average demand of advertisers I can be
easily derived as A = p(Iﬁ) -I". For example, when a = 100% and

p(I) = 1%, we will have 100 small advertisers with each having a
low average individual demand equivalent to 1% of the supply; when
a = 100% and p(I") = 20%, we will have five big advertisers, and
each has a high average individual demand equivalent to 20% of the
supply. Subsequently, we generate the demand of each advertiser

basedon J; = |w-I*- p(Iﬁ)J, where w is a factor randomly chosen
from 0.8 to 1.2 to simulate different demand of advertiser.

Advertiser’s Payment L. Following a widely adopted setting in
marketing studies [1, 2, 4], we set each advertiser’s payment to
be proportional to her demand: L; = |e - 1;|, where € is a factor
randomly chosen from 0.9 to 1.1 to simulate a various payment.

Unsatisfied Penalty Ratio y. Recall Equation 1, y € [0, 1] controls
the fraction of payment penalty when the advertiser is not satisfied.
At one extreme (i.e., y = 0), the host cannot receive any payment
if the required influence is not satisfied. At the other extreme (i.e.,
y = 1), the host can receive the fraction of payment as the same
fraction of influence that has been satisfied (i.e., I(S;)/1;).

7.1.4  Other Setups.

Experiment Environment. All codes are implemented in Java.
Experiments are conducted on a machine with Intel Core i7-8750U
CPU and 32GB memory running Windows 10.

Performance Metrics. The effectiveness metrics include the total
regret, as well as the portion of excessive influence and unsatisfied
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Table 6: Parameter Settings

Parameter Values
a 40%, 60%, 80%, 100%, 120%
p(I#) 1%, 2%, 5%,10%, 20%
Y 0, 0.25, 0.5, 0.75, 1
A 50m, 100m, 150m, 200m

penalty in composing the total regret. The efficiency metric is the
running time, which is evaluated by the average result of five runs.

Methods for Comparison. To our best knowledge, this is the first
work studying how to minimize the total regret of the host in OOH
advertising. We compared four methods proposed in this work.

(1) G-Order: The budget-effective greedy method (Section 5.1).
(2) G-Global: The synchronous greedy method (Section 5.2).

(3) ALS: The advertiser-driven local search method (Section 6.1).
(4) BLS: The billboard-driven local search method (Section 6.2).

7.2 Effectiveness Study

We first evaluate how the varying a and p(I?) impact the regret.
According to Equation 1, the regret consists of two components: the
unsatisfied penalty from the unsatisfied advertisers, and the excessive
influence. Hence, we report the total regret as a result of each
experiment as well as both components of the total regret.

As stated previously, & and p(I?) are introduced to answer the
two key questions we asked at the beginning of the experiment
section. To answer Q1, we vary o from 40% to 120%, corresponding
to various demand-supply ratios (gradually from low to excessive
global demand). When « is small, the global demand is low and
all the advertisers can be satisfied; as « becomes much larger, the
global demand approaches or even exceeds the supply and some of
the advertisers will NOT be satisfied. To answer Q2, we vary p(I?)
from 1% to 20%, representing different individual demands from
advertisers (gradually from low to high individual demand).

To ease our discussion, we cluster a values into two cate-
gories (i.e., low global demand vs. high global demand), and we
also cluster p(I!) values into two categories (i.e., low individ-
ual demand vs. high individual demand). Combining & and p(I?),
we have in total four different cases:

Global Low demand | High demand
Individual (ax < 80%) (o > 100% )
Low demand (p(ﬁ) <2%) | Casel Case 3
High demand (p(I?) > 5%) | Case 2 Case 4

In the following, we will present the results on NYC dataset
under the above four different cases. The findings on SG dataset are
similar. Due to space limit, we only report the results of SG under
the default settings. For the effectiveness study, we use stacked
bars to represent the total regret, and use two numbers on top
of each bar to indicate the percentage of excessive influence and
that of unsatisfied penalty, respectively. It is worth noting that,
the percentage of certain components could be zero in some cases
(e.g., when all the advertisers are satisfied, there is no unsatisfied
penalty). Therefore, some stacked bars may contain one, instead of
two, segments.
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Figure 2: Regret of varying the demand-supply ratio « when p(ﬁ) =1% (NYC, |A| = 100))

Excessive Influence I

Unsatisfied Penalty I

120 k 80k 80k 200 k 250 k 22.9%
100 86.2% 34.8% =
ookl 70k | 0.0% 70k 1862% 65.2% 200k
0.0%  100.0% 60 k 1300.0/% 60 k 150 k
80k 0.0%  100.0% 0% 100,0%
00% 50k 0.0% 50k 150 k
k 40k 40k 100 k
60 0 100.0% 0 100.0% 0 0.1%
30k 00% 309k 0.0%  100.0% 100 k 99.9%
40k 0.0%
20k 20k 100.0% 50 k
20 k 0.0% 50k
10k 10k
0 0 0 I BN B A 0 0
G-Order G-Global ALS  BLS G-Order G-Global ALS ~ BLS G-Order G-Global ALS ~ BLS G-Order G-Global ALS  BLS G-Order G-Global ALS ~ BLS
(a) @ = 40% (b) a = 60% (c) @ =80% (d) @ = 100% (e) a = 120%
Figure 3: Regret of varying the demand-supply ratio « when p(I?) = 2% (NYC, |A| = 50)
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Figure 4: Regret of varying the demand-supply ratio « when p(I_ﬂ) =5% (NYC, |A| = 20)

7.2.1
Case 1: low a, low p(I?) (parts (a)-(c) of Figures 2-4). Corre-
sponding to Case 1, we have a < 80% A p(I") < 2%. This refers
to the situation where both the global demand and the individual
demand are low, e.g., a host has a small number of small advertisers.
As a is small, the global demand is much smaller than the supply
and all the advertisers are satisfied. Consequently, the regret con-
sists of only excessive influence, except for G-Order and BLS. We
have three main observations.

First, as « increases, the excessive influences of all algorithms

Experiments over the NYC Dataset.

decrease. This is because, when both @ and p(I*) are small, the re-
quired influence 7 of each advertiser is small. In contrast, billboards
in NYC are those with high influences. Thus, it is easy to fulfill and
exceed the demand and leads to a high excessive influence penalty.

Second, in most experiments, ALS and BLS control the excessive
influence better. This is because ALS and BLS are able to satisfy
all the advertisers with fewer billboards. ALS tries to exchange all
billboards between advertisers based on the solution of G-Global,
so it is able to achieve the regret that is equal to or smaller than that
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of G-Global. While all the advertisers can be satisfied, BLS actually
explores more finer-grained exchanges to further reduce the gap
between I(S;) and ;. Consequently, BLS averagely outperforms
G-Order and G-Global by about 200% and 50%, respectively.
Third, in the extreme case (i.e., & = 40% and p(I?) = 1%) where
all the advertisers have very small demand, BLS will sacrifice some
advertisers to achieve a smaller regret, if the excessive influence of
satisfying advertisers is higher than the unsatisfied penalty.

Case 2: low a, high p(I?) (parts (a)-(c) of Figure 5 and Fig-
ure 6). Corresponding to Case 2, we have a < 80% A p(I?) > 5%.
The global demand is still lower than the supply but the individual
demand is much higher (e.g., the host has a small number of big
advertisers). We have two observations.

First, when the global demand remains low, as the individual
demand increases, the excessive influence of all the algorithms
drops (as compared with Case 1). This is because, with the increase

of p(I?), the number of advertisers decreases but the individual
demand becomes higher. That is, the individual demand becomes
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Figure 5: Regret of varying the demand-supply ratio « when p(I?) = 10% (NYC, |A| = 10)
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Figure 6: Regret of varying the demand-supply ratio « when p(ﬁ) =20% (NYC, |A| =5)

closer to (but does not exceed) the influence offered by billboards,
and consequently the excessive influence of all the algorithms drops.

Second, with a higher individual demand, the host could actually

deploy more billboards to each advertiser. Hence, BLS is able to
explore more neighborhood search space by exchanging billboards.
Consequently, BLS hugely outperforms G-Order and G-Global as it
is able to reach almost zero regret.
Case 3: high @, low p(I”?) (parts (d) and (e) of Figures 2-4).
Corresponding to Case 3, we have a > 100% A p(I) < 2%. This
represents the situation where the global demand is very high (even
exceeds the supply) but the individual demand is low, e.g., a host
company has a very large advertiser base that is formed by small
advertisers with low demand. We have made two observations.

First, given a very high global demand (@ > 100%), none of the
algorithms can satisfy all the advertisers. Hence, the unsatisfied
penalty becomes a major component of the total regret. When
a = 100%, the global demand is equal to the host’s supply. How-
ever, since (1) the excessive influence cannot be diminished and
(2) multiple billboards may influence the same trajectory, not all
advertisers are satisfied. When o = 120%, since the demand exceeds
the supply, the unsatisfied penalty becomes even larger.

Second, the advantages of ALS and BLS (especially BLS) become
more significant when compared with other approaches in terms of
reducing the total regret. It is observed that ALS and BLS are able to
satisfy more advertisers and hence suffer from a smaller unsatisfied
penalty. This observation also highlights the importance of a proper
deployment strategy when the global demand becomes very high.
As the host does not have much available supply, the allocation of
a billboard to one advertiser actually increases the risk of missing
another advertiser and hence each allocation is critical. Obviously,
BLS handles this risk the best. It averagely outperforms G-Order
and G-Global by about four times and one time, respectively.

Case 4: high q, high p(I*?) (parts (d) and (e) of Figure 5 and
Figure 6). Corresponding to Case 4, we have a > 100% A p(I7) >
5%, representing the situation where both the global demand and
the individual demand are very high (e.g., the host is over demanded
by a small number of big advertisers). We have three observations.

First, with large p(I‘?) and large a, every unsatisfied advertiser
will lead to a high regret. Therefore, all the algorithms suffer from
large regrets. Thus, the advantage of ALS and BLS becomes less
significant, especially as compared to G-Global.

Second, due to the reason that we mentioned in Section 5.2, G-
Order has a much higher unsatisfied penalty than others. Between
ALS and BLS, the latter reaches a smaller excessive influence. This
is consistent with our expectation as BLS adopts a finer-grained
strategy when exploring different deployment plans. Consequently,
BLS outperforms G-Global by about three times.

Third, when p(I") increases from 5% to 20%, the total regret
becomes much larger, as the individual demand becomes higher. In
other words, when the global demand is high, having big advertisers
with high individual demand is less beneficial to the host, in terms
of regret. This observation is consistent with the second observation
we made under Case 2. When the host’s supply is sufficient, it is
more flexible to have a large number of small advertisers as both
the risk and the penalty of missing one advertiser are much smaller.

Revisit Q1 and Q2. Based on the observations we have made from
the above four cases, we are able to answer the two key questions
Q1 and Q2. (1) When the global demand is low, the total regret is
dominated by excessive influence. Under this situation, the host
needs to choose advertisers carefully. Based on our experiment,
with a high variance of billboards” influence and when the adver-
tisers’ average demand is only three times larger than the average
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Figure 9: Efficiency Study (NYC)

influence of billboards (i.e., Figure 2a), there is a high risk of hav-
ing a great excessive influence; when the average demand is more
than ten times of the average influence, it is easy to control the
excessive influence. (2) When the global demand becomes much
higher or even exceeds the supply, the total regret is dominated by
the unsatisfied penalty. Consequently, having a large number of
medium-demand advertisers is an ideal balance, as it provides more
flexibility when deploying billboards to the advertiser; meanwhile,
the penalty of missing one huge advertiser is much lower.

7.2.2  Experiments over the SG Dataset.
Figure 7 shows the results over SG. As reported in Figure 1, it is
worth noting that: (1) SG has more low-influence billboards and
the average influence in SG is smaller; (2) compared with NYC, the
influences of billboards in SG are more uniform, and the influence
overlaps among billboards are smaller since bus stations are sparse.

We have made two main observations. First, the results of SG
are similar to the results of NYC, while the proportions of excessive
influence of all algorithms are smaller. The main reason is that the
smaller influence of billboards with less overlaps helps the host to
efficiently and accurately deploy billboards.

Second, because of a larger number of billboards and a smaller av-
erage billboard influence, BLS can explore more possible exchanges
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between billboards, and hence achieve a finer-grained swapping
strategy. Consequently, following the same trend as in NYC, BLS
can effectively reduce excessive influence for SG.

7.3 Efficiency Study

The efficiency is important, since a host who owns more than
thousands of billboards in a city such as Juping or JCDecaux may
have new advertisers every day. Hence, we conduct the efficiency
evaluation under various cases of global demand and individual

demand, by varying the settings of a and p(I®!). The results are
reported in Figures 8 and 9. We have two main observations.
First, both G-Order and G-Global incur a much lower time cost
compared to ALS and BLS. This is because both ALS and BLS em-
ploy the billboard deployment plan generated by G-Global as the
initial plan and try to improve the effectiveness of the plan by ex-
ploring the swap of billboards/advertisers. Consequently, G-Order
and G-Global provide a trade-off between the effectiveness of the
billboards deployment plan and the time required to find the plan.
Second, with an increase of «, all the algorithms require longer
search time. The reason is that, when « increases, more billboards
need to be deployed to each advertiser. In addition, the number
of unsatisfied advertisers increases together with the increase of
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a. Accordingly, ALS and BLS need to execute more iterations to
explore alternative deployment plans.

7.4 Other Parameter Study

The Impact of the Influence Range 1. We follow the same set-
ting of the existing work [26, 27, 29] to define A as the influence
range of a billboard. The influence range is modeled as a circle
centered on a billboard with a radius of A meters. An audience can
be influenced if she passes through this circle. In the following, we
study the impact of varying A, with the results reported in Figure 12.

We observe that the result of NYC is different from that of SG.
In NYC, with an increase of A, the regret of all algorithms increases.
The reason is that when A increases, billboards can influence more
trajectories and the host’s supply I* increases accordingly. While
increasing I* and fixing @ and p(I7?), T and I”? will increase. How-
ever, since I and I* increase, the regret increases proportionally.
On the other hand, in SG, when A < 150, the impact is minor. This
is because the billboards are placed at bus stations, and each bill-
board can only influence audiences of the buses that make a stop
at the bus stations. As a result, a fixed group of trajectories are
influenced regardless of the choice of A. It worth noting that the

1.
88..
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regrets increase when A = 200. A possible reason is that, some bus
stations are close to intersections. With a larger A, more trajectories
are influenced by the billboards located at the intersections.

The Impact of the Unsatisfied Penalty Ratio y. We study the
impact of varying y and report the results in Figures 10 and 11. We
observe that, when y increases, the regret of all algorithms drops.
Recall Equation 1, y controls the fraction of payment penalty when
the advertiser is not satisfied. Given a smaller y, the host suffers
from a higher payment penalty. On the other hand, when y = 1,
the host can receive the fraction of payment as the same fraction of
influence that has been satisfied. Taking Figure 11 (e) as an example,
BLS almost meets the demand of all advertisers.

8 CONCLUSION

In this paper we proposed and studied MROAM, aiming to minimize
the regret of the influence provider when dealing with numerous
influence purchasers. We proved that it is NP-hard to approximate
within any constant factor. Then, we proposed a randomized local
search framework with different neighborhood search strategies,
and proved that one achieves an approximation factor to a dual
problem of MROAM. Our methods can work with any choice of
straightforward influence models. Lastly, we conducted extensive
experiments on two real-world datasets to verify the efficiency and
the empirical effects of our methods.
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