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Abstract— Software Defined Networking (SDN) is a new
network paradigm that facilitates network management by
separating the control plane from the data plane. Studies have
shown that an SDN may experience a high packet loss rate and
a long delay in forwarding messages when the OpenFlow
channel is overwhelmed by a saturation attack. The existing
approaches have focused on the detection of saturation attacks
caused by TCP-SYN flooding through periodic analysis of
network traffic. However, there are two issues. First, previous
approaches are incapable of detecting other types, especially
unknown types, of saturation attacks. Second, they rely on pre-
determined time-window of network traffic and thus are unable
to determine what time window of traffic data would be
appropriate for effective attack detection. To tackle these
problems, this paper first investigates the impact of different
time-windows of OpenFlow traffic on the detection performance
of three classification algorithms: the Support Vector Machine
(SVM), the Naive Bayes (NB) classifier, and the K-Nearest
Neighbors (K-NN) classifier. We have built and analyzed a total
of 150 models on OpenFlow traffic datasets generated from both
physical and simulated SDN environments. The experiment
results show that the chosen time-interval of OpenFlow traffic
heavily influences the detection performance -- larger time-
windows may result in decreased detection performance. In
addition, we were able to achieve reasonable accuracy on
detection of unknown attacks by applying proper time-windows
of OpenFlow traffic.

Keywords—  Software-defined networking, OpenFlow,
saturation attack, anomaly detection, machine learning

I. INTRODUCTION

As an emerging network architecture, SDN suffers from
many security threats. Kreutz et al. [1] discussed several
security issues, including flooding of the data and control
planes, vulnerabilities of OpenFlow switches, and the lack of
authorization. One particular challenge is dealing with the
Distributed Denial of Service (DDoS) attacks [2]. Recent
studies have focused on detecting and mitigating DDoS
saturation attacks, especially control plane saturation attack
via SYN flooding attacks [4][5][6][7]. The limited bandwidth
of OpenFlow communication channel can become a
bottleneck for the entire network. A hacker may exploit this
limitation by launching a flooding attack. Such saturation
attacks range in duration, and a long-lasting attack can affect
the entire SDN. Most of the existing machine learning
detection methods rely on an arbitrary predefined, fixed time-
window to start analyzing the network traffic to detect the
saturation attacks [3][4][5][6][7]. If the time-window is too
large, the detection method response time will be long, and the
attack may have an opportunity to saturate the network. If the
time-window is too small, the amount of traffic may be
insufficient to provide reliable detection results. In this case,
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the detection method can also become a huge performance-
overhead for the SDN. Thus, identifying the proper time-
window of traffic for effective detection is a key concern.

Machine learning has been successfully applied to various
security problems. For detection of saturation attacks,
however, the adoption of machine learning in the “real-world”
has been very limited. This is partly because of their
deficiencies for dealing with unknown attacks. An unknown
attack is an attack which is not represented in the dataset used
to train the detection model [8]. Because there are no instances
of the attack included in the training set, supervised machine-
learning methods are unable to classify it. In this paper, we
aim to answer the following questions: (1) Is it possible to
determine a proper time-window for conducting OpenFlow
traffic analysis, in order to provide the best results for
detection of saturation attacks? (2) How does the variation in
the time-windows affect the detection performance of a
machine learning classifier? (3) are supervised machine
learning algorithms effective in detecting unknown attacks?

For the first two questions, we have evaluated the
detection performance of three state-of-the-art machine
learning algorithms: the widely-used Support Vector Machine
(SVM), K-Nearest Neighbor (K-NN) classifier, and Naive-
Bayes (NB) classifier. We used a variety of time-windows of
OpenFlow traffic to determine the proper time-window for
detection of saturation attacks. Also, we studied the impact of
different time-windows of OpenFlow traffic on the classifiers’
detection performance by conducting a false-negative
analysis. We conducted extensive experiments using both
physical and simulated SDN environments. In each
environment, we collected “normal” OpenFlow traffic by
using different traffic generation tools that mimic real-world
network traffic with various network protocols and internet
applications. We collected malicious OpenFlow traffic by
performing 31 saturation attacks, combining UDP flooding,
SYN flooding, IP Spoofing, ICMP, and SARFU flooding. In
both environments, we extracted datasets representing time-
windows ranging from 1-minute of OpenFlow traffic analysis
to the entire duration. We performed a total of 150
experiments to evaluate the impact of different time-windows
of OpenFlow traffic on the performance of K-NN, NB, and
SVM. This allowed us to identify the earliest time-window for
detecting saturation attacks with the highest detection
performance. The detection performance may be decreased
when the time-window of OpenFlow traffic become larger.

For the third question, we evaluated SVM, K-NN, and NB
for detecting unknown saturation attacks. To test a supervised
classifier, we excluded the observations related to one type of
a saturation attack from the training dataset, to act as an
unknown attack for the models. The test dataset includes the
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observations from the unknown attacks and a random set of
normal traffic observations. Then we used our evaluation
metrics to assess the classifiers for detecting the unknown
attacks. Our experiment results showed that SVM, NB, and K-
NN are capable of detecting unknown saturation attacks.

The contributions of this paper are as follows:

e To the best of our knowledge, this work is among the
first to investigate the impact of different time-
windows of OpenFlow traffic on the performance of
supervised classifiers for the detection of saturation
attacks in SDNSs.

e This work has created two large saturation attack
datasets by using both physical and simulated SDN
environments. This can further promote the research
on SDN security.

e  This is the first work on the evaluation of supervised
classifiers for detecting unknown saturation attacks in
SDN environments.

The remainder of this paper is organized as follows.
Section II presents a brief introduction to the SDN, OpenFlow
protocol, and SDN saturation attacks. Section III reviews the
related work. Section IV describes the methodology. Section
V presents our experiments. Section VI concludes the paper.

II. BACKGROUND
A. SDN and OpenFlow Protocol

In traditional computer networks, the administrator needs
to configure the network devices to change the route of the
packets because the control is distributed among all the
network devices. SDN offers a new way of managing and
controlling networks by separating the control plane and data
plane. The basic architecture of an SDN environment is
composed of data plane and control plane that communicate
through the southbound API. The data plane includes the
network hardware components in term of switches (e.g.
OpenFlow switches) and routers responsible for forwarding
operations. The SDN hardware components do not need to be
changed over time to upgrade the network because they are
programmable, and they are controlled by the SDN controller
via southbound API. The southbound API represents the
interface between the network switches and the SDN
controller. It allows the controller to control the behavior of
hardware devices. The OpenFlow protocol 1is the
standardized and the most widely-used southbound API.

The SDN controller is a centralized controlling unit that
translates the SDN applications network requirements down
to the data plane and provides the business application that
resides in the application layer with the network information
such as network topology and statistical reports. The
communication between the business applications and the
SDN controller is through the northbound APIs. The
northbound APIs provide an abstraction of the network
functions and enable the network applications and
orchestration systems to dictate the behavior of the SDN
network by providing a programmable interface to request the
network services and dynamically configure the network.

OpenFlow as a communication protocol between the data
plane and the control plane has been defined as the standard
southbound APIs used in the SDN architecture by Open

Network Foundation (ONC). An OpenFlow switch comprises
of flow tables, group tables and OpenFlow channel that
provide the connection channel to exchange the OpenFlow
messages between the SDN controller and OpenFlow
switches.

B. SDN Saturation Attacks

When a new incoming packet does not match any of the
existing flow-entries of the OpenFlow switch, a table-miss
occurred. The data plane encapsulates the new packet insides
a Packet-In message and sends it to the SDN controller for
deciding the fate of the table-miss packet. The feature of
table-miss can be exploited by a hacker to consume the
computation resource (e.g., CPU and memory) of the
controller, switches and saturate the OpenFlow
communication channel. A hacker can lunch data-to-control
plane saturation attack by triggering a huge number of table-
miss packets by sending a vast number of spoofed packets to
reduce the possibilities of matching any of the existence flow-
entries on the targeted switch. The controller will be
overwhelmed dealing with the Packet-In messages. Such
data-to-control plane flooding attack may exhaust the
controller computation resources and delay the forwarding
messages to the OpenFlow switches.

When the data-to-control plane occurred, the controller
will trigger a large amount of Packet-Out and Packet-Mod
messages, which cause a control-to-switch flooding attack.
As a result, numerous invalid flow-rules will be installed in
the targeted switches flow-tables. This prevents the valid
flow-entry to be installed, which in turn causes the benign
packets to be dropped. Therefore, all the benign packets will
be rejected by the OpenFlow switches and the OpenFlow
channel will be saturated.

III. RELATED WORKS

Studies have shown that there are various security threats
to SDN [1]. For example, flooding attacks that disturb the
SDN-based network can put it out-of-service. Several research
works have proposed ways to detect, mitigate, and prevent the
SYN-Flooding attack using machine learning and deep
learning approaches. Ashraf et al [9] have investigated various
machine learning algorithms that can be used to detect DDoS
attacks in the SDN environment. Quamar et al. [10] proposed
an SDN network application that adapted a stacked
autoencoder (SAE) deep learning technique for detecting
multi-vector DDoS. The proposed system consists of three
components: traffic collector and flow installer, feature
extractor, and traffic classifier. This work relies on processing
every incoming packet for attack detection and flow
computation instead of flow sampling, which requires
extensive computational resources. The dataset used for
training and testing the proposed system was collected from a
traditional wireless-network, not an SDN-based network.
Ahmed et al. [7] proposed a DDoS detection prototype by
using Dirichlet process mixture model to detect the attack
traffic. Its misclassification rate (for attack traffic versus
benign traffic) is around 50%. Hu et al. [11] proposed the
FADM framework for detecting and mitigating SYN, ICMP,
and UDP flooding attacks in SDN. FADM has two
components: (1) a DDoS detection module which uses the
sFlow approach to collect the network information, extracts
features using the entropy approach, and detects the attack
traffic using an SVM algorithm, and (2) a DDoS mitigation
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module that is responsible for mitigating the DDoS attacks
using a white-list and traffic migration approach. The use of
the SVM classifier required very long training and prediction
time to distinguish the normal and attack traffic. Braga at al
[12] proposed a lightweight DDoS flooding attack detection
in SDN. They used a self-organized map (SOM) to detect the
attack traffic. The shortcoming of this approach is the training
and detection time required for the SOM algorithm, which is
around a few hours for training and a few minutes for
classifying the traffic.

Tuan et al. [13] used the Deep Neural Network (DNN) to
develop an anomaly DoS detection system. The accuracy is
88.04%, which is relatively low. The NSL-KDD dataset,
generated from a traditional network, is used for training and
testing the detection model. Abubakar and Pranggono [14]
developed a flow-based anomaly detection system using a
neural network. The NSL-KDD dataset was used to train and
evaluate the model. Shine et al [15] proposed the AVANT-
GUARD framework to mitigate the TCP-SYN flooding that
is sent to the SDN controller, by extending the OpenFlow
switches functions. The detection module monitors the
ongoing TCP-SYN connections to the controller and detects
the SYN flooding based on a pre-defined threshold, which
cannot accurately differentiate between the normal and
abnormal SYN packets.

Wang et al. [5] proposed Floodguard: a prevention
approach against DoS attacks. FloodGaurd acts as middleware
between the controller and its applications and has three
components: a detection module, a flow rule analyzer module,
and a packet migration module. The FloodGaurd detection
module monitors the OFPT PACKET IN messages and
triggers the other modules when the OFPT PACKET IN
messages exceed the pre-defined thresholds. Shang et al. [6]
introduced FloodDefender as a framework for mitigating DoS
attacks against the SDN network. It has four modules: attack
detection, table-miss engineering, packet filter, and flow rule
management. The FloodDefender detection module uses the
same detection technique in FloodGuard. It uses the SVM to
classify the malicious packets and normal packets, which
require long training time. The main limitation of the detection
module in both proposed approaches is the fact that using the
OPPT PACKET IN message rate to detect the attacks is not
accurate since heavy normal traffic can generate similar
OFPT PACKET IN messages. Mousavi and Hilaire [19]
proposed an early detection approach for DDoS attacks using
the entropy values of the IP addresses for new incoming
packets to the controller, within the first 250 Packets.
However, the major drawback of this approach is based on the
assumption that each new packet forwarded to the controller
is a malicious packet if the source addresses match any of the
existing network hosts. In addition, if the source IPv4 address
appears in many packets, the entropy value will be lower than
the predefined thresholds, which means that the host is under
attack. This approach can generate many false alarms of early
attack detection, specifically, if the SDN network is in a
reactive flow-management configuration. This means that the
flow-entries will be configured dynamically to provide a
flexible way to control the network traffic. Thus, in a large-
size SDN network, many legitimate packets forwarded to the
controller and many legitimate flow-entries will be installed
to control network traffic. However, the proposed approach
cannot be utilized as an early DDoS attack detection method
since the normal behavior of the SDN network will always be
considered as malicious behavior. Zhang et al [16] introduced

two novel attacks: a table-miss striking attack and a counter
manipulation attack. They provided the SWGuard system as a
solution to detect and prevent these attacks.

The existing works typically use a pre-defined time-
window, without justification about the specified time-
window. This research aims to determine the proper time-
window to detect saturation attacks and show the impact of
different time-windows of OpenFlow traffic on the detection
performance of the K-NN, SVM, and NB classifiers. This
research also investigates the capabilities of these classifiers
for detecting unknown saturation attacks, which is considered
a huge obstacle to adopting classifier-based detection methods
to real-world SDN networks [8].

IV. METHODOLOGY

In this section, we first introduce the features that we
extracted from the OpenFlow traffic and explain our approach
for preprocessing the OpenFlow traffic to generate multiple
datasets for different time-windows. We also introduce the
classifiers for detecting the known and unknown saturation
attacks and describe the experimental setup and data
collection of OpenFlow traffic.

A. Feature Extraction and Data Preprocessing

The OpenFlow traffic [17] is a sequence of packets that
are transferred between the controller and the switch. Each
packet has different attributes such as the packet time, the
source and the destination IP addresses, the OpenFlow
message type, and the length of the packet. Formally, the
OpenFlow traffic OF is a sequence of OpenFlow packets <
P1,P2 ---» Pn> captured during a normal or attack session,
where each packet p; has <time, srcIP, dstiP, OF msg,
length>. The OpenFlow traffic consists of 29 types of
OpenFlow messages that can be categorized into three main
types: (1) controller-to-switch messages that are sent from the
controller to the switch to acquire information and modify the
switch state (e.g., Packet-out, Packet-mod, and Role-request),
(2) asynchronous messages that are sent by the switch to the
controller to inform about new coming packets, error, and
switch state changes (e.g., Packet-in, Flow-removed, Port-
status, and error), and (3) symmetric messages that are sent
in both sides such as Hello and Echo messages.

We consider the following four features of the captured
OpenFlow traffic:

e  The number of OFPT PACKET IN messages sent
from the switch to the controller.

e The number of OFPT_PACKET OUT messages sent
from the controller to the switch.

e The number of OFPT PACKET MOD messages
sent from the controller to the switch.

e The number of TCP_ACK messages sent from the
switch to the controller, or vice versa.

These features are selected based on our analysis and
observation of the OpenFlow traffic behavior in physical and
simulated SDN environments when they are in attack mode or
normal mode. The features are sensitive to various saturation
attacks and their combinations. Fig. 1 shows the impact of a
UDP saturation attack on the Packet-In and Packet-Out
features. When the UDP flooding attack occurs, the attacking
host tries to flood the SDN network by generating a massive
amount of [P packets including UDP datagrams. Meanwhile,
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the OFPT_PACKET IN messages generated by UDP attack
come from the switch that is connected to the attacking host.
Thus, the number of OFPT PACKET IN messages in the
OpenFlow traffic increases significantly, and the number of
OFPT PACKET OUT messages decreases significantly.
TABLE I. summarizes the changes to each feature caused by
UDP, SYN, ICMP, IP Spoofing, and SARFU TCP saturation
attacks.
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Fig. 1 Effect of UDP Flooding Attack on Packet-In & Packet-Out
Messages

Algorithm 1: OpenFlow Dataset Generation

Input OpenFlow traffic OF, Time-Window T, Time-Shifting S,
Traffic-Type L {0,1}

Output Dataset X,

Declare  packetln, packetOut, packetMod, tcpAck, Msg ype)

Steps

1 J=0 (the index of the output sample X;)

2 Repeat:

3 firstPacketindex=1 (p; is the first packet of the current shift)
startTime = Prime (firstPacketindex) (is the first packet time of the
current shift)

4 for (i = firstPacketIndex; i <n; i ++) do

5 if Deime — StartTime > T

6 createNewSample Xj(packetIn,packetOut,tcpAck,J++)

addNewSampleXj «xj with corresponding traffic type L
and increase | by one.

7 break;

8 Endif

9 switch (Msgtype)) {

10 Casel: MSg(iype) = “OFPT_PACKET IN”

11 packetin +=1;

12 Case2: MSg(ype) = “OFPT_PACKET OUT”

13 packetOut +=1;

14 Case3 : MSg (1ype) = “OFPT_PACKET _MOD”

15 packetMod +=1;

16 Cased: Msg(;ypey = “TCP_ACK”

17 tepAck +=1;

18 }

19 end for

20  firstPacketindex=updatePacketindexNextShfit(firstPacketIndex,S)
21 Until firstPacketIndex > n

To investigate the appropriate time-window for detecting
saturation attacks, we tested different time windows and
evaluated their impact on the detection performance of the
SVM, K-NN, and NB classifiers. From each time window, a
different dataset was generated from the collected OpenFlow
traffic in both physical and simulated SDN environments. The
time-windows ranged from one minute to the entire attack
duration. A detailed description of our approach for extracting
these datasets from the OpenFlow traffic is given in Algorithm
1. The features collected in each dataset were the OpenFlow
traffic session OF , the dataset time-window T, the dataset
time-shifting S, and the OpenFlow traffic type L which is <

L < 0if OF isnormal or L < 1if OF is attack > . The

output was a dataset X; = (X4, X, X3..., %, ) which was a
sequence of labeled samples, with each sample x; in the form
of <number of Packet in messages , number of Packet out
messages, number of Packet mod messages, number of
TCP_ACK message >. Lines (9-18) deal with extracting our
features from the OpenFlow traffic packet sequence OF for
the specified time-window 7. For each packet, we extracted
the OpenFlow message type. If the message type matched any
of our messages, the corresponding counter increased by one
(lines 10-17). When the difference between the packet time
and the starting time is larger than 7, a new sample x; created
with the corresponding label and increase the dataset index J
by one (lines 5-8). After each new sample x;, the value of the
firstPacketindex updated by adding the shifting parameter
S for the next shift starting index (line 20). The reason behind
including the shifting parameter was to increase the
overlapping in the generated datasets.

TABLE L IMPACTS OF SATURATION ATTACKS ON THE KEY
OPENFLOW MESSAGES
Saturation The Impact
Attacks # Packet-In # Packet- # Packet- | # TCP-ACK
Out Mod
UDP Significant Significant | Significant | Significant
increase decrease decrease increase
followed by
a decrease
Significant
decrease
SYN Significant Increase Increase Significant
increase and then a and then a increase
significant significant
decrease decrease
ICMP Insignificant | Increase Increase Noticeable
increase for a short for a short increase
period of period of followed
time time by a
followed followed significant
by a bya decrease
significant significant
decrease decrease
IP Spoofing | Increase Increase Increase Increase
followed by | followed followed and
a significant | bya bya significant
decrease significant significant decrease to
decrease decrease be a zero
packet
SARFU Increase and | Increase Increase Increase
TCP then and then and then and then
noticeable significant | noticeable noticeable
decrease decreaseto | decrease decrease
and then Zero and then a
decrease to packets. significant
Zero decrease to
packets. Zero
packets

B. Classifiers

We train several supervised models by using the obtained
datasets Xj as explained in the previous section and evaluate
their performance. In this paper, we consider K-Nearest
Neighbor Classifier (K-NN) a well-known supervised
learning algorithm that has been widely used in intrusion
detection. K-NN is a non-parametric learning algorithm
which stores all the instances of the training dataset. K-NN is
also a lazy learning technique that does not use the training
points for making any generalizations. Another machine-
learning algorithm which has proven to be popular for
abnormal traffic detection is Naive-Bayes (NB). The NB
classification model uses the Bayesian theory that includes
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Bayesian learner and statistical analysis. We also consider
Support Vector Machine (SVM), another well-known
supervised machine learning algorithm that has been used
widely in different fields. Recently, several studies have used
SVM in SDN-intrusion detection systems and in traditional
network intrusion detection systems [18]. SVM can be used
for classification and regression analysis. It works by plotting
the observations as points in N-dimensional space (where N
is the number of features) and outputting an optimal
hyperplane that maximizes the margin between two classes.
This boundary is then used to categorize new observations.

C. Experiment Setup and OpenFlow Traffic Collection

We collected the OpenFlow communication channel
traffic using both physical and simulated environments. The
main advantage of using a physical SDN environment is the
capacity to replicate the workload of a real-world SDN
network and the internet traffic generated by real-world
applications. The physical SDN environment consists of a
Pica8 P-3290 OpenFlow switch, Floodlight Master 1.2v as an
SDN controller, and five hosts ranked from h-1 to h-5. Oshows
the physical environment configurations. The physical
environment is limited to the network scale and topology. The
simulated SDN environments was created using the Mininet
tool [21] with different network topologies (i.e., tree topology,
star topology, mesh topology, and linear topology), and
different network scale (i.e., number of hosts, number of
switches). TABLE III. shows the main configurations of the
simulation SDN network.

The benign OpenFlow traffic was collected from both
physical and simulated environments by using four traffic
generation tools that mimic real-world network behaviors. We
used D-ITG (Distributed Internet Traffic Generator) [22]. D-
ITG has ITGSend and ITGRecv components. ITGSend can
generate parallel traffic flows and send it to different ITGRecv
instances. ITGRecv is responsible for receiving traffic flows
from ITGSend. D-ITG provides the ability to generate
multiple unidirectional traffic flows for different protocols
such as IPv4, IPv6, TCP, UDP, ICMP, SCTP (Stream Control
Transmission Protocol), DCCP (Datagram Congestion
Control Protocol), DNS, Telnet, and VoIP. We used the
Nping open source tool [25] that can generate traffic for
different protocols such as the ARP protocol. By using Nping,
we were able to customize the packet size and the transmission
intervals of the generated traffic. In order to generate a
concurrent stateful and stateless traffic that simulated the
internet traffic, we used Cisco’s TRex realistic traffic
generator [23]. TRex can generate almost any kind of L4-7
traffic, based on the smart reply of real traffic templates. It can
amplify the traffic of the server and the client side up to
200Gb/sec. We also exploited OSTINATO [24] to configure
and generate many traffic streams for different protocols such
VLAN, IPv4, IPv6, stateless TCP, ARP, ICMPv4, ICMPvo6,
IGMP (Internet Group Management Protocol), MLD
(Multicast Listener Discover), RTSP (Real Time Streaming
Protocol) and NNTP (Network News Transfer Protocol). The
total size of the captured benign OpenFlow traffic from the
physical environment was 250 GB, the total duration was
about 137 hours, and the total simulated benign traffic was
about 143 GB, for a total duration of 100 hours.

In both physical and simulated environments, Hping3 [27]
and LOIC (Low Orbit Ion Canon) [26] were employed to
lunch the saturation attacks. In each environment, 31

saturation attacks were performed to cover all combinations
of SYN flooding, UDP flooding, ICMP, IP Spoofing, and
SARFU-TCP flooding. Each of the attacks flooded the control
and/or data planes. The total size of the physical environment
malicious traffic was 50Gb and the duration for each attack
was about 30 minutes. For the simulated environment, the
total size of the malicious traffic was about 100 Gb and the
duration of each attack was about 20 minutes.

TABLE II. PHYSICAL ENVIRONMENT CONFIGURATIONS
Host CPU Info Memory | Operating System
Name Info
Controller Intel Core (i7) 16GB Ubuntu 16.04.5 LTS
Machine 2.5GHz
h-1 Intel Core (i5) 8GB Ubuntu 16.04.5 LTS
2.5GHz
h-2 Intel Core (i5) 8GB Ubuntu 16.04.5 LTS
2.5GHz
h-3 Xenon E5 2.5GHz 4GB Ubuntu 16.04.5 LTS
h-4 Xenon E5 2.5GHz 4GB Ubuntu 16.04.5 LTS
h-5 Intel Core (i5) 8GB Ubuntu 16.04.5 LTS
2.4GHz
TABLE IIL SDN SIMULATION ENVIRONMENTS CONFIGURATIONS
Parameter Description Default Value
NC Number of Controllers 1
NS Number of switches 10-200
NH Number of Hosts 50-300
NT Network Topology Star, Mesh, Ring, Tree

V. EXPERIMENT RESULTS AND DISCUSSIONS

This research aimed to answer the following questions:

e RQI: What is a proper time-window of OpenFlow
traffic analysis for detecting saturation attacks?

e RQ2: How do different time-windows affect the
detection performance of a classifier?

e RQ3: Are classifiers effective in the detection of
unknown saturation attacks?

A. Proper Time-Window for Detection of Known Attacks

In this section, we describe the experiments we conducted
to discover the proper time-window for OpenFlow traffic
analysis to early detect the saturation network attacks. Also,
we evaluate the impact of different time-windows of
OpenFlow traffic analysis on the detection performance of the
known saturation attacks for SVM, K-NN, and NB classifiers.
We refer to known saturation attack as an attack that has been
included in the training phase, in other words, the training
dataset has many samples that describe the attack behavior and
our classifier models have been trained to detect this attack. In
the physical environment, 30 datasets are generated from the
collected OpenFlow traffic and each dataset represents a
different time-window, range from 1 minute to the attack
duration on physical environment that’s equal to 30 minutes.
In our experiments, each dataset is used to train and test K-
NN, SVM, NB models and we used the precision, recall, and
F1 score metrics to evaluate the performance of our models
and analyze the impact of different time-window on the
model's prediction results. We now discuss how we
determined the earliest proper time-window for each
classifier, from these experimental results.
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Fig. 2 shows the precision, recall, and F1 score metrics for
the K-NN models when the time-window ranges from 1
minute to 30 minutes (each minute represents a trained K-NN
model). The highest detection rate for the K-NN classifier is
obtained when the time-window is equal to 1 minute: the
precision is 96% with recall 95%, and the F1 score is 95%.
The lowest detection rate is when the time-window equal 30-
minutes, in which case, the corresponding precision is 47%
with recall 98%, and the F1 score is 64%. As a result, in the
physical environment, the proper time-window for the K-NN
classifier is 1 minute of traffic analysis. To support this
conclusion, Fig. 2 shows that the precision and F-1 score
decrease as the time-window of traffic analysis increases.
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Fig. 3 shows the values of the evaluation metrics for the
SVM models. Each time-window represents a trained SVM
model. The highest detection result is when the time-window
equals 1 minute; in this case, the precision is 91% with a recall
of 91%, and the F1 score is 91%. In contrast, the lowest
precision achieved by these models is 46% with a recall of
99%, and F1 score of 62%. This is when the time-window is
30 minutes. Fig. 3 shows the impact of time-window length
on the SVM classifier performance. Notably, the precision and
F1 score decrease and the recall increase as the time-window
increases. Thus, the proper time-window for the SVM
classifier in the physical environment is also 1 minute.

Similar to the approach for the K-NN and SVM classifiers,
we performed 30 experiments to evaluate the NB classifier
detection performance for the same time-windows. Fig. 4
shows the results of our evaluation. The highest precision is
99% with a recall of 80%, and an F1 score of 89%, when the
time-window equals 3 minutes. The lowest precision is 52%
with a recall of 53%, and an F1 score of 52% when the time-
window equals 30 minutes. In the physical environment, the
3-minute time-window seems proper for the NB classifier in
order to obtain a high detection rate.
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Fig. 5 K-NN on the Simulation Environment

In the simulation environment, 20 datasets were generated
and used in training and testing the proposed classifiers.
Similar to the physical environment experiments, each
dataset represented a different time-window of traffic
analysis. In this case, the dataset time-windows ranged from
1 minute to 20 minutes (i.e., attack duration on simulation
environments equal to 20 minutes). Again, we used the
precision, recall, and F1 score to evaluate the performance of
our classifiers in each experiment. Fig. 5 shows that when the
time-window equals 1 minute, the K-NN classifier achieves
a high precision of 97% with a recall of 99% and an F-1 score
0f 98%. When the time-window equals 18 minutes, the K-NN
classifier achieves the highest precision overall (100%) but
suffers from low recall (19%). The F1 score is 35%. As a
result, we conclude that the 1-minute time-window is proper
for the K-NN classifier, in order to obtain the highest
detection results in the simulation environment. Fig. 5 shows
the impact of the time-window on the detection performance
of the K-NN classifier. Increasing the time-window led to
increased precision but decreased the recall and the F1 score
ratios.
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Fig. 6 SVM on the Simulation Environment

As shown in Fig. 6, the SVM classifier achieved the
highest detection results with a time-window of 2 minutes.
The corresponding precision is 81% with a recall of 89%, and
the F1 score is 85%. Moreover, Fig. 6 shows noticeable
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changes in the SVM classifiers’ detection performance when
the time-window increases. For example, when the time-
window equals 20 minutes, the detection results declined
significantly to a precision of 7%, recall of 35%, and an F1
score of 11%.
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Fig. 7 NB on the Simulation Environment

Fig. 7 shows the metric values for the NB classifier models
results. The NB model obtained the highest detection results
when the time-window was | minute, with corresponding
precision of 85%, recall of 96%, F1 score of 91%. The lowest
precision was 11% with a 37% recall rate, F1 score of 17%.
In our simulation environments, we found that the 1-minute
time-window is proper for the NB classifier to detect the
attack traffic. The experimental results show the critical role
that the time-window of OpenFlow traffic analysis plays on
the detection performance of our classifiers.

B. Impact of Time-Window Variations

To better quantify the impact of different time-windows
of OpenFlow traffic analysis on the detection performance of
the K-NN, SVM, and NB classifiers, we conducted a false-
negative analysis. The purpose of a false-negative analysis is
to find all the samples that are falsely identified by our
classifiers and the time slot of each sample. In our
application, the ‘false negative’ samples represent the attack
samples that were falsely identified as benign samples by the
trained models. We conducted the false-negative analysis
after performing the physical and simulated environment
experiments by allocating the attacks samples for each
experiment dataset with corresponding trained K-NN, SVM,
and NB models, whereas, each experiment dataset represents
a different time-window of OpenFlow traffic analysis.
Therefore, fed the attacking samples to the trained models
and extract the samples that are falsely identified by the
models as a normal sample along with the time slot of that
sample. Based on our false-negative analysis results, we
discovered that most of the false negatives occurred at the end
of the attack time. As shown in Figures 2-7, the recall ratios,
precision ratios, and F1 scores in the experiments on both
environments decreased significantly when the time-window
was equal to 15-minutes or longer. The reason behind the
increasing number of false negatives when the time-window
increased is due to the behavior of the SDN environment
when it is under a saturation attack. Technically, in the early
stages of a saturation attack (i.e. when the attack is initiated),
both the switch and the controller have enough capacity to
process the incoming attack packets. Also, the OpenFlow
connection channel has sufficient bandwidth to transfer the
OpenFlow messages at this time. This led to a significant
increase in the numbers of Packet-In, Packet-Out, Packet-

Mod, and TCP-ACK messages in the OpenFlow traffic. In
this situation, the K-NN, SVM, and NB classifiers were able
to accurately identify the attack samples from the benign
samples, as evidenced by the high precision ratios, recall
ratios, and F1 scores of the classifiers.

Subsequently, as the attack takes over the SDN network,
the OpenFlow switch and the controller become
overwhelmed. At this point, they do not have sufficient
capacity to process the huge amount of malicious traffic, and
the OpenFlow channel is also congested. Thus, the
occurrences of Packet-In, Packet-Out, Packet-Mod, and TCP-
ACK messages in the malicious OpenFlow traffic are similar
to the occurrences of these messages in the benign OpenFlow
traffic. Therefore, the K-NN, SVM, and NB classifiers are
more likely to falsely identify the attack samples that are
similar to benign sample as normal samples, which leads to
an increase in the number of false negatives. This, in turn,
reduces the recall ratios, or falsely identify the benign
samples as attack samples which in turn increases the false
positives and decrease the precision ratio. As a result, the
overall detection performance of the machine learning
classifier suffers.

C. Detection of Unknown Attacks

An unknown attack is an attack which has been
mislabeled by the training model due to the absence of similar
samples in the training dataset. In our experiments, we
excluded the targeted attack and its combination of samples
from the training dataset, in order to present it as an unknown
attack to the trained model. In this case, the training dataset
included benign traffic samples, as well as the remaining
attacks and their respective samples. The testing dataset
consisted of the unknown attack samples, as well as randomly
selected benign traffic samples. For example, given that X is
the training dataset that consists of attacks samples and
normal traffic samples, Y is the testing dataset that includes
attack samples and normal traffic samples, G is the unknown
attack samples only, and C is the attack combination samples,
the X training datasets are in the form of X(trainingsety = X -
G - C and Y(testingseny= G + NormalTraf ficSamples.
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Fig. 8 Unknown Saturation Attacks Detection Results

In addition, we studied the impact of different time-
windows of traffic analysis on the detection results by
selecting the proper time-window of OpenFlow traffic
analysis for each classifier in each environment based on the
previous experiments results. Fig. 8 summarizes the detection
performance results of our classifiers in both physical and
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simulated SDN environments. Based on the reported results,
our classifiers are capable of detecting the unknown
saturation attacks in both environments. In particular, the K-
NN classifier shows promising detection results in both SDN
environments. Also, the reported results show that the
detection performance of our classifiers were influenced by
the SDN environment setup. For instance, the SVM classifier
obtained a 78% precision ratio, a 17% recall ratio, and a 28%
F-1 score for detecting the IP-Spoofing attacks in the physical
environment, whereas, it obtained 100% precision, 70%
recall, and an 82% F-1 score in the simulated environment for
the same attack. Based on these results, we believe that there
is a relationship between the SDN environment setup and the
detection performance of our classifiers.

Nonetheless, we have demonstrated that the classifiers are
capable of detecting unknown saturation attacks with
reasonable accuracy. We believe this is due to several
characteristics of the problem. For one 1), the saturation
network attacks have a high-degree of self-similarity. [20]
studied the self-similarity characteristics of benign and
malicious OpenFlow traffic. Their results show that the
normal OpenFlow traffic has a low degree of self-similarity
and has different statistical characteristics, whereas, the
saturation attacks OpenFlow traffic has a higher degree of
self-similarity. Secondly, (2) our features can accurately
reflect abnormal behavior within OpenFlow traffic because
they represent the main messages of the OpenFlow vl1.3
protocol. In other words, the models are sensitive to any
abnormal activity that occurs in the OpenFlow traffic
between the control and data planes, because this activity is
encoded in the features we have chosen for our datasets.
Essentially, all the saturation attacks exhibit a similar
technique of flooding the SDN environment by generating a
vast number of table-miss packets; therefore, they have a
similar impact on the OpenFlow messages.

VI. CONCLUSIONS

We have studied the K-NN, SVM, and NB classifiers for
the detection of saturation attacks in physical and simulated
SDN environments. The experiment results have
demonstrated that the time-window of OpenFlow traffic has
a noticeable impact on the detection performance and that the
classifiers were capable of detecting unknown types of
saturation attacks in SDN.

Our current work has focused on supervised classifiers in
single-controller SDN environments. Our future work will
apply unsupervised machine learning algorithms to the
detection of known and unknown saturation attacks in SDN
environments with multiple controllers.
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