2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)

vSwitchGuard: Defending OpenFlow Switches against Saturation Attacks

Samer Y Khamaiseh

Department of Computer Science
Midwestern State University
Wichita Falls, TX, USA
Samer.khamaiseh@msutexas.edu

Abstract— While the decoupling of control and data planes in
software-defined networking (SDN) facilitates orchestrating
network traffic, it suffers from security threats. For example,
saturation attacks can make SDN out of service by exhausting
the controller’ and switch’s computational resources. The
existing research has focused on defense against limited types
of saturation attacks. In this paper, we propose vSwitchGuard,
a framework for detection and countermeasure of known and
unknown saturation attacks in SDN. vSwitchGuard aims to
identify the victim switches targeted by known or unknown
types of saturation attacks with machine learning classifiers
and restore the victim switches to their safe state through deep
packet inspection. We have evaluated three supervised
classifiers and four semi-supervised classifiers for five types of
saturation attacks (TCP-SYN, UDP, ICMP, IP-Spoofing, and
TCP-SARFU) and their combinations. The results suggest that
supervised and semi-supervised classifiers can be combined to
deal with known and unknown attacks for better performance.
We have also implemented the countermeasure and evaluated
it with all combinations of the five types of attacks. The results
demonstrate that vSwitchGuard can effectively defend against
the attacks without significant performance overhead.

Keywords- software-defined networking;
saturation attack; machine learning; DoS attacks

OpenFlow;

L INTRODUCTION

Software-Defined Networking (SDN) is a programmable
network architecture that separates the control plane from the
data plane. The components in the data plane, e.g.,
OpenFlow switches, are responsible for forwarding network
traffic. The controller in the control plane is a centralized
unit that translates the application requirements down to the
data plane by using a southbound interface. As the first
proposed communication protocol between the data and
control planes, OpenFlow has been adopted as the standard
southbound APIs by Open Network Foundation (ONC) [1].

The reactive packet processing approach of OpenFlow
makes an SDN network more adaptable to requirement
changes of applications. An OpenFlow switch processes
each incoming packet by matching it with flow rules in the
flow tables. When there is no match (i.e., table-miss), the
switch encapsulates the packet inside a Packet-In message
and sends it to the controller. The controller then decides a
proper action and, if necessary, installs a new flow-rule in

Edoardo Serra

Department of Computer Science
Boise State University
Boise, ID, USA
edoardoserra@boisestate.edu

851

Dianxiang Xu
Dept. of Computer Science Electrical Eng.
University of Missouri — Kansas City
Kansas City, MO 64110, USA
dxu@umbkc.edu

the OpenFlow switch. Such a reactive approach to packet
processing, however, can be exploited by saturation attacks
that send maliciously spoofed packets. The table-misses will
trigger a large number of Packet-In messages sent to the
controller by the switch. This may exhaust the computational
recourses of the control plane and congest the OpenFlow
channel between the data and control planes. The large
number of fake flow entries created by the controller may
also exhaust the flow-table buffer of the switch. As a result,
the entire network may be paralyzed.

Several approaches have been proposed to deal with
saturation attacks. AVANT-GUARD [2], SLICOTS [3], and
LineSwitch [4] focused on SYN flooding, a classical method
of denial of service attack in computer networks.
FloodGuard [2] and FloodDefender [6] relied on the rate of
Packet-In messages to reason about attack occurrence. This
can be inaccurate because the resultant rate of a high volume
of normal traffic may also exceed a predefined threshold [7].
FDAM [8] used the Support Vector Machine (SVM) to
detect attacks and a whitelist of IP addresses to prevent the
attacks. SA-Detector [7] exploited self-similarity degree of
OpenFlow traffic to detect several types of saturation attacks.
It is based on the observation that OpenFlow traffic between
the controller and switches has a relatively higher degree of
self-similarity when a saturation attack occurs. Our recent
work [9] has demonstrated that supervised classifiers are
useful for detecting the occurrences of these types of attacks.
However, the existing machine-learning based approaches
have two main limitations. First, they deal with pre-defined
(known) types of attacks using supervised classifiers. It is
unclear if they are capable of detecting new attacks.
Detection of unknown saturation attacks in SDN is important
because research has shown that there are various attack
methods. Second, they aim to detect whether or not a
saturation attack is happening in an SDN environment, but
do not determine which switches are being attacked. In other
words, they cannot recover the victim switches from the
actual occurrence of a saturation attack.

To address these issues, this paper presents
vSwitchGuard, an effective framework for detection and
countermeasure of both known and unknown types of
saturation attacks in SDN. The contributions are as follows:

e In addition to the OpenFlow message types [9], this

paper proposes the statistical properties of

978-1-7281-7303-0/20/$31.00 ©2020 IEEE
DOI 10.1109/COMPSAC48688.2020.0-157

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

OpenFlow message payloads (entropy and table-
miss packet rate) as features for machine learning-

based attack detection and show that the
combination is the most effective.
e We evaluate and compare three supervised

classifiers (SVM, K-Nearest Neighbor, and Naive-
Bayes) and four semi-supervised classifiers (Basic
Autoencoder, Variational Autoencoder, One-Class
SVM, and Isolation Forest) for locating the victim
switches targeted by known and unknown attacks.
Supervised and semi-supervised classifiers can be
combined improve detection performance. Among
the four semi-supervised classifiers, Variational
Autoencoder is the most effective in dealing with
unknown attacks.

We present an effective countermeasure that restores
the victim switches to a safe state. Based on deep
packet inspection, the countermeasure can accurately
block the malicious incoming traffic and clean up
the flow-rules installed in the victim switches.
Unlike some of the existing work, vSwitchGuard
does not need to add new hardware or modify the
SDN architecture.

We present an online testing of the countermeasure
with all combinations of the five attack types. The
results show that vSwitchGuard can effectively
defend the OpenFlow switches without significant
performance overhead in terms of CPU utilization,
OpenFlow channel bandwidth, and flow table
utilization.

II.

Identifying targeted OpenFlow switches. Chi et al. [10]
proposed a preliminary method that samples flow-rules from
randomly selected OpenFlow switches. It generates artificial
packets to see if the OpenFlow switch executes the
corresponding flow-rules correctly. This approach may
produce a high rate of false-positives since the flow-rules of
the OpenFlow switches are changing over time.

Zhou et al. [11] proposed SDN-RDCD, a real-time
approach to detect the targeted SDN devices when the
controller and OpenFlow switches are trustless. It uses a
backup controller as an audit controller that is responsible for
recording the network update events such as deleting,
adding, or updating flow rules from the original controller
and its connected OpenFlow switches. The audit controller
allocates a unique audit ID for each update request event and
records it in an audit record. This audit ID is used to keep
track of each event, as well as the execution results on the
original controller and corresponding OpenFlow switches.
The audit ID is also used by the audit controller to re-execute
the update event and record the execution results. Then,
SDN-RDCD analyzes the recorded audit log to extract any
inconsistency of the handling of information by the
controller and OpenFlow switches. This approach may
require a long time to process the audit records in order to
find the unmatched event handling information. Thus, the

RELATED WORKS

852

saturation attacks may have compromised the entire network
before the targeted OpenFlow switches are detected. This
approach cannot detect most of the switches that are targeted
by saturation attacks, since the behavior of these targeted
OpenFlow switches is very similar to the normal ones.

Different from the above work, vSwitchGuard provides
an effective method that can detect the targeted OpenFlow
switches by known and unknown attacks. It does not require
any modification to the SDN architecture.

Detecting saturation attacks. Various approaches have
been proposed to detect saturation attacks in SDNs [12].
Ashraf et al. [13] discussed the possibility of adopting
machine learning approaches to detect DoS attacks in SDN.
This work does not deal with victim switches. Quamar et al.
[14] adapted the Stack Autoencoder (SAE) deep learning
technique for detecting multi-vector DDoS. The proposed
defense system consists of three components: Traffic
Collector and Flow Installer, Feature Extractor, and Traffic
Classifier. This work relies on processing every incoming
packet for attack detection and flow computation, which
requires extensive computational resources. The dataset was
used for training and testing was collected from a traditional
wireless network, so it does not involve OpenFlow traffic.
Braga at al. [15] adopted the self-organized map (SOM) for
detecting flooding attacks against SDNs. The detection
system collects all the flow entries of the connected
OpenFlow switches, extracts the SOM classifier features
from the collected flow-entries to detect the DDoS attacks.
However, this work requires extensive processing time to
extract the features because it needs to process all the flow
entries of connected OpenFlow switches. This delay may
give the attacker enough time to flood the network.
Abubakar and Pranggono [16] developed a flow-based
anomaly detection system by using a neural network. The
NSL-KDD dataset was from a traditional network, not SDN
network. Tang et al. [17] used the Deep Neural Network
(DNN) to develop an anomaly DoS detection system. The
accuracy is relatively low — just 88.04%. It was also based on
the NSL-KDD dataset from a traditional network.

Santos et al. [18] introduced the ATLANTIC framework
to detect DDoS attacks against SDNs. It consists of two
phases: (1) a lightweight processing phase that can be
executed periodically to detect the deviations of the SDN
network traffic flows by using entropy analysis in order to
identify the suspicious traffic flows, and (2) a heavyweight
processing phase that uses a K-means unsupervised
algorithm to cluster the similar traffic flows and then adopts
an SVM classifier to classify the malicious flows from the
normal ones. The detection performance is relatively low:
88.7% accuracy and 82.3% precision. The approach also
caused performance overhead on the SDN environment
because it required a long prediction time to use SVM and
K-means together.

Ye et al. [19] proposed a detection system for UDP,
SYN, and ICMP flooding attacks by using an SVM
classifier. The system includes: (1) a flow state collection
module that collects the status of the OpenFlow switches
flow-tables by using controller-to-switch messages, (2)
Characteristic Values Extraction module that is responsible

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

for extracting the classifier features (it extracts 6 features
from the collected flow tables’ status messages), and (3)
classifier judgment module, which utilizes an SVM classifier
to detect the attacks. However, SVM is deficient in detecting
unknown saturation attacks.

Li et al., [7] proposed a lightweight method called SA-
Detector for detecting a family of saturation attacks. It is
based on the study of self-similarity of OpenFlow traffic. It
uses the Hurst exponent for normal and abnormal OpenFlow
traffic to detect the saturation attacks. Our prior work [9]
have studies several supervised classifiers to detect all the
attack types in [7]. The above work, however, does not
identify the targeted switches.

Countermeasure of saturation attacks. Several
methods have been proposed to defend SDN against
saturation attacks. Hu et al. [7] Introduced the FDAM system
for detecting UPD, ICMP, and SYN flooding attacks. It
consists of two modules: (1) an attack detection module that
is responsible for detecting DoS attacks by using an SVM
classifier and a sFlow approach to collect the network traffic
and extract features, and (2) a DoS attacks mitigation module
that mitigates flooding attacks by using traffic migration and
white-list approaches. As shown in this paper, SVM does not
have a good record in detection of the saturation attacks.
Shang et al. [6] Proposed FloodDefender as an SDN
application to protect the control plane and data plane against
DosS attacks. It has four modules: attack detection to detect
the DoS attacks, table-miss engineering to migrate the table-
miss packets to the neighbors' switches, packet filtering to
identify the attack traffic, and flow rule management to
remove the useless flow-rules. The main limitations are: (1)
All the table-miss packets are delivered to the controller,
whether they are normal or not. (2) There is a relatively high
flow-table utilization due to the installation of protecting and
monitoring flow-rules. (3) The attack detection module using
the Packet-In messages rate is ineffective because a high
volume of normal traffic can produce a similar rate of
Packet-In messages.

Wang et al. [S] proposed FloodGuard to protect the
controller against DoS attacks. FloodGuard has two
approaches to detect and mitigate DoS attacks: a proactive
flow rule analyzer module to enforce the network
functionalities when the DoS attack occurred and packet
migration to protect the controller from being overloaded.
Shin et al [2] proposed the AVANT-GUARD framework to
mitigate the TCP-SYN flooding that is sent to the SDN
controller. It accomplishes this task by extending the
OpenFlow-Switches functions. The detection module
monitors the ongoing TCP-SYN connections to the
controller and detects the SYN flooding based on a
predefined threshold, which cannot accurately differentiate
between the normal and abnormal SYN packets. Both
AVANT-GUARD and FloodGuard focus on protecting the
control plane against DoS attacks and ignoring the data plane
and the OpenFlow connection channel.

Different from the above work, vSwitchGuard can detect
the targeted OpenFlow switches by known and unknown
saturation attacks. We have studied different supervised and
semi-supervised classifiers. vSwitchGuard also provides a

853

countermeasure that can effectively mitigate a family of
saturation attacks and recover the victim switches.

III. BACKGROUND AND PROBLEM STATEMENT

A. SDN and OpenFlow Protocol

The SDN architecture comprises the control and data
planes that communicate through the southbound API (i.e.,
OpenFlow). The centralized controller translates
applications’ network requirements down to the data plane,
which consists of network hardware components such as
switches and routers. The southbound API, as an interface
between the switches and the controller, enables the
controller to manage the behavior of the entire network by
installing flow-rule in the flow tables of switches.

There are 29 types of messages between the controller
and OpenFlow switches. They fall into three groups: (1)
controller-to-switch messages sent by the controller to
update, add, delete group/flow entries or request the status
of a switch, (2) asynchronous messages initiated by a switch
to inform the controller of new packet arrival that does not
match the flow entry rules or changes in the switch state, (3)
symmetric messages initiated in either the direction of
controller-to-switch or the direction of switch-to-controller.
When receiving a new packet from an application, either
normal or malicious, an OpenFlow switch tries to match it
with the rules in the local flow table. If there is no match, a
table-miss occurs, and the switch generates a Packet-In
message. The message contains the header of the table-miss
packet if the switch buffer is not full, otherwise the table-
miss packet is encapsulated in the Packet-In message and
sent to the controller. When receiving the Packet-In
message, the controller decides how to process the table-
miss packet and tries to install a new flow-rule in the flow
table by sending Packet-Out and Packet-Mod messages.

B. Adversary Model

The aforementioned reactive approach to packet
processing is subject to saturation attacks. An attacker may
exploit table-misses to exhaust the computation resource
(e.g., CPU and memory) of the controller and/or switches,
and saturate the OpenFlow channel. The saturation effect is
caused by the generation of a large number of Packet-In
messages, which significantly consumes the controller’s
computational resources.

The saturation effect is caused by the generation of a
large number of Packet-In messages, which significantly
consumes the controller’s computational resources. When
the switch-to-controller communication is flooded by
Packet-In messages, the controller will also send a large
number of Packet-Out and Packet-Mod messages, which
leads to the flooding of controller-to-switch communication.
The flow tables in the affected switches are filled with fake
flow rules. This may prevent the benign flow rules to be

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

installed and thus the system may be unable to process the
legitimate new packets.

To implement saturation attacks in SDN environments,
there are various ways to generate malicious network traffic
to trigger a large volume of Packet-In messages. Examples
are SYN flooding, UDP flooding, ICMP flooding, IP-
Spoofing, and TCP-SARFU flooding [7]. Even worse, these
methods can be combined to lunched very complex attacks.
To defend against saturation attacks in SDN, it is important
to deal with known and unknown types of malicious traffic.

C. Challenges

This paper aims at effective detection and
countermeasure for defending OpenFlow switches from
known and unknown saturation attacks. There are three
main challenges: (1) how to detect unknown attacks, (2)
how to determine which switches are the victims, and (3)
how to restore the victim switches to a safe state.

In SDN, table-miss packets, and consequently Packet-In,
Packet-Out and Packet-Mod messages, may originate from
both benign and malicious applications. The controller and
switches have inadequate knowledge to determine if table-
miss packets are triggered by a benign or malicious
application. From the qualitative perspective, the forwarding
behaviors of OpenFlow switches do not follow a predefined
norm. Nevertheless, OpenFlow messages may exhibit
statistical properties when an SDN environment is under a
saturation attack. For example, four of the 29 message types
were used as the critical indicators of the existing saturation
attacks [9]. It is thus feasible to apply the statistical
information of these messages to detect saturation attacks
with machine learning classifiers. However, the existing
work has not addressed the first two challenges. It is unclear
whether these classifiers and message types are effective for
dealing with unknown attacks. Unlike traditional switches
where forwarding rules are predefined, OpenFlow switches
are programmed by the controller according to all relevant
applications. As the flow rules of an OpenFlow switch
dynamically change over time, the forwarding behaviors of
an OpenFlow switch do not exhibit a single set of
behavioral norms. It is non-trivial to determine if a switch is
under attack and how to restore it to a safe state. In this
paper, we address the first two challenges by applying and
comparing supervised and semi-supervised classifiers to the
OpenFlow messages between the controller and individual
switches. In addition to the four critical message types, we
also use the OpenFlow message payloads for attack
detection. To determine if a classifier can recognize an
unknown type of attack, the samples of a given attack type
are excluded from the training data, but included in the
testing data.

To restore victim switches, a countermeasure must be
able to accurately identify and remove the fake flow rules
installed during the attack and should not drop any
legitimate table-miss packets from benign switches and
hosts. As the controller may use various attributes of

854

incoming OpenFlow packets for matching flow rules (port
number, switch DPID, MAC address, and IPv4 addresses),
the countermeasure requires deep packet analysis.

OpenFlow Controller Network Topology Manager
Switch Topology _ -
Manager/ H——| |Network Topology Network topology
Routin z Extractor Analyzer
Traffic Collector & Features Extractor,
OF Traffic Collector l—'{ Features extractor
‘ ‘
OF Traffic Victim Switch Detection |
‘ Machine Learning Classifier ‘
Countermeasure
- Flow-Entry Packet-In Deep Inspection
stall Bloc Pk (drn;rp [Filter
Flow-Entries packef) /
Blocking Rule Flow-Rule
Flow-Entry Manager Manager
Delete Flow- Pusher (remove| T
Entries malicious
entries)

Figure 1. The Architecture of vSwitchGuard.

Iv.

vSwitchGuard is designed as an application on top of the
controller, as depicted in Figure 1. It consists of four
modules: network topology manager, OpenFlow traffic
collector and feature extractor, victim switch detection, and
countermeasure. The network topology manager extracts the
SDN topology by using the northbound REST APIs of the
controller and classifies the extracted network topology
based on the connected OpenFlow switches. The traffic
collector is a session-based process that collects the raw
OpenFlow traffic by using the Pyshark library. The feature
extractor extracts the features from the raw traffic data for
machine-learning based detection of saturation attacks. The
duration of each session is a pre-defined time-window for
OpenFlow traffic analysis. In this paper, the time-window is
set to one-minute suggested [9] in because the same dataset
is used for the evaluations of both supervised and semi-
supervised classifiers. The module for victim switch
detection applies a supervised or semi-supervised classifier
to the processed traffic feature to determine whether or each
switch is under a saturation attack. The model of the
classifier is obtained by training the classifier with an offline
dataset. It is then used for online detection.

Once a switch is found to be under attack, the
countermeasure module will invoke the deep inspection
component to allocate the Packet-In messages from the
collected traffic. It inspects the header of the table-miss
packet inside the Packet-In messages to identify the zombie
hosts. According to the results of inspection, the blocking
flow-rule manager will install high priority blocking rules
and the flow-table manager will identify and remove the
fake flow rules according to the network topology.

SYSTEM DESIGN

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

V.

This section first describes the statistical features of
OpenFlow traffic used to detect attacks with classifiers, and
then introduces the supervised and semi-supervised
classifiers studies in this paper.

A. OpenFlow Traffic Features

The existing research has shown that, among the 29 types
of OpenFlow messages, the following four are significantly
affected by known saturation attacks [9]: (1) the number of
Packet-In messages generated by a switch (2) the number of
Packet-Out messages received by a switch, (3) the number of
Packet-Mod messages received by a switch, and (4) the
number of TCP-ACK messages received and generated by a
switch. As these features are obtained from OpenFlow
messages headers, we refer them to the features of
OpenFlow message headers, which are useful for detecting
known saturation attacks with supervised classifiers [9].

In this paper, we propose two new features, entropy and
table-miss packet rate (TPR). They are referred to as
OpenFlow message payload features because they utilize
detailed information in OpenFlow messages. While
investigating malicious and normal OpenFlow traffic, we
observed that, when a switch is under saturation attack, the
distribution of the source IPv4 addresses of the table-miss
packets encapsulated inside the Packet-In message payload
(i.e., data field) changed frequently. To measure such
distribution changes, we calculate the Shannon Entropy
value of source IPv4 addresses of the table-miss packets for
each OpenFlow switch. Shannon Entropy is a measurement
of the uncertainty of random variables in information theory.
The entropy value of source IPv4 addresses of the table-miss
packets is defined as:

DETECTION OF VICTIM SWICHES

]

ol
Tl m —;ff..l L) g S8 (1)

Where srcIP= {nn,..., ni} represents all the source IPv4
addresses of an OpenFlow switch table-miss packets
encapsulated inside the Packet-In messages within the
specified time-window, n; is the occurrence number of the
ith source IPv4 address IP; , and K is the number of different
sources IPv4 addresses. M = Y*—; n, represents the total
occurrence number of all source IPv4 addresses of table-
miss packets of an OpenFlow switch. A high (low) entropy
value indicates a more decentralized (concentrated)
probability distribution.

Figure 2 presents a sample of the total received source
IPv4 addresses of normal and malicious packets. It also
shows the number of normal and malicious table-miss
packets source IPv4 addresses. In the malicious incoming
packets within one minute of OpenFlow traffic, 574 of the
962 source IPv4 addresses triggered table-miss packets. In
contrast, only 24 of the 684 source IPv4 addresses in the
legitimate incoming packets were involved in table-miss
packets. In this case, the entropy value of the malicious
table-miss packets was higher than that of the legitimate
table-miss packets.

855

1200

1000

'NUMBER OF SRC

24

B Total Number of Norma

ed IPva Src

B Normal Table-Miss Src IPv4

Total Number of Malici

d IPv4 Src @ Malicious Table-Miss Src IPv4

Figure 2. A Sample of Normal and Malicious Table-Miss Source IPv4
Addresses.

Table-Miss Packet Rate (TPR) is the proportion of table-
miss packets (i.e., Packet-In messages) out of the total
corresponding received packets of an OpenFlow switch
within a specified time-window. It is defined as follows:

TPR = Y S(Packetln)/ Y .S(Received Packets))
Where Y S(Packetln) is the total number of generated
Packet-In messages (the number of table-miss packets), and
>'S(Received Packets) is the total number of
received/incoming packets of the OpenFlow switch.

Figure 3 shows an example of normal and abnormal
OpenFlow traffic of a switch, where the switch received
140,531 legitimate packets and generated 15,637 Packet-In
messages, with a TPR value of 0.11. It indicates that 11% of
the received packets caused a table-miss, and 89% of the
received packets matched the flow table entries. In contrast,
the same switch targeted by saturation attacks received
96,463 packets and generated 38,164 Packet-In messages,
with a TPR value of 0.39 -- 39% of the received packets are
table-miss packets.

160000

140531

PACKETS

96463

15637

B Normal Received PkTs

Attack Recei

Figure 3. A Sample of Normal and Malicious Table-Miss Packets.

To summarize, this paper evaluates and compares three
groups of OpenFlow traffic features: four message header
features (Packet-In, Packet-Out, Packet-Mod, TCP-ACK
messages), two message payload features (entropy and
TPR), and the combination of them (i.e., all six features).

B. Attack Detection with Classifiers

In this paper, we studied and compared three supervised
classifiers: K-Nearest Neighbors (K-NN), SVM, and Naive
Bayes (NB) classifiers and four semi-supervised classifiers:
one-class SVM, isolation-forest, basic autoencoder, and
variational autoencoder. Our prior work has used K-NN,
SVM, and NB to detect whether or not an SDN system is
under saturation attack [9], but it did not determine which
switches is being attacked. In this paper, we not only use

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

the same supervised classifiers for detecting victim
switches, but also evaluate their capability of dealing with
unknown types of attacks. The supervised -classifiers
required that the training dataset include specimens of all
saturation attack types. The patterns they learned from the
training data tend to focus on the representation of malicious
behaviors, assuming other samples in the dataset as benign
behaviors. In other words, they may classify a new unknown
attack as benign because the attack differs from the pattern
learned from the training data. This has motivated the
application of semi-supervised classers, which can be
trained without the need to label the samples.

Our experiments have shown that, among the four semi-
supervised classifiers, variational autoencoder has achieved
the best performance. In the following, we provide a brief
introduction. Autoencoder is an artificial neural network
composed of two functions: the encoder and the decoder.
The encoder function E is a neural network transforming the
original features x in a new space y=FE(x). Usually, y is in a
lower dimension than the original space. The decoder
function D transforms the features Y from the new space to
the original space x’= D(x) This neural network is trained
by minimizing the reconstruction error, i.e., loss = |l x- x’l|.
Once trained, the reconstruction error on a new sample can
be used as a score to determine whether or not the sample
represents a training example.

The smaller the reconstruction score, the higher the
likelihood that the new sample is similar to the one used in
the training. For two similar input vectors x and x’, a basic
autoencoder can generate very different encoding
representations y, and y’. Thus, similar instances cannot be
placed in the same encoded space since it may lead to poor
detection performance. Variational autoencoders aim to
address this issue, in a variational autoencoder, the basic
autoencoder represents the encoding by a distribution of
vectors rather than a single vector. The encoder network
generates the mean vector p = E (x) and the covariance
matrix) = Ey(x). They are used in a multivariate normal
distribution N (n, L") generating the encoding y~N (u,).
In addition to the standard reconstruction error, the
variational autoencoder imposes that the distribution of the
encoded vector is approximately similar to a normal
distribution with mean zero and standard deviation (i.e.,
they use the encoding Kullback-Leibler divergence
regularization term).

VL

Countermeasure module works when the detection
module has identified the victim switches of saturation
attacks otherwise it remains idle. It is does not require any
modification of the SDN design or any extra device. It can
mitigate a family of saturation attacks by utilizing (1) the
Packet-In deep inspection filter, which is responsible for
allocating the attacking sources, targeted hosts, and reducing
the false-positives of the victim switch detection module, (2)
the blocking-rule manager component, which is responsible

COUNTERMEASURE

856

for blocking the malicious incoming traffic from the
attacking source. (3) our countermeasure method can
accurately identify the installed malicious flow-entries and
remove them using the flow-table manager component.
1) Packet-In Deep Inspection Filter

Packet-In deep inspection filter can identify the zombie
hosts, the targeted destination and reduce the false-positives
of the victim switch detection module by inspecting the
Packet-In messages of each victim switch. The working
process of Packet-In message filter as follows:

e Allocate all the Packet-In messages of each switch
that has been identified as a victim.
Inspect the data filed for each Packet-In message,
which contains the header of the table-miss packet
or the whole table-miss packet. We extract the
source and the destination IPv4 addresses, MAC
addresses, and OpenFlow switch port numbers of
the table-miss packets.
Identify the zombie hosts and the target
destinations by comparing the table-miss packets
source and destination IPv4 addresses with the
network topology. Essentially, the attacker keeps
spoofing the content of the transmitted packets to
reduce the possibility of matching any flow-rules in
order to urge the targeted OpenFlow switch of
generating Packet-In messages, specifically, the
source IPv4 address of the table-miss packets.
Since the malicious packets with the same IPv4
address will drastically downgrade the performance
of saturation attacks. The zombie hosts can be
identified by comparing the MAC address, port
number, and source IPv4 address of the table-miss
packet with the network topology. If source IPv4
address has zero matches with the network
topology and the MAC address, and the port
number matches with the network topology. The
table-miss packet will be considered as a malicious
one and the host with the corresponding source
MAC address is a zombie host. Also, the
destination of the table-miss packet is regarded as a
targeted destination and the switch of the Packet-In
messages will be regarded as a victim.

2) Blocking-Rule Manager

The blocking-rule manager triggered by the Packet-In
deep inspection filter. It aims to mitigate the attack by
blocking the malicious incoming traffic from the zombie
hosts. After the zombies' hosts are identified, the blocking-
rule manager obtains OpenFlow switch(s) of the zombies'
hosts by comparing the zombie host MAC address and port
number with the network topology. Then, it installs a high
priority blocking-flow rule on the zombie host OpenFlow
switch by using controller-to-switch messages.

The blocking rule consists of a switch DPID field which
is equal to the zombie host OpenFlow switch DPID, a
priority field that is used to assign the priority of the
installed flow-rule. Since the processing of the flow-rules is

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

based on priority, the assigned value should be the highest.
The MAC address field is set to the zombie host MAC
address, the ingress port field is an OpenFlow switch port of
the zombie host, and the action field is set to the “Drop”
action to block the malicious incoming traffic. After
installing the blocking-rule, the incoming malicious traffic
from the ingress port will be matched against the blocking-
rule. Thus, the incoming attack traffic will be blocked.
3) Flow-rule manager

One of the main destructive consequences of a saturation
attack is preventing legitimate flow-entries from being
installed. This happens because the attack consumes the
victim switches memory by installing a huge amount of
malicious flow-entries into their flow-tables. Therefore,
allocating and removing the malicious flow-entries in the
victim switch is an important step to recover the victim
switch from the saturation attack.

When a table-miss occurred, the controller installs flow-
entries into the OpenFlow switch flow-tables to match the
new incoming traffic. The process of creating flow-entries
does not exhibit a single behavior. The controller may use
the port numbers, switch DPID, MAC addresses of the
source and destination, IPv4 addresses of the source and
destination, or their combinations to match the incoming
traffic. Therefore, we have different forms of malicious
flow-entries.

The flow-rule manager identifies the malicious flow-
rules and removes them from the victim switch’s flow
tables. It consists of two phases:

e The flow-rule manager creates the saturation attack

topology through obtaining all the source and
destination IPv4 addresses, MAC address, victim
switch DPIDs, and port numbers of the victim
switches table-miss packets.
The flow-rule manager obtains the victim
OpenFlow switches flow-rules by using a
controller-to-switch message. It compares the values
of flow-rules fields with the attack topology. If any
of the value of the flow-entry fields matches any of
the saturation attack topology values, the flow-entry
will be considered as a malicious one. In this case,
the flow-rule manager uses the controller-to-switch
message to delete the identified malicious flow-
entries from the flow-tables of the victim’s switch.
As a result, a large amount of memory is freed on
the switch flow-tables, which allows the new
legitimate flow-entries to be installed and returns
the switch settings to their pre-attack state.

VIL

In this section, we first evaluate the supervised and
semi-supervised classifiers for offline detection of known
and unknown saturation attacks using an existing dataset.
Then we evaluate the countermeasure in vSwitchDefender.

EXPERIMENTS

857

A. Offline Evaluation of Vicitm Switch Detection

The raw dataset for the offline evaluation is from our
prior work [9]. It was created by using a variety of SDN
configurations based on Mininet and floodlight controller
v1.2. The network topologies included Star, Mesh, Ring,
and Tree. The number of OpenFlow switches ranged from
10 to 200 and the number of hosts ranged from 50 to 300.
The normal traffic was created by using various traffic
generation tools such as Cisco Trex, D-ITG, and Ostinato to
mimic the real-world traffic load. For the malicious traffic,
the HPING3 hacking tool was employed to lunch TCP-
SYN, IP-Spoofing, UDP, ICMP, TCP-SARFU attacks, and
combinations of these attacks. The raw dataset is composed
of 393 GB benign OpenFlow traffic for a total duration of
237 hours and 150 GB malicious OpenFlow traffic for a
total duration of 26.2 hours.

In the prior wok, one minute was found to be the most
appropriate time window among many other different sizes
studied. It means that each normal and malicious sample in
the processed dataset was obtained from one minute of raw
OpenFlow traffic. This paper also uses one-minute time
window for processing the raw data. Unlike the prior work,
however, this paper regroups the OpenFlow traffic with
respect to individual OpenFlow switches so as to determine
whether each switch is under saturation attack. For each
one-minute traffic between the controller and each switch,
we calculate the entropy and TPR values, in addition to the
total numbers of Packet-In, Packet-Out, Packet-Mod, and
TCP-ACK messages. As such, the resultant dataset for
evaluating the supervised and semi-supervised classifiers
consists of 95,026 normal and 65,148 attack samples.

TABLE 1 shows the distributions of attack samples.
Note that one sample may involve multiple attacks. The
traffic data of a single attack sample originated from an
attack that involved only one attack type. The traffic data of
a multi-attack sample involved more than one types of
attacks. For example, a multi-attack sample of UDP
includes not only the UDP type, but also one or more of the
other attack types.

TABLE L. NUMBERS OF ATTACKS SAMPLES
Attack Type Single-attack Samples | Multi-attack samples
UDP 2,008 31,012
SYN 2,008 31,012
TCP-SARFU 2,008 37,036
IP-Spoofing 2,007 31,012
ICMP 2,008 33,020

Detection of known attacks

An attack is considered to be known if it is represented
in the dataset used to train a supervised classifier. Because
instances of a known attack type are included in the training
data, supervised classifiers are likely to classify the attack.
This does not apply to semi-supervised classifiers because
they are trained with only normal samples. To evaluate the
detection of known attacks by a supervised classifier, we

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

applied stratified 10-fold cross-validation, which divided the
95,026 normal samples and the 6 5,148 attack samples in
10-folds. For each label (normal or attack), all the folds
have the same percentage of samples belonging to that label.
For each fold, the test dataset contains all the samples of the
current fold and the training dataset contains all other folds.
The stratification guarantee that for each fold the label
distribution is the same.

TABLE 1I. and TABLE III. show the results of the
supervised classifiers using the message header features and
the message payloads, respectively. Using the message
payloads for classification is slightly better than using the
message headers. As shown in TABLE III, their
combination has also gained improvement. K-NN is the best
among the three supervised classifiers. This shows that the
use of both header and the message payloads features
together is the best approach, and the unique way to
combine them is the use of machine learning. In fact,
machine learning automatically learns models to combines
all the features for the detection of saturation attacks.

TABLE IL DETECTION OF KNOWN SATURATION ATTACKS-
USING OPENFLOW MESSAGE HEADER
Algorithm Precision Recall F1-Score
K-NN 91% 89% 90%
SVM 82% 77% 79%
NB 86% 80% 83%
TABLE III. DETECTION OF KNOWN ATTACKS USING
MESSAGE PAYLOAD
Algorithm Precision Recall F1-Score
K-NN 96% 94% 95%
SVM 81% 85% 83%
NB 86% 90% 88%
TABLE IV. DETECTION OF KNOWN ATTACKS USING
MESSAGE HEADER AND PLAYLOAD
Algorithm Precision Recall F1-Score
K-NN 98% 95% 96%
SVM 83% 90% 86%
NB 91% 88% 89%

e Detection of unknown attacks with supervised
classifiers

An attack is considered unknown if it is not represented
in the dataset used to train a classifier. For the five attack
types studied in this paper, we first consider each one of
them as unknown at a time — the training data includes all
other attack types except the target attack type treated as
unknown. To evaluate each classifier, we first applied
stratified 10-fold cross-validation to all normal and attack
samples. Then, for each fold, we created a new training
dataset by removing the target unknown attack type and its
combinations from the training dataset. Note that we do not
remove any attack from the testing dataset. This implies that
we test the classifier on the normal traffic samples and all
the attack types, including the unknown type. TABLE V.
presents the results of classification, where the training data

858

included four types of attacks and the testing data had five
types of attacks. It appears that the four types of attacks in
the training dataset enable a supervised classifier to
generalize the missing one.

To validate this hypothesis, we further evaluated the K-
NN (the best performing model in Table V) by including
only one attack type in the training dataset, i.e., the stratified
10-fold cross-validation is applied to the 95,026 normal
samples and the 2,007/2,008 single-attack samples (Table I).
The training data consists of 90% of the normal samples and
90% of the single attack samples; The test data consists of
10% of normal and single-attack samples and all other
single and multi-attack samples. TABLE VI. shows that the
detection performance has dropped significantly -- using
one attack type in the training dataset makes it a challenge
for K-NN to generalize for the other four attack types.
Detection of wunknown attacks with
supervised classifiers

As semi-supervised classifiers use only normal samples
in the training data, all the attack types are considered
unknown. We also apply stratified 10-fold cross-validation.
For each fold, the training data consists of 90% of all
normal samples, and the test data is composed of the rest
10% of the normal samples together with 10% of all attack
samples. The results in TABLE VII. show that the semi-
supervised classifiers have outperformed K-NN (the best
among the three supervised classifiers) in terms of recall and
F1-Score. when K-NN was trained with only one type of
attack (see Table V). Compared with all the supervised
approaches (see tables from II to V), they always provide
better recall values even if the precision is sometime 3%
lower. Among the four classifiers, variational autoencoder is
the most effective in identifying the victim switches when
they are targeted by unknown attacks.

. semi-

TABLE V. DETECTION OF UNKNOWN ATTACKS BY
SUPERVISED CLASSIFIERS
Un- K-NN SVM NB
known p* R* F1* P% | R | F1 P% | R | F1
Attack % % % % | % % | %
UDP 100 94 97 99 90 94 99 92 95
SYN 100 92 96 100 48 65 99 98 98
TCP- 97 95 96 100 61 76 99 94 96
SARFU
1P- 97 94 95 98 65 78 91 93 92
Spoofing
ICMP 100 54 70 99 47 64 100 | 53 69
P* = Precision, R* = Recall, and F1* = F1 score
TABLE VL K-NN DETECTION RESULTS OF UNKNOWN
SATURATION ATTACKS USING ONE ATTACK TRAINING
DATASET

Known Attack | Precision (%) Recall (%) F1 (%)
UDP 96 40 56
SYN 93 17 29
TCP-SARFU 91 30 45
IP-Spoofing 94 23 18
ICMP 93 43 29

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

TABLE VIIL DETECTION OF UNKNOWN ATTACKS BY SEMI-

SUPERVISED CLASSIFIERS

Semi-supervised Precision Recall F1
Classifier (%) (%) (%)
Variational Autoencoder 93 98 96
Basic Autoencoder 84 81 82
One-Class SVM 73 75 74
Isolation Forest 82 67 73

B. Online Detection and Countermeasure

vSwitchGuard has been implemented as an application
on Floodlight master V1.2 in Python. In principle, the
detection module can use any supervised or semi-supervised
classifier trained by the offline dataset. The experiment
results demonstrate that K-NN is the best among the
supervised classifiers for detecting known attacks, whereas
variational autoencoder is the best among the semi-
supervised classifiers. This suggests that the countermeasure
may be based on the results of both K-NN and variational
autoencoder for known and unknown attacks: a switch is
attacked if either one has reported positive.

To evaluate the effectiveness of the countermeasure, we
used Mininet and Floodlight master V1.2 to create
simulation SDN environments on a desktop computer
equipped with core i5 CPU and 8 GB RAM (similar to the
environments used to collect the dataset in the previous
section). We have performed 31 case studies. Each includes
a period of normal traffic followed by a distinct attack. In
other words, the case studies have covered all possible
combinations of SYN, IP-Spoofing, UDP, ICMP, TCP-
SARFU attacks. In the case studies, we selected different
types of network topologies (star, mesh, liners, and tree),
network scale, attack type, number of victim switches, and
the number of zombie hosts. For the network scales, we
considered small networks with 10-20 switches and 20-40
hosts, medium networks with 30-100 switches and 150-300
hosts, and large networks with 110-200 switches and 500-
800 hosts.

For each case study, we first ran on each host several
normal traffic generation tools without malicious attack. We
observed that, in all the 31 cases, the victim switch detection
module did not report any attack, and thus the
countermeasure module stayed idle. Then we launched the
attack for each scenario. On average, the victim switch
detection module reported the targeted switches within
60.09 seconds after the attack was launched. This time
includes collection of one-minute traffic, feature extraction
from the collected traffic, and prediction by the classifier. In
some cases, it was shorter than 60.09 seconds. One possible
reason is that the attack started in the middle of the time-
window and the collected data was sufficient for the
classifier to predict the attack. In other cases where it took
more than 60.09 seconds, the attack started in the middle of
the time-window and the collected traffic was insufficient
for the classifier to predict the attack. Thus, vSwitchGuard
needs another minute to collect and analyze the traffic. In
the case studies, we did not observe any false alarms during

859

the normal traffic. False alarms, however, are possible when
the normal traffic becomes similar to the attack traffic.
These false alarms will trigger the Packet-In deep inspection
filter. Once an attack is reported by the detection module,
the countermeasure module will be triggered. In the 31 case
studies, the countermeasure model took about 2~7 seconds
to recover the targeted switches.

In the following, we use one case study to discuss the
performance overhead of vSwitchGuard in terms of CPU
utilization, OpenFlow channel bandwidth utilization, and
flow table utilization. The SDN network was based on a ring
topology with 15 switches. Five zombie hosts were used to
launched a UDP attack that targeted three switches. We
measured the CPU utilization using NetData, before, during
and after the attack. Figure 4 shows the changes of CPU
utilization. Before the attack (from 0-58 second), the
average CPU utilization was about 45%-50% since the SDN
environment and the controller were running on the same
machine. During the attack (from 59 — 119 second), the
CPU utilization reached around 95%. Meanwhile, the traffic
collector and feature extractor collects were working. At
second 120.30, the CPU utilization went down quickly
(around 45%) because vSwitchGuard had identified the
targeted switches and mitigated the attack. The total time for
detection and countermeasure was about 2.2 seconds.

Total CPU utilization (system.cpu)

Percentage

Figure 4. CPU Utilization under UDP Attack.

BANDWIDTH (GBPS)
Y]

o 10 20 30 40 50 €0 70 80 90 100110120130140150 160
TIME (S)

Figure 5. OpenFlow Channel Bandwidth Utilization under UDP Attack.

We also measured the bandwidth of the OpenFlow
channel before, during, and after the attack. The result is
shown in Figure 5. The average bandwidth of the OpenFlow
channel before the attack was about 3.2 GBPS. After the
attack started, the bandwidth decreased to 0.43 GBPS. After
vSwitchGuard had handled the attack, the bandwidth started
peaking up slowly due to the huge amount of Packet-Out

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

and Packet-Mod messages forwarded from the controller to
the victim switch. This demonstrates that vSwitchGuard had
defended the SDN network against the attack without
significant performance overhead.

TABLE VIII. presents flow-table utilization of the
victim switches, in comparison with FloodGuard and
FloodDefender. vSwitchGuard did not overload the network
when there was no saturation attack. When the attack
occurred, the flow-table utilization of victim switches
protected by vSwitchGuard remained steady since all the
malicious flow-rules were removed from the victim
switches. The total flow-table utilization rate caused by
vSwitchGuard was about 1% due to the installation of the
blocking flow rules. For FloodDefender, the flow-table
utilization can reach up to 15% of the flow-table buffer due
to the installation of monitoring and processing flow-rules.
For FloodGuard, the flow-table utilization can reach up to
30% since it uses rate control to protect the controller and
switches. As such, vSwitchGuard provides a more efficient
way to handle malicious table-miss packets with lower
overhead of flow-table utilization.

TABLE VIII. FLOW-TABLE UTILIZATION UNDER UDP ATTACK
vSwitchGuard FloodDefender FloodGuard
No Attack 4% ~ 5% 4% ~ 5% 4% ~ 5%
Under Attack 5% ~ 6% 19% ~20% 34%~35%
VIII. CONCLUSION

We have presented vSwitchGuard as an effective
framework for defending OpenFlow switches against
saturation attacks. The experiments have evaluated three
supervised and four semi-supervised classifiers for detecting
known and unknown attacks. The countermeasure can
effectively recover the victim switches. Compared to the
existing work, vSwitchGuard incurs lower performance
overhead in terms of CPU utilization, OpenFlow channel
bandwidth, and flow-table utilization.

This paper has studied five types of saturation attacks in
SDN environments. Our future work will investigate more
types of attacks and evaluate the effectiveness of supervised
and semi-supervised classifiers.

REFERENCES

https://www.opennetworking.org/

S. Shin, V. Yegneswaran, P. Porras, and G. Gu. "Avant-guard:
Scalable and vigilant switch flow management in software-defined
networks." in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pp. 413-424. ACM, 2013.

R. Mohammadi, R. Javidan, and M. Conti, “Slicots: an sdn-based
lightweight countermeasure for tcp syn flooding attacks,” /EEE
Transac- tions on Network and Service Management, vol. 14, no. 2,
pp. 487-497,2017.

M. Ambrosin, M. Conti, F. DeGaspari, and R.
Poovendran,“Lineswitch: tackling control plane saturation attacks in
software-defined networking,” [EEE/ACM Transactions on
Networking, vol. 25, no. 2, pp. 1206-1219, 2017.

(3]

(4]

860

(6]

[7]

(8]

]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” in Proceedings of the 45th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, 2015, pp. 239-250.

G. Shang, P. Zhe, X. Bin, H. Aiqun, and R. Kui, “Flooddefender:
Protecting data and control plane resources under sdn-aimed dos
attacks,” in Proceedings of the IEEE International Conference on
Computer Communications(INFOCOM). IEEE, 2017, pp. 1-9.

Z. Li, W. Xing, S. Khamaiseh, and D. Xu, “Detecting saturation
attacksbased on self-similarity of openflow traffic,”IEEE
Transactions on Network and Service Management, pp. 1-1, 2019.

D. Hu, P. Hong and Y. Chen, "Fadm: Ddos flooding attack detection
and mitigation system in software-defined networking," in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference.
2017, pp. 1-7.

S. Khamaiseh, E. Serra, Z. Li, and D. Xu, “Detecting saturation
attacks in sdn via machine learning,” in 2019 4th International
Conference on Computing, Communications and Security (ICCCS).
IEEE, 2019, pp. 1-8.

P. W. Chi, C. T. Kuo, J.W. Guo, and C. L., Lei, "How to detect a
compromised sdn switch," in Proceedings of the 2015 Ist IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2015, pp. 1-
6.

H. Zhou, C. Wu, C. Yang, P. Wang, Q. Yang, Z. Lu, and Q. Cheng,
"Sdn-rdcd: a real-time and reliable method for detecting compromised
sdn devices," IEEE/ACM Transactions on Networking (TON), vol. 26,
no. 5, pp. 2048-2061, 2018.

R. Swami, M. Dave, and V. Ranga, "Software-defined networking-
based ddos defense mechanisms," ACM Computing Surveys (CSUR),
vol. 52, no. 2, p. 28, 2019.

J. Asharf and S. Latif, "Handling intrusion and ddos attacks in
software defined networks using machine learning techniques," in
2014 National Software Engineering Conference. IEEE, 2014, pp. 55-
60.

Q. Niyaz, W. Sun, and A. Javaid, "A deep learning based ddos
detection system in software-defined networking (sdn)," arXiv
preprint arXiv:1611.07400, 2016.

R. Braga, E. Mota, and A. Passito, "Lightweight ddos flooding attack
detection using nox/openflow," in LCN, vol. 10, 2010, pp. 408-415.

A. Abubakar and B. Pranggono, "Machine learning based intrusion
detection system for software defined networks,” in 2017 Seventh
International Conference on Emerging Security Technologies (EST).
IEEE, 2017, pp. 138-143.

T. A. Tang, L. Mhamdi, D. McLernon, S. A. Zaidi, and M. Ghogho,
"Deep learning approach for network intrusion detection in software
defined networking," in 2016 International Conference on Wireless
Networks and Mobile Communications (WINCOM), IEEE, 2016, pp.
258-263

D. Santos, J. Wickboldt, L. Granville, and A. Schaeffer-Filho,
"Atlantic: A framework for anomaly traffic detection, classification,
and mitigation in sdn," in NOMS 2016-2016 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2016, pp. 27-35.

J. Ye, X. Cheng, J. Zhu, L. Feng, and L. Song, "A ddos attack
detection method based on svm in software defined network,"
Security and Communication Networks, vol. 2018, 2018.

Authorized licensed use limited to: Boise State University. Downloaded on August 26,2021 at 17:31:30 UTC from IEEE Xplore. Restrictions apply.

