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Abstract— Software Defined Networking (SDN) is a new 
network paradigm that facilitates network management by 
separating the control plane from the data plane. Studies have 
shown that an SDN may experience a high packet loss rate and 
a long delay in forwarding messages when the OpenFlow 
channel is overwhelmed by a saturation attack. The existing 
approaches have focused on the detection of saturation attacks 
caused by TCP-SYN flooding through periodic analysis of 
network traffic. However, there are two issues. First, previous 
approaches are incapable of detecting other types, especially 
unknown types, of saturation attacks. Second, they rely on pre-
determined time-window of network traffic and thus are unable 
to determine what time window of traffic data would be 
appropriate for effective attack detection. To tackle these 
problems, this paper first investigates the impact of different 
time-windows of OpenFlow traffic on the detection performance 
of three classification algorithms: the Support Vector Machine 
(SVM), the Naïve Bayes (NB) classifier, and the K-Nearest 
Neighbors (K-NN) classifier. We have built and analyzed a total 
of 150 models on OpenFlow traffic datasets generated from both 
physical and simulated SDN environments. The experiment 
results show that the chosen time-interval of OpenFlow traffic 
heavily influences the detection performance -- larger time-
windows may result in decreased detection performance. In 
addition, we were able to achieve reasonable accuracy on 
detection of unknown attacks by applying proper time-windows 
of OpenFlow traffic.  

Keywords— Software-defined networking, OpenFlow, 
saturation attack, anomaly detection, machine learning 

I. INTRODUCTION  
As an emerging network architecture, SDN suffers from 

many security threats. Kreutz et al. [1] discussed several 
security issues, including flooding of the data and control 
planes, vulnerabilities of OpenFlow switches, and the lack of 
authorization. One particular challenge is dealing with the 
Distributed Denial of Service (DDoS) attacks [2]. Recent 
studies have focused on detecting and mitigating DDoS 
saturation attacks, especially control plane saturation attack 
via SYN flooding attacks [4][5][6][7]. The limited bandwidth 
of OpenFlow communication channel can become a 
bottleneck for the entire network. A hacker may exploit this 
limitation by launching a flooding attack. Such saturation 
attacks range in duration, and a long-lasting attack can affect 
the entire SDN. Most of the existing machine learning 
detection methods rely on an arbitrary predefined, fixed time-
window to start analyzing the network traffic to detect the 
saturation attacks [3][4][5][6][7]. If the time-window is too 
large, the detection method response time will be long, and the 
attack may have an opportunity to saturate the network. If the 
time-window is too small, the amount of traffic may be 
insufficient to provide reliable detection results. In this case, 

the detection method can also become a huge performance-
overhead for the SDN. Thus, identifying the proper time-
window of traffic for effective detection is a key concern.   

Machine learning has been successfully applied to various 
security problems. For detection of saturation attacks, 
however, the adoption of machine learning in the “real-world” 
has been very limited. This is partly because of their 
deficiencies for dealing with unknown attacks. An unknown 
attack is an attack which is not represented in the dataset used 
to train the detection model [8]. Because there are no instances 
of the attack included in the training set, supervised machine-
learning methods are unable to classify it. In this paper, we 
aim to answer the following questions: (1) Is it possible to 
determine a proper time-window for conducting OpenFlow 
traffic analysis, in order to provide the best results for 
detection of saturation attacks? (2) How does the variation in 
the time-windows affect the detection performance of a 
machine learning classifier? (3) are supervised machine 
learning algorithms effective in detecting unknown attacks?   

For the first two questions, we have evaluated the 
detection performance of three state-of-the-art machine 
learning algorithms: the widely-used Support Vector Machine 
(SVM), K-Nearest Neighbor (K-NN) classifier, and Naïve-
Bayes (NB) classifier. We used a variety of time-windows of 
OpenFlow traffic to determine the proper time-window for 
detection of saturation attacks. Also, we studied the impact of 
different time-windows of OpenFlow traffic on the classifiers’ 
detection performance by conducting a false-negative 
analysis. We conducted extensive experiments using both 
physical and simulated SDN environments. In each 
environment, we collected “normal” OpenFlow traffic by 
using different traffic generation tools that mimic real-world 
network traffic with various network protocols and internet 
applications. We collected malicious OpenFlow traffic by 
performing 31 saturation attacks, combining UDP flooding, 
SYN flooding, IP Spoofing, ICMP, and SARFU flooding. In 
both environments, we extracted datasets representing time-
windows ranging from 1-minute of OpenFlow traffic analysis 
to the entire duration. We performed a total of 150 
experiments to evaluate the impact of different time-windows 
of OpenFlow traffic on the performance of K-NN, NB, and 
SVM. This allowed us to identify the earliest time-window for 
detecting saturation attacks with the highest detection 
performance. The detection performance may be decreased 
when the time-window of OpenFlow traffic become larger. 

For the third question, we evaluated SVM, K-NN, and NB 
for detecting unknown saturation attacks. To test a supervised 
classifier, we excluded the observations related to one type of 
a saturation attack from the training dataset, to act as an 
unknown attack for the models.  The test dataset includes the 
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observations from the unknown attacks and a random set of 
normal traffic observations. Then we used our evaluation 
metrics to assess the classifiers for detecting the unknown 
attacks. Our experiment results showed that SVM, NB, and K-
NN are capable of detecting unknown saturation attacks.  

The contributions of this paper are as follows: 

• To the best of our knowledge, this work is among the 
first to investigate the impact of different time-
windows of OpenFlow traffic on the performance of 
supervised classifiers for the detection of saturation 
attacks in SDNs. 

• This work has created two large saturation attack 
datasets by using both physical and simulated SDN 
environments. This can further promote the research 
on SDN security. 

• This is the first work on the evaluation of supervised 
classifiers for detecting unknown saturation attacks in 
SDN environments.  

The remainder of this paper is organized as follows. 
Section II presents a brief introduction to the SDN, OpenFlow 
protocol, and SDN saturation attacks. Section III reviews the 
related work. Section IV describes the methodology. Section 
V presents our experiments. Section VI concludes the paper. 

II. BACKGROUND 

A. SDN and OpenFlow Protocol 
In traditional computer networks, the administrator needs 

to configure the network devices to change the route of the 
packets because the control is distributed among all the 
network devices. SDN offers a new way of managing and 
controlling networks by separating the control plane and data 
plane. The basic architecture of an SDN environment is 
composed of data plane and control plane that communicate 
through the southbound API. The data plane includes the 
network hardware components in term of switches (e.g. 
OpenFlow switches) and routers responsible for forwarding 
operations. The SDN hardware components do not need to be 
changed over time to upgrade the network because they are 
programmable, and they are controlled by the SDN controller 
via southbound API. The southbound API represents the 
interface between the network switches and the SDN 
controller. It allows the controller to control the behavior of 
hardware devices. The OpenFlow protocol is the 
standardized and the most widely-used southbound API. 

The SDN controller is a centralized controlling unit that 
translates the SDN applications network requirements down 
to the data plane and provides the business application that 
resides in the application layer with the network information 
such as network topology and statistical reports. The 
communication between the business applications and the 
SDN controller is through the northbound APIs. The 
northbound APIs provide an abstraction of the network 
functions and enable the network applications and 
orchestration systems to dictate the behavior of the SDN 
network by providing a programmable interface to request the 
network services and dynamically configure the network. 

OpenFlow as a communication protocol between the data 
plane and the control plane has been defined as the standard 
southbound APIs used in the SDN architecture by Open 

Network Foundation (ONC). An OpenFlow switch comprises 
of flow tables, group tables and OpenFlow channel that 
provide the connection channel to exchange the OpenFlow 
messages between the SDN controller and OpenFlow 
switches. 

B. SDN Saturation Attacks  
When a new incoming packet does not match any of the 

existing flow-entries of the OpenFlow switch, a table-miss 
occurred. The data plane encapsulates the new packet insides 
a Packet-In message and sends it to the SDN controller for 
deciding the fate of the table-miss packet. The feature of 
table-miss can be exploited by a hacker to consume the 
computation resource (e.g., CPU and memory) of the 
controller, switches and saturate the OpenFlow 
communication channel. A hacker can lunch data-to-control 
plane saturation attack by triggering a huge number of table-
miss packets by sending a vast number of spoofed packets to 
reduce the possibilities of matching any of the existence flow-
entries on the targeted switch. The controller will be 
overwhelmed dealing with the Packet-In messages. Such 
data-to-control plane flooding attack may exhaust the 
controller computation resources and delay the forwarding 
messages to the OpenFlow switches.    

When the data-to-control plane occurred, the controller 
will trigger a large amount of Packet-Out and Packet-Mod 
messages, which cause a control-to-switch flooding attack. 
As a result, numerous invalid flow-rules will be installed in 
the targeted switches flow-tables. This prevents the valid 
flow-entry to be installed, which in turn causes the benign 
packets to be dropped. Therefore, all the benign packets will 
be rejected by the OpenFlow switches and the OpenFlow 
channel will be saturated.  

III. RELATED WORKS 
Studies have shown that there are various security threats 

to SDN [1]. For example, flooding attacks that disturb the 
SDN-based network can put it out-of-service. Several research 
works have proposed ways to detect, mitigate, and prevent the 
SYN-Flooding attack using machine learning and deep 
learning approaches. Ashraf et al [9] have investigated various 
machine learning algorithms that can be used to detect DDoS 
attacks in the SDN environment. Quamar et al. [10] proposed 
an SDN network application that adapted a stacked 
autoencoder (SAE) deep learning technique for detecting 
multi-vector DDoS. The proposed system consists of three 
components: traffic collector and flow installer, feature 
extractor, and traffic classifier. This work relies on processing 
every incoming packet for attack detection and flow 
computation instead of flow sampling, which requires 
extensive computational resources. The dataset used for 
training and testing the proposed system was collected from a 
traditional wireless-network, not an SDN-based network.  
Ahmed et al. [7] proposed a DDoS detection prototype by 
using Dirichlet process mixture model to detect the attack 
traffic. Its misclassification rate (for attack traffic versus 
benign traffic) is around 50%.  Hu et al. [11] proposed the 
FADM framework for detecting and mitigating SYN, ICMP, 
and UDP flooding attacks in SDN. FADM has two 
components: (1) a DDoS detection module which uses the 
sFlow approach to collect the network information, extracts 
features using the entropy approach, and detects the attack 
traffic using an SVM algorithm, and (2) a DDoS mitigation 
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module that is responsible for mitigating the DDoS attacks 
using a white-list and traffic migration approach. The use of 
the SVM classifier required very long training and prediction 
time to distinguish the normal and attack traffic. Braga at al 
[12] proposed a lightweight DDoS flooding attack detection 
in SDN. They used a self-organized map (SOM) to detect the 
attack traffic. The shortcoming of this approach is the training 
and detection time required for the SOM algorithm, which is 
around a few hours for training and a few minutes for 
classifying the traffic.  

Tuan et al. [13] used the Deep Neural Network (DNN) to 
develop an anomaly DoS detection system. The accuracy is 
88.04%, which is relatively low. The NSL-KDD dataset, 
generated from a traditional network, is used for training and 
testing the detection model. Abubakar and Pranggono [14] 
developed a flow-based anomaly detection system using a 
neural network. The NSL-KDD dataset was used to train and 
evaluate the model. Shine et al [15] proposed the AVANT-
GUARD framework to mitigate the TCP-SYN flooding that 
is sent to the SDN controller, by extending the OpenFlow 
switches functions. The detection module monitors the 
ongoing TCP-SYN connections to the controller and detects 
the SYN flooding based on a pre-defined threshold, which 
cannot accurately differentiate between the normal and 
abnormal SYN packets.  

Wang et al. [5] proposed Floodguard: a prevention 
approach against DoS attacks. FloodGaurd acts as middleware 
between the controller and its applications and has three 
components: a detection module, a flow rule analyzer module, 
and a packet migration module. The FloodGaurd detection 
module monitors the OFPT_PACKET_IN messages and 
triggers the other modules when the OFPT_PACKET_IN 
messages exceed the pre-defined thresholds. Shang et al. [6] 
introduced FloodDefender as a framework for mitigating DoS 
attacks against the SDN network. It has four modules: attack 
detection, table-miss engineering, packet filter, and flow rule 
management. The FloodDefender detection module uses the 
same detection technique in FloodGuard. It uses the SVM to 
classify the malicious packets and normal packets, which 
require long training time. The main limitation of the detection 
module in both proposed approaches is the fact that using the 
OPPT_PACKET_IN message rate to detect the attacks is not 
accurate since heavy normal traffic can generate similar 
OFPT_PACKET_IN messages. Mousavi and Hilaire [19] 
proposed an early detection approach for DDoS attacks using 
the entropy values of the IP addresses for new incoming 
packets to the controller, within the first 250 Packets. 
However, the major drawback of this approach is based on the 
assumption that each new packet forwarded to the controller 
is a malicious packet if the source addresses match any of the 
existing network hosts. In addition, if the source IPv4 address 
appears in many packets, the entropy value will be lower than 
the predefined thresholds, which means that the host is under 
attack. This approach can generate many false alarms of early 
attack detection, specifically, if the SDN network is in a 
reactive flow-management configuration. This means that the 
flow-entries will be configured dynamically to provide a 
flexible way to control the network traffic. Thus, in a large-
size SDN network, many legitimate packets forwarded to the 
controller and many legitimate flow-entries will be installed 
to control network traffic. However, the proposed approach 
cannot be utilized as an early DDoS attack detection method 
since the normal behavior of the SDN network will always be 
considered as malicious behavior. Zhang et al [16] introduced 

two novel attacks: a table-miss striking attack and a counter 
manipulation attack. They provided the SWGuard system as a 
solution to detect and prevent these attacks.  

The existing works typically use a pre-defined time-
window, without justification about the specified time-
window. This research aims to determine the proper time-
window to detect saturation attacks and show the impact of 
different time-windows of OpenFlow traffic on the detection 
performance of the K-NN, SVM, and NB classifiers. This 
research also investigates the capabilities of these classifiers 
for detecting unknown saturation attacks, which is considered 
a huge obstacle to adopting classifier-based detection methods 
to real-world SDN networks [8].  

IV. METHODOLOGY 
In this section, we first introduce the features that we 

extracted from the OpenFlow traffic and explain our approach 
for preprocessing the OpenFlow traffic to generate multiple 
datasets for different time-windows. We also introduce the 
classifiers for detecting the known and unknown saturation 
attacks and describe the experimental setup and data 
collection of OpenFlow traffic.  

A. Feature Extraction and Data Preprocessing 
The OpenFlow traffic [17] is a sequence of packets that 

are transferred between the controller and the switch. Each 
packet has different attributes such as the packet time, the 
source and the destination IP addresses, the OpenFlow 
message type, and the length of the packet.  Formally, the 
OpenFlow traffic �� is a sequence of OpenFlow packets  < 
�� ,���  …,���>  captured during a normal or attack session, 
where each packet pi has  <	
��
 �����
 ��	��
 ������

����	� >. The OpenFlow traffic consists of 29 types of 
OpenFlow messages that can be categorized into three main 
types: (1) controller-to-switch messages that are sent from the 
controller to the switch to acquire information and modify the 
switch state (e.g., Packet-out, Packet-mod, and Role-request), 
(2) asynchronous messages that are sent by the switch to the 
controller to inform about new coming packets, error, and 
switch state changes (e.g., Packet-in, Flow-removed, Port-
status, and error),  and (3)  symmetric messages that are sent 
in both sides such as Hello and Echo messages.  

We consider the following four features of the captured 
OpenFlow traffic:  

• The number of OFPT_PACKET_IN messages sent 
from the switch to the controller. 

• The number of OFPT_PACKET_OUT messages sent 
from the controller to the switch.  

• The number of OFPT_PACKET_MOD messages 
sent from the controller to the switch.  

• The number of TCP_ACK messages sent from the 
switch to the controller, or vice versa.   

These features are selected based on our analysis and 
observation of the OpenFlow traffic behavior in physical and 
simulated SDN environments when they are in attack mode or 
normal mode. The features are sensitive to various saturation 
attacks and their combinations. Fig. 1 shows the impact of a 
UDP saturation attack on the Packet-In and Packet-Out 
features. When the UDP flooding attack occurs, the attacking 
host tries to flood the SDN network by generating a massive 
amount of IP packets including UDP datagrams. Meanwhile, 
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the OFPT_PACKET_IN messages generated by UDP attack 
come from the switch that is connected to the attacking host. 
Thus, the number of OFPT_PACKET_IN messages in the 
OpenFlow traffic increases significantly, and the number of 
OFPT_PACKET_OUT messages decreases significantly. 
TABLE I. summarizes the changes to each feature caused by 
UDP, SYN, ICMP, IP Spoofing, and SARFU TCP saturation 
attacks. 

 
Fig. 1 Effect of UDP Flooding Attack on Packet-In & Packet-Out 

Messages 

Algorithm 1: OpenFlow Dataset Generation 
Input OpenFlow traffic ��
  Time-Window T, Time-Shifting S, 

Traffic-Type L {0,1} 
Output Dataset �� 
Declare �����	��, �����	��	, �����	���, 	�����, � !"#$%&'

Steps  
1 (=0 (the index of the output sample ��) 
2 )����	: 
3 *
��	�����	����+=1 (�, is the first packet of the current shift)

�	��	-
�� . �#,/&"01234567894:;<9='
 (is the first packet time of the 

current shift) 
4 ����*���"�
 . �*
��	�����	����+> 
 ? �> �
 @ @'���� 
5 
*��#,/& A �	��	-
�� B -
6     createNewSample_Xj(packetIn,packetOut,tcpAck,J++)

    addNewSampleXj←xj with corresponding traffic type L    
   and increase ( by one. 

7    break; 
8 Endif 
9 �����C
	���"� !"#$%&''�D 
10      Case1:�� !"#$%&' = “OFPT_PACKET_IN” 
11             �����	���@. E> 
12          Case2: � !"#$%&' = “OFPT_PACKET_OUT” 
13                     �����	��	 + = 1;
14       Case3 : � !"#$%&' = “OFPT_PACKET_MOD”
15                    �����	��� += 1;
16        Case4: � !"#$%&' = “TCP_ACK” 
17               	������+ = 1; 
18  } 
19     end for 
20 firstPacketIndex=updatePacketIndexNextShfit(firstPacketIndex,S)
21 Until firstPacketIndex > n 

 

To investigate the appropriate time-window for detecting 
saturation attacks, we tested different time windows and 
evaluated their impact on the detection performance of the 
SVM, K-NN, and NB classifiers. From each time window, a 
different dataset was generated from the collected OpenFlow 
traffic in both physical and simulated SDN environments. The 
time-windows ranged from one minute to the entire attack 
duration.  A detailed description of our approach for extracting 
these datasets from the OpenFlow traffic is given in Algorithm 
1. The features collected in each dataset were the OpenFlow 
traffic session �� , the dataset time-window T, the dataset 
time-shifting S, and the OpenFlow traffic type L which is ?
F��G�H�
*����
������������F��G�E�
*����
���		��� B  . The 

output was a dataset ��  = "I�
 +�
 +JK K K 
 +��'  which was a 
sequence of labeled samples, with each sample  +L in the form 
of <number of Packet_in messages , number of Packet_out 
messages, number of Packet_mod messages, number of 
TCP_ACK message >.  Lines (9-18) deal with extracting our 
features from the OpenFlow traffic packet sequence OF for 
the specified time-window T. For each packet, we extracted 
the OpenFlow message type. If the message type matched any 
of our messages, the corresponding counter increased by one 
(lines 10-17). When the difference between the packet time 
and the starting time is larger than T, a new sample +M created 
with the corresponding label and increase the dataset index ( 
by one (lines 5-8). After each new sample +M, the value of the  
*
��	�����	����+�updated by adding the shifting parameter 
S for the next shift starting index (line 20). The reason behind 
including the shifting parameter was to increase the 
overlapping in the generated datasets. 

TABLE I.  IMPACTS OF SATURATION ATTACKS ON THE KEY 
OPENFLOW MESSAGES 

Saturation 
Attacks 

The Impact 
# Packet-In # Packet-

Out 
# Packet-

Mod 
# TCP-ACK 

UDP Significant 
increase 
followed by 
a decrease 
Significant 
decrease 

Significant 
decrease 

Significant 
decrease 

Significant 
increase 

SYN Significant 
increase 

Increase 
and then a 
significant 
decrease 

Increase 
and then a 
significant 
decrease 

Significant 
increase 

ICMP Insignificant 
increase 

Increase 
for a short 
period of 
time 
followed 
by a 
significant 
decrease 

Increase 
for a short 
period of 
time 
followed 
by a 
significant 
decrease 

Noticeable 
increase 
followed 
by a 
significant 
decrease 

IP Spoofing Increase 
followed by 
a significant 
decrease 

Increase 
followed 
by a 
significant 
decrease 

Increase 
followed 
by a 
significant 
decrease 

Increase 
and 
significant 
decrease to 
be a zero 
packet 

SARFU 
TCP 

Increase and 
then 
noticeable 
decrease 
and then 
decrease to 
zero 
packets. 

Increase 
and then 
significant 
decrease to 
zero 
packets. 

Increase 
and then 
noticeable 
decrease 
and then a 
significant 
decrease to 
zero 
packets 

Increase 
and then 
noticeable 
decrease 

 

B. Classifiers 
      We train several supervised models by using the obtained 
datasets Xj as explained in the previous section and evaluate 
their performance. In this paper, we consider K-Nearest 
Neighbor Classifier (K-NN) a well-known supervised 
learning algorithm that has been widely used in intrusion 
detection. K-NN is a non-parametric learning algorithm 
which stores all the instances of the training dataset. K-NN is 
also a lazy learning technique that does not use the training 
points for making any generalizations. Another machine-
learning algorithm which has proven to be popular for 
abnormal traffic detection is Naïve-Bayes (NB).  The NB 
classification model uses the Bayesian theory that includes 
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Bayesian learner and statistical analysis. We also consider 
Support Vector Machine (SVM), another well-known 
supervised machine learning algorithm that has been used 
widely in different fields. Recently, several studies have used 
SVM in SDN-intrusion detection systems and in traditional 
network intrusion detection systems [18].  SVM can be used 
for classification and regression analysis. It works by plotting 
the observations as points in N-dimensional space (where N 
is the number of features) and outputting an optimal 
hyperplane that maximizes the margin between two classes. 
This boundary is then used to categorize new observations.  

C. Experiment Setup and OpenFlow Traffic Collection 
We collected the OpenFlow communication channel 

traffic using both physical and simulated environments. The 
main advantage of using a physical SDN environment is the 
capacity to replicate the workload of a real-world SDN 
network and the internet traffic generated by real-world 
applications. The physical SDN environment consists of a 
Pica8 P-3290 OpenFlow switch, Floodlight Master 1.2v as an 
SDN controller, and five hosts ranked from h-1 to h-5. 0shows 
the physical environment configurations. The physical 
environment is limited to the network scale and topology.  The 
simulated SDN environments was created using the Mininet 
tool [21] with different network topologies (i.e., tree topology, 
star topology, mesh topology, and linear topology), and 
different network scale (i.e., number of hosts, number of 
switches). TABLE III. shows the main configurations of the 
simulation SDN network. 

The benign OpenFlow traffic was collected from both 
physical and simulated environments by using four traffic 
generation tools that mimic real-world network behaviors. We 
used D-ITG (Distributed Internet Traffic Generator) [22]. D-
ITG has ITGSend and ITGRecv components. ITGSend can 
generate parallel traffic flows and send it to different ITGRecv 
instances. ITGRecv is responsible for receiving traffic flows 
from ITGSend. D-ITG provides the ability to generate 
multiple unidirectional traffic flows for different protocols 
such as IPv4, IPv6, TCP, UDP, ICMP, SCTP (Stream Control 
Transmission Protocol), DCCP (Datagram Congestion 
Control Protocol), DNS, Telnet, and VoIP.  We used the 
Nping open source tool [25] that can generate traffic for 
different protocols such as the ARP protocol. By using Nping, 
we were able to customize the packet size and the transmission 
intervals of the generated traffic. In order to generate a 
concurrent stateful and stateless traffic that simulated the 
internet traffic, we used Cisco’s TRex realistic traffic 
generator [23]. TRex can generate almost any kind of L4-7 
traffic, based on the smart reply of real traffic templates. It can 
amplify the traffic of the server and the client side up to 
200Gb/sec. We also exploited OSTINATO [24] to configure 
and generate many traffic streams for different protocols such 
VLAN, IPv4, IPv6, stateless TCP, ARP, ICMPv4, ICMPv6, 
IGMP (Internet Group Management Protocol), MLD 
(Multicast Listener Discover), RTSP (Real Time Streaming 
Protocol) and NNTP (Network News Transfer Protocol). The 
total size of the captured benign OpenFlow traffic from the 
physical environment was 250 GB, the total duration was 
about 137 hours, and the total simulated benign traffic was 
about 143 GB, for a total duration of 100 hours.   

In both physical and simulated environments, Hping3 [27]  
and LOIC (Low Orbit Ion Canon)  [26] were employed to 
lunch the saturation attacks. In each environment, 31 

saturation attacks were performed to cover all combinations 
of SYN flooding, UDP flooding, ICMP, IP Spoofing, and 
SARFU-TCP flooding. Each of the attacks flooded the control 
and/or data planes. The total size of the physical environment 
malicious traffic was 50Gb and the duration for each attack 
was about 30 minutes. For the simulated environment, the 
total size of the malicious traffic was about 100 Gb and the 
duration of each attack was about 20 minutes. 

TABLE II.  PHYSICAL ENVIRONMENT CONFIGURATIONS  

Host 
Name 

CPU Info Memory 
Info 

Operating System 

Controller 
Machine 

Intel Core (i7) 
2.5GHz 

16GB Ubuntu 16.04.5 LTS 

h-1 Intel Core (i5) 
2.5GHz 

8GB Ubuntu 16.04.5 LTS 

h-2 Intel Core (i5) 
2.5GHz 

8GB Ubuntu 16.04.5 LTS 

h-3 Xenon E5 2.5GHz 4GB Ubuntu 16.04.5 LTS 
h-4 Xenon E5 2.5GHz 4GB Ubuntu 16.04.5 LTS 
h-5 Intel Core (i5) 

2.4GHz 
8GB Ubuntu 16.04.5 LTS 

TABLE III.  SDN SIMULATION ENVIRONMENTS CONFIGURATIONS  

Parameter Description Default Value 
NC Number of Controllers 1 
NS Number of switches 10-200 
NH Number of Hosts 50-300 
NT Network Topology Star, Mesh, Ring, Tree 

V. EXPERIMENT RESULTS AND DISCUSSIONS 
This research aimed to answer the following questions: 

• RQ1: What is a proper time-window of OpenFlow 
traffic analysis for detecting saturation attacks?  

• RQ2: How do different time-windows affect the 
detection performance of a classifier?  

• RQ3: Are classifiers effective in the detection of 
unknown saturation attacks?   

A. Proper Time-Window for Detection of Known Attacks 
In this section, we describe the experiments we conducted 

to discover the proper time-window for OpenFlow traffic 
analysis to early detect the saturation network attacks. Also, 
we evaluate the impact of different time-windows of 
OpenFlow traffic analysis on the detection performance of the 
known saturation attacks for SVM, K-NN, and NB  classifiers. 
We refer to known saturation attack as an attack that has been 
included in the training phase, in other words, the training 
dataset has many samples that describe the attack behavior and 
our classifier models have been trained to detect this attack. In 
the physical environment, 30 datasets are generated from the 
collected OpenFlow traffic and each dataset represents a 
different time-window, range from 1 minute to the attack 
duration on physical environment that’s equal to 30 minutes. 
In our experiments, each dataset is used to train and test K-
NN, SVM, NB models and we used the precision, recall, and 
F1 score metrics to evaluate the performance of our models 
and analyze the impact of different time-window on the 
model's prediction results. We now discuss how we 
determined the earliest proper time-window for each 
classifier, from these experimental results. 
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Fig. 2 shows the precision, recall, and F1 score metrics for 
the K-NN models when the time-window ranges from 1 
minute to 30 minutes (each minute represents a trained K-NN 
model). The highest detection rate for the K-NN classifier is 
obtained when the time-window is equal to 1 minute: the 
precision is 96% with recall 95%, and the F1 score is 95%. 
The lowest detection rate is when the time-window equal 30-
minutes, in which case, the corresponding precision is 47% 
with recall 98%, and the F1 score is 64%. As a result, in the 
physical environment, the proper time-window for the K-NN 
classifier is 1 minute of traffic analysis. To support this 
conclusion, Fig. 2 shows that the precision and F-1 score 
decrease as the time-window of traffic analysis increases.  

 
Fig. 2 K-NN on the Physical Environment 

Fig. 3 SVM on the Physical Environment 

Fig. 4  NB on the Physical Environment 

    Fig. 3 shows the values of the evaluation metrics for the 
SVM models. Each time-window represents a trained SVM 
model. The highest detection result is when the time-window 
equals 1 minute; in this case, the precision is 91% with a recall 
of 91%, and the F1 score is 91%. In contrast, the lowest 
precision achieved by these models is 46% with a recall of 
99%, and F1 score of 62%. This is when the time-window is 
30 minutes. Fig. 3 shows the impact of time-window length 
on the SVM classifier performance. Notably, the precision and 
F1 score decrease and the recall increase as the time-window 
increases. Thus, the proper time-window for the SVM 
classifier in the physical environment is also 1 minute.      

Similar to the approach for the K-NN and SVM classifiers, 
we performed 30 experiments to evaluate the NB classifier 
detection performance for the same time-windows. Fig. 4 
shows the results of our evaluation.  The highest precision is 
99% with a recall of 80%, and an F1 score of 89%, when the 
time-window equals 3 minutes. The lowest precision is 52% 
with a recall of 53%, and an F1 score of 52% when the time-
window equals 30 minutes. In the physical environment, the 
3-minute time-window seems proper for the NB classifier in 
order to obtain a high detection rate.  

 
Fig. 5 K-NN on the Simulation Environment 

In the simulation environment, 20 datasets were generated 
and used in training and testing the proposed classifiers. 
Similar to the physical environment experiments, each 
dataset represented a different time-window of traffic 
analysis. In this case, the dataset time-windows ranged from 
1 minute to 20 minutes (i.e., attack duration on simulation 
environments equal to 20 minutes). Again, we used the 
precision, recall, and F1 score to evaluate the performance of 
our classifiers in each experiment. Fig. 5 shows that when the 
time-window equals 1 minute, the K-NN classifier achieves 
a high precision of 97% with a recall of 99% and an F-1 score 
of 98%. When the time-window equals 18 minutes, the K-NN 
classifier achieves the highest precision overall (100%) but 
suffers from low recall (19%). The F1 score is 35%. As a 
result, we conclude that the 1-minute time-window is proper 
for the K-NN classifier, in order to obtain the highest 
detection results in the simulation environment. Fig. 5 shows 
the impact of the time-window on the detection performance 
of the K-NN classifier. Increasing the time-window led to 
increased precision but decreased the recall and the F1 score 
ratios. 

Fig. 6 SVM on the Simulation Environment 

As shown in Fig. 6, the SVM classifier achieved the 
highest detection results with a time-window of 2 minutes. 
The corresponding precision is 81% with a recall of 89%, and 
the F1 score is 85%. Moreover, Fig. 6 shows noticeable 
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changes in the SVM classifiers’ detection performance when 
the time-window increases. For example, when the time-
window equals 20 minutes, the detection results declined 
significantly to a precision of 7%, recall of 35%, and an F1 
score of 11%.   

  
Fig. 7 NB on the Simulation Environment 

    Fig. 7 shows the metric values for the NB classifier models 
results. The NB model obtained the highest detection results 
when the time-window was 1 minute, with corresponding 
precision of 85%, recall of 96%, F1 score of 91%. The lowest 
precision was 11% with a 37% recall rate, F1 score of 17%. 
In our simulation environments, we found that the 1-minute 
time-window is proper for the NB classifier to detect the 
attack traffic. The experimental results show the critical role 
that the time-window of OpenFlow traffic analysis plays on 
the detection performance of our classifiers.  

B. Impact of Time-Window Variations 
To better quantify the impact of different time-windows 

of OpenFlow traffic analysis on the detection performance of 
the K-NN, SVM, and NB classifiers, we conducted a false-
negative analysis. The purpose of a false-negative analysis is 
to find all the samples that are falsely identified by our 
classifiers and the time slot of each sample. In our 
application, the ‘false negative’ samples represent the attack 
samples that were falsely identified as benign samples by the 
trained models. We conducted the false-negative analysis 
after performing the physical and simulated environment 
experiments by allocating the attacks samples for each 
experiment dataset with corresponding trained K-NN, SVM, 
and NB models, whereas, each experiment dataset represents 
a different time-window of OpenFlow traffic analysis. 
Therefore, fed the attacking samples to the trained models 
and extract the samples that are falsely identified by the 
models as a normal sample along with the time slot of that 
sample. Based on our false-negative analysis results, we 
discovered that most of the false negatives occurred at the end 
of the attack time. As shown in Figures 2-7, the recall ratios, 
precision ratios, and F1 scores in the experiments on both 
environments decreased significantly when the time-window 
was equal to 15-minutes or longer. The reason behind the 
increasing number of false negatives when the time-window 
increased is due to the behavior of the SDN environment 
when it is under a saturation attack. Technically, in the early 
stages of a saturation attack (i.e. when the attack is initiated), 
both the switch and the controller have enough capacity to 
process the incoming attack packets. Also, the OpenFlow 
connection channel has sufficient bandwidth to transfer the 
OpenFlow messages at this time. This led to a significant 
increase in the numbers of Packet-In, Packet-Out, Packet-

Mod, and TCP-ACK messages in the OpenFlow traffic. In 
this situation, the K-NN, SVM, and NB classifiers were able 
to accurately identify the attack samples from the benign 
samples, as evidenced by the high precision ratios, recall 
ratios, and F1 scores of the classifiers. 

Subsequently, as the attack takes over the SDN network, 
the OpenFlow switch and the controller become 
overwhelmed. At this point, they do not have sufficient 
capacity to process the huge amount of malicious traffic, and 
the OpenFlow channel is also congested. Thus, the 
occurrences of Packet-In, Packet-Out, Packet-Mod, and TCP-
ACK messages in the malicious OpenFlow traffic are similar 
to the occurrences of these messages in the benign OpenFlow 
traffic. Therefore, the K-NN, SVM, and NB classifiers are 
more likely to falsely identify the attack samples that are 
similar to benign sample as normal samples, which leads to 
an increase in the number of false negatives. This, in turn, 
reduces the recall ratios, or falsely identify the benign 
samples as attack samples which in turn increases the false 
positives and decrease the precision ratio. As a result, the 
overall detection performance of the machine learning 
classifier suffers.  

C. Detection of Unknown Attacks 
An unknown attack is an attack which has been 

mislabeled by the training model due to the absence of similar 
samples in the training dataset. In our experiments, we 
excluded the targeted attack and its combination of samples 
from the training dataset, in order to present it as an unknown 
attack to the trained model. In this case, the training dataset 
included benign traffic samples, as well as the remaining 
attacks and their respective samples. The testing dataset 
consisted of the unknown attack samples, as well as randomly 
selected benign traffic samples. For example, given that N is 
the training dataset that consists of attacks samples and 
normal traffic samples, O is the testing dataset that includes 
attack samples and normal traffic samples, P is the unknown 
attack samples only, and Q is the attack combination samples, 
the X training datasets are in the form of   N"RSTU�U�VWXR' = X - 
Y -  Z  and O"RX[RU�VWXR'= G + \�����-��**
�]������. 

 
Fig. 8 Unknown Saturation Attacks Detection Results 

In addition, we studied the impact of different time-
windows of traffic analysis on the detection results by 
selecting the proper time-window of OpenFlow traffic 
analysis for each classifier in each environment based on the 
previous experiments results. Fig. 8 summarizes the detection 
performance results of our classifiers in both physical and 
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simulated SDN environments. Based on the reported results, 
our classifiers are capable of detecting the unknown 
saturation attacks in both environments. In particular, the K-
NN classifier shows promising detection results in both SDN 
environments. Also, the reported results show that the 
detection performance of our classifiers were influenced by 
the SDN environment setup. For instance, the SVM classifier 
obtained a 78% precision ratio, a 17% recall ratio, and a 28% 
F-1 score for detecting the IP-Spoofing attacks in the physical 
environment, whereas, it obtained 100% precision, 70% 
recall, and an 82% F-1 score in the simulated environment for 
the same attack. Based on these results, we believe that there 
is a relationship between the SDN environment setup and the 
detection performance of our classifiers. 

Nonetheless, we have demonstrated that the classifiers are 
capable of detecting unknown saturation attacks with 
reasonable accuracy. We believe this is due to several 
characteristics of the problem. For one 1), the saturation 
network attacks have a high-degree of self-similarity. [20] 
studied the self-similarity characteristics of benign and 
malicious OpenFlow traffic. Their results show that the 
normal OpenFlow traffic has a low degree of self-similarity 
and has different statistical characteristics, whereas, the 
saturation attacks OpenFlow traffic has a higher degree of 
self-similarity. Secondly, (2) our features can accurately 
reflect abnormal behavior within OpenFlow traffic because 
they represent the main messages of the OpenFlow v1.3 
protocol. In other words, the models are sensitive to any 
abnormal activity that occurs in the OpenFlow traffic 
between the control and data planes, because this activity is 
encoded in the features we have chosen for our datasets. 
Essentially, all the saturation attacks exhibit a similar 
technique of flooding the SDN environment by generating a 
vast number of table-miss packets; therefore, they have a 
similar impact on the OpenFlow messages. 

VI. CONCLUSIONS 
We have studied the K-NN, SVM, and NB classifiers for 

the detection of saturation attacks in physical and simulated 
SDN environments. The experiment results have 
demonstrated that the time-window of OpenFlow traffic has 
a noticeable impact on the detection performance and that the 
classifiers were capable of detecting unknown types of 
saturation attacks in SDN. 

Our current work has focused on supervised classifiers in 
single-controller SDN environments. Our future work will 
apply unsupervised machine learning algorithms to the 
detection of known and unknown saturation attacks in SDN 
environments with multiple controllers.  
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