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Abstract— While the decoupling of control and data planes in 
software-defined networking (SDN) facilitates orchestrating 
network traffic, it suffers from security threats. For example, 
saturation attacks can make SDN out of service by exhausting 
the controller’ and switch’s computational resources. The 
existing research has focused on defense against limited types 
of saturation attacks. In this paper, we propose vSwitchGuard, 
a framework for detection and countermeasure of known and 
unknown saturation attacks in SDN. vSwitchGuard aims to 
identify the victim switches targeted by known or unknown 
types of saturation attacks with machine learning classifiers 
and restore the victim switches to their safe state through deep 
packet inspection. We have evaluated three supervised 
classifiers and four semi-supervised classifiers for five types of 
saturation attacks (TCP-SYN, UDP, ICMP, IP-Spoofing, and 
TCP-SARFU) and their combinations. The results suggest that 
supervised and semi-supervised classifiers can be combined to 
deal with known and unknown attacks for better performance. 
We have also implemented the countermeasure and evaluated 
it with all combinations of the five types of attacks. The results 
demonstrate that vSwitchGuard can effectively defend against 
the attacks without significant performance overhead. 

Keywords- software-defined networking; OpenFlow; 
saturation attack; machine learning; DoS attacks 

I.  INTRODUCTION  
Software-Defined Networking (SDN) is a programmable 

network architecture that separates the control plane from the 
data plane. The components in the data plane, e.g., 
OpenFlow switches, are responsible for forwarding network 
traffic. The controller in the control plane is a centralized 
unit that translates the application requirements down to the 
data plane by using a southbound interface. As the first 
proposed communication protocol between the data and 
control planes, OpenFlow has been adopted as the standard 
southbound APIs by Open Network Foundation (ONC) [1]. 

The reactive packet processing approach of OpenFlow 
makes an SDN network more adaptable to requirement 
changes of applications. An OpenFlow switch processes 
each incoming packet by matching it with flow rules in the 
flow tables. When there is no match (i.e., table-miss), the 
switch encapsulates the packet inside a Packet-In message 
and sends it to the controller. The controller then decides a 
proper action and, if necessary, installs a new flow-rule in 

the OpenFlow switch. Such a reactive approach to packet 
processing, however, can be exploited by saturation attacks 
that send maliciously spoofed packets. The table-misses will 
trigger a large number of Packet-In messages sent to the 
controller by the switch. This may exhaust the computational 
recourses of the control plane and congest the OpenFlow 
channel between the data and control planes. The large 
number of fake flow entries created by the controller may 
also exhaust the flow-table buffer of the switch. As a result, 
the entire network may be paralyzed. 

Several approaches have been proposed to deal with 
saturation attacks. AVANT-GUARD [2], SLICOTS [3], and 
LineSwitch [4] focused on SYN flooding, a classical method 
of denial of service attack in computer networks. 
FloodGuard [2] and FloodDefender [6] relied on the rate of 
Packet-In messages to reason about attack occurrence. This 
can be inaccurate because the resultant rate of a high volume 
of normal traffic may also exceed a predefined threshold [7]. 
FDAM [8] used the Support Vector Machine (SVM) to 
detect attacks and a whitelist of IP addresses to prevent the 
attacks. SA-Detector [7] exploited self-similarity degree of 
OpenFlow traffic to detect several types of saturation attacks. 
It is based on the observation that OpenFlow traffic between 
the controller and switches has a relatively higher degree of 
self-similarity when a saturation attack occurs. Our recent 
work [9] has demonstrated that supervised classifiers are 
useful for detecting the occurrences of these types of attacks. 
However, the existing machine-learning based approaches 
have two main limitations. First, they deal with pre-defined 
(known) types of attacks using supervised classifiers. It is 
unclear if they are capable of detecting new attacks. 
Detection of unknown saturation attacks in SDN is important 
because research has shown that there are various attack 
methods. Second, they aim to detect whether or not a 
saturation attack is happening in an SDN environment, but 
do not determine which switches are being attacked. In other 
words, they cannot recover the victim switches from the 
actual occurrence of a saturation attack. 

To address these issues, this paper presents 
vSwitchGuard, an effective framework for detection and 
countermeasure of both known and unknown types of 
saturation attacks in SDN. The contributions are as follows: 

• In addition to the OpenFlow message types [9], this 
paper proposes the statistical properties of 
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OpenFlow message payloads (entropy and table-
miss packet rate) as features for machine learning-
based attack detection and show that the 
combination is the most effective.   

• We evaluate and compare three supervised 
classifiers (SVM, K-Nearest Neighbor, and Naïve-
Bayes) and four semi-supervised classifiers (Basic 
Autoencoder, Variational Autoencoder, One-Class 
SVM, and Isolation Forest) for locating the victim 
switches targeted by known and unknown attacks. 
Supervised and semi-supervised classifiers can be 
combined improve detection performance. Among 
the four semi-supervised classifiers, Variational 
Autoencoder is the most effective in dealing with 
unknown attacks.    

• We present an effective countermeasure that restores 
the victim switches to a safe state. Based on deep 
packet inspection, the countermeasure can accurately 
block the malicious incoming traffic and clean up 
the flow-rules installed in the victim switches. 
Unlike some of the existing work, vSwitchGuard 
does not need to add new hardware or modify the 
SDN architecture. 

• We present an online testing of the countermeasure 
with all combinations of the five attack types. The 
results show that vSwitchGuard can effectively 
defend the OpenFlow switches without significant 
performance overhead in terms of CPU utilization, 
OpenFlow channel bandwidth, and flow table 
utilization. 

 

II. RELATED WORKS 
Identifying targeted OpenFlow switches. Chi et al. [10] 

proposed a preliminary method that samples flow-rules from 
randomly selected OpenFlow switches. It generates artificial 
packets to see if the OpenFlow switch executes the 
corresponding flow-rules correctly. This approach may 
produce a high rate of false-positives since the flow-rules of 
the OpenFlow switches are changing over time.  

Zhou et al. [11] proposed SDN-RDCD, a real-time 
approach to detect the targeted SDN devices when the 
controller and OpenFlow switches are trustless. It uses a 
backup controller as an audit controller that is responsible for 
recording the network update events such as deleting, 
adding, or updating flow rules from the original controller 
and its connected OpenFlow switches. The audit controller 
allocates a unique audit ID for each update request event and 
records it in an audit record. This audit ID is used to keep 
track of each event, as well as the execution results on the 
original controller and corresponding OpenFlow switches. 
The audit ID is also used by the audit controller to re-execute 
the update event and record the execution results. Then, 
SDN-RDCD analyzes the recorded audit log to extract any 
inconsistency of the handling of information by the 
controller and OpenFlow switches. This approach may 
require a long time to process the audit records in order to 
find the unmatched event handling information. Thus, the 

saturation attacks may have compromised the entire network 
before the targeted OpenFlow switches are detected. This 
approach cannot detect most of the switches that are targeted 
by saturation attacks, since the behavior of these targeted 
OpenFlow switches is very similar to the normal ones.  

Different from the above work, vSwitchGuard provides 
an effective method that can detect the targeted OpenFlow 
switches by known and unknown attacks. It does not require 
any modification to the SDN architecture. 

Detecting saturation attacks. Various approaches have 
been proposed to detect saturation attacks in SDNs [12].  
Ashraf et al. [13] discussed the possibility of adopting 
machine learning approaches to detect DoS attacks in SDN. 
This work does not deal with victim switches. Quamar et al. 
[14] adapted the Stack Autoencoder (SAE) deep learning 
technique for detecting multi-vector DDoS. The proposed 
defense system consists of three components: Traffic 
Collector and Flow Installer, Feature Extractor, and Traffic 
Classifier. This work relies on processing every incoming 
packet for attack detection and flow computation, which 
requires extensive computational resources. The dataset was 
used for training and testing was collected from a traditional 
wireless network, so it does not involve OpenFlow traffic. 
Braga at al. [15] adopted the self-organized map (SOM) for 
detecting flooding attacks against SDNs. The detection 
system collects all the flow entries of the connected 
OpenFlow switches, extracts the SOM classifier features 
from the collected flow-entries to detect the DDoS attacks. 
However, this work requires extensive processing time to 
extract the features because it needs to process all the flow 
entries of connected OpenFlow switches. This delay may 
give the attacker enough time to flood the network. 
Abubakar and Pranggono [16] developed a flow-based 
anomaly detection system by using a neural network. The 
NSL-KDD dataset was from a traditional network, not SDN 
network. Tang et al. [17] used the Deep Neural Network 
(DNN) to develop an anomaly DoS detection system. The 
accuracy is relatively low – just 88.04%. It was also based on 
the NSL-KDD dataset from a traditional network.  

Santos et al. [18] introduced the ATLANTIC framework 
to detect DDoS attacks against SDNs. It consists of two 
phases: (1) a lightweight processing phase that can be 
executed periodically to detect the deviations of the SDN 
network traffic flows by using entropy analysis in order to 
identify the suspicious traffic flows, and (2) a heavyweight 
processing phase that uses a K-means unsupervised 
algorithm to cluster the similar traffic flows and then adopts 
an SVM classifier to classify the malicious flows from the 
normal ones. The detection performance is relatively low: 
88.7% accuracy and 82.3% precision. The approach also 
caused performance overhead on the SDN environment 
because it required a long prediction time to use SVM and 
K-means together.  

Ye et al. [19] proposed a detection system for UDP, 
SYN, and ICMP flooding attacks by using an SVM 
classifier.  The system includes: (1) a flow state collection 
module that collects the status of the OpenFlow switches 
flow-tables by using controller-to-switch messages, (2) 
Characteristic Values Extraction module that is responsible 
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for extracting the classifier features (it extracts 6 features 
from the collected flow tables’ status messages), and (3) 
classifier judgment module, which utilizes an SVM classifier 
to detect the attacks. However, SVM is deficient in detecting 
unknown saturation attacks. 

Li et al., [7] proposed a lightweight method called SA-
Detector for detecting a family of saturation attacks. It is 
based on the study of self-similarity of OpenFlow traffic. It 
uses the Hurst exponent for normal and abnormal OpenFlow 
traffic to detect the saturation attacks. Our prior work [9] 
have studies several supervised classifiers to detect all the 
attack types in [7]. The above work, however, does not 
identify the targeted switches. 

Countermeasure of saturation attacks. Several 
methods have been proposed to defend SDN against 
saturation attacks. Hu et al. [7] Introduced the FDAM system 
for detecting UPD, ICMP, and SYN flooding attacks. It 
consists of two modules: (1) an attack detection module that 
is responsible for detecting DoS attacks by using an SVM 
classifier and a sFlow approach to collect the network traffic 
and extract features, and (2) a DoS attacks mitigation module 
that mitigates flooding attacks by using traffic migration and 
white-list approaches. As shown in this paper, SVM does not 
have a good record in detection of the saturation attacks. 
Shang et al. [6] Proposed FloodDefender as an SDN 
application to protect the control plane and data plane against 
DoS attacks. It has four modules: attack detection to detect 
the DoS attacks, table-miss engineering to migrate the table-
miss packets to the neighbors' switches, packet filtering to 
identify the attack traffic, and flow rule management to 
remove the useless flow-rules. The main limitations are: (1) 
All the table-miss packets are delivered to the controller, 
whether they are normal or not. (2) There is a relatively high 
flow-table utilization due to the installation of protecting and 
monitoring flow-rules. (3) The attack detection module using 
the Packet-In messages rate is ineffective because a high 
volume of normal traffic can produce a similar rate of 
Packet-In messages.  

Wang et al. [5] proposed FloodGuard to protect the 
controller against DoS attacks. FloodGuard has two 
approaches to detect and mitigate DoS attacks: a proactive 
flow rule analyzer module to enforce the network 
functionalities when the DoS attack occurred and packet 
migration to protect the controller from being overloaded. 
Shin et al [2] proposed the AVANT-GUARD framework to 
mitigate the TCP-SYN flooding that is sent to the SDN 
controller. It accomplishes this task by extending the 
OpenFlow-Switches functions. The detection module 
monitors the ongoing TCP-SYN connections to the 
controller and detects the SYN flooding based on a 
predefined threshold, which cannot accurately differentiate 
between the normal and abnormal SYN packets. Both 
AVANT-GUARD and FloodGuard focus on protecting the 
control plane against DoS attacks and ignoring the data plane 
and the OpenFlow connection channel.  

Different from the above work, vSwitchGuard can detect 
the targeted OpenFlow switches by known and unknown 
saturation attacks. We have studied different supervised and 
semi-supervised classifiers. vSwitchGuard also provides a 

countermeasure that can effectively mitigate a family of 
saturation attacks and recover the victim switches. 

 

III. BACKGROUND AND PROBLEM STATEMENT 

A. SDN and OpenFlow Protocol 
The SDN architecture comprises the control and data 

planes that communicate through the southbound API (i.e., 
OpenFlow). The centralized controller translates 
applications’ network requirements down to the data plane, 
which consists of network hardware components such as 
switches and routers. The southbound API, as an interface 
between the switches and the controller, enables the 
controller to manage the behavior of the entire network by 
installing flow-rule in the flow tables of switches. 

There are 29 types of messages between the controller 
and OpenFlow switches. They fall into three groups: (1) 
controller-to-switch messages sent by the controller to 
update, add, delete group/flow entries or request the status 
of a switch, (2) asynchronous messages initiated by a switch 
to inform the controller of new packet arrival that does not 
match the flow entry rules or changes in the switch state, (3) 
symmetric messages initiated in either the direction of 
controller-to-switch or the direction of switch-to-controller.  
When receiving a new packet from an application, either 
normal or malicious, an OpenFlow switch tries to match it 
with the rules in the local flow table. If there is no match, a 
table-miss occurs, and the switch generates a Packet-In 
message. The message contains the header of the table-miss 
packet if the switch buffer is not full, otherwise the table-
miss packet is encapsulated in the Packet-In message and 
sent to the controller. When receiving the Packet-In 
message, the controller decides how to process the table-
miss packet and tries to install a new flow-rule in the flow 
table by sending Packet-Out and Packet-Mod messages. 

B. Adversary Model  
The aforementioned reactive approach to packet 

processing is subject to saturation attacks. An attacker may 
exploit table-misses to exhaust the computation resource 
(e.g., CPU and memory) of the controller and/or switches, 
and saturate the OpenFlow channel. The saturation effect is 
caused by the generation of a large number of Packet-In 
messages, which significantly consumes the controller’s 
computational resources.  

The saturation effect is caused by the generation of a 
large number of Packet-In messages, which significantly 
consumes the controller’s computational resources. When 
the switch-to-controller communication is flooded by 
Packet-In messages, the controller will also send a large 
number of Packet-Out and Packet-Mod messages, which 
leads to the flooding of controller-to-switch communication. 
The flow tables in the affected switches are filled with fake 
flow rules. This may prevent the benign flow rules to be 
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installed and thus the system may be unable to process the 
legitimate new packets.  

To implement saturation attacks in SDN environments, 
there are various ways to generate malicious network traffic 
to trigger a large volume of Packet-In messages. Examples 
are SYN flooding, UDP flooding, ICMP flooding, IP-
Spoofing, and TCP-SARFU flooding [7]. Even worse, these 
methods can be combined to lunched very complex attacks. 
To defend against saturation attacks in SDN, it is important 
to deal with known and unknown types of malicious traffic.   

C. Challenges 
This paper aims at effective detection and 

countermeasure for defending OpenFlow switches from 
known and unknown saturation attacks. There are three 
main challenges: (1) how to detect unknown attacks, (2) 
how to determine which switches are the victims, and (3) 
how to restore the victim switches to a safe state.    

In SDN, table-miss packets, and consequently Packet-In, 
Packet-Out and Packet-Mod messages, may originate from 
both benign and malicious applications. The controller and 
switches have inadequate knowledge to determine if table-
miss packets are triggered by a benign or malicious 
application. From the qualitative perspective, the forwarding 
behaviors of OpenFlow switches do not follow a predefined 
norm. Nevertheless, OpenFlow messages may exhibit 
statistical properties when an SDN environment is under a 
saturation attack. For example, four of the 29 message types 
were used as the critical indicators of the existing saturation 
attacks [9]. It is thus feasible to apply the statistical 
information of these messages to detect saturation attacks 
with machine learning classifiers. However, the existing 
work has not addressed the first two challenges. It is unclear 
whether these classifiers and message types are effective for 
dealing with unknown attacks. Unlike traditional switches 
where forwarding rules are predefined, OpenFlow switches 
are programmed by the controller according to all relevant 
applications. As the flow rules of an OpenFlow switch 
dynamically change over time, the forwarding behaviors of 
an OpenFlow switch do not exhibit a single set of 
behavioral norms. It is non-trivial to determine if a switch is 
under attack and how to restore it to a safe state. In this 
paper, we address the first two challenges by applying and 
comparing supervised and semi-supervised classifiers to the 
OpenFlow messages between the controller and individual 
switches. In addition to the four critical message types, we 
also use the OpenFlow message payloads for attack 
detection. To determine if a classifier can recognize an 
unknown type of attack, the samples of a given attack type 
are excluded from the training data, but included in the 
testing data.   

To restore victim switches, a countermeasure must be 
able to accurately identify and remove the fake flow rules 
installed during the attack and should not drop any 
legitimate table-miss packets from benign switches and 
hosts. As the controller may use various attributes of 

incoming OpenFlow packets for matching flow rules (port 
number, switch DPID, MAC address, and IPv4 addresses), 
the countermeasure requires deep packet analysis. 

 

 
Figure 1.  The Architecture of vSwitchGuard. 

IV. SYSTEM DESIGN 
vSwitchGuard is designed as an application on top of the 

controller, as depicted in Figure 1. It consists of four 
modules: network topology manager, OpenFlow traffic 
collector and feature extractor, victim switch detection, and 
countermeasure. The network topology manager extracts the 
SDN topology by using the northbound REST APIs of the 
controller and classifies the extracted network topology 
based on the connected OpenFlow switches. The traffic 
collector is a session-based process that collects the raw 
OpenFlow traffic by using the Pyshark library. The feature 
extractor extracts the features from the raw traffic data for 
machine-learning based detection of saturation attacks. The 
duration of each session is a pre-defined time-window for 
OpenFlow traffic analysis. In this paper, the time-window is 
set to one-minute suggested [9] in because the same dataset 
is used for the evaluations of both supervised and semi-
supervised classifiers. The module for victim switch 
detection applies a supervised or semi-supervised classifier 
to the processed traffic feature to determine whether or each 
switch is under a saturation attack. The model of the 
classifier is obtained by training the classifier with an offline 
dataset. It is then used for online detection.  

Once a switch is found to be under attack, the 
countermeasure module will invoke the deep inspection 
component to allocate the Packet-In messages from the 
collected traffic. It inspects the header of the table-miss 
packet inside the Packet-In messages to identify the zombie 
hosts. According to the results of inspection, the blocking 
flow-rule manager will install high priority blocking rules 
and the flow-table manager will identify and remove the 
fake flow rules according to the network topology.  
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V. DETECTION OF VICTIM SWICHES 
This section first describes the statistical features of 

OpenFlow traffic used to detect attacks with classifiers, and 
then introduces the supervised and semi-supervised 
classifiers studies in this paper.  

A. OpenFlow Traffic Features 
The existing research has shown that, among the 29 types 

of OpenFlow messages, the following four are significantly 
affected by known saturation attacks [9]: (1) the number of 
Packet-In messages generated by a switch (2) the number of 
Packet-Out messages received by a switch, (3) the number of 
Packet-Mod messages received by a switch, and (4) the 
number of TCP-ACK messages received and generated by a 
switch. As these features are obtained from OpenFlow 
messages headers, we refer them to the features of 
OpenFlow message headers, which are useful for detecting 
known saturation attacks with supervised classifiers [9].  

In this paper, we propose two new features, entropy and 
table-miss packet rate (TPR). They are referred to as 
OpenFlow message payload features because they utilize 
detailed information in OpenFlow messages. While 
investigating malicious and normal OpenFlow traffic, we 
observed that, when a switch is under saturation attack, the 
distribution of the source IPv4 addresses of the table-miss 
packets encapsulated inside the Packet-In message payload 
(i.e., data field) changed frequently. To measure such 
distribution changes, we calculate the Shannon Entropy 
value of source IPv4 addresses of the table-miss packets for 
each OpenFlow switch. Shannon Entropy is a measurement 
of the uncertainty of random variables in information theory. 
The entropy value of source IPv4 addresses of the table-miss 
packets is defined as: 

 

                          
           (1)        

Where srcIP= {n1,n2,…, nk} represents all the source IPv4 
addresses of an OpenFlow switch table-miss packets 
encapsulated inside the Packet-In messages within the 
specified time-window, ni is the occurrence number of the 
ith source IPv4 address IPi , and K is the number of different 
sources IPv4 addresses. M = k

i=1 ni
 represents the total 

occurrence number of all source IPv4 addresses of table-
miss packets of an OpenFlow switch. A high (low) entropy 
value indicates a more decentralized (concentrated) 
probability distribution.  

Figure 2 presents a sample of the total received source 
IPv4 addresses of normal and malicious packets. It also 
shows the number of normal and malicious table-miss 
packets source IPv4 addresses. In the malicious incoming 
packets within one minute of OpenFlow traffic, 574 of the 
962 source IPv4 addresses triggered table-miss packets. In 
contrast, only 24 of the 684 source IPv4 addresses in the 
legitimate incoming packets were involved in table-miss 
packets. In this case, the entropy value of the malicious 
table-miss packets was higher than that of the legitimate 
table-miss packets.  

 

 
Figure 2.  A Sample of Normal and Malicious Table-Miss Source IPv4 

Addresses. 

Table-Miss Packet Rate (TPR) is the proportion of table-
miss packets (i.e., Packet-In messages) out of the total 
corresponding received packets of an OpenFlow switch 
within a specified time-window. It is defined as follows:  

TPR = S(PacketIn)   S(Received Packets)           (2) 
Where S(PacketIn) is the total number of generated 
Packet-In messages (the number of table-miss packets), and  

S(Received Packets) is the total number of 
received/incoming packets of the OpenFlow switch. 

Figure 3 shows an example of normal and abnormal 
OpenFlow traffic of a switch, where the switch received 
140,531 legitimate packets and generated 15,637 Packet-In 
messages, with a TPR value of 0.11. It indicates that 11% of 
the received packets caused a table-miss, and 89% of the 
received packets matched the flow table entries. In contrast, 
the same switch targeted by saturation attacks received 
96,463 packets and generated 38,164 Packet-In messages, 
with a TPR value of 0.39 -- 39% of the received packets are 
table-miss packets.  

 
Figure 3.  A Sample of Normal and Malicious Table-Miss Packets. 

To summarize, this paper evaluates and compares three 
groups of OpenFlow traffic features: four message header 
features (Packet-In, Packet-Out, Packet-Mod, TCP-ACK 
messages), two message payload features (entropy and 
TPR), and the combination of them (i.e., all six features).  

B. Attack Detection with Classifiers 
In this paper, we studied and compared three supervised 

classifiers: K-Nearest Neighbors (K-NN), SVM, and Naïve 
Bayes (NB) classifiers and four semi-supervised classifiers: 
one-class SVM, isolation-forest, basic autoencoder, and 
variational autoencoder. Our prior work has used K-NN, 
SVM, and NB to detect whether or not an SDN system is 
under saturation attack [9], but it did not determine which 
switches is being attacked.  In this paper, we not only use 
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the same supervised classifiers for detecting victim 
switches, but also evaluate their capability of dealing with 
unknown types of attacks. The supervised classifiers 
required that the training dataset include specimens of all 
saturation attack types. The patterns they learned from the 
training data tend to focus on the representation of malicious 
behaviors, assuming other samples in the dataset as benign 
behaviors. In other words, they may classify a new unknown 
attack as benign because the attack differs from the pattern 
learned from the training data. This has motivated the 
application of semi-supervised classers, which can be 
trained without the need to label the samples.  

Our experiments have shown that, among the four semi-
supervised classifiers, variational autoencoder has achieved 
the best performance. In the following, we provide a brief 
introduction.   Autoencoder is an artificial neural network 
composed of two functions: the encoder and the decoder. 
The encoder function E is a neural network transforming the 
original features x in a new space y=E(x). Usually, y is in a 
lower dimension than the original space. The decoder 
function D transforms the features Y from the new space to 
the original space x’= D(x) This neural network is trained 
by minimizing the reconstruction error, i.e., loss = |  x- x’ |. 
Once trained, the reconstruction error on a new sample can 
be used as a score to determine whether or not the sample 
represents a training example.  

The smaller the reconstruction score, the higher the 
likelihood that the new sample is similar to the one used in 
the training. For two similar input vectors x and x’, a basic 
autoencoder can generate very different encoding 
representations y, and y’. Thus, similar instances cannot be 
placed in the same encoded space since it may lead to poor 
detection performance. Variational autoencoders aim to 
address this issue, in a variational autoencoder, the basic 
autoencoder represents the encoding by a distribution of 
vectors rather than a single vector. The encoder network 
generates the mean vector  = E (x)  and the covariance 
matrix = E (x). They are used in a multivariate normal 
distribution  ( , ) generating the encoding ~  ( , ). 
In addition to the standard reconstruction error, the 
variational autoencoder imposes that the distribution of the 
encoded vector is approximately similar to a normal 
distribution with mean zero and standard deviation (i.e., 
they use the encoding Kullback-Leibler divergence 
regularization term). 

VI. COUNTERMEASURE 
Countermeasure module works when the detection 

module has identified the victim switches of saturation 
attacks otherwise it remains idle. It is does not require any 
modification of the SDN design or any extra device. It can 
mitigate a family of saturation attacks by utilizing (1) the 
Packet-In deep inspection filter, which is responsible for 
allocating the attacking sources, targeted hosts, and reducing 
the false-positives of the victim switch detection module, (2) 
the blocking-rule manager component, which is responsible 

for blocking the malicious incoming traffic from the 
attacking source. (3) our countermeasure method can 
accurately identify the installed malicious flow-entries and 
remove them using the flow-table manager component. 

1) Packet-In Deep Inspection Filter 
Packet-In deep inspection filter can identify the zombie 

hosts, the targeted destination and reduce the false-positives 
of the victim switch detection module by inspecting the 
Packet-In messages of each victim switch. The working 
process of Packet-In message filter as follows: 

• Allocate all the Packet-In messages of each switch 
that has been identified as a victim.  

• Inspect the data filed for each Packet-In message, 
which contains the header of the table-miss packet 
or the whole table-miss packet. We extract the 
source and the destination IPv4 addresses, MAC 
addresses, and OpenFlow switch port numbers of 
the table-miss packets. 

• Identify the zombie hosts and the target 
destinations by comparing the table-miss packets 
source and destination IPv4 addresses with the 
network topology. Essentially, the attacker keeps 
spoofing the content of the transmitted packets to 
reduce the possibility of matching any flow-rules in 
order to urge the targeted OpenFlow switch of 
generating Packet-In messages, specifically, the 
source IPv4 address of the table-miss packets. 
Since the malicious packets with the same IPv4 
address will drastically downgrade the performance 
of saturation attacks. The zombie hosts can be 
identified by comparing the MAC address, port 
number, and source IPv4 address of the table-miss 
packet with the network topology. If source IPv4 
address has zero matches with the network 
topology and the MAC address, and the port 
number matches with the network topology. The 
table-miss packet will be considered as a malicious 
one and the host with the corresponding source 
MAC address is a zombie host. Also, the 
destination of the table-miss packet is regarded as a 
targeted destination and the switch of the Packet-In 
messages will be regarded as a victim. 

2) Blocking-Rule Manager 
The blocking-rule manager triggered by the Packet-In 

deep inspection filter. It aims to mitigate the attack by 
blocking the malicious incoming traffic from the zombie 
hosts. After the zombies' hosts are identified, the blocking-
rule manager obtains OpenFlow switch(s) of the zombies' 
hosts by comparing the zombie host MAC address and port 
number with the network topology. Then, it installs a high 
priority blocking-flow rule on the zombie host OpenFlow 
switch by using controller-to-switch messages.  

The blocking rule consists of a switch DPID field which 
is equal to the zombie host OpenFlow switch DPID, a 
priority field that is used to assign the priority of the 
installed flow-rule. Since the processing of the flow-rules is 
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based on priority, the assigned value should be the highest.  
The MAC address field is set to the zombie host MAC 
address, the ingress port field is an OpenFlow switch port of 
the zombie host, and the action field is set to the “Drop” 
action to block the malicious incoming traffic. After 
installing the blocking-rule, the incoming malicious traffic 
from the ingress port will be matched against the blocking-
rule. Thus, the incoming attack traffic will be blocked.   

3) Flow-rule manager 
One of the main destructive consequences of a saturation 

attack is preventing legitimate flow-entries from being 
installed. This happens because the attack consumes the 
victim switches memory by installing a huge amount of 
malicious flow-entries into their flow-tables. Therefore, 
allocating and removing the malicious flow-entries in the 
victim switch is an important step to recover the victim 
switch from the saturation attack. 

When a table-miss occurred, the controller installs flow-
entries into the OpenFlow switch flow-tables to match the 
new incoming traffic. The process of creating flow-entries 
does not exhibit a single behavior. The controller may use 
the port numbers, switch DPID, MAC addresses of the 
source and destination, IPv4 addresses of the source and 
destination, or their combinations to match the incoming 
traffic. Therefore, we have different forms of malicious 
flow-entries. 

The flow-rule manager identifies the malicious flow-
rules and removes them from the victim switch’s flow 
tables. It consists of two phases: 

• The flow-rule manager creates the saturation attack 
topology through obtaining all the source and 
destination IPv4 addresses, MAC address, victim 
switch DPIDs, and port numbers of the victim 
switches table-miss packets. 

• The flow-rule manager obtains the victim 
OpenFlow switches flow-rules by using a 
controller-to-switch message. It compares the values 
of flow-rules fields with the attack topology. If any 
of the value of the flow-entry fields matches any of 
the saturation attack topology values, the flow-entry 
will be considered as a malicious one. In this case, 
the flow-rule manager uses the controller-to-switch 
message to delete the identified malicious flow-
entries from the flow-tables of the victim’s switch. 
As a result, a large amount of memory is freed on 
the switch flow-tables, which allows the new 
legitimate flow-entries to be installed and returns 
the switch settings to their pre-attack state. 

VII. EXPERIMENTS 
In this section, we first evaluate the supervised and 

semi-supervised classifiers for offline detection of known 
and unknown saturation attacks using an existing dataset. 
Then we evaluate the countermeasure in vSwitchDefender. 

A. Offline Evaluation of Vicitm Switch Detection 
The raw dataset for the offline evaluation is from our 

prior work [9]. It was created by using a variety of SDN 
configurations based on Mininet and floodlight controller 
v1.2. The network topologies included Star, Mesh, Ring, 
and Tree. The number of OpenFlow switches ranged from 
10 to 200 and the number of hosts ranged from 50 to 300. 
The normal traffic was created by using various traffic 
generation tools such as Cisco Trex, D-ITG, and Ostinato to 
mimic the real-world traffic load. For the malicious traffic, 
the HPING3 hacking tool was employed to lunch TCP-
SYN, IP-Spoofing, UDP, ICMP, TCP-SARFU attacks, and 
combinations of these attacks. The raw dataset is composed 
of 393 GB benign OpenFlow traffic for a total duration of 
237 hours and 150 GB malicious OpenFlow traffic for a 
total duration of 26.2 hours.  

In the prior wok, one minute was found to be the most 
appropriate time window among many other different sizes 
studied. It means that each normal and malicious sample in 
the processed dataset was obtained from one minute of raw 
OpenFlow traffic. This paper also uses one-minute time 
window for processing the raw data. Unlike the prior work, 
however, this paper regroups the OpenFlow traffic with 
respect to individual OpenFlow switches so as to determine 
whether each switch is under saturation attack. For each 
one-minute traffic between the controller and each switch, 
we calculate the entropy and TPR values, in addition to the 
total numbers of Packet-In, Packet-Out, Packet-Mod, and 
TCP-ACK messages. As such, the resultant dataset for 
evaluating the supervised and semi-supervised classifiers 
consists of 95,026 normal and 65,148 attack samples. 

TABLE I shows the distributions of attack samples. 
Note that one sample may involve multiple attacks. The 
traffic data of a single attack sample originated from an 
attack that involved only one attack type. The traffic data of 
a multi-attack sample involved more than one types of 
attacks. For example, a multi-attack sample of UDP 
includes not only the UDP type, but also one or more of the 
other attack types. 

TABLE I.  NUMBERS OF ATTACKS SAMPLES 

Attack Type Single-attack Samples Multi-attack samples 
UDP 2,008 31,012 
SYN 2,008 31,012 
TCP-SARFU 2,008 37,036 
IP-Spoofing 2,007 31,012 
ICMP 2,008 33,020 

 
• Detection of known attacks 

An attack is considered to be known if it is represented 
in the dataset used to train a supervised classifier. Because 
instances of a known attack type are included in the training 
data, supervised classifiers are likely to classify the attack. 
This does not apply to semi-supervised classifiers because 
they are trained with only normal samples. To evaluate the 
detection of known attacks by a supervised classifier, we 
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applied stratified 10-fold cross-validation, which divided the 
95,026 normal samples and the 6 5,148 attack samples in 
10-folds. For each label (normal or attack), all the folds 
have the same percentage of samples belonging to that label. 
For each fold, the test dataset contains all the samples of the 
current fold and the training dataset contains all other folds. 
The stratification guarantee that for each fold the label 
distribution is the same.   

TABLE II. and TABLE III. show the results of the 
supervised classifiers using the message header features and 
the message payloads, respectively. Using the message 
payloads for classification is slightly better than using the 
message headers. As shown in TABLE III, their 
combination has also gained improvement. K-NN is the best 
among the three supervised classifiers. This shows that the 
use of both header and the message payloads features 
together is the best approach, and the unique way to 
combine them is the use of machine learning. In fact, 
machine learning automatically learns models to combines 
all the features for the detection of saturation attacks. 

TABLE II.  DETECTION OF KNOWN SATURATION ATTACKS- 
USING OPENFLOW MESSAGE HEADER 

Algorithm  Precision Recall F1-Score 
K-NN 91% 89% 90% 
SVM 82% 77% 79% 
NB 86% 80% 83% 

TABLE III.  DETECTION OF KNOWN ATTACKS USING 
MESSAGE PAYLOAD 

Algorithm  Precision Recall F1-Score 
K-NN 96% 94% 95% 
SVM 81% 85% 83% 
NB 86% 90% 88% 

TABLE IV.  DETECTION OF KNOWN ATTACKS USING 
MESSAGE HEADER AND PLAYLOAD 

Algorithm  Precision Recall F1-Score 
K-NN 98% 95% 96% 
SVM 83% 90% 86% 
NB 91% 88% 89% 

 
• Detection of unknown attacks with supervised 

classifiers 
An attack is considered unknown if it is not represented 

in the dataset used to train a classifier. For the five attack 
types studied in this paper, we first consider each one of 
them as unknown at a time – the training data includes all 
other attack types except the target attack type treated as 
unknown. To evaluate each classifier, we first applied 
stratified 10-fold cross-validation to all normal and attack 
samples. Then, for each fold, we created a new training 
dataset by removing the target unknown attack type and its 
combinations from the training dataset. Note that we do not 
remove any attack from the testing dataset. This implies that 
we test the classifier on the normal traffic samples and all 
the attack types, including the unknown type.  TABLE V. 
presents the results of classification, where the training data 

included four types of attacks and the testing data had five 
types of attacks. It appears that the four types of attacks in 
the training dataset enable a supervised classifier to 
generalize the missing one. 

To validate this hypothesis, we further evaluated the K-
NN (the best performing model in Table V) by including 
only one attack type in the training dataset, i.e., the stratified 
10-fold cross-validation is applied to the 95,026 normal 
samples and the 2,007/2,008 single-attack samples (Table I). 
The training data consists of 90% of the normal samples and 
90% of the single attack samples; The test data consists of 
10% of normal and single-attack samples and all other 
single and multi-attack samples. TABLE VI. shows that the 
detection performance has dropped significantly -- using 
one attack type in the training dataset makes it a challenge 
for K-NN to generalize for the other four attack types. 

• Detection of unknown attacks with semi-
supervised classifiers 

As semi-supervised classifiers use only normal samples 
in the training data, all the attack types are considered 
unknown. We also apply stratified 10-fold cross-validation. 
For each fold, the training data consists of 90% of all 
normal samples, and the test data is composed of the rest 
10% of the normal samples together with 10% of all attack 
samples. The results in TABLE VII. show that the semi-
supervised classifiers have outperformed K-NN (the best 
among the three supervised classifiers) in terms of recall and 
F1-Score. when K-NN was trained with only one type of 
attack (see Table V). Compared with all the supervised 
approaches (see tables from II to V), they always provide 
better recall values even if the precision is sometime 3% 
lower. Among the four classifiers, variational autoencoder is 
the most effective in identifying the victim switches when 
they are targeted by unknown attacks. 

TABLE V.  DETECTION OF UNKNOWN ATTACKS BY 
SUPERVISED CLASSIFIERS 

Un-
known 
Attack 

K-NN SVM NB 
P* 
% 

R* 
% 

F1* 
% 

P% R
% 

F1
% 

P% R
% 

F1 
% 

UDP 100 94 97 99 90 94 99 92 95 
SYN 100 92 96 100 48 65 99 98 98 
TCP-
SARFU 

97 95 96 100 61 76 99 94 96 

IP-
Spoofing 

97 94 95 98 65 78 91 93 92 

ICMP 100 54 70 99 47 64 100 53 69 
P* = Precision, R* = Recall, and F1* = F1 score 

 

TABLE VI.  K-NN DETECTION RESULTS OF UNKNOWN 
SATURATION ATTACKS USING ONE ATTACK TRAINING 

DATASET 

Known Attack Precision (%) Recall (%) F1 (%) 
UDP 96 40 56 
SYN 93 17 29 
TCP-SARFU 91 30 45 
IP-Spoofing 94 23 18 
ICMP 93 43 29 
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TABLE VII.  DETECTION OF UNKNOWN ATTACKS BY SEMI-
SUPERVISED CLASSIFIERS 

Semi-supervised 
Classifier 

Precision 
(%)  

Recall 
(%) 

F1 
(%) 

Variational Autoencoder 93 98 96 
Basic Autoencoder 84 81 82 
One-Class SVM 73 75 74 
Isolation Forest 82 67 73 

B. Online Detection and Countermeasure 
vSwitchGuard has been implemented as an application 

on Floodlight master V1.2 in Python.  In principle, the 
detection module can use any supervised or semi-supervised 
classifier trained by the offline dataset. The experiment 
results demonstrate that K-NN is the best among the 
supervised classifiers for detecting known attacks, whereas 
variational autoencoder is the best among the semi-
supervised classifiers. This suggests that the countermeasure 
may be based on the results of both K-NN and variational 
autoencoder for known and unknown attacks: a switch is 
attacked if either one has reported positive.   

To evaluate the effectiveness of the countermeasure, we 
used Mininet and Floodlight master V1.2 to create 
simulation SDN environments on a desktop computer 
equipped with core i5 CPU and 8 GB RAM (similar to the 
environments used to collect the dataset in the previous 
section). We have performed 31 case studies. Each includes 
a period of normal traffic followed by a distinct attack. In 
other words, the case studies have covered all possible 
combinations of SYN, IP-Spoofing, UDP, ICMP, TCP-
SARFU attacks. In the case studies, we selected different 
types of network topologies (star, mesh, liners, and tree), 
network scale, attack type, number of victim switches, and 
the number of zombie hosts. For the network scales, we 
considered small networks with 10-20 switches and 20-40 
hosts, medium networks with 30-100 switches and 150-300 
hosts, and large networks with 110-200 switches and 500-
800 hosts.  

For each case study, we first ran on each host several 
normal traffic generation tools without malicious attack. We 
observed that, in all the 31 cases, the victim switch detection 
module did not report any attack, and thus the 
countermeasure module stayed idle. Then we launched the 
attack for each scenario. On average, the victim switch 
detection module reported the targeted switches within 
60.09 seconds after the attack was launched. This time 
includes collection of one-minute traffic, feature extraction 
from the collected traffic, and prediction by the classifier. In 
some cases, it was shorter than 60.09 seconds. One possible 
reason is that the attack started in the middle of the time-
window and the collected data was sufficient for the 
classifier to predict the attack. In other cases where it took 
more than 60.09 seconds, the attack started in the middle of 
the time-window and the collected traffic was insufficient 
for the classifier to predict the attack. Thus, vSwitchGuard 
needs another minute to collect and analyze the traffic. In 
the case studies, we did not observe any false alarms during 

the normal traffic. False alarms, however, are possible when 
the normal traffic becomes similar to the attack traffic. 
These false alarms will trigger the Packet-In deep inspection 
filter.  Once an attack is reported by the detection module, 
the countermeasure module will be triggered. In the 31 case 
studies, the countermeasure model took about 2~7 seconds 
to recover the targeted switches.  

In the following, we use one case study to discuss the 
performance overhead of vSwitchGuard in terms of CPU 
utilization, OpenFlow channel bandwidth utilization, and 
flow table utilization. The SDN network was based on a ring 
topology with 15 switches.  Five zombie hosts were used to 
launched a UDP attack that targeted three switches. We 
measured the CPU utilization using NetData, before, during 
and after the attack. Figure 4 shows the changes of CPU 
utilization. Before the attack (from 0–58 second), the 
average CPU utilization was about 45%-50% since the SDN 
environment and the controller were running on the same 
machine. During the attack (from 59 – 119 second), the 
CPU utilization reached around 95%. Meanwhile, the traffic 
collector and feature extractor collects were working. At 
second 120.30, the CPU utilization went down quickly 
(around 45%) because vSwitchGuard had identified the 
targeted switches and mitigated the attack. The total time for 
detection and countermeasure was about 2.2 seconds. 

 

 
Figure 4.  CPU Utilization under UDP Attack. 

 
Figure 5.  OpenFlow Channel Bandwidth Utilization under UDP Attack. 

We also measured the bandwidth of the OpenFlow 
channel before, during, and after the attack. The result is 
shown in Figure 5. The average bandwidth of the OpenFlow 
channel before the attack was about 3.2 GBPS. After the 
attack started, the bandwidth decreased to 0.43 GBPS. After 
vSwitchGuard had handled the attack, the bandwidth started 
peaking up slowly due to the huge amount of Packet-Out 
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and Packet-Mod messages forwarded from the controller to 
the victim switch. This demonstrates that vSwitchGuard had 
defended the SDN network against the attack without 
significant performance overhead. 

TABLE VIII. presents flow-table utilization of the 
victim switches, in comparison with FloodGuard and 
FloodDefender. vSwitchGuard did not overload the network 
when there was no saturation attack. When the attack 
occurred, the flow-table utilization of victim switches 
protected by vSwitchGuard remained steady since all the 
malicious flow-rules were removed from the victim 
switches. The total flow-table utilization rate caused by 
vSwitchGuard was about 1% due to the installation of the 
blocking flow rules. For FloodDefender, the flow-table 
utilization can reach up to 15% of the flow-table buffer due 
to the installation of monitoring and processing flow-rules. 
For FloodGuard, the flow-table utilization can reach up to 
30% since it uses rate control to protect the controller and 
switches. As such, vSwitchGuard provides a more efficient 
way to handle malicious table-miss packets with lower 
overhead of flow-table utilization. 

TABLE VIII.  FLOW-TABLE UTILIZATION UNDER UDP ATTACK 

 vSwitchGuard  FloodDefender FloodGuard 
No Attack 4% ~ 5% 4% ~ 5% 4% ~ 5% 

Under Attack 5% ~ 6% 19% ~ 20% 34%~35% 
 

VIII. CONCLUSION 
We have presented vSwitchGuard as an effective 

framework for defending OpenFlow switches against 
saturation attacks. The experiments have evaluated three 
supervised and four semi-supervised classifiers for detecting 
known and unknown attacks. The countermeasure can 
effectively recover the victim switches. Compared to the 
existing work, vSwitchGuard incurs lower performance 
overhead in terms of CPU utilization, OpenFlow channel 
bandwidth, and flow-table utilization. 

This paper has studied five types of saturation attacks in 
SDN environments. Our future work will investigate more 
types of attacks and evaluate the effectiveness of supervised 
and semi-supervised classifiers. 
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