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ABSTRACT: Computer-assisted analysis of students’ written responses
to questions is becoming a possibility due to developments in
technology. This could make such constructed response questions
more feasible for use in large classrooms where multiple choice
assessments are often considered a more practical option. In this
study, we use a previously developed prompt and coding scheme to
characterize students’ explanations of the origins of London dispersion forces in order to develop machine learning resources that
can carry out such an analysis for large numbers of students. We found that by using large numbers of human coded student
responses (N = 1,730) we could subsequently automatically characterize students’ responses at a high level of accuracy compared to
human coders. Furthermore, these resources were developed using responses from several different groups of students across
multiple institutions to ensure both that our resources can work well with students from different backgrounds and that these
computer resources can detect the different ways in which students explain this phenomenon. Such resources may help instructors to
administer more complex open-ended assessment tasks to larger numbers of students and analyze the responses capturing language
corresponding to causal mechanistic reasoning. Instructors could then use this information to better support their students’ learning.

KEYWORDS: First-Year Undergraduate/General, Chemical Education Research, Testing/Assessment, Noncovalent Interactions
FEATURE: Chemical Education Research

■ INTRODUCTION
With our rapid advances in technology, automating assessment
of students’ responses has become an emerging possibility for
the field of education. However, the use of automated text
analysis technology is relatively new in the field of chemistry
education research. While there are many assessment systems
that integrate forced choice or numerical response tasks, the
assessment of student constructed written responses to
complex chemistry prompts is not as available. Such assess-
ment tasks can provide instructors with important information
about what students know and can do; however, there are
currently limited resources that allow for meaningful analysis of
student explanations of chemical phenomena. Here, we use our
work on students’ explanations of the origins of London
dispersion forces (LDFs) to explore an approach to the
development of machine learning resources. We also
investigate whether these resources can code undergraduate
students’ responses similarly to how humans code those
responses, and whether these resources can detect different
signals (i.e., different ways in which students explain this
phenomenon).
Importance of Assessments

Assessment of student learning can be thought of in terms of
evidence-based arguments.1,2 Using this framework, evidence
(in the form of student responses) is gathered from assessment
items and subsequently used to support arguments about what
students know and can do. Once instructors have such

evidence, they can use it to evaluate the depth of student
learning and to revise learning materials and instructional
methods to support more robust understanding. In this way,
assessments become more than just a way to evaluate students,
but also an important tool to support students’ learning by
providing the instructor important feedback about the design
and effectiveness of educational materials and teaching
strategies.3

However, this design cycle is only effective if the assessment
tasks elicit appropriate evidence about student learning. While
instructors may infer that students are using appropriate
reasoning to answer a question, if that question does not
explicitly elicit such evidence, there is a strong likelihood that
some students are using rules of thumb and learned or taught
heuristics to answer questions.4,5 For example, many students
who can answer multiple choice questions about intermolec-
ular forces (IMFs) and their role in physical properties have
been shown to construct drawn representations of IMFs acting
within a molecule (rather than between molecules).6 It has
been noted that students may use the presence of hydrogen
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bonding to predict relative boiling points, while at the same
time having erroneous ideas about the nature of hydrogen
bonding itself.5,7,8 Indeed, the idea that boiling water produces
hydrogen and oxygen becomes less surprising when we recall
that students are told that boiling water breaks hydrogen
bonds. The fact that there are many students who go through
years of chemistry instruction without understanding the
nature of IMFs, and the fact that their instructors were
unaware of this problem, may be because many traditional
assessments do not elicit explicit evidence of the students’
understanding of IMFs.
This process is even more challenging because the design of

the task and associated coding scheme is crucial to whether
appropriate reasoning can be elicited and captured. In this
study, we characterized students’ responses on the basis of a
previous rubric we developed that captures the degree to which
a student’s explanation provides a causal mechanism for the
phenomenon of LDFs.9,10 This type of analysis is important
because supporting causal mechanistic thinking is an important
goal of science education.11 Developing an understanding of
how and why unseen entities behave and give rise to
phenomena gives learners the ability to generate robust
explanations and make predictions.12 This approach goes
beyond simply identifying what problematic ideas a student
might have. Instead, by identifying the resources students use
to explain the mechanism, we can begin to understand how
best to support student learning.

Designing Assessments

While there is certainly a place for multiple choice assessments,
such items typically do not provide the kind of evidence that
would allow us to make convincing arguments about what
students know and can do, particularly if we want to go beyond
recognition of fragmentary information or algorithmic problem
solving. Whether a student gets the answer right or wrong,
their thinking is not visible, so we cannot know how the
student arrived at that answer or the type of reasoning they
have engaged in. An ideal way to explore student thinking
would be to ask them directly, for example, in an interview
setting. However, such a method becomes impractical in
classroom settings where an instructor may be responsible for
several hundred students. Compromises must be made, so
instructors instead often use multiple choice or constructed
response assessments (in which the student must generate a
text response). However, these two types of assessments do
not necessarily elicit the same student understanding. For
example, Nehm and Schonfeld13 used multiple choice,
constructed response, and interview questions to assess their
students’ understanding of natural selection. They found that
the understanding conveyed in the interview responses aligned
more closely with the constructed responses compared to the
multiple choice responses. Other studies have reported similar
findings, that multiple choice questions tend to overestimate
what students know compared to constructed response
questions.14,15 Additionally, answering only multiple choice
questions or questions that do not elicit reasoning does not
explicitly provide students with the opportunity to reason and
reflect on their responses. This process is integral to learning;
indeed, asking deep explanatory questions is one of the few
pedagogical techniques to promote learning that is supported
by strong evidence.16

However, asking such questions typically requires multiple
rounds of prompt design, hand coding of responses, and

refinement of the prompts from the resulting evidence in order
to better elicit student ideas. For example, the constructed
response questions used by Nehm and Schonfeld13 were
originally developed by Bishop and Anderson17 and were
subjected to multiple rounds of design, coding, and redesign.
We have previously reported on our efforts to elicit and
characterize stronger evidence about IMFs, acid−base
chemistry, simple nucleophil ic substitutions, and
LDFs.6,9,18−20 The assessments in each of these studies went
through a similar iterative design process. Assessment items
that are too vague typically do not produce rich responses,
while prompts that are too specific tend to signal to students
what the desired responses should be. Prompts that do not
provide enough direction about what is required, or that do
not activate appropriate resources may lead students who
might otherwise provide a rich response to give a more
simplistic answer. The goal is to find the prompt that is “just
right”, allowing students to tell us what they know.
For example, consider the prompt we used in this study: our

previously developed LDF prompt.9,10 We designed this
question to explore students’ explanations of how and why
neutral atoms attract. We wanted to know if students could
leverage their knowledge of the electrons and protons within
the atoms and unpack their properties (e.g., their charges, how
they move) to explain this phenomenon. Such an explanation
that links behaviors of the entities a scalar level below the
phenomenon would be evidence of causal mechanistic
reasoning, a powerful form of reasoning in science.12 Our
initial efforts to elicit this kind of response resulted only in
surface-level descriptions. In order to develop a question that
elicited causal mechanistic reasoning and a subsequent coding
scheme to characterize those responses we interviewed
students, piloted multiple prompts, and analyzed hundreds of
students’ responses. For more information about this process,
see Becker et al.9 and Noyes and Cooper.10

Role of Formative, or Low-Stakes, Assessments

Formative assessment typically refers to assessments that are
low-stakes, that provide students with an opportunity to “try
out” ideas without penalty, and to receive feedback, ideally
leading to improvement over time.21,22 Generally, and
particularly for large enrollment courses, it is not feasible to
use such items for assessments that must be responded to on a
daily basis. Indeed, this is one reason why many large
enrollment courses have defaulted to machine scorable
multiple choice and fill in the blank items that can be easily
scored and even provided with automated feedback. In our
work, we do use items that require explanations, arguments,
and drawings. In these assessments, students are awarded
credit for completion, not for accuracy; that is, we do not grade
the answers but instead provide aggregate feedback and
discussion in larger groups. However, if we want to learn how
students are meeting the challenges of such items, it becomes
necessary to hand score which is time-consuming and
expensive both in terms of resources and personnel. Generally,
we have found that students’ responses on these formative
assessments are quite similar to their responses on analogous
summative constructed response items.10

Case for Machine Learning

Machine learning may provide an answer to this conundrum
by automating the analysis of the students’ responses to such
items. There are growing numbers of reports describing such
approaches to the analysis of short, concept-based, text
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responses in a variety of STEM education areas including
acid−base chemistry,23−25 the definition of randomness in
statistics,26 the role of the stop codon in genetics,27 and
biological mechanisms of weight loss,28 among others. We
have been working with a machine learning group, the
Automated Assessment of Constructed Response (AACR)
group,29,30 to develop machine learning resources capable of
analyzing the LDF question that we previously developed.9,10

The AACR group has developed tools available on the web,
such as the Constructed Response Classifier (CRC) tool which
is discussed in this paper, that use open-source machine
learning techniques to create computer models that are capable
of mimicking human analyses by identifying key disciplinary
concepts or reasoning patterns in student responses. Once
these computer models have been developed, they can be used
to analyze large numbers of new text responses from students
just as an expert would, but requiring only a few minutes. A
tool like this would then provide instructors a way to
incorporate constructed response questions more routinely in
their teaching. For reasons we will discuss later, such resources
are not intended to give high-stakes feedback for individual
students but, rather, useful and timely information about how a
set of students understands or reasons with a particular idea.

Overview of the Constructed Response Classifier

One of the biggest challenges with automating analysis of
student responses is developing computer resources that
perform well and that are able to recognize nuanced and
complex explanations in short text responses. AACR’s CRC is
a promising tool for machine learning analysis because (1)
nearly all of the process is automated and (2) this technology
uses several machine learning algorithms in an ensemble.31

The first point is important because while other software, such
as SPSS Modeler, can perform lexical analysis, much more
human input is needed. For example, Dood et al. used SPSS
Modeler for automated analysis of student responses, and
while the software could identify common terms in the
responses, humans needed to specify synonyms and create
categories and rules within the software in order to develop the
predictive models.23,24 This means that the researchers need to
develop a meaningful way to analyze the responses, code the
responses, and then translate their subsequent scheme into the
software manually.
In contrast, the CRC contains a set of open-source,

supervised machine learning classification algorithms devel-
oped by Jurka et al.32 which can be used to predict scores of
responses after “learning” from a set of previously scored
student responses. As part of this routine, text in student
responses is automatically extracted and parsed into n-grams,
words and sets of words up to a defined number n, which are
used as independent variables in the classification algorithms.
Such an approach reduces the need for developing lexical
resources like defining term dictionaries or creating combina-
torial rules (see Nehm et al. and Kaplan et al.).26,33 That is, the
researcher only needs to develop and apply a coding scheme;
the machine learning tools handle the rest thereby reducing the
time and effort needed from researchers to develop these
resources.
Additionally, the classification procedure developed by Jurka

et al.32 combines results from 8 machine learning algorithms to
predict a single overall score for each response. By using
multiple classification algorithms, the resulting predictions are
generally more accurate than using only one algorithm (e.g.,

Optiz and Maclin).34 The outcome of this process is that, once
trained with human coded responses, the CRC is able to
analyze “raw” student responses and predict codes on the new
set of data.

Challenges with Machine Learning and Potential
Solutions

Even with the machine learning techniques that the CRC uses,
the fundamental challenges of automated analysis remain. That
is, these computer models are mimicking human analysis of
text responses, and therefore, the performance of the model is
highly dependent on the rubric and the text responses used to
train the model. In developing our computer resources, we
tried to address both of those dimensions.
The first dimension is the rubric used to code the responses.

Since the computers are mimicking the human analysis, if the
humans cannot code reliably, neither will the machine. The
rubric we developed to characterize students’ LDF explan-
ations was the product of analyzing student interviews,
homework assignments, and exam responses, from which we
iteratively refined the rubric to capture all the ways students
could explain this phenomenon using causal mechanistic
reasoning. The end result is a rubric that can capture reasoning
and can be used reliably.
The second dimension is that of the text responses.

Automated analysis techniques work by identifying patterns
in the words and terms used by responses classified into each
coding category so that, when presented with a new response,
the model can analyze the words in the response to make a
prediction. The better the model can identify the key features
of each coding category (based on the patterns of words in the
response), the more likely the computer is to score that
response like the human. This requires a large number of
human coded responses (in each coding category) upon which
the computer model can be built. Therefore, we collected and
took the time to code a very large number of student responses
so critical components of each coding category would become
salient. In our original analyses,9 we defined six coding
categories for student responses, but in subsequent work, we
consolidated these into three coding categories.10 As we
discussed in our previous work,10 we consolidated the number
of coding categories to capture causal mechanistic explanations
more concisely and also create a more practical scheme for
humans to use to analyze thousands of responses. This also
assisted the development of automated resources; by
decreasing the overall number of coding categories, we
increased the number of responses in each coding category.
It is not just the number of responses that is important but

also their content. If we want to develop resources that can be
useful across different institutions and courses, then the model
must be trained with responses from a variety of learning
environments. Otherwise, if these resources encounter a
response that explains the phenomenon causal mechanistically,
but using words not captured in the training set, the model
would be unable to code the response accurately. For example,
Ha et al.35 explored how accurately a model developed from
responses collected at one institution could code responses
from another institution. They found that, while the computer
could accurately code some key concepts related to evolu-
tionary change for students at both institutions, it did not
accurately code all of the key concepts that they intended to
capture. Ha et al.35 note that one of the issues affecting the
accuracy of the models across the different institutions is
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difference in language patterns unique to each institution. Our
study is similar to that of Ha et al.35 in that we also collect
responses from multiple undergraduate institutions and
different student populations to get a wider range of the
ways students explain our phenomenon under study. However,
we build upon their findings in this study by developing, and
subsequently testing, a model from a combination of responses
from all the institutions to capture any differences in the lexical
patterns of the responses. Collecting responses across different
institutions to develop and test our resources is also important
so that the technologies we develop are equitable; that is, these
resources are able to characterize the responses from students
of all different backgrounds like a human coder would. By
addressing these challenges, we hope to develop machine
learning resources that can code student reasoning as part of
their LDF explanations as well as humans can. Such a resource
could be used to give instructors meaningful feedback about
how their students understand the mechanism by which this
IMF operates to better support student learning.

■ RESEARCH QUESTIONS

1. How does the machine coding for causal mechanistic
explanations compare to humans?

2. How does the machine coding for different groups of
students compare?

■ METHODS

Strategy for Developing Machine Learning Resources

In the Methods section, we describe the process by which we
collected and analyzed data to develop supervised machine
learning models. Our strategy was to first collect and human
code many student responses, from a variety of contexts. Then,
these coded responses were used to train the machine learning
algorithms in order to develop resources that are capable of
coding new responses in the same way as a human coder. The
accuracy of the developed models was tested by applying the
computer model to new sets of student responses and then
comparing the results to the human coding of a subset of these
new responses.
Participants

Responses from four groups of students from three different
undergraduate institutions are analyzed here. The data were
collected in accordance with each institution’s IRB protocols,
and at each institution, students consented to having their
responses used for research purposes. Students’ responses were
deidentified before analysis. In the sections below, we provide
some additional context for each of the four groups of students.
We present more thorough descriptions of the demographics
of each group in Supporting Information Section S1. We note
that the demographic information reported was determined by
the Registrar’s office from each institution and therefore has
limitations (e.g., the conflation of a student’s racial and ethnic
identity, the reporting of only male and female gender
identities).
Group 1A. Group 1A is composed of students in the first

semester of general chemistry from a large midwestern public
research institution (which we call institution 1 in this paper).
Specifically, these students were taking the first part of a 2
semester transformed general chemistry curriculum CLUE
(Chemistry, Life, the Universe and Everything)36 in the fall
semester. While General Chemistry 1 is also offered in the

spring, a majority of students at this institution take General
Chemistry 1 in the fall. Of the 2,497 students enrolled in this
course in fall 2015, 91% responded to our activity and
consented for their response to be used for research (N =
2,284). We used 950 of those responses for computer model
training. We discuss more about these responses and how they
were selected in the later section in this paper about model
development. We analyzed more responses from this group
than any other because the initial model development process
requires lots of responses and we collected the most responses
from this group. This group of 950 students was primarily
White (69%), and about half of the group was female (55%)
(Supporting Information Section S1).

Group 1B. We also collected responses from General
Chemistry 1 students at institution 1 in the spring of 2016. In
this paper, we describe these “off-sequence” students as group
1B. Some students take such sections because the university
has required them to complete additional math courses to
prepare for general chemistry. This may be why the difference
in mean ACT math scores for group 1A (mean = 25.8, N =
1,925) and group 1B (mean = 24.5, N = 776) is statistically
significant (see Supporting Information Section S1). Like
group 1A, the students in group 1B also had the CLUE general
chemistry curriculum.
Of the 1,070 students enrolled in this course, 86% of the

students (N = 915) responded to our prompt and consented
for their responses to be used for research. Of those 915, we
randomly selected 350 responses (using a random number
generator) for this study. We selected only a portion of the
total number of responses for machine learning development
and testing because we wanted to have a group similar in size
to groups 2 and 3. Like group 1A, the 350 randomly selected
group 1B students were primarily White (70%), and about half
were female (54%) (Supporting Information Section S1).

Group 2. Students in group 2 were enrolled at another large
midwestern public research university, which we call institution
2 in this paper. We recruited this group from the first semester
of a 2 semester general chemistry course in spring of 2018.
Unlike institution 1, this institution used a traditional
curriculum. The textbook listed on the course syllabus was
Chemistry: The Central Science (14th ed.) by Theodore
Brown.37 We note that in this curriculum students received
less explicit instruction about the construction of causal
mechanistic explanations than those students in the CLUE
curriculum, where such reasoning is an explicit focus of the
course.
Of the 721 students enrolled, 53.3% of students (N = 384)

responded and consented for their responses to be used for
research purposes. The majority of those who responded to the
activity were female (65%). While we did not collect
information about the racial/ethnic identities of the students
in this group (we did not get IRB approval to collect this
information from this institution), we can approximate the
demographic makeup of this group from the information
available on the registrar’s website about the entire institution.
For the entire undergraduate student body (N = 23,856), the
students were primarily White (73%) (Supporting Information
Section S1).

Group 3. Group 3 is made up of students from institution
3, a large southeastern public research university, who had the
first semester of general chemistry in either fall 2016 or fall
2017. This general chemistry course also used the CLUE
curriculum but in a different format from institution 1. At
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institution 1, the course was taught in large lecture sections
(between 360 and 450 students per section) with smaller
weekly recitations, while at institution 3 the course was taught
in a partially flipped classroom format, where 100−200
students spent the majority of the time during class working
in groups, receiving instruction and additional activities as
homework outside of the classroom.38

Of the 449 students who received the activity over the two
years, 77.1% of students (N = 346) submitted responses and
consented for their work to be used for research purposes. Of
these students, the majority were Hispanic (71%), and 8%
were White (Supporting Information Section S1). This is quite
different from the racial/ethnic identities of the students from
institutions 1 and 2 where no more than 10% of the students
identified as Hispanic. Additionally, just over half of this group
was female (52%).
Question Prompt

To probe students’ understanding of how LDFs arise, we asked
students to explain why two helium atoms attract one another.
This prompt was developed as part of our previous work
eliciting causal mechanistic explanations of LDFs.9,10 Origi-
nally, we developed this prompt to include a corresponding
drawing component, but for the purposes of this study, we
focus only on automatically analyzing the text portion. While
groups 1A, 1B, and 3 still received that drawing component, it
was administered on a separate slide after the text prompt.
When the student reached the drawing prompt, they could not
return to the text prompt to change their response. Practically,
this means that the student answered the text prompt without
ever seeing the drawing prompt; therefore, it appears that we
are able to code students’ text responses independently from
their drawings.
For groups 1A, 1B, and 3, this prompt (Figure 1) was

included as part of their homework activities. These formative

assessments were a required part of the course, but the
students received course credit for completing the activity, not
for the correctness of their response. Both institutions 1 and 3
used the online beSocratic system39 for homework which
allowed us to collect responses digitally, a helpful feature when
automating analysis of the responses. Additionally, since this
question was included in their homework, the students
completed this activity shortly after instruction of LDFs. In
the CLUE curriculum, introduction of IMFs including LDFs

occurs early as these ideas are continually built upon
throughout the course.
For group 2, we administered the activity in a different

manner. In this course, the instructor gave the students the
opportunity to answer this question for a small amount of extra
credit, but it was not a required part of the course. This may
explain why the response rate was lower for institution 2
compared to institutions 1 and 3 where the question was part
of a required homework activity. Since it was not part of a
broader activity, the prompt was asked as a standalone
question. Additionally, the instructor did not have access to
beSocratic and so instead used the online survey system
Qualtrics40 to collect the students’ text responses (we did not
administer the drawing component to this group). The timing
for this activity also differed as it was given to students near the
end of the semester. We acknowledge that these conditions
differed substantially from those at institutions 1 and 3, but the
purpose of this study is to collect a lexically diverse set of
responses to train and test machine learning resources, not to
compare across groups. By giving this prompt in contexts
where the administration of the prompt, student demo-
graphics, and instructional environment differ, we accom-
plished this goal.

Coding Scheme

To analyze the responses, we used the coding scheme that we
had previously developed to characterize the degree to which
the students engaged with causal mechanistic reasoning.10 This
holistic, mutually exclusive coding scheme places responses
into one of three categories: nonelectrostatic (NE), electro-
static causal (EC), and causal mechanistic (CM) (Table 1).
NE responses fail to provide any electrostatic evidence for this
interaction. Electrostatic causal responses discuss the role of
electrostatic attractions in this interaction but do not include
the mechanism by which these interactions form. Causal
mechanistic responses go further, explaining the happenings at
the scalar level below: how the electrons temporarily can
localize on one side of atom which results in the separation of
charge that causes this interaction.

Human Coding of Responses

Supervised machine learning relies on a set of “labeled” data in
order to train or develop the computer model. As used here,
the human codes assigned to students’ responses were the
“labels” necessary for training the computer model. We report
descriptive information about the response length and provide
some additional example responses in Supporting Information
Section S2.
Before conducting any coding, we deidentified all student

responses and established inter-rater reliability (IRR) between
the researchers. In this process, two people independently
coded small sets of students’ responses and then calculated
Cohen’s kappa, a measure of agreement that also considers the
probability of agreement by chance.41 Once the Cohen’s kappa
value surpassed 0.7, a value corresponding to a “substantial”
level of agreement,42 we determined that we had reached IRR.
At this point, we could begin coding the responses that would
later be used to train and test the automated resources. We
provide an overview of the process by which we established
IRR and conducted subsequent coding in the following
paragraphs and Figure 2.
Before coding the group 1A responses, author K.N. and an

undergraduate researcher conducted IRR. After eight rounds of
coding (30 responses in rounds 1−7 and 50 responses in

Figure 1. LDF prompt.
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round 8), we established IRR (Cohen’s kappa = 0.78, 88%
agreement). During this process, the two researchers met after
each round of coding to discuss disagreements and, if needed,
refine the coding categories. This process is discussed more in
depth in the Supporting Information S1 of Noyes and
Cooper.10 Author K.N. then coded 950 responses from
group 1A to train the initial computer model. We note that
Author K.N. coded 150 of these responses as part of a previous
study.10

The coding of responses from groups 1B, 2, and 3 was
carried out by authors R.L.M. and M.N. Before coding, both
authors separately conducted IRR with author K.N. using sets
of 40 previously uncoded responses from group 1A. Authors
R.L.M. and K.N. reached IRR after two rounds (Cohen’s kappa
= 0.88), and authors M.N. and K.N. also reached IRR after two
rounds (Cohen’s kappa = 0.81), with both Cohen’s kappa
values corresponding to “Almost Perfect” agreement.42 While
there are other statistical tests to calculate agreement between
three coders such as the weighted Cohen’s kappa, authors
R.L.M. and M.N. began working on this project at different
times and therefore were not trained on this coding scheme
simultaneously.
With IRR established, both authors R.L.M. and M.N. coded

the selected responses from groups 1B, 2, and 3. To minimize
bias, the authors were not aware of the institution affiliation of
the responses they were coding. These responses were coded
individually in batches of approximately 100 responses, and
then compared. When comparing, the two authors discussed
any discrepancies between their individual codes and assigned
a final, mutually agreed upon code to any disputed responses.
This continued until the responses of an entire group were
coded. This process was then repeated for all three groups. We
characterized the initial level of agreement between the coding
of authors R.L.M. and M.N. for each group by calculating
Cohen’s kappa and percent agreement values for their initial
codes (Table 2).
General Overview of How the CRC Works

The AACR group has developed machine learning tools to
automate the analysis of students’ written responses. We usedT
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Figure 2. Summary of the human coding reported in this study with
the distinction as to which data was reported in our previous study,
Noyes and Cooper.10
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AACR’s CRC web application (the developed model is now
access ib le through the AACR project webs i te :
beyondmultiplechoice.org) to develop resources to mimic
our human coding of the responses to our LDF prompt. This
app uses a series of eight machine learning algorithms derived
from the open-source statistical package RTextTools devel-
oped by Jurka et al.32 to predict the code for a response based
on human coded responses (see also Sieke et al.31). Jurka et
al.43 provide a more detailed description of this package and its
function, but we briefly describe the inner workings of the
CRC tool here.
Before the training responses are input into RTextTools, the

CRC “cleans” the responses, based on options selected by the
user. In this process, the responses undergo “stemming” so that
the suffixes (e.g., “attraction” becomes “attract”), stop words
(e.g., “and”, “the”, “a”, “in”), and numerical characters are
removed. This leaves the important terms for the lexical
analysis. The cleaned responses are then loaded into
RTextTools.
Initially, the set of training responses is used to create a

document-term matrix.44 A document-term matrix parses out
all of the individual words (unigrams) and pairs of words

(bigrams) for each of the responses and captures it in a matrix.
In Figure 3 we present a hypothetical document-term matrix
for a hypothetical pair of simple student responses. With
hundreds of longer student responses, this matrix can get very
large, very quickly.
To train the computer model, machine learning algorithms

use the document-term matrix and the corresponding human
scores for each of the responses in the training set to generate a
predictive model capable of processing a new response. We
show an overview of this process with some hypothetical
responses in Figure 3. Each algorithm uses the patterns of the
presence and absence of all the unigrams and bigrams for each
of the responses in the training set. This means that the
algorithms are not simply looking for a list of predefined
keywords but, instead, are identifying patterns based on all of
the words (n-grams) in the response (as captured in the
document-term matrix). We note that the training of each
predictive model is fully automated: There is no human input
at this step. To maximize the benefits of the range of machine
learning techniques available and to minimize the downsides of
any one machine learning algorithm, eight different algorithms
are used to construct eight different predictive models: support
vector machines,45 supervised latent dirichlet location,46

logitboost,47 classification trees,48 bagging classification
trees,49 random forests,50 penalized generalized linear mod-
els,51 and maximum entropy models.52 When presented with a
set of responses, the CRC cleans the responses, and then,
RTextTools generates a document-term matrix for each
particular response. All eight models then use the presence
or absence of the unigrams and bigrams in the document-term

Table 2. Initial Level of Agreement for Each of Three
Cohorts between Authors R.L.M. and M.N.

Group Number of Students Cohen’s Kappa Percent Agreement

1B 350 0.71 81%
2 384 0.74 89%
3 346 0.69 81%

Figure 3. General overview of the automated coding process using several hypothetical student responses highlighting the creation of a document-
term matrix, the training of the computer model, and the process by which the model then codes new responses.
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matrix to classify each of the new responses into one of our
three codes. Whichever code is picked by the most models is
the machine’s final consensus code for the response. In the
unlikely event of a tie, the code assigned to the response is the
first defined code with the maximum number of votes. For this
coding scheme, the codes were defined in the following order:
NE, EC, CM.
One way we assessed the accuracy of the computer model is

through a 10-fold cross-validation (Figure 4). This cross-
validation method provides insight into the accuracy of the
model without the need for any additional human coded
responses; that is, only the human coded training set is needed.
In the cross-validation (which is automatically carried out by
the CRC), the training set is divided into 10 randomly selected
subgroups, each corresponding to 10% of the training set. Each
subgroup is then coded by a new computer model trained with
the remaining 90% of responses. This ensures that the same
responses are not used simultaneously in the computer model
training and testing. This process is then repeated a total of 10
times until the entire training set has received a computer
predicted code. The CRC then calculates the agreement (using
several statistics like Cohen’s kappa) between the human and
computer predicted codes generated in the cross-validation. By
using the cross-validation built into the CRC, we can get an
idea about how accurate the final computer model (trained on
all the responses in the training set) would be without human
coding any additional data. In this study, we also conducted
additional tests to ensure that the final computer model is
accurate. For this additional testing, we used the final
computer model to predict codes for new sets of human
coded responses from groups 1B, 2, and 3 which were not
included in the training set and calculated the agreement
between human and computer coding.

■ RESULTS AND DISCUSSION

Developing an Initial Model to Characterize LDF
Responses

The first stage in the development of a robust model was to
use 150 group 1A responses coded as part of a previous study10

to train the computer model. Before training the computer
model, we used the spellcheck feature in Microsoft Excel to
identify and fix errors in the responses (correcting misspelled
words, deleting duplicate words) to help the computer evaluate
the words present in the responses rather than the spelling.

The accuracy of this first model compared to the human
coding using the cross-validation procedure was “moderate”,
reaching a Cohen’s kappa of 0.58.42 This initial stage did not
have enough responses to develop an accurate model. More
responses were needed to increase the lexical diversity of the
training set to help the model better identify the patterns of
words associated with each code. Author K.N. coded
additional sets of 100 group 1A responses (randomly selected
using a random number generator) to include in the training
set. After the addition of 100 more responses, we trained a new
computer model and found that the Cohen’s kappa value
(calculated from the cross-validation) had increased to 0.63.
Each set of 100 responses was added iteratively to the training
set, to train new models and assess the new model’s
performance using the cross-validation procedure (Figure 5).

This process continued until no more meaningful improve-
ment of the cross-validation Cohen’s kappa value was
observed. After 950 total responses were coded, the Cohen’s
kappa from cross-validation reached 0.77, signifying “sub-
stantial agreement” between the computer and human
coding.42 Recall that the initial human IRR was 0.78 for
group 1A responses. Williamson et al. propose that one metric
for a successful model is having a quadratic weighted kappa

Figure 4. Overview of 10-fold cross-validation procedure for assessing the accuracy of the developed computer model.

Figure 5. Agreement between the human and computer described by
the Cohen’s kappa value calculated in the 10-fold cross-validation as a
function of the size of the number of responses used to train (and also
validate) the computer model. The dashed line at 0.78 indicates the
Cohen’s kappa value for the human−human IRR with the responses.
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greater than 0.7.53 In this study, we treated these categories as
nominal rather than ordinal consistent with our assumptions
from our previous study;10 therefore, we did not use quadratic
weighted kappa for our data. Our Cohen’s kappa measure, a
more conservative estimate, was above this target for model
performance.
In this paper, we will refer to the computer model trained on

the 950 group 1A responses as the “initial model”. A crosstab
illustrating the coding agreement between the human and
computer codes (determined in the cross-validation) for the
initial model is shown in Table 3. Of the 950 coded, 813 were

coded the same by both the human and computer,
corresponding to a proportion of 0.86 (accuracy value).
Although the human and computer disagreed on 137
responses, these disagreements occurred in a mostly symmetric
manner. For example, while the computer coded 35 EC
responses as NE, it also coded 30 NE responses as EC. The
result was that these disagreements had a smaller impact when
considering the overall distribution of responses for the entire
group.
Besides Cohen’s kappa and accuracy, the sensitivity and

specificity values provided important information about the
performance of each of the bins in the model. Sensitivity is the
proportion of correctly scored positive cases by the computer
model, and specificity is the proportion of negative cases
correctly scored by the computer model. For example, of the
209 human coded nonelectrostatic responses, the computer
correctly coded 178 of those responses corresponding to a
proportion of 0.85 (sensitivity value). Additionally, of the 741
responses that the human did not code as NE (i.e., coded as
EC or CM instead), the computer coded 702 of those
responses as not NE resulting in a specificity value of 0.95. For
this model, all bins had both a high sensitivity (ranging from
0.84 to 0.87) and high specificity (ranging from 0.85 to 0.97).
All of these factors indicated that the model was sufficiently
trained and ready to characterize new responses, so long as
they were also from this group of students. To make sure that
our model had captured all the ways a student might explain
this LDF causal mechanistically, we needed to include
responses in our training set from other groups of students.
Expanding Our Initial Model with Responses from 3 Other
Groups

Now that we had a model that was working well with
responses in a single context, we needed to know if the model

performed well with different groups of students who may have
approached this task differently or had different vocabularies.
Using the responses from groups 1B, 2, and 3, we explored
how the model performed with groups of students who
differed from each other in terms of when they were taking
general chemistry, their general chemistry curriculum, the
circumstances under which they responded to the task, and the
racial/ethnic makeup of the group.
After authors R.L.M. and M.N. coded the responses from

these three groups, we set aside 100 randomly selected
responses from each group for later testing of the machine
learning models. The rest of the responses were added to the
initial model to create a new computer model (N = 1,730)
which we call the “combined model” in this paper. As before,
we spellchecked the responses included in the training set to
give the algorithms the best chance of identifying the
important patterns relevant to each category. With responses
from a variety of different groups in the training set, the
resulting combined model may be better able to capture other
ways students explain this phenomenon that were previously
not captured with the initial model.
On the basis of the cross-validation, the agreement between

the combined model and the human scoring was very similar
to that of the initial model (Table 4); the Cohen’s kappa and

accuracy values (0.78 and 0.86 respectively) did not change
much, and the ranges of sensitivity and specificity values
(sensitivity, 0.82−0.89; specificity, 0.86−0.97) were very
similar to those of the initial model. On the basis of these
metrics, it seemed that the combined model performed well
but no better than the initial model. This might be because
more than half of the responses in this training set came from a
single group of students (1A). This meant that metrics
evaluating model performance from the cross-validation were
primarily reflective of how the model codes responses from
group 1A, making it harder to see how the new combined
model was able to predict responses from groups 1B, 2, and 3.
To get a better sense of how the combined model fared
compared to the initial model for those groups, we used both
models to score the sets of responses from groups 1B, 2, and 3
withheld from the combined model.
Testing the Model Performance

To conduct this test, we used the 100 coded responses from
each group (1B, 2, and 3) that had already been human coded

Table 3. Crosstab Relating the Number (and Percentage of
Total) of Reference Human Scores to the Predicted
Computer Scores for the Training Set of the Initial Model

Table 4. Crosstab Relating the Number (and Percentage of
Total) of Reference Human Scores to the Predicted
Computer Scores for the Training Set of the Combined
Model
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but not included in the training set. The responses used to test
the models were not spellchecked to simulate how an
instructor might apply this tool in practice, where raw
students’ responses may be used. We report the agreement
between the computer model predictions and the human
consensus scores in Table 5. Note that the computer scores are

compared to the human consensus scores; in other words, the
final codes that authors R.L.M. and M.N. agreed upon after
discussion. Their initial agreement (before discussing the
responses) for each test set is also reported in Table 5. We
included additional information about the alignment of human
codes with both the initial and combined models in Supporting
Information Section S3.
For group 1B, both the combined and initial models showed

the same level of agreement with the human consensus scores.
This made sense considering that the initial model was trained
with group 1A responses, which were from students attending
the same institution and taking the same general chemistry
curriculum; they differ primarily in the semester that they took
the course. For group 2, the combined model had slightly
better agreement with human consensus scores than the initial
model. The combined model correctly scored an additional
three responses, all within the nonelectrostatic category. The
majority of group 2 responses were classified as non-
electrostatic, so it could be that the addition of the group 2
responses in the combined model better allowed this model to
correctly characterize nonelectrostatic responses.
For group 3, the combined model again showed higher level

of agreement with the human consensus scores compared to
the initial model, raising the Cohen’s kappa value to 0.80.
Interestingly, even for the initial model, the Cohen’s kappa
value (0.77) was quite a bit larger than the value for the
agreement between the human coders for this same set (0.64).
The lower level of agreement between the human coders was
due to disagreements about how to code vague responses that
were “edge cases” between the nonelectrostatic and electro-
static causal bins. It is promising that both computer models
handled these new differences between the NE and EC bins
well and that the addition of the group 3 responses to the
combined model continued to improve its performance.
Further investigation of the responses misclassified by the

combined model revealed that the computer struggled with the
same responses as the human coders. If we consider the 300
test set responses from groups 1B, 2, and 3, the combined
model misclassified 40 responses compared to the human
consensus codes. Of those 40 responses, the human coders
initially disagreed on how to code 19 of those responses
(47.5%). Meanwhile, if we consider the remaining 260
responses to be correctly classified by the combined model,

the human coders initially disagreed on only 31 of those
responses (11.9%), a much lower proportion. Looking further
into the responses misclassified by the combined model, we
did not find that they were occurring primarily with any one
particular code (see Supporting Information Section S3). We
also examined the content of those misclassified responses and
found that the bulk were either “edge cases” or a particularly
atypical explanation.
Notably, all the computer models tested showed little to no

degradation in agreement to human scores when compared to
human−human agreement. In other words, the Cohen’s kappa
value for the human−computer model agreement was not
much different than the Cohen’s kappa value for the human−
human agreement. This was particularly true for the combined
model which performed very near or above the human−human
agreement level. Even the model showing the largest
degradation from human−human agreement measures, the
initial model for group 2 students, still performed at an
acceptable level, as the degradation was less than a suggested
threshold of 0.1 difference (see Williamson et al.53).
All of these results suggest that the combined model, with

additional responses from groups 1B, 2, and 3, can characterize
student responses like human coders would, even improving
upon the accuracy of the initial model coding of groups 2 and
3. While these improvements are modest, it does seem that
they are the result of coding the responses from these different
groups of students who may explain this phenomenon in ways
we had not captured before. This is supported by the fact that
the gains in agreement were only seen with groups 2 and 3,
whose responses likely differ the most from group 1A. The
high level of agreement between the computer and human
coding for both of these groups is noteworthy. The students in
group 2 are using a different curriculum in which they are not
explicitly taught to generate causal mechanistic explanations,
but still the computer model works. The high level of accuracy
of the computer codes for group 3 is also important because
this group of students is primarily Hispanic while the bulk of
the other students in our computer model training and testing
are White. This aligns with the joint recommendations for
educational testing put forth by the American Educational
Research Association, the American Psychological Association,
and the National Council on Measurement in Education, that
in developing methods of scoring constructed responses (in
particular automated scoring methods) we must be cognizant
of the different subgroups of students in our testing
populations and work to ensure that these resources are
valid for all subgroups.54 This is some evidence that these
resources provide an equitable approach to the automated
analysis of explanations; that is, these resources provide
meaningful and accurate information that aligns with the
human coding for diverse student populations.

Detecting Signal at the Group Level

While we have achieved good agreement between the humans
and the combined model, we have not reached perfect
agreement (although we note that the agreement is at least as
good as human−human coding). Although there are bound to
be errors in codes of individual student responses, the overall
distribution of codes in a group (e.g., a class) may still be
informative if the model is accurate overall and errors in
misclassifications are symmetrical (see Tables 3 and 4 and
Figure 6). In such a case, the predicted distribution of the
group may only be minimally affected by errors and may still

Table 5. Cohen’s Kappa Value and Percent Agreement
between Human Coders and with the Computer Models for
Groups 1B, 2, and 3

Group

Human−
Human

Agreement

Human Consensus−
Initial Model
Agreement

Human Consensus−
Combined Model

Agreement

1B 0.74 0.74 0.74
N = 100 (83%) (83%) (83%)
2 0.72 0.67 0.72
N = 100 (89%) (86%) (89%)
3 0.64 0.77 0.80
N = 100 (78%) (86%) (88%)
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be valuable for instructors, even if some specific individuals
have been misclassified. That is why in Figure 6 the human and
computer codes look nearly identical despite there being
disagreements on individual responses (see Supporting
Information Section S3 for statistical analyses). For this
reason, these resources should only be used for giving the
instructor group-level information and should not used for
high-stakes individual student information (i.e., points for
providing a causal mechanistic response on a summative
assessment).
Characterization of how a group of students responds to the

prompt can give us important information about how that
group is able to explain this phenomenon. Instructors can then
use this information to better understand what their students
can do and respond accordingly to better support their
learning.3 Such models should be able to detect different
patterns of responses, for example, from different groups of
students. Indeed, when we look at the group-level responses
for the three test sets (Figure 6), we do see different
distributions of responses for the different groups. For
example, in a comparison of groups 1B and 2, there is a
markedly different distribution of responses: there are more
EC and CM responses in group 1B compared to group 2,
which is mainly NE responses. We cannot say the exact cause
for this difference as the prompt administration differed
between the two groups. What we can say though is that,
regardless of the cause, our model can detect that not many
group 2 students are providing EC or CM responses. For the
group 3 students, we see more CM and EC responses than are
present for group 2. Again, we cannot say the cause of the
difference, but our model is able to capture that there is a
difference.
It is also worth reiterating that the combined model coding

looks almost identical to the human coding. Not only is the
model performing accurately, but also by coding responses
from these other groups we have ensured that (1) their
responses are part of the model we have developed and (2) our
final combined model has been tested with responses from
these different groups. That is, the resources we have

developed are working well for a greater diversity of students
in a variety of contexts compared to our initial model.

■ LIMITATIONS
As technology continues to develop and grow more
sophisticated, the ability to automate the analysis of student
assessment will improve. It is important to remember,
however, that these tools cannot replace the human role in
analysis outright. While computers can identify patterns in
responses, we need expert input to determine if these patterns
are meaningful. The importance of collaboration in developing
reliable and efficient computer resources that are meaningful to
the chemistry education community cannot be understated.
This is a growing field where both current advances in the
education and machine learning domains are taken into
account. Additionally, we must understand that this technology
is not perfect. We agree with other automated analysis experts
that we should be hesitant about using such resources for
making high-stakes decisions, in particular at the level of the
individual response.23,24 Instead, we view the most appropriate
use of these technologies for providing feedback to instructors
to better support student learning.
We acknowledge that the prompt asked students to provide

both a drawing and text response, meaning that students’ text
explanations are only one part of the story. It is possible that
students provided additional thinking in their drawings that
was not captured in their text responses. We hope that in the
future there could be a corresponding analysis of student
drawings. For now, we hope that instructors can use a survey of
student drawings along with the results of the automated
analysis of students’ text responses to inform their teaching.
Unfortunately, because we know that changes in prompt

structure change the response it elicits,20 this computer model
should be limited to use with this specific prompt. It remains to
be seen if these developed scoring models could still work with
different interacting neutral entities (like argon). However,
machine learning resources that automate the analysis of
prompts exploring other phenomena can certainly be
developed using the CRC. On the basis of our experience,
developing these resources requires a large number of student
responses, prior studies on prompt development and
associated coding, and a great deal of time spent on human
coding. This may limit the creation of more machine learning
models, particularly by busy faculty in charge of teaching these
courses. These faculty can still use other models and questions
developed by other researchers on the AACR website, but it
may serve as a barrier for the addition of more models.
Coding and adding more models from different populations

of students improved the model performance for responses
from groups 2 and 3. It may be that coding more responses
from other populations of students would increase the model
performance further. At some point, however, it will be
necessary to stop adding more responses, when the time and
effort it takes to collect and code more responses does not
justify marginal gains in model performance (see Figure 5).
However, this does not eliminate the need to validate coding
carried out by this model, in particular with new populations of
students that have not yet been included in the model
development.
One further limitation is that such analyses are not currently

able to provide the kind of individualized formative feedback
that a human reader might (if they had the time). As noted
earlier, in our large enrollment classes, feedback from these

Figure 6. Distribution for LDF codes for the subsets of 100 responses
from groups 1B, 2, and 3 as coded by humans (consensus score) and
the computer (combined model). The human consensus score
represents the agreed upon codes of authors R.L.M. and M.N. after
discussion. The computer scores were coded by the combined model
which was developed using responses from groups 1A, 1B, 2, and 3.
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analyses is provided to the group, rather than individually, and
students are encouraged to reflect on and rework their
responses. While this is not a substitute for the kind of Socratic
dialogue that might be ideal, at the present time we do not
have the capability for this kind of interaction.

■ CONCLUSION AND IMPLICATIONS FOR
TEACHING AND RESEARCH

By using machine learning, we have developed a tool that
instructors can use to better understand how their students can
explain the origins of LDFs, an intermolecular force that is
important throughout chemistry and biology. With knowledge
of what their students can do, instructors can then modify their
teaching practices to better support their students’ learning.
Additionally, with the ability to process large amounts of data,
departments could use this tool to understand the impact of
the instruction across different courses or time.
The use of open-ended explanatory questions is one of the

few instructional techniques that is supported by strong
evidence16 (that is, multiple studies across multiple popula-
tions), yet for some institutions, especially in lower-level or
high-enrollment courses, this approach may be ruled out
because of the huge commitment of time and personnel that
are needed to grade or evaluate such tasks. Here we show how
analysis of one such task can be automated, and by including a
range of institutions, student demographics, and curricula we
have developed a model that appears to be more robust than
simply using student data from one cohort. Additionally, the
coding scheme we automated is not just picking out predefined
keywords, but also it is capturing the patterns in the text
response that correspond to different types of student
reasoning. That is, we are characterizing more than just the
presence of a student idea, but also how they use that idea as
well. This speaks to the power of the CRC’s ability to mimic
sophisticated human coding based on the lexical patterns in the
students’ responses.
While this item and associated scoring model are now

available for use (beyondmultiplechoice.org), it should be
noted that a great deal of time and resources were expended
not only in the human coding of the training data that made
the model so robust, but also in the design of the prompt that
elicited student reasoning. Clearly it is not feasible for
individual instructors to design their own assessments and
expect such results without similar expenditures. However, if
researchers collaborate and pool their data for various tasks, it
is feasible to build up a library of items and associated models
where instructors can input their own student data.
The increased availability of these kinds of models means

that, even for large enrollment courses, assessments need not
be limited to forced choice, calculations, or one-word answers
that tend to emphasize fragmentary or rote knowledge. The
very act of constructing deep explanatory responses is linked to
the development of more robust knowledge frameworks, and
the more often students are asked to engage in this kind of
activity, the more useful their knowledge will become.
Answering these kinds of questions, where reasoning is
necessary, requires that students understand the material. As
has been shown in numerous research studies, the use of
vocabulary terms alone does not necessarily correspond with
understanding; it is instead the constructed reasoning
responses that tend to elicit evidence of understanding. More
opportunities to engage in this kind of activity can only
improve learning.
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