
Statistics and Computing (2021) 31:33
https://doi.org/10.1007/s11222-021-10007-9

Locally induced Gaussian processes for large-scale simulation
experiments

D. Austin Cole1 · Ryan B. Christianson1 · Robert B. Gramacy1

Received: 28 August 2020 / Accepted: 23 March 2021 / Published online: 17 April 2021
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021

Abstract
Gaussian processes (GPs) serve as flexible surrogates for complex surfaces, but buckle under the cubic cost of matrix
decompositions with big training data sizes. Geospatial andmachine learning communities suggest pseudo-inputs, or inducing
points, as one strategy to obtain an approximation easing that computational burden. However, we show how placement of
inducing points and their multitude can be thwarted by pathologies, especially in large-scale dynamic response surface
modeling tasks. As remedy, we suggest porting the inducing point idea, which is usually applied globally, over to a more local
context where selection is both easier and faster. In this way, our proposed methodology hybridizes global inducing point
and data subset-based local GP approximation. A cascade of strategies for planning the selection of local inducing points is
provided, and comparisons are drawn to relatedmethodologywith emphasis on computer surrogatemodeling applications.We
show that local inducing points extend their global and data subset component parts on the accuracy–computational efficiency
frontier. Illustrative examples are provided on benchmark data and a large-scale real-simulation satellite drag interpolation
problem.

Keywords Inducing points · Design · Surrogate · Approximation · Kriging · Emulator

1 Introduction

Advancements and expansion of access to supercomput-
ing, algorithms for finite element analysis, particle transport
and agent-based modeling combine in modern times to pro-
duce simulation data of an unprecedented magnitude. Yet
as modeling fidelity and configuration spaces continue to
grow, coverage of representative cases is still sparse. Gaus-
sian process (GP) regression is a common choice to fill in
those gaps, emulating or serving as a surrogate for the data-
generating mechanism. GP surrogates excel at downstream
tasks from optimization to sensitivity analysis due to their
out-of-sample predictive accuracy and uncertainty quantifi-
cation (UQ) capability, and ability to interpolate the response
when simulations are deterministic. For a review of computer
experiments and surrogatemodeling, seeSantner et al. (2018)
or Gramacy (2020).

However, GP inference and prediction calculations scale
poorly for large data sets. GPs involve working with a

B D. Austin Cole
austin.cole8@vt.edu

1 Virginia Tech, Blacksburg, VA, USA

multivariate normal (MVN) distribution whose dimension
matches the training data (XN ,YN) size, N . Matrix decom-
position for covariance determinant and inverses is cubic in
N . In practice, thismeans limiting N to the thousands—small
by modern standards.

Work from across disciplines where GPs play a fun-
damental role (machine learning, geostatistics, computer
experiments) targets remedies through various approxima-
tions. Some methods induce sparsity in the covariance
(Titsias 2009; Aune et al. 2014; Wilson and Nickisch 2015;
Gardner et al. 2018b; Pleiss et al. 2018; Solin and Särkkä
2020) or precision matrix (Datta et al. 2016; Katzfuss and
Guinness 2021).Others propose divvying up the design space
(Kim et al. 2005; Gramacy and Lee 2008) and construct-
ing multiple GPs by divide-and-conquer. Partitioning offers
the potential for parallelized multicore computation, produc-
tively engaging untapped resources. It also induces statistical
independence which can enhance flexibility when response
surfaces have regime changes or exhibit other non-stationary
behavior.

One framework, developed separately as pseudo-inputs
in machine learning (e.g., Snelson and Ghahramani 2006)
and predictive processes in geostatistics (e.g., Banerjee et al.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-021-10007-9&domain=pdf
http://orcid.org/0000-0002-7949-8520

33 Page 2 of 21 Statistics and Computing (2021) 31 :33

2008), offers a low-rank approximation. Together, these two
ideas are more recently referred to as inducing point meth-
ods. Rather than measuring covariances between all pairs of
N training data points directly, a smaller reference set X̄M of
M � N inducingpoints or “knots” is used.Woodburymatrix
identities make decompositions cubic in M , potentially dra-
matic savings.While space-fillingworkswell, optimizing the
multitude M and location of knots is fraught with challenges
(e.g., Garton et al. 2020).

One thing that sets surrogate modeling of computer simu-
lations apart frommachine learning and geostats applications
of GPs—beside time being of the essence—is an all-but-
total emphasis on prediction and UQ above other inferential
tasks. This opens up new opportunities for computational
and statistical economies by taking a transductive approach
to learning (Vapnik 2013): let the testing data dictate how
training is done. Accurate, approximate GP prediction at
an input x� can be based on a subset of data nearby x�,
leading to the so-called local approximate GP (LAGP; Gra-
macy and Apley 2015). Small data subsets n � N mean
faster matrix decomposition, and potential for embarrass-
ingly parallel implementation (Gramacy et al. 2014), through
an infinite divide-and-conquer/partition scheme.

The best sub-designs for predicting at x� depend on the
training data Xn(x�) ⊂ XN nearby x�. Those which are
the very closest—a nearest neighbor (NN) subset—may not
be ideal for all predictive goals, such as minimizing mean-
squared error (MSE; Vecchia 1988; Stein et al. 2004). Best
results require sequentially optimizing a criterion for each x�

to greedily build Xn(x�). Although speedy and vastly paral-
lelizable, handling N in the millions in a matter of minutes, it
can still represent a substantial computational effort, growing
cubically with n and combinatorially in

(N
n

)
choices. Authors

have long opined that novel searches for each x� ∈ X could
be short-cut by learning some kind of re-locatable template
of local sub-design characteristics (Gramacy and Haaland
2016; Sung et al. 2018). However, a truly thrifty scheme has
so far remained elusive.

We believe a potential answer may lie in hybridizing
inducing point and local GP schemes—a variation on a
recently popular themeof combining sparseGPmethodswith
local models (Tan et al. 2016; Liu et al. 2019). The basic idea
is as follows: search locally for m inducing points X̄m(x�) in
order to predict nearby x�, specifically on a NN set Xn(x�).
Having m � n � N leads to a manageable cascade of
calculations. We show how greedy optimization of X̄m(x�),
via a closed-form weighted integrated MSE (wIMSE) crite-
rion and gradients, avoids combinatorial sub-design search.
Moreover, X̄m(x�) can be used as a template, relocated any-
where for any x� without re-optimization. In fact, we show
that even locally space-filling schemes make for adequate
templates in this setting. The result is a locally induced GP
(LIGP) approximation which is nearly as accurate as LAGP,

sometimes even more accurate, and is faster. Whereas LAGP
was limited by small-n neighborhoods regardless of what the
data prefer, we show that LIGP is not. We explore neighbor-
hoods more than double the size of LAGP and demonstrate
accuracy improvements for commensurate computational
effort. This allows the user, for the first time, to fully explore
the statistical–computational efficiency Pareto frontier in the
context of local GP approximation.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of GP regression and various
scalable models, including local and inducing points meth-
ods by way of motivating our hybrid approach. Section 3
describes the joining of local and inducing points meth-
ods comprising LIGP. We detail some refinements to LIGP,
including local inducing point templates, in Sect. 4. Illus-
trative examples are provided throughout, however Sect. 5
offers a systematic comparison of LIGP and LAGP varia-
tions to using both synthetic and real benchmark examples.
Section 6 concludes with a discussion.

2 Foundations in GP approximation

Here, we highlight relevant surrogate modeling and scalable
GP methods and provide motivation for a new criterion for
placement of global and local inducing points.

2.1 Gaussian process regression

Consider an unknown function f : XN ⊂ R
d → R for a

set of d-dimensional design locations XN = (x1, . . . , xN)�
and corresponding observations YN = (y1, . . . , yN)�. GPs
are common surrogates for such data (Sacks et al. 1989),
especially as arising from deterministic computer simula-
tions f (·), and boil down to placing an MVN prior on the
observations YN . Gaussians are uniquely defined by a mean
vector, which we take as zero for simplicity, and an N × N
covariance matrix KN . The joint model for all responses is
YN ∼ NN (0, ν(KN + εkIN)) where ν is a scale hyperpa-
rameter and KN is comprised of entries based on a kernel
kθ (xi , x j). Jitter parameter εK is set as small as possible (for
interpolating deterministic simulations) while maintaining
well-conditioned positive-definite covariances (Neal 1998),
and IN denotes an N × N identity matrix. Our presentation
is agnostic to the choice of kθ (·, ·) except that it be based
on inverse distances in the input space. Our empirical work
favors a squared exponential kernel with lengthscale hyper-
parameter θ .

Ki j
N = kθ (xi , x j) = exp

{
−||xi − x j ||2

θ

}
. (1)

123

Statistics and Computing (2021) 31 :33 Page 3 of 21 33

Other common kernels include the Matérn family (Stein
2012; Gramacy 2020, Section 5.3.3).

Inference for unknown hyperparameters (θ, ν) can pro-
ceed by maximum likelihood estimation through the log
MVN pdf and its closed-form derivatives. Some hyperpa-
rameters, like ν̂ = N−1Y�

NK
−1
N YN , have tidy expressions

conditional on others, like θ , which must be optimized
numerically. Since MVN pdfs involve |KN | and K−1

N , com-
putation is on the order of O(N 3), limiting training data
sizes N to the small thousands on most desktop machines. In
custom setups with highly distributed architectures, stochas-
tic approximations based on linear conjugate gradients and
Lanczos quadrature can push those boundaries (Ubaru et al.
2017; Gardner et al. 2018a; Wang et al. 2019).

For fixed hyperparameters (ν̂, θ̂), a predictive distribution
for Y (x�) arises as standard MVN conditioning via an (N +
1)-dimensional MVN for (Y (x�),YN). The moments of that
Gaussian distribution are:

μN (x�) = E(Y (x∗) | YN) = k�
N (x�)K−1

N YN

σ 2
N (x�) = Var(Y (x�) | YN)

= ν̂
(
kθ (x�, x�) − k�

N (x�)K−1
N kN (x�)

)
,

(2)

where kN (x�) = (kθ (x�, x1), . . . , kθ (x�, xN))�. These cal-
culations are also in O(N 3), although again linear algebra
tricks can mitigate that to an extent.

2.2 Inducing points

A more direct approach to speedy GP approximation in the
face of big N is to impose a low-rank structure on covari-
ance. The idea originated with local data subsets for splines
(Wahba 1990; Poggio andGirosi 1990), and later was applied
to GPs (Smola and Bartlett 2001; Csató and Opper 2002;
Seeger et al. 2003). Snelson and Ghahramani (2006) pro-
posed that these reference locations not be restricted to a
subset of the data. First attempts at a unifying perspective for
sparse approximate GPs were made by Quiñonero and Ras-
mussen (2005) and Rasmussen andWilliams (2006, Chapter
8) with the former referring to these latent reference vari-
ables as inducing inputs. Outside of the machine learning
community, Banerjee et al. (2008) applied similar techniques
to develop predictive processes. Here, we adopt a big-tent
inducing points nomenclature.

Let X̄M = (x̄1, . . . , x̄M)� be M inducing points in
the same space as XN , but they need not coincide with
any elements of XN . Notate KM as a kernel matrix built
from X̄M and kθ (·, ·), e.g., in (1); similarly, write kNM as
cross-evaluations of the kernel between XN and X̄M . Most
variations on inducing point methods base GP approxima-
tions on the so-called Nyström approximation (Williams and
Seeger 2001):KN ≈ K̄ = kNMK−1

M k�
NM . Rather than calcu-

late covariance between all pairs inXN , instead use M � N
references X̄M to induce a similar structure K̄.

Snelson and Ghahramani (2006) introduced a diagonal
correction on the Nyström approximation

�
(M)
N = ν(K̄ + εkIN) = ν

(
kNMK−1

M k�
NM + Λ

(M)
N + εK IN

)
(3)

whereΛ
(M)
N = Diag{KN−kNMK−1

M k�
NM }. This ensures that

K̄ and KN contain the same diagonal elements so that when
X̄M ≡ XN , �

(M)
N in (3) reduces to the standard GP covari-

ance �N = ν(KN + εkIN). Both approximations allow for
decomposition of �

(M)
N through Woodbury matrix identities

(Harville 2011):

�
−1(M)
N = ν−1

(
Ω

−1(M)
N − �NMQ−1(N)

M ��
NM

)

log |�(M)
N | = log(ν) + log |Q(N)

M | − log |KM |
+ 1�

N log(Ω
(M)
N)1N , (4)

where �NM = Ω
−1(M)
N kNM and 1N is a vector of N

ones. Above, Q(N)
M = KM + k�

NMΩ
−1(M)
N kNM + εQIM

and Ω
(M)
N = Λ

(M)
N + εK IN . Since Ω

(M)
N is an N × N

diagonal matrix and can be stored and manipulated as a
vector, we elect to not embolden its notation like that of
other matrices. Hyperparameter inference is achieved by
maximizing the logarithm of the MVN likelihood YN ∼
N

(
0, ν(kNMK−1

M k�
NM + Ω

(M)
N)

)
:

	(X,Y, X̄M , ν, θ)

= −N

2
log(2π) − 1

2
log |�N | − 1

2
Y�

N�−1
N YN

∝ const. − N log(ν) − log |Q(N)
M |

+ log |KM | − 1�
N log(Ω

(M)
N)1N

− ν−1Y�
N

(
Ω

−1(M)
N − �NMQ−1(N)

M ��
NM

)
YN . (5)

Differentiating Eq. (5) with respect to ν and solving yields
the closed-form estimate

ν̂(N ,M) = N−1Y�
N

(
Ω

−1(M)
N − �NMQ−1(N)

M ��
NM

)
YN .

(6)

There is not a similar closed-form solution for the length-
scale. Numerical solvers like optim in R can work with
negative concentrated log-likelihood

− 	 (X,Y, X̄M , θ)

∝ N log
(
Y�

N

(
Ω

−1(M)
N − �NMQ−1(N)

M ��
NM

)
YN

)

+ log |Q(N)
M | − log |KM | + 1�

N log(Ω
(M)
N)1N (7)

123

33 Page 4 of 21 Statistics and Computing (2021) 31 :33

and closed-form derivatives (not shown) to obtain θ̂ (N ,M).
In practice this works well because the surfaces are either
convex in hyperparameters, or are nearly so.

Analogues to Eqs. (6–7) reduce full rank prediction from
O(N 3) down to O(NM2) flops. Following (3), predictive
equations are Gaussian with

μM,N (x�) = k�
M (x�)Q−1(N)

M ��
NMYN

σ 2
M,N (x�) = ν

(
K∗∗−k�

M (x�)
(
K−1

M −Q−1(N)
M

)
kM (x�)

)
,

(8)

where kM (x�) = kθ (X̄M , x�). When optimizing X̄M via
log likelihood, the value Q−1(N)

M ��
NMYN can be re-used

from �
−1(M)
N YN . Thus, prediction requires only O(M) and

O(M2) additional flops compared toO(N) andO(N 2) for a
full GP model.

2.3 Optimal induction

Suppose, for now, that the number of inducing points M
is fixed by computational limitations. Snelson and Ghahra-
mani (2006) suggested selecting locations X̄M through the
marginal log-likelihood. Such a strategy is prone to overfit-
ting (Bauer et al. 2016), while the Variational Free Energy
(VFE) approximation—a lower bound on the marginal
likelihood—is not (Titsias 2009,b; Hoffman et al. 2013).
Yet even with VFE’s variational construction of the likeli-
hood, its optimization still requires a cubic cost on a highly
multimodal surface (Bauer et al. 2016), which we explore
in “Appendix A.” This begs the question if likelihood opti-
mization is worth it over relatively convenient space-filling
options.

Methods for “choosing inputs,” knownmorewidely as sta-
tistical design or active learning, have potential to reduce the
cost of selecting inducing points. A slew of acquisition func-
tions for greedy design point selection is available for such
diverse goals as integral estimation (Fernández et al. 2020;
Kanagawa andHennig 2019), space-fillingness (Busby 2009;
Svendsen et al. 2020), and posterior density approximation
(Wang andLi 2018).Other variance-based (2) criteriamay be
appropriated for the selection of inducing points X̄M by rout-
ing through Eq. (8) instead. Such criteria require quadratic
computational cost and more squarely target predictive goals
in surrogate modeling. In particular, we consider integrated
mean-squared error (IMSE) and its discretized analog Active
Learning Cohn (Cohn 1993, ALC) to select inducing points
X̄M , a design strategy not yet explored in the literature. See
“Appendix A” for an overview of these variance-based crite-
ria.

For a simple experiment, we sought to compare the pre-
dictive accuracy of sparse GP models with inducing points
selected sequentially with VFE, IMSE, and ALC to a full

Fig. 1 Approximate GP performance via RMSE and number of induc-
ing points, M , compared to a full GP (blue). Means (solid) and central
90% intervals (dashed) arise from thirty replicates. Boxplots in the top
right zoom in at M = 100. (Color figure online)

GP. We generate data using f (x1, x2) = x1 exp{−x21 − x22 }
for x1, x2 ∈ [−2, 4]. Figure 1 compares the three methods to
themselves and to a full GP over M = 1, . . . , 100 tracking
root MSE (RMSE) via Monte Carlo (MC) averaging over
training XN and testing X locations. To manage the compu-
tational cost of evaluating criteria on a dense grid, training
data sizes were limited to N = 100.1 Observe that all three
methods offer a decent approximation to the full GP with
close to 85 inducing points. Zoomed boxplots (upper-right
panel) show that ALC is consistently best. If you knowwhere
you are going to be tested, you should “design” your X̄M to
focus there. If you do not, then you are (eventually) next-best
by integrating over the input domain with IMSE. VFE per-
forms worst because likelihood is imperfectly aligned to the
RMSE criteria.

2.4 Local approximate GPs

Rather than massage the GP framework to cope with the
entire data set at once, e.g., by working with a single global
data subset, a local approximate GP (Gramacy and Apley
2015, LAGP;) considers disparate local data subsets depend-
ing on each of the predictive location(s) x� of interest. Such
subsets can be much smaller because, under typical inverse-

1 Ordinary IMSE was used, substituting inducing points in for design
points, as described in Binois et al. (2019). Progress is blocky because
individual inducing point additions do not substantial alter space-filling
properties until most of a “new row” of sites are added in this 2d exam-
ple.

123

Statistics and Computing (2021) 31 :33 Page 5 of 21 33

distance-based correlation (1), training data inputs XN far
from each x� provide little added value to the underlying pre-
dictor. Specifically, suppose that (Xn(x�),Yn(x�)) represents
ann-sized subset, orneighborhoodof the trainingdata nearby
x�, e.g., comprised of nearest neighbors (NNs). Then, given
a suitable hyperparameterization, prediction could follow
Eq. (2) using (Xn(x�),Yn(x�)) rather than the full (XN ,YN).
This can potentially provide drastic computational savings
when n � N , even though the calculations would still be
cubic in n.

In this framework, the subset size n and neighborhood
Xn(x�) must be determined. Because flops grow quickly
with n, this value is usually fixed by computational limi-
tations, just like the number of inducing points, M . A default
in the laGP software (Gramacy 2016) is n = 50, see
“Appendix B” for further discussion. Fixing n, it turns out
that NN subdesign, originally suggested by Emery (2009) in
a 2d geostatistics setting, is sub-optimal by several criteria
(Vecchia 1988; Stein 2012). However, exhaustively search-
ing among all

(N
n

)
alternatives for each x� is combinatorially

infeasible. Gramacy and Apley (2015) showed that greedy
neighborhood selection via ALC approximately minimizes a
MSEcriteria common in surrogatemodeling settings. Specif-
ically, choose a singleton reference set X = {x�}, with
σ 2
new(·) = σ 2

n+1(x) derived from (Xn(x�),Yn(x�)) and select
among xn+1 ∈ XN \ Xn(x�) candidates.2

Care is taken to ensure computational demands in each
update and ALC optimization do not exceed O(n2) so
that the entire scheme’s flops are not worse in order than
using NNs (i.e., cubic in n). For example, if vn(xn+1) =
kn+1(xn+1, xn+1)−k�

n+1(xn+1)K
−1
n+1kn+1(xn+1) represents

the kernel portion of σ 2
n (xn+1), then the change

Δvn(x�) = vn(x�) − vn+1(x�)

= k�
n (x�)Gn(xn+1)vn(xn+1)kn(x�)

+ 2k�
n (x�)gn(xn+1)kθ (xn+1, x�)

+ kθ (xn+1, x�)2/vn(xn+1)

(9)

can be updated in O(n2) via partition inverse equations
(Barnett 1979) using G j (xn+1) = gn(xn+1)g�

n (xn+1),
gn(xn+1) = −K−1

n kn(xn+1)/vn(xn+1).
Despite being massively parallelizable (Gramacy et al.

2014) for many x� and over candidates xn+1 ∈ XN \Xn(x�),
further approximations are made in order to shortcut O(N)

subroutines in anO(n2) scanning over that set (Gramacy and
Haaland 2016; Sung et al. 2018; Sun et al. 2019). Several
groups of authors have suggested that it might be possi-
ble to design a “template” sub-design that could be applied

2 Here, we are abusing notation a little to describe an inductive process
n → n + 1 and referring to n as the final local design size as opposed
to introducing a new iterator.

automatically, after simple shifting/scaling for each x�, with-
out exhaustive search of XN \ Xn(x�). Non-uniform global
designsXN render this a non-starter. Sparse design coverage
in some regions, and dense in others, demands bespoke cal-
culation in each x� instance. Even with highly regular (e.g.,
gridded) global designs XN , local coverage can be irregular
at the boundaries.

Local design topology is twinned with subset size, n.
Accommodating wiggly test problems benefit with reactive
dynamics offered by smaller n is easy, because that means
faster execution. But nmuch larger than the default of n = 50
can be a deal-breaker on speed grounds regardless of accu-
racy boosts in less wiggly settings.

3 Inducing point neighborhoods

Inducing points offer computational savings, but several
drawbacks remain. Predictive accuracy suffers when they
are placed far from testing locations. Optimization by likeli-
hood can performworse than simple space-filling (Sect. 2.3).
Computational costs are still cubic in a big number, despite
M � N because you need enoughM to fill the input volume.
Multi-processing parallel schemes via likelihood (Chen et al.
2013) and stochastic variational inference (Hensman et al.
2013; Hoang et al. 2015; Schürch et al. 2020) offer limited
respite because they operate on the full data.

We thus propose a locally inducedGP (LIGP) by hybridiz-
ing ordinary, “global” inducing point schemes with LAGP.
This brings knock-on benefits to the local data-subsetting
world: speed-ups, selection of neighborhood size (larger
for smoother processes), long-elusive template schemes
(Sect. 4). LIGP operates similarly to LAGP via neighbor-
hoods Xn(x�) ⊂ XN . If a greedy scheme like ALC is used
to fill Xn(x�), it would include an exhaustive search on the
order of O(Nn3). Instead we choose simple NN approach,
incurring an amortized one-off O(N log N) cost. Effort is
reallocated into choosing local inducing points X̄m(x�) for
Xn(x�), which are free to take on any values, at cubic
in m cost. Our multiplicity notation is intended to convey
m � n � M � N , although that hierarchy need not be
strict. Small m allows wider local scope with bigger n with-
out a substantial computational hit.

Algorithm 1 outlines the LIGP prediction algorithm,
which can be run independently for each x� ∈ X�. For each
x�, a local neighborhood Xn(x�) is built from a NN subset
of XN followed by a set of inducing points X̄m(x�). Vari-
ous methods to select X̄m(x�) are explored in the following
sections.

123

33 Page 6 of 21 Statistics and Computing (2021) 31 :33

Algorithm 1 LIGP Prediction
1: procedure LIGP.pred(m, n, X�,XN ,YN , X)
2: for i = 1, . . . , N ′ = |X�| do ## Each x�

l ∈ X�, potentially in parallel
3: {X̄m ,Xn} ← IP(. . .) ## Any of Algorithms 2–4
4: Yn ← Y (Xn) ## Extract from YN at neighborhood
5: ν̂, θ̂ ← argmaxν,θ LLik(ν, θ,Xn,Yn, X̄m) ## Local MLE, Eqs. (6–7)

6: {μ̂(i), σ̂ 2(i)} ← GP.pred(x�
i | Xn,Yn, X̄m , θ̂ , ν̂) ## Eq. (8)

7: end for
8: return {μ̂(i), σ̂ 2(i)}N ′

i=1
9: end procedure

3.1 Sequential selection of local inducing points

Changing focus to local neighborhoods Xn(x�) warrants a
second look at selection criteria for inducing points X̄m(x�).
Likelihoods here are a mismatch to surrogate modeling and
machine learning predictive goals. Instead, we follow the
LAGP format of greedy optimization via MSE. Given the
connection between inducing X̄m(x�) and actual training
locations Xn(x�), emphasis on prediction at singleton x� has
deleterious effects.We tried this: X̄m(x�) “pile up” around x�

leading to poor estimates of local lengthscale and curvature.
Instead, we suggest a locally weighted IMSE criterion.

Suppose we have X̄m(x�) already and wish to choose the
next inducing point x̄m+1(x�). Dependence on x� is implicit
below, although we shall drop it from the expressions and
simply write Xn , X̄m , x̄m+1, etc., in order to streamline the
notation. We presume that the study region is a hyperrectan-
gle X = [ak, bk]dk=1. Rather than integrate uniformly over
that domain, reproducing an ordinary global IMSE whose
closed form slightly generalizes Binois et al. (2019), we
weight the calculation by proximity to the predictive loca-
tion x�. Although this weighting scheme could be treated as
a tuning parameter, we choose a Gaussian measure propor-
tional to the Gaussian kernel kθ (·, x�) to facilitate a similar
closed-form solution:

wIMSE(m+1)
n (x̄m+1, x�)

≡ wIMSE(x̄m+1,Xn,Yn,X, X̄m, x�)

=
∫

x̃∈X
kθ (x̃, x�)

σ 2
m+1,n(x̃)

ν
dx̃

=
√

θπ

2

d∏

k=1

(
erf

{
x� − ak√

θ

}
− erf

{
x� − bk√

θ

})

− tr
{(

K−1
m+1 − Q−1(n)

m+1

)
W∗

m+1

}
, (10)

where erf is the error Gaussian function and W�
m+1 =

∏d
k=1W

�
m+1,k . The (i, j)th entry of W�

m+1,k is

w
�(i, j)
m+1,k ≡ wm+1,k(x̄i , x̄ j)

=
∫ bk

ak
kθ (x̃k, x�

k)kθ (x̃k, x̄i,k)kθ (x̃k, x̄ j,k) dx̃k

=
√

πθ

12
exp

{ 2

3θ

(
x̄i,kx∗

k + x̄ j,kx∗
k + x̄i,k x̄ j,k

− x∗2
k − x̄2i,k − x̄2j,k

)}

×
(
erf

{
ι
(u, j)
k − 3ak√

3θ

}

− erf

{
ι
(u, j)
k − 3bk√

3θ

})
, (11)

notating x�
k as the kth entry of the vector x� and ι

(u, j)
k =

x�
k + x̄u,k + x̄ j,k . Derivations for (10–11) are included in
“Appendix A.1.” Extensions to other kernel structures, such
as Matérn (Stein 2012), yield similar closed forms (i.e., fur-
ther extending, Binois et al. 2019).

The best new local inducing point can be found by solving
the following program:

x̄m+1 = argmin
x̄m+1∈X

wIMSE(m+1)
n (x̄m+1, x�).

The wIMSE(m+1)
n (x̄m+1, x�) surface realized over choices

x̄m+1 ∈ X, whichwe shall visualizemomentarily in Sect. 3.2,
may bemulti-modal. However, it is not pathologically so like
a global IMSE. Library-based numerical schemes (details in
Sect. 5.1) work well when suitably initialized but perform
even better when aided by derivative information. The kth

component of the gradient is given by

∂

∂ x̄m+1,k
wIMSE(x̄m+1, x�)

= −tr

{(
∂K−1

m+1

∂ x̄m+1,k
− ∂Q−1(n)

m+1

∂ x̄m+1,k

)

W�
m+1

}

− tr

{(
K−1

m+1 − Q−1(n)
m+1

) ∂W�
m+1

∂ x̄m+1,k

}
. (12)

The form of W�
m+1, given in Eq. (11), reveals that the only

nonzero entries in
∂W�

m+1
∂ x̄m+1,k

are them+1st row/column. Those
entries are

123

Statistics and Computing (2021) 31 :33 Page 7 of 21 33

∂w�
m+1(x̄i , x̄m+1)

∂ x̄m+1,k

d∏

k=1,k �=k′
w�
m+1,k(x̄i , x̄m+1).

Derivation of
∂w�

m+1(x̄i ,x̄m+1)

∂ x̄m+1,k′
based on a squared exponential

kernel is in “Appendix A.1.”
Expressions for wIMSE and derivative (10–12) leverage

the same Woodbury identities used earlier (4–8). Partitioned
inverse updates of K−1

m+1 and Q−1(n)
m+1 (“Appendix A.1”),

allows m → m + 1 in O(m2n) flops.

3.2 Illustrations of Greedy inducing point search

Greedily optimizing wIMSE to place local inducing points
around neighborhoodXn(x�) results in X̄m(x�)with (approx-
imately) minimal predictive variance nearby x�, so natu-
rally they concentrate in that locale. To explore inducing
point optimization with wIMSE, we use a toy 2d test
problem known as Herbie’s tooth (Lee et al. 2011). This
function is attractive due to its low dimensionality but
complex non-stationary surface littered with local minima.
The function is defined by f (x1, x2) = −w(x1)w(x2)
where w(x) = exp

{−(x − 1)2
} + exp

{−0.8(x + 1)2
} −

0.05 sin (8(x + 0.1)) and x1, x2 ∈ [−2, 2]. Figure 2 shows
the evolution of wIMSE-based acquisition for x� placed at
the origin for Herbie’s tooth (N = 40K, n = 100). Pan-
els (a–c) show existing X̄m(x�) in blue overlayed on the
wIMSE surface used to select x̄m+1. Optimal x̄m+1, i.e., the
wIMSE global minimum, are represented by white-filled cir-
cles. Unlike global VFE likelihood, ALC, and IMSE surfaces
(explored in “Appendix A,” Fig. 9), the local wIMSE surface
does not appear to be as affected by placement of the train-
ing points XN , or local neighborhood Xn(x�) ⊂ XN , shown
as dots in panel (d). Local minima still exist as more induc-
ing points are introduced. Yet the wIMSE surface is much
smoother and well behaved, making optimization easier.

The first selection, x̄1(x�), often lies very close to x�.
When x� is near the boundary of the input space, where
wIMSE would be asymmetric, the first inducing point selec-
tion may “pull away” somewhat from x� toward to middle of
the space. But when symmetry is high, as it is at the origin for
the illustration in Fig. 2, it is hard to distinguish between x̄1
and x� up to numerical error. We find it convenient to simply
begin optimizing at iteration two, with x̄1 = x�.

For concreteness, steps for this greedy wIMSE induc-
ing point search are outlined in Algorithm 2. After building
the local neighborhood Xn(x�), initialization is completed
by choosing x̄1 ← x� and local lengthscale θ(0). Here, we
set θ(0) based on quantiles of squared distances in Xn(x�),
though other settings are considered later. After greedy selec-
tion over i = 1, . . . ,m, intermixedwith updates to the locally
induced GP structure as outlined in Sect. 3.1, the procedure
returns an m × d matrix comprised of the selected inducing

points X̄m(x�) alongside an n × d matrix defining the local
neighborhood X̄n(x�).

The left panel of Fig. 3 shows the predictions for a grid of
x� settings arranged over a 1d slice of Herbie’s tooth where
x�
2 = 0.6, including LAGP (via ALC with n = 50, defaults
in laGP) and LIGP (m, n) = (10, 100), with local subset
and inducing point designs re-optimized at each predictive
location. We allow LIGP a bigger neighborhood (n), with
explanation in “Appendix B,” but remind that this involves
thriftier m-sized cubic decompositions. Observe that both
LAGP (red-dashed) and LIGP (green-dotted) capture the
bumpiness of the surface, completely overlaying the true out-
of-sample response (black-solid).

Zooming in, the right panel of Fig. 3 shows errors along the
slice under these comparators and two new variations: LAGP
via NN with n = 100 and LIGP with (m, n) = (10, 100) via
template (Sect. 4.1). Along most of the slice, LIGP’s error
follows a similar trend as LAGP (NN, n = 100), albeit with
a bumpier line. This is not surprising given that both GP fits
use the same neighborhoodXn(x�). LAGP (ALC) copes well
with smaller n = 50 by fillingXn(x�)with a mix of NNs and
satellites.3 Averaging along that slice, out-of-sample RMSE
for LAGP (ALC) was 7.88 × 10−4, versus 1.14 × 10−4

and 1.12 × 10−4 for LAGP (NN) and LIGP, respectively.
Here, LIGP predicts slightly better than LAGP (NN), itsmost
direct competitor, and noticeably better than LAGP (ALC).
By reducing the computational burden of the optimization
criteria (NN v. ALC) and matrix inversions (LIGP v. LAGP),
we free up resources to increase n and thus accuracy.

Encouraging as these early LIGP results are, selecting
novel X̄m(x�) for each x� is a substantial undertaking. LIGP
required 3.32 s, on average, to greedily build X̄m(x�) using
about 9 derivative-based iterates at each x�. Once in hand,
optimizing via likelihood using a local analog of Eq. (3) and
predicting (8) based on X̄m(x�) and Xn(x�) is almost instan-
taneous, requiring 0.0062 s per prediction. LAGP (NN or
ALC),which search discretely over subsets, lag a little behind
at 0.0437 and 0.073 s, respectively.

4 Refinements to neighborhood
composition

LIGP can be accelerated with little impact on predictive
accuracy by applying a single inducing point design X̄m(x�)

almost identically over all predictive locations x� ∈ X of
interest. Here, we explore the benefits of inducing point
design templates built with wIMSE and thriftier space-filling
strategies.

3 For identical n, ALC bests NN (Gramacy and Apley 2015), motivat-
ing increased n for NN here.

123

33 Page 8 of 21 Statistics and Computing (2021) 31 :33

(a) (b)

(c) (d)

Fig. 2 wIMSE surfaces (a–c), red/lower yellow/higher, used to opti-
mize the 2nd, 4th, and 10th inducing points: existing in blue; new
selection in white. Predictive location x� is at the origin, which is where

x̄1 is placed. Panel d summarizes the neighborhoodXn(x�) as gray dots
and local inducing points X̄m(x�) in number order. (Color figure online)

Algorithm 2 Inducing Point wIMSE Design
1: procedure IP.wIMSE(m, n, x�, X, X)
2: Xn ← NN(x�,X, n) ## Find n nearest neighbors to x�

3: θ(0) ← quantile(0.1, dist(Xn)) ## Reasonable local lengthscale
4: x̄1 ← x�; ## Place first inducing point
5: for i = 2, . . . ,m do ## Greedy wIMSE to find the rest
6: x̄i ← argminx̄i∈XwIMSE(i)

n (x̄i , x�) ## Implicit dependence on θ(0)

7: end for ## Implicit updates of local induced GP
8: return X̄m(x�) = {x̄i }mi=1 and Xn(x�) = Xn
9: end procedure

123

Statistics and Computing (2021) 31 :33 Page 9 of 21 33

Fig. 3 Left: approximate GP
fits’ mean prediction and truth
on a slice of Herbie’s tooth at
x�
2 = 0.6. Right: errors relative
to the truth on the approximate
GP fits for the same slice of
Herbie’s tooth. (Color figure
online)

Fig. 4 Local neighborhoods for two predictive locations x� at (−0.1,
1.85) and (0.19, 1.97). Gray dots are n = 100 neighborhoods Xn(x�).
Green points are wIMSE optimal inducing points X̄m(x�); blue ones
are displaced templates derived at the origin. The wIMSE template
performs nearly the same space-filling effect as the locally optimized
inducing points. (Color figure online)

4.1 Inducing points template

Creating X̄m(x�) based on wIMSE for each x� ∈ X is a chore
that can cannibalize any benefit that might come with adopt-
ing an inducing point approximation in the first place. The
highly structured nature of optimal wIMSE-based inducing
points (Fig. 2d) suggests such effort might be overkill. Per-
haps the cost of a single, representative optimization could
be amortized over the expense of its application on a vast
predictive grid. When re-purposed, through shifting or other
transformation for new x�, we refer to the original wIMSE
design—which might be calculated at the middle of the input
space—as a template.

Figure 4 depicts the essence of the idea, comparing
bespoke X̄m(x�) to re-shifted ones from a template in two
variations. The setup is again Herbie’s tooth in [−2, 2]2 and
the two predictive sites are x�(1) = (−0.1, 1.85) and x�(2) =
(0.19, 1.97) whose n = 100 neighborhoods Xn(x�(1)) and
Xn(x�(2)), shown as gray dots, reside completely in the inte-
rior and on the x2 boundary, respectively. Blue points in

the plot represent a wIMSE-based inducing point design—
as optimized (Sect. 3) at the center of the design space
and then—shifted to be centered at the x�s. Compare these
template-based local inducing points to corresponding opti-
mal analogues in green. At both predictive locations, the
pair of inducing point designs differ, yet both still space-fill
the inner-neighborhood around x�. A mild exception may
be template-based X̄m(x�(2)) with its two points outside of
the design region, which would not happen under an exhaus-
tive re-optimization. Other differences between alternatives
would otherwise appear to be cosmetic up to rotation/small
perturbations as may stem from a myriad of benign causes:
relationship of x� to its local neighborhood Xn(x�), conver-
gence and global scope in greedy optimization, etc.

Looking back at the right panel of Fig. 3, observe how
prediction errors based on templates (blue dashed line) com-
pare with locally wIMSE-optimized inducing points (green
dotted line) along the slice. Both LIGP variations seem to
underestimate the response compared to LAGP (NN), but
the template methods give nearly as accurate predictions as
LIGPwith locallywIMSE-optimized inducing points. Trans-
ferring a template captures most of the variability between
local wIMSE designs, even at the boundaries. The template
is also much faster. It took a total of 328.82 s to fit sepa-
rate X̄m(x�) and predict at the 99 x� locations depicted in the
slice. Using a template instead takes 3.82 s, a near two orders
of magnitude improvement.

Algorithm 3 Building and Displacing Inducing Point Tem-
plates
1: x̌ ← median(X) ## Set x̌ to the center of the data
2: X̄m ← IP.wIMSE(m, n, x̌,X,X) ## Use Alg. 2 on x̌
3: X̄

′
m ← X̄m − x̌ ## Center template at the origin

4: procedure IP.Template(n, x�, X, X̄′
m)

5: Xn ← NN(x�,X, n)

6: X̄m ← X̄
′
m + x� ## Simple displacement

7: return X̄m(x�) = {x̄i }mi=1 and Xn(x�) = Xn
8: end procedure

123

33 Page 10 of 21 Statistics and Computing (2021) 31 :33

(a) (b)

Fig. 5 SFD template schemes (triangles) in 2d projections relative to
local neighborhood (gray dots): a rectangular re-scaled LHS template
(triangles) in relation to a local neighborhood (gray dots); b qNorm

LHS template. Green triangles indicate X̄m(x�) within the neighbor-
hood Xn(x�) in all coordinates; red outside. (Color figure online)

Algorithm3provides pseudocode for this template scheme,
clarifying how a single wIMSE-based local inducing point
design X̄m is displaced for each x�. It is worth remarking that
the scheme makes a tacit presumption that the full design
structure, XN , is somewhat homogeneous: similar near the
middle of the input space, x̌, as near where it will be applied,
i.e., for many disparate x� ∈ X. We do not doubt it would be
possible to engineer test problems, and/or non-space-filling
designs XN , that would thwart this scheme, yet we find it
works well in most cases.

4.2 Space-filling templates

Our template-scheme leverages the neighborhood-focused
space-filling nature of inducing points, beyond say x̄1 ≈
x�. Space-fillingness is a cornerstone of (global) computer
experiment design. Numerous schemes exist, such as Latin
hypercube samples (LHSs Mckay et al. 1979) or maximin
designs (Johnson et al. 1990), etc., and hybrids thereof (Mor-
ris andMitchell 1995). Theseworkwell and often require less
computation than model-based alternatives such as IMSE.
If such space-filling designs (SFDs) could be re-tooled to
“focus” on particular parts of the input space—say in the
neighborhood of x�—we might be able to avoid an expen-
sive greedy wIMSE optimization all together. SFDs might
be able to mimic the behavior of a wIMSE template scheme
at almost no cost at all.

SFDs are usually constructed in a unit hypercube. Re-
centering such a template to x� is trivial, but re-scaling so

that it lies withinXn(x�) and resembles X̄m(x�) is more chal-
lenging. One way is to derive a second, local rectangle as a
means of defining a linear mapping between scales. A thrifty
strategy is to use the bounds of the neighborhoodXn(x�). But
the shape ofXn(x�) is roughly spherical, being comprised of
Euclidean distance-based NNs. Thus, the rectangular SFD
will cover regions outside of the hypersphere, potentially
placing some inducing points outside the neighborhood. In
low input dimension, say d ≤ 2, this is no big deal, because
the circumscription is relatively tight. But when d = 8, say,
circumscription is poor.

Figure 5a shows a 2d projection of an 8d local neigh-
borhood for the borehole problem, described in Sect. 5.2.
Here, the volume of the convex hull of the neighborhood
Xn(x�) is less than one-sixtieth of the size of the rectangle
circumscribing its bounds in the coordinate axis directions.
Consequently, many of the template re-scaled local inducing
points X̄m(x�), indicated as triangles, lie outside the neigh-
borhood (red) in at least one of the eight coordinates. Of
the m = 30 local inducing points calculated for that figure,
one of which is automatically at x�, only five rectangular
re-scaled LHS template points lie within the neighborhood.

As remedy, we propose a nonlinear mapping that warps
the SFD to lie inside the neighborhood with high probability.
In particular, we scale the SFD based on an inverse Gaussian
CDF (Φ−1), applied separately to each of the d input coordi-
nates. Algorithm4 outlines steps toward generating an induc-
ing point design X̄m(x�) based on a SFD X̂ of sizem−1, i.e.,
beyond choosing x̄1 = x�. Φ−1 calculations for each dimen-

123

Statistics and Computing (2021) 31 :33 Page 11 of 21 33

sion k = 1, . . . , d involve μ = x�
k and variance θ(0). This is

the same θ(0) as in Algorithm 2 for greedy wIMSE optimiza-
tion, except here we demonstrate a more absolute default
choice. This Φ−1 transformation yields higher density near
x� and much lower density outside of the neighborhood’s
hypersphere. Observe in Fig. 5b how this warping drasti-
cally reduces the number of template points outside of the
neighborhood.

Pseudocode in Algorithm 4 conveys bespoke SFD within
each application of the subroutine, yielding new X̂ in each
call. As with the wIMSE template in Algorithm 3, this
can be moved outside the subroutine to fix a single SFD,
which might be important if the SFD is expensive to com-
pute. We prefer LHSs for our SFDs because they are
easy/instantaneous via libraries such as lhs (Carnell 2019)
on CRAN. Hybrids such as maximin–LHS are also straight-
forward (also with lhs), which can avoid some pathologies
inherent in random LHS design. Ordinary maximin can be
problematic underΦ−1 because that criteria places points on
the bounding hypercube, which would warp to ±∞ without
intervention, and because evaluating and optimizing that cri-
teria are slow. Uniformly random design may be preferred
when local lengthscales are difficult to estimate (Zhang et al.
2021).

Section 3.2 offered comparison between run time and pre-
dictive accuracy for LIGP, using wIMSE to build unique
inducing point designs, to that of LAGP on a slice of
Herbie’s tooth. Now consider new template comparators:
hyperrectangular SFD, LIGP (cHR), and Φ−1-scaled SFD,
LIGP (qNorm). While it took 3.32 s on average to build
wIMSE-based designs, scaling an SFD to circumscribe the
neighborhood (cHR) or applying Φ−1 (qNorm) only takes
0.01 s on average. Both of these SFD template schemes pro-
duce an RMSE that is essentially the same (1.8 × 10−4) as
applying the wIMSE template scheme.

The borehole problem uses larger (m, n) = (80, 150) set-
tings due to the higher input dimension (see “AppendixB” for
a discussion). It takes 141 s to build awIMSE-based inducing
point template of size m, while it only takes 0.034 s to build
a SFD-scaled template. SFD and wIMSE templates produce
LIGPs with similar RMSEs, discussed in Sect. 5.2.

5 Computation and benchmarking

Here, we provide implementation details followed by in-
depth comparison of LIGP and various template schemes,
to LAGP on a swath of synthetic and real computer sim-
ulation experiments. Our metrics for benchmarking are
out-of-sampleRMSEand computation time.All analysiswas
performed on an eight-core hyperthreaded Intel i9-9900K
CPU at 3.60GHz.

5.1 Implementation details

R code (R Core Team 2020) supporting our methodologi-
cal contribution, and all examples, may be found on our Git
repository.

https://bitbucket.org/gramacylab/lagp/src/master/R/
inducing/

Some noteworthy aspects of that implementation include
the following. Unlike laGP, which is coded in C with
OpenMP for symmetric multiprocessing parallelization (R
serving only as wrapper), our LIGP implementation is pure
R. Nevertheless, our template schemes are competitive, time-
wise, and sometimes notably faster.

We privilege an isotropic Gaussian kernel formulation
with scalar lengthscale θ for local modeling, although there
is no reason other forms, such as Matérn (Stein 2012), could
not be entertained so long as the structure is differentiable
with respect to inducing points X̄m . To improve numerical
conditioning of matrices Km and Q(n)

m for stable inversion,
we augment their diagonals with εK = 10−6 and εQ = 10−5

jitter (Neal 1998), respectively. While both are theoretically
decomposable, we find that Q(n)

m is more sensitive to condi-
tioning issues, thus requiring larger ε. In the context of LAGP,
it has been shown that separable local formulations do not
much improve predictive performance, especially after first
applying a global pre-scaling of inputs (Sun et al. 2019). Such
stretching and compressing of inputs,4 has recently become
popular as a means of boosting predictive performance of
approximate GP methods (e.g., Katzfuss et al. 2020). When
pre-scaling in our exercises to ensure apples-with-apples
comparisons to benchmarks we divide by square-root sepa-
rable global lengthscales obtained from a GP’s fit to random
size-1000 data subsets. See Gramacy (2020, Section 9.3.4),
for details. The time required is not included in our sum-
maries.

Building of wIMSE inducing point designs X̄m(x�) and
templates X̄m(x̌), generically X̄m below, follows Algorithm
3 with m and n appropriate to the input dimension d
(“Appendix B”), provided momentarily with our particu-
lar exercises. For initial local lengthscale θ(0), we have had
success with a number of heuristics which often lead to sim-
ilar values/performance for LIGP methods in our exercises.
Gramacy (2016) suggests the 10% quantile of squared pair-
wise distances between the neighborhood points Xn .5 See
Algorithm 2. A downside is that this is quadratic in n. A
more absolute/direct O(n) approach matches θ(0) = σ 2,
where 3σ approximates the 99% quantile of a Gaussian fit,
to the margins of Xn . Algorithm 4 exemplifies this choice

4 A characterization attributed to Derek Bingham predating any pub-
lished account, to our knowledge.
5 In laGP, the function providing θ(0) in this way is darg.

123

https://bitbucket.org/gramacylab/lagp/src/master/R/inducing/
https://bitbucket.org/gramacylab/lagp/src/master/R/inducing/

33 Page 12 of 21 Statistics and Computing (2021) 31 :33

Algorithm 4 Inverse Gaussian CDF Space-Filling Template
1: procedure IP.qNorm(m, n, x�, X)
2: Xn ← NN(x�,X, n) ## Find n nearest neighbors to x�

3: θ(0) ← (13 maxk |Xn,k(x�) − x�
k |)2 ## Reasonable local lengthscale

4: X̂ ← SFD[0, 1]d with m − 1 points ## Could be moved outside
5: for k = 1, . . . , d do ## Warp each input coordinate
6: x̆d ← Φ−1(x̂d ; μ = x�

d , σ
2 = θ(0)) ## Inverse Gaussian CDF with μ, σ 2

7: end for
8: X̄m ← rowbind(x�, X̆) ## Add x� as inducing point
9: return X̄m(x�) = X̄m and Xn(x�) = Xn
10: end procedure

for contrast, although we see these as interchangeable. Each
x̄m+1 augmenting X̄m optimizing wIMSE is found via a 20-
point multi-start L-BFGS-B (Byrd et al. 1995) scheme (using
optim in R) peppered within the bounding box surround-
ing the neighborhood Xn to a tolerance of 0.01. Templates
derived from space-filling designs (Sect. 4.2) originate from
m − 1 point LHSs through the hyperrectangle enclosing
Xn(x̌), and then augmented with x̌ as themth inducing point.

Regardless of inducingpoint/template construction,machin-
ery behind LIGP-based prediction is identical. Algorithm 1
outlines the steps to construct local neighborhoods and pre-
dict at each of a set of N ′ prediction locations X� given
training data {XN ,YN }, neighborhood size n, and number
of inducing points m. Each location xi , for i = 1, . . . , N ′
could proceed in parallel. In our implementation, we use
16 threads.6 The pseudocode attempts to be agnostic about
the inducing point scheme by simply writing IP(. . .). Any
of Algorithms 2–4 can be used here. To estimate scale and
lengthscale we used Eqs. (6–7) through simple substitutions
of (m, n) for the local neighborhoods of x�. We rely on
optim in R to minimize the negative log-likelihood to esti-
mate local θ̂ (x�)’s. Finally, the predictive mean and variance
for x� are extracted via Eq. (8).

5.2 Borehole

Previewed in Sect. 4.2, the borehole function (Worley 1987)
is a classic example in computer experiments literature. Out-
puts may be derived in closed form as

y = 2πTu[Hu − Hl]
log

(
r
rw

) [
1 + 2LTu

log(r/rw)r2wKw
+ Tu

Tl

]

via inputs in the eight-dimensional rectangle:

rw ∈ [0.05, 0.15] r ∈ [100, 5000]
Tu ∈ [63,070, 115,600] Tl ∈ [63.1, 116]
Hu ∈ [990, 1100] Hl ∈ [700, 820]
L ∈ [1120, 1680] Kw ∈ [9855, 12,045].

6 That is, two per hyperthreaded core.

For training, we use LHSs of size N = 100,000, recod-
ing natural inputs to the unit 8-cube followed by pre-scaling
via a global separable θ̂ as explained in Sect. 5.1. We use
(m, n) = (80, 150) for all LIGP fits (see “Appendix B”). For
a fair comparison, we entertain n = 150 for LAGP (NN) as
well as the default of n = 50 for NN and ALC-based LAGP
comparators. Figure 6 summarizes RMSEs obtained over
thirty MC instances with novel training and N ′ = 10,000
sized LHS testing sets.

Mirroring other studies (e.g., Sun et al. 2019), local
approximation is key to using a vast training data set to
get good predictions. LAGP performs better with a neigh-
borhood of n = 50 selected using ALC versus even larger
neighborhoods (n = 150) using NN. Given the smoothness
of the borehole surface, the addition of “satellite” points pro-
vided by ALC gives an accuracy boost over pure NN of
similar size. We believe the same to be true of LIGP (cHR).
Any inducing points lying outside the neighborhood act as
“satellites” in this context. This is backed up by compara-
ble RMSE results. The added flexibility of inducing points
(LIGP) over discrete subsets (LAGP) may be limited by the
highly smooth borehole dynamics.

Timings are provided at the bottom of Fig. 6, with LIGP
LHS templates being fastest among the most competitive
alternatives, accuracy-wise. Interestingly, the cHR template
is even better at prediction than the optimized wIMSE one,
obtained at great computational expense (3.06 min). Com-
pared to LAGP (NN) with n = 150, accuracy is only slightly
diminished, but predictions are furnished in half the time
on aggregate. Again, we remind the reader that this is a lit-
tle unfair to LIGP, comparing an R-only implementation to
laGP’s C library. Another reason this timing comparison is
not more impressive is that optimizing the inducing point
likelihood to obtain local θ̂ (x�), despite being cubic in m
rather than n, tends to take more BFGS iterations than the
LAGP analog.

Although LIGP methods do not best LAGP (except NN
with n = 50) on accuracy, it is important to place these
RMSEs in context. Horizontal dashed lines in the left panel
of Fig. 6 offer wider historical perspective. Kaufman et al.
(2011)’s reported an RMSE of 1.4 (green line; 99% sparse)

123

Statistics and Computing (2021) 31 :33 Page 13 of 21 33

Fig. 6 Top-left: accuracy over 30 MC repetitions with lines showing
other published works’ results: Kaufman et al. (2011, green), Gramacy
and Apley (2015, purple) and Katzfuss et al. (2020, orange). Top-right:
zoomed in version focusing on the best LI/LAGP methods. The color

of the boxplot outline, red and black, correspond to the sizes of the
neighborhoods (n = 50, 150, respectively). Table below: compute time
in minutes. (Color figure online)

with (N , N ′) = (4000, 500) in 17 min via compactly sup-
ported kernels. Gramacy and Apley (2015)’s initial LAGP
(ALC) implementation improved that to 0.88 (purple line)
in 3 min, utilizing eight cores. Subsequent improvements in
handling larger (less well conditioned) matrices, and wider
OpenMP parallelization bring us to the orders of magnitude
more accurate and fast results in Fig. 6.

More recently, a method called SVecchia (Katzfuss et al.
2020), adapted fromgeostatistics to computer surrogatemod-
eling, has yielded impressive RMSEs of 0.016 (orange line)
in similar exercises ((N , N ′) = (100,000, 20,000)) in about
5 min—combining training (4.4 min) and testing (0.4 min)
phases—in a single-core setting.We see this newvanguard of
methods as equivalent on the borehole problem, with nuance
depending on the application. For example, if you need a
one-off prediction, LAGP methods (e.g., ALC) are best, fur-
nishing accurate predictions in fractions of a second without
an explicit training phase. With modest testing sizes, LIGP
methods are faster when amortizing the cost of template
calculation. For larger testing sets, SVecchia methods seem
attractive.

Lastly, consider comparing to a more traditional global
form of inducing point prediction (Sect. 2.3). Using an LHS
for X̄M with M = 80 in [0, 1]8 requires only 0.56 min to
produce predictions (8) with fixed lengthscale θ , less than
even the space-filling template variations of LIGP. Accuracy
is tightly coupled to θ , but MLEs render the method uncom-

petitive as a single evaluation of the log-likelihood (7) takes
9 min.

5.3 Robot arm

The SARCOS data is a popular computer simulation bench-
mark from the machine learning literature (Vijayakumar
and Schaal 2000; Rasmussen and Williams 2006). The
data/simulations7 model seven torque outputs as a function of
21 input variables consisting of position, velocity, and accel-
eration of a robot arm. It comes pre-partitioned into a training
set of size N = 44,484 and a testing set of size N ′ = 4449.
Here, we consider only the first torque output. High input
dimensionality and non-uniform design—inputs lie on a low-
dimensional manifold in the input space—present surrogates
with unique challenges.

One implication of the non-uniform design for LIGP is
that a hyperrectangle surrounding Xn(x̌), for median input
x̌, does not place x̌ in its center. Consequently a cHR tem-
plate would yield an un-centered Xm(x�). Space-fillingness
is preserved, albeit with many points outside of the hyper-
sphere enclosingXn(x̌). A qNorm template, by contrast, can
preserve centering through Φ−1. However, in both cases the

7 Original MATLAB: http://www.gaussianprocess.org/gpml/data/;
plain text in our Git repo.

123

http://www.gaussianprocess.org/gpml/data/

33 Page 14 of 21 Statistics and Computing (2021) 31 :33

0 2 4 6 8

−5
−4

−3
−2

−1
0

log time (seconds)

lo
g

R
M

S
E

NN
NNALC

ALCsep
NNsep

NNsep

NN

NN ALC

wIMSE

LHS.qNorm
LHS.cHR

Jankowiak & Gardner

●
●

●
●

●

●

●

LAGP: mle
LAGP: no mle
LIGP: no mle
n=50
n=200

Fig. 7 LAGP v. LIGP models pitting log RMSE (y-axis) against log
time (x-axis) on SARCOS data. LAGP fits included both isotropic and
anisotropic (sep) local lengthscales. Fixing local θ0 = 1 (no mle) yields
computational and predictive advantages

low-dimensional input manifold may result in a fair number
of inducing points without many Xn(x�) nearby.

As with previous examples, we perform an input pre-
scaling based on separable lengthscales estimated via MLE
from a size n = 1000 random data subset. After pre-scaling
we find that local likelihoods, for both LAGP and LIGP,
are flat for many x�, yielding exceedingly long local length-
scales θ̂ (x�) and “washed out” local surrogates. Apparently,
in 21 input dimensions, small neighborhoods (n = 50 and
n = 200) provide insufficient information about local length-
scales, i.e., beyond the global one. Although we show results
with LAGP in both variations, with and without local MLE
calculations (with both isotropic and separable local kernels),
all variations entertained perform much better with a fixed
θ0 = 1 for all local calculations.

Figure 7 summarizes those results, plotting log RMSE
against log computation time. Working from the top of the
figure (lowest predictive accuracy) downward, observe that
default LAGP (blue), i.e., with local MLE lengthscales, per-
forms worst. Larger local neighborhoods (n = 200 vs. n =
50) do not help accuracy much, and hurt speed. Separable
lengthscales improve accuracy by an order of magnitude,
but you do even better by sticking with a fixed θ0 = 1
after pre-scaling, which brings us to the second (red) group.
Foregoing local MLE calculation conveys a several orders-
of-magnitude speed-up. These RMSEs are on par with the
best methods in recent studies. For example, Jankowiak and
Gardner (2019) report on a bakeoff of ten deep and shal-
low GP and neural network comparators, with best RMSE
of 0.107, which in log space is −2.3 (dashed horizontal
line).8 Keeping it simple in high dimension, especially when
the training data lie on a lower-dimensional manifold, helps

8 No timings provided; the worst method had RMSE 0.25.

control estimation risk and enhances stability. Larger neigh-
borhoods give a small accuracy fillip, but substantial increase
in computation time.

Finally, LIGP methods (m, n) = (80,200) fall into the
last/lowest (purple) group with the highest accuracy. These
are 4–5 orders of magnitude more accurate than the default
LAGP setup, 2–3 orders better than nomle-LAGP. Compute
times are commensurate with the red/middle group, except-
ing two cases. An wIMSE template pays accuracy dividends
for increased computational cost. Simple LAGP (NN) is
faster but substantially less accurate. We again remind that
these timings are unfair to LIGP’s R-only implementation.

5.4 Satellite drag

Finally, consider large data sets of simulated drag coefficients
for satellites in low-Earth orbit. For a description of these
data, see Sun et al. (2019), Mehta et al. (2014) and Gramacy
(2020, Chapter 2.3.3) and the Git repo https://bitbucket.org/
gramacylab/tpm/src. We seek accurate surrogates for drag
for the Hubble Space Telescope (HST). Simulations, via so-
called test particle MC (TPMC), treat atmospheric elements
of atomic oxygen (O), molecular oxygen (O2), atomic nitro-
gen (N), molecular nitrogen (N2), helium (He), or hydrogen
(H) separately. Following previous studies, we consider sur-
rogates for these “species” separately. Data for each species
is comprised of a two million-sized (N) LHS over eight con-
figuration inputs. The goal is to predict drag to a 1% relative
RMSE (RMSPE) accuracy. Big training data are essential to
meeting that benchmark, and needless to say ordinary large-
N GP surrogates are not a viable alternative.

Figure 8 summarizes the results of tenfold cross-validation
for each species. The 1% benchmark is shown horizontally
at zero in log space. Again mimicking previous experiments,
we pre-scale (Sect. 5.1) after coding inputs and before fitting
local approximations. Observe in the left panel that LAGP
(NN) with n = 150 is the only method able to produce log
RMSPEs below the 1% benchmark for all folds. However,
LIGP (wIMSE) and LIGP (qNorm) come in at a close sec-
ond and third and have medians (over all folds) below the
1% benchmark. Factoring in computation time (right panel),
LIGP methods predict roughly 50% faster than LAGP (NN)
with n = 150. Given the scale of the test and training sets,
even LIGP (wIMSE) emerges as a viable, cheap alternative.

In contrast to the previous two examples, LIGP (cHR)
accuracy suffers relative to the other space-filling template
scheme LIGP (qNorm). This may be due to non-stationarity.
Inducing points that lie within the neighborhood—thusmoti-
vatingLIGP (qNorm)—transfermore of the flexible structure
of the GP and provide more accurate predictions. Finally,
results recently released using SVecchia (brown) offer fur-
ther improvement, although only when substantial training
time is amortized over a large predictive set. In cases when a

123

https://bitbucket.org/gramacylab/tpm/src
https://bitbucket.org/gramacylab/tpm/src

Statistics and Computing (2021) 31 :33 Page 15 of 21 33

Fig. 8 Left: accuracy over tenfold cross-validation for each species via log RMSPE. The horizontal line denotes the 1% benchmark in log space.
Right: prediction compute time (in minutes) across cross-validation folds

single or a relatively small number of predictions are needed,
LIGP/LAGP can furnish accurate predictions in seconds,
whereas SVecchia requires (tens of) minutes.

6 Discussion

Exponential growth of diversity and size of computer sim-
ulation campaigns places a heavy burden on GP surrogates.
Remaining fast enough to be useful—they cannot be slower
than the simulator they are replacing—butwithout cutting too
many corners in approximation, in order to keep fidelity high
to capture non-stationary relationships, requires a nimble
approach. Many interesting new methods have come online
of late, including inducing points and local approximation.
Inducing points address computation time and space head
on, but sacrifice on fidelity. Existing likelihood-based tools
for choosing their multiplicity and location are difficult to
wield due to an abundanceof localminima.Local approxima-
tions (LAGP) perform better in prediction exercises because
their criteria more squarely target predictive accuracy. How-
ever, they rely on cumbersome discrete search to supplant
intractably large conditioning sets.

Here, we proposed a hybrid approach: locally induced
Gaussian processes (LIGPs). Toward that end, we developed
a novel weighted integrated mean-squared error (wIMSE)
criterion for selecting inducing points nearby predictive loca-
tions of interest. Closed forms for the criteria and derivatives
were provided. The key insight here is one of replac-
ing discrete data subset selection (LAGP) with continuous,

library-based search via wIMSE through inducing points.
Our empirical work revealed that such conditioning sets had
a highly consistent structure from one predictive location to
the next, suggesting that one-off calculations could be reused
as a template for other locations of interest.

The result is a new transductive GP learner that is faster
than the original, with comparable or improved accuracy in
out-of-sample exercises.WhenLIGP results are less accurate
than LAGP, the gaps are narrow and LAGP requires substan-
tially more computation. In some cases, LIGP is orders of
magnitude more accurate without demanding more compu-
tation. Our examples spanned illustrative (2d and 8d with
tens and hundreds thousands of points) to high-dimensional
benchmarks (21d with non-space-filling design) and real-
world simulation (8d and millions of runs).

We see these promising results as providing a solid foun-
dation from which to explore improvements: from accurate
and even faster predictions; to broader application such as
in low-signal and even heteroskedastic (Binois et al. 2019)
stochastic simulation experiments. We have some specific
ideas. Rather than NN neighborhoods for each predictive
location, thrifty ALC alternatives (e.g., alcray in laGP,
Gramacy andHaaland 2016)may enhance the hybrid. Kernel
support could be expanded to include other families, such as
Matérn, or to include locally separable lengthscales. In addi-
tion, automating the choice of local sizes (m, n) through a
Bayesian optimization of out-of-sample RMSE could help
make the methodology more plug-n-play.

Acknowledgements We would like to thank the journal editor and ref-
erees for their thorough review of this paper. They provided valuable

123

33 Page 16 of 21 Statistics and Computing (2021) 31 :33

insights and suggestions, helping improve the narrative and context of
this work. DAC and RBG recognize support from National Science
Foundation (NSF) Grant DMS-1821258.

A IMSE and ALC overview

As mentioned in Sect. 2.3, variance-based sequential design
criteria are better aligned with the goal of generating accu-
rate GP predictions than using the likelihood. We consider
variations on integrated mean-squared error (IMSE) over a
domain X, with smaller being better:

(IMSE) I =
∫

x̃∈X
σ 2(x̃) dx̃.

Choose σ 2(·) ≡ σ 2
N (·)/ν from Eq. (2), and I may be used

to optimize the N coordinates of XN , or to choose the next
(N + 1st) one (x̃N+1) in a sequential setting.9 Closed-form
expressions are available for rectangular X and common
kernels (e.g., Ankenman et al. 2010; Anagnostopoulos and
Gramacy 2013; Burnaev and Panov 2015; Leatherman et al.
2018). Analytic derivatives ∂ I

∂ x̃N+1
facilitate numerical opti-

mization (Binois et al. 2019; Gramacy 2020, Chapters 4 &
10). Approximations are common otherwise (Gramacy and
Lee 2009;Gauthier and Pronzato 2014;Gorodetsky andMar-
zouk 2016; Pratola et al. 2017).

An analogue active learning heuristic from Cohn (1993),
dubbed ALC, instead targets variance aggregated over a
discrete reference set X, originally for neural network surro-
gates:

(ALC) Δσ 2 =
∑

x̃∈X
σ 2(x̃) − σ 2

new(x̃).

Seo et al. (2000) ported ALC to GPs taking σ 2(·) = σ 2
N (·)

and σ 2
new(·) ≡ σ 2

N+1(·). If discrete and volume-based X are
similar, thenΔσ 2 ≈ c− I , where c is constant on xN+1. Dis-
crete Δσ 2 via ALC is advantageous in transductive learning
settings (Vapnik 2013), where X can be matched with a test-
ing set. Otherwise, analytic I via IMSE may be preferred.

Against that backdrop, we propose employing ALC and
IMSE to select inducing points X̄M . To our knowledge,
using such variance-based criteria is novel in the litera-
ture on the selection of inducing points. The criteria below
are framed sequentially, for an M + 1st point given M
collected already.Althoughweprefer this greedy approach—
optimizing d coordinates one-at-a-time rather than Md all
at once in a surface with many equivalent locally optimal

9 Dividing out ν removes dependence on Y-values through ν̂. Greedy
build-up of xn+1 over n = N0, . . . , N − 1 is near optimal due to a
supermartingale property (Bect et al. 2019).

configurations due to label-switching—either criteria is eas-
ily re-purposed for an all-at-once application. Under the
diagonal-corrected Nyström approximation (3) and assum-
ing coded X = [0, 1]d ,

ALC(M+1)
N = ALC(x̄M+1;XN ,YN ,X, X̄M)

= c −
∑

x̃∈X
σ 2
M+1,N (x̃), and

IMSE(M+1)
N = IMSE(x̄M+1,XN ,YN ,X, X̄M)

= E − tr
{(

K−1
M+1 − Q−1(N)

M+1

)
WM+1

}
,

(13)

where E = ∫
x̃∈X k(x̃, x̃)dx̃ and WM+1 is (M + 1) ×

(M + 1) via w(x̄i , x̄ j) = ∫
x̃∈X k(x̄i , x̃)k(x̄ j , x̃)dx̃ for i, j ∈

{1, . . . , M +1}. This derivation is similar to the wIMSE cal-
culations (10) and (11) following Binois et al. (2019).

To explore inducing point optimization, consider Her-
bie’s tooth (Lee et al. 2011) described in Sect. 2.3. Figure
9 shows variational lower-bound of the log-likelihood (left)
and ALC/IMSE surfaces (right) for x̄20 given a modestly
sized training data set (XN ,YN) of size N = 200. Similar-
ities in the two surfaces are apparent. Many low/red areas
coincide, but the optimizing locations (green dots), found
via multi-start local optimization with identically fixed ker-
nel hyperparameters, do not. Even after taking great care
to humbly restrict searchers, e.g., from crossing X̄M loca-
tions, sometimes upward of 1000 evaluations were required
to achieve convergence. Consequently, quadraticALC/IMSE
is faster.

A.1 Derivations of wIMSE and its gradient

For the predictive location x∗, assign weight kθ (x̃, x�) and
consider squared exponential kernel kθ (·, ·) with isotropic
lengthscale (1). The following is based on predictive variance
(8) and expectation of the quadratic form of a random vector
(Binois et al. 2019, Section 3.1).

wIMSE(x̄m+1,X, X̄m ,Xn, θ, x�)

=
∫

x̃∈X
kθ (x̃, x�)σ 2

n,m+1(x̃)dx̃

=
∫

x̃∈X
kθ (x̃, x�)

(
kθ (x̃, x̃) + εK

− kθ (x̃, X̄m+1)
[
K−1

m+1 − Q−1(n)
m+1

]
kθ (x̃, X̄m+1)

�)
dx̃

=
D∏

k=1

(
(1 + εK)

∫ bk

ak
kθ (x̃k , x�

k)dx̃k

−
∫ bk

ak
kθ (x̃k , x�

k)
1/2kθ (x̃k , X̄m+1,k)

[
K−1

m+1 − Q−1(n)
m+1

]

× kθ (x̃k , X̄m+1,k)
�kθ (x̃k , x�

k)
1/2dx̃k

)

123

Statistics and Computing (2021) 31 :33 Page 17 of 21 33

Fig. 9 In both panels: N = 200 training data points (black dots) and M = 19 inducing points (blue dots), selecting the twentieth one (green) by
two criteria: a variational lower bound of the log-likelihood; b ALC/IMSE. Yellow is higher/red lower. (Color figure online)

=
√

θπ(1 + εK)D

2

D∏

k=1

(
erf

{
x� − ak√

θ

}
− erf

{
x� − bk√

θ

})

− tr
{
(K−1

m+1 − Q−1
m+1)W

�
m+1

}

where W�
m+1 = ∏D

k=1W
�
m+1,k in D dimensions. The entry

in the i th row and j th column of W�
m+1,k is

w
�(i, j)
m+1,k = w�

m+1,k(x̄i,k , x̄ j,k)

=
∫ bk

ak
kθ (x̃k , x�

k)kθ (x̃k , x̄i,k)kθ (x̃k , x̄ j,k)dx̃k

=
∫ bk

ak
exp

{

− (x̃k − x�
k)

2 + (x̃k−x̄i,k)2 + (x̃k−x̄ j,k)
2

θ

}

dx̃k

=
√

πθ

12
exp

{ 2

3θ
(x̄i,kx�

k + x̄ j,kx�
k + x̄i,k x̄ j,k

− x∗2
k − x̄2i,k − x̄2j,k)

}
×

(

erf

{
ι
(i, j)
k − 3ak√

3θ

}

− erf

{
ι
(i, j)
k − 3bk√

3θ

})

where ι
(i, j)
k = x�

k + x̄i,k + x̄ j,k . x̄i,k, x̄ j,k are entries from the
i th and j th rows and kth column of X̄m+1 (i, j ∈ {1, . . . ,m+
1}) and x�

k is the k
th coordinate of x�.

The gradient of weighted integrated mean-squared error
with respect to the kth dimension of x̄m+1 is:

∂wIMSE(x̄m+1,X, X̄m,Xn, θ, x�)

∂ x̄m+1,k

= −tr

{(
∂K−1

m+1

∂ x̄m+1,k
− ∂Q−1(n)

m+1

∂ x̄m+1,k

)

W�
m+1

}

− tr

{(
K−1

m+1 − Q−1(n)
m+1

) ∂W�
m+1

∂ x̄m+1,k

}

= tr
{(

K−1
m+1

∂Km+1

∂ x̄m+1,k
K−1

m+1

− Q−1(n)
m+1

∂Q(n)
m+1

∂ x̄m+1,k
Q−1(n)

m+1

)
W�

m+1

}

− tr

{(
K−1

m+1 − Q−1(n)
m+1

) ∂W�
m+1

∂ x̄m+1,k

}
.

In the matrix
∂W�

m+1
d x̄m+1,k

, all entries are zero except the

row/column that corresponds to the row of X̄m+1 that con-
tains x̄m+1, which we place in the last m + 1st row. For the

nonzero entries in
∂W�

m+1
∂ x̄m+1,k

, we re-express them as

∂w�
m+1(x̄i , x̄m+1)

∂ x̄m+1,k
= ∂w

�(i,m+1)
m+1

∂ x̄m+1,k

D∏

k′=1,k′ �=k

w
�(i,m+1)
m+1,k′

where

∂w
�(i,m+1)
m+1

∂ x̄m+1,k

=
√

πθ

12
exp

{
2

3θ

(
x̄i,kx�

k + x̄m+1,kx�
k + x̄i,k′ x̄m+1,k

− x∗2
k − x̄2i,k − x̄2m+1,k

)}

123

33 Page 18 of 21 Statistics and Computing (2021) 31 :33

×
[
2

3θ
(x�

k − 2x̄m+1,k − x̄i,k)

×
(

erf

{
ι
(i,m+1)
k − 3ak√

3θ

}

− erf

{
ι
(i,m+1)
k − 3bk√

3θ

})

+ 2√
3πθ

(
exp

{
− (ι

(i,m+1)
k − 3ak)2

3θ

}

− exp
{

− (ι
(i,m+1)
k − 3bk)2

3θ

})]
.

Working withKm+1 andQ
(n)
m+1 is cubic inm, yet even that

is overkill. Thrifty evaluation ofEqs. (10–12) lies in construc-
tion ofQ(n)

m+1 which is equivalent toKm+1 +k�
n,m+1�n,m+1.

Evaluating k�
n,m+1�n,m+1 requires 2n − 1 products for each

of (m+1)2 entries, incurring costs inO(m2n) flops. Assum-
ing n � m, this dominates theO(m3) cost of decomposition.

More time can be saved through partitioned inverse (Bar-
nett 1979) sequential updates toK−1

m+1 after the new x̄m+1 is
chosen, porting LAGPs frugal updates to the LIGP context.
Writing Km+1 as an m-submatrix with new m + 1st column
gives

Km+1 =
[

Km km(x̄m+1)

km(x̄m+1)
� kθ (x̄m+1, x̄m+1)

]
so that

K−1
m+1 =

[
K−1

m + ρηη� η

η� ρ−1

] (14)

using ρ = kθ (x̄m+1, x̄m+1) − k�
m(x̄m+1)K−1

m km(x̄m+1) and
m-length column vector η = −ρ−1K−1

m km(x̄m+1). Updating
K−1

m+1 requires calculation of ρ, η, and ηη�, each of which is
inO(m2). Thus, we reduce the computational complexity of
K−1

m+1 fromO (
m3

)
toO (

m2
)
. Similar partitioning provides

sequential updates to Ω
(m+1)
n , a diagonal matrix:

Ω(m+1)
n = Diag

(
Kn + εK In − kn,m+1K

−1
m+1k

�
n,m+1

)

= Ω(m)
n − ρ−1Diag

{
ζ ζ�}

(15)

where ζ = knmK−1
m km(x̄m+1) − kn(x̄m+1). Updates of

Ω
(m+1)
n without partitioning, driven by matrix–vector prod-

uct(s) kn,m+1K
−1
m+1k

�
n,m+1 involve m2n flops. Using (15)

reduces that to O(mn).
Unlike in Eq. (14), Q(n)

m cannot be trivially augmented to
construct Q(n)

m+1 due to the presence of Ω
(m)
n which is also

embedded in Q(n)
m . Yet there are some time savings to be

found in the partitioned inverse

Q(n)
m+1 =

[
Q(n)

m∗ γ (x̄m+1)

γ (x̄m+1)
� ψ(x̄m+1)

]

Q−1(n)
m+1 =

[
Q−1(n)

m∗ + υξξ� ξ

ξ� υ−1

] (16)

withQ(n)
m∗ = Km+k�

nmΩ
(m+1)−1
n knm built via updated values

ofΩ(m+1)
n ,γ (x̄m+1) = km(x̄m+1)+k�

nmΩ
−1(m+1)
n kn(x̄m+1),

ψ(x̄m+1) = kθ (x̄m+1, x̄m+1)+kn(x̄m+1)
�Ω

−1(m+1)
n kn(x̄m+1),

υ = ψ(x̄m+1) − γ (x̄m+1)
�Q−1(n)

m∗ γ (x̄m+1) and ξ =
−υ−1Q−1(n)

m∗ γ (x̄m+1). Similar to Q(n)
m , calculating Q(n)

m∗
requires in flops inO(m2n). Consequently, the entire scheme
can be managed in O(m2n).

B Determining neighborhood size

Little attention is paid in the literature to the choosing the
number of (global) inducing points (Seeger et al. 2003; Tit-
sias 2009b; Azzimonti et al. 2016) relative to problem size
(N , d), except on computational grounds—smaller M is
better. The same is true for local neighborhood size n in
LAGP. Although there is evidence that the laGP default
of n = 50 is too small (Gramacy 2016), especially with
larger input dimension d, cubically growing expense in n
limits the efficacy of larger n in practice. With local inducing
points this is mitigated through cubic-in-m proxies, allowing
larger local neighborhoods, thus implying more latitude to
explore/choose good (m, n) combinations.

Toward that end, we considered a coarse grid of (m, n)

and predictive RMSEs on Herbie’s tooth (d = 2) and bore-
hole (d = 8) toy problems. Setup details are identical to
descriptions in Sects. 3.2 and 5.2, respectively, and we used
the qNorm (Φ−1) template throughout. An LHS testing set
of size N ′ = 1000 was used to generate the response sur-
faces of RMSEs reported in Fig. 10. These are shown in log
space for a more visually appealing color scheme, and were
obtained after GP smoothing to remove any artifacts from
random testing. Grid elements where m > n were omitted
from the simulation on the grounds that there are no run-time
benefits to those choices.

Observe that both surfaces are fairly flat across a wide
swath of m, excepting quick ascent (decrease in accuracy)
for smaller numbers of inducing points in the left panel. The
situation is similar for n. Best settings are apparently input-
dimension dependent. Numbers of inducing points as low as
m = 10 seems sufficient in 2d (top panel), whereas m = 80
is needed in 8d. For borehole, it appears that larger neigh-
borhoods n are better, perhaps because the response surface
is very smooth and the likelihood prefers long lengthscales
(Gramacy 2016). A setting like n = 150 seems to offer good
results without being too large. The situation is different for

123

Statistics and Computing (2021) 31 :33 Page 19 of 21 33

Fig. 10 log(RMSE) over inducing points m and neighborhood n: Her-
bie’s tooth (top) and borehole (bottom). (Color figure online)

Herbie’s tooth. Here, larger n has deleterious effects. Its non-
stationary nature demands reactivity which is proffered by
smaller local neighborhood.A setting ofn = 100 looks good.

These are just two problems, and it is clearly not reason-
able to grid-out (m, n) space for all future applications. But
nevertheless, we have found that these rules of thumb port
well to our empirical work in Sect. 5. Our satdrag exam-
ple (d = 8) and classic d = 21 benchmark work well with
the settings found for borehole, for example. Some ideas for
automating the choice of (m, n) are discussed in Sect. 6.

References

Anagnostopoulos, C., Gramacy, R.B.: Information–theoretic data dis-
carding for dynamic trees on data streams. Entropy 15(12),
5510–5535 (2013)

Ankenman, B., Nelson, B.L., Staum, J.: Stochastic kriging for simula-
tion metamodeling. Oper. Res. 58(2), 371–382 (2010)

Aune, E., Simpson, D.P., Eidsvik, J.: Parameter estimation in high
dimensional Gaussian distributions. Stat. Comput. 24(2), 247–263
(2014)

Azzimonti, D., Bect, J., Chevalier, C., Ginsbourger, D.: Quantifying
uncertainties on excursion sets under a gaussian randomfield prior.
SIAM/ASA J. Uncertain. Quantif. 4(1), 850–874 (2016)

Banerjee, S., Gelfand, A.E., Finley, A.O., Sang, H.: Gaussian predictive
process models for large spatial data sets. J. R. Stat. Soc. Ser. B
Stat. Methodol. 70(4), 825–848 (2008)

Barnett, S.:MatrixMethods for Engineers andScientists.McGraw-Hill,
New York (1979)

Bauer, M., van der Wilk, M., Rasmussen, C.E.: Understanding proba-
bilistic sparse Gaussian process approximations. In: Advances in
Neural Information Processing Systems, vol. 29, pp. 1533–1541
(2016)

Bect, J., Bachoc, F., Ginsbourger, D., et al.: A supermartingale approach
to Gaussian process based sequential design of experiments.
Bernoulli 25(4A), 2883–2919 (2019)

Binois, M., Huang, J., Gramacy, R.B., Ludkovski, M.: Replication or
exploration? Sequential design for stochastic simulation experi-
ments. Technometrics 61(1), 7–23 (2019)

Burnaev, E., Panov, M.: Adaptive design of experiments based on
gaussian processes. In: International Symposium on Statistical
Learning and Data Sciences, pp. 116–125. Springer, Berlin (2015)

Busby, D.: Hierarchical adaptive experimental design for Gaussian pro-
cess emulators. Reliab. Eng. Syst. Saf. 94(7), 1183–1193 (2009)

Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm
for bound constrained optimization. SIAM J. Sci. Comput. 16(5),
1190–1208 (1995)

Carnell, R.: lhs: Latin Hypercube Samples. R package version 1.0.1
(2019)

Chen, J., Cao, N., Low, K.H., Ouyang, R., Tan, C.K.-Y., Jaillet, P.: Par-
allel Gaussian process regression with low-rank covariance matrix
approximations. In: Proceedings of the Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence, UAI’13, pp. 152–161.
AUAI Press, Arlington (2013)

Cohn, D.A.: Neural network exploration using optimal experiment
design. In: Proceedings of the 6th International Conference on
Neural Information Processing Systems, NIPS’93, pp. 679–686.
Morgan Kaufmann Publishers Inc, San Francisco (1993)

Csató, L., Opper, M.: Sparse on-line Gaussian processes. Neural Com-
put. 14(3), 641–668 (2002)

123

33 Page 20 of 21 Statistics and Computing (2021) 31 :33

Datta, A., Banerjee, S., Finley, A.O., Gelfand, A.E.: Hierarchical
nearest-neighbor Gaussian process models for large geostatistical
datasets. J. Am. Stat. Assoc. 111(514), 800–812 (2016)

Emery, X.: The kriging update equations and their application to the
selection of neighboring data. Comput. Geosci. 13(3), 269–280
(2009)

Fernández, F.L., Martino, L., Elvira, V., Delgado, D., López-Santiago,
J.: Adaptive quadrature schemes for Bayesian inference via active
learning. IEEE Access 8, 208462–208483 (2020)

Gardner, J., Pleiss,G.,Weinberger,K.Q.,Bindel,D.,Wilson,A.G.:Gpy-
torch: Blackbox matrix-matrix Gaussian process inference with
GPU acceleration. In: Advances in Neural Information Processing
Systems, pp. 7576–7586 (2018a)

Gardner, J., Pleiss, G.,Wu, R.,Weinberger, K.,Wilson, A.: Product ker-
nel interpolation for scalable Gaussian processes. In: Storkey, A.,
Perez-Cruz, F. (eds.) Proceedings of the Twenty-First International
Conference on Artificial Intelligence and Statistics, Volume 84
of Proceedings of Machine Learning Research, pp. 1407–1416.
PMLR (2018b)

Garton, N., Niemi, J., Carriquiry, A.: Knot selection in sparse Gaussian
processes with a variational objective function. ASA Data Sci. J.
Stat. Anal. Data Min. 13, 324–336 (2020)

Gauthier, B., Pronzato, L.: Spectral approximation of the IMSE cri-
terion for optimal designs in kernel-based interpolation models.
SIAM/ASA J. Uncertain. Quantif. 2(1), 805–825 (2014)

Gorodetsky, A., Marzouk, Y.: Mercer kernels and integrated vari-
ance experimental design: connections between Gaussian process
regression and polynomial approximation. SIAM/ASA J. Uncer-
tain. Quantif. 4(1), 796–828 (2016)

Gramacy, R.B.: laGP: large-scale spatial modeling via local approxi-
mate Gaussian processes in R. J. Stat. Softw. 72(1), 1–46 (2016)

Gramacy, R.B.: Surrogates: Gaussian Process Modeling, Design and
Optimization for the Applied Sciences. Chapman Hall/CRC, Boca
Raton. http://bobby.gramacy.com/surrogates/ (2020)

Gramacy, R.B., Apley, D.W.: Local Gaussian process approximation
for large computer experiments. J. Comput. Graph. Stat. 24(2),
561–578 (2015)

Gramacy, R., Haaland, B.: Speeding up neighborhood search in
local Gaussian process prediction. Technometrics 58(3), 294–303
(2016)

Gramacy, R.B., Lee, H.K.: Bayesian treed Gaussian process models
with an application to computer modeling. J. Am. Stat. Assoc.
103(483), 1119–1130 (2008)

Gramacy, R.B., Lee, H.K.: Adaptive design and analysis of supercom-
puter experiments. Technometrics 51(2), 130–145 (2009)

Gramacy, R., Niemi, J., Weiss, R.: Massively parallel approximate
Gaussian process regression. SIAM/ASA J. Uncertain. Quantif.
2(1), 564–584 (2014)

Harville, D.A.: Matrix Algebra From a Statistician’s Perspective.
Springer, New York (2011)

Hensman, J., Fusi, N., Lawrence, N.D.: Gaussian processes for big data.
In: UAI’13, pp. 282–290. AUAI Press, Arlington (2013)

Hoang, T.N., Hoang, Q.M., Low, B.K.H.: A unifying framework of
anytime sparse gaussian process regressionmodels with stochastic
variational inference for big data. In: ICML, pp. 569–578 (2015)

Hoffman,M.D., Blei, D.M.,Wang, C., Paisley, J.: Stochastic variational
inference. J. Mach. Learn. Res. 14(1), 1303–1347 (2013)

Jankowiak, M., Gardner, J.: Neural likelihoods for multi-output Gaus-
sian processes. arXiv preprint arXiv:1905.13697 (2019)

Johnson, M.E., Moore, L., Ylvisaker, D.: Minimax and maximin dis-
tance designs. J. Stat. Plan. Inference 26, 131–148 (1990)

Kanagawa, M., Hennig, P.: Convergence guarantees for adaptive
Bayesian quadrature methods. In: Advances in Neural Informa-
tion Processing Systems, pp. 6237–6248 (2019)

Katzfuss, M., Guinness, J.: A general framework for Vecchia approxi-
mations of Gaussian processes. Stat. Sci. 36(1), 124–141 (2021)

Katzfuss, M., Guinness, J., Lawrence, E.: Scaled Vecchia approx-
imation for fast computer-model emulation. arXiv preprint
arXiv:2005.00386 (2020)

Kaufman, C., Bingham, D., Habib, S., Heitmann, K., Frieman, J.:
Efficient emulators of computer experiments using compactly sup-
ported correlation functions, with an application to cosmology.
Ann. Appl. Stat. 5(4), 2470–2492 (2011)

Kim, H.M.,Mallick, B.K., Holmes, C.C.: Analyzing nonstationary spa-
tial data using piecewise Gaussian processes. J. Am. Stat. Assoc.
100(470), 653–668 (2005)

Leatherman, E.R., Santner, T.J., Dean, A.M.: Computer experiment
designs for accurate prediction. Stat. Comput. 28(4), 739–751
(2018)

Lee, H., Gramacy, R., Linkletter, C., Gray, G.: Optimization subject to
hidden constraints via statistical emulation. Pac. J. Optim. 7(3),
467–478 (2011)

Liu, H., Cai, J., Ong, Y.-S., Wang, Y.: Understanding and comparing
scalable Gaussian process regression for big data. Knowl. Based
Syst. 164, 324–335 (2019)

Mckay, D., Beckman, R., Conover, W.: A comparison of three methods
for selecting vales of input variables in the analysis of output from
a computer code. Technometrics 21, 239–245 (1979)

Mehta, P., Walker, A., Lawrence, E., Linares, R., Higdon, D., Koller, J.:
Modeling satellite drag coefficients with response surfaces. Adv.
Space Res. 54(8), 1590–1607 (2014)

Morris, M.D., Mitchell, T.J.: Exploratory designs for computational
experiments. J. Stat. Plan. Inference 43, 381–402 (1995)

Neal,R.M.:Regression and classificationusingGaussianprocess priors.
Bayesian Stat. 6, 475–501 (1998)

Pleiss, G., Gardner, J., Weinberger, K., Wilson, A.G.: Constant-
time predictive distributions for Gaussian processes. In Dy, J.,
Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning, vol. 80, pp. 4114–4123. PMLR, Stock-
holmsmãssan, Stockholm Sweden (2018)

Poggio, T., Girosi, F.: Networks for approximation and learning. In:
Proceedings of the IEEE, vol. 78, pp. 1481 – 1497. Eq. 25 (1990)

Pratola, M.T., Harari, O., Bingham, D., Flowers, G.E.: Design and anal-
ysis of experiments on nonconvex regions. Technometrics 59(1),
36–47 (2017)

Quiñonero, J., Rasmussen, C.: A unifying view of sparse approximate
Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959
(2005)

R Core Team: R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna (2020)

Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning. MIT
Press, Cambridge (2006)

Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis
of computer experiments. Stat. Sci. 4, 409–423 (1989)

Santner, T.,Williams, B., Notz,W.: The Design and Analysis Computer
Experiments, 2nd edn. Springer, Berlin (2018)

Schürch, M., Azzimonti, D., Benavoli, A., Zaffalon, M.: Recursive esti-
mation for sparse Gaussian process regression. Automatica 120,
109127 (2020)

Seeger, M., Williams, C., Lawrence, N.: Fast forward selection to
speed up sparseGaussian process regression. In: Proceedings—9th
International Conference on Artificial Intelligence and Statistics
(AISTATS 2003), p. 9 (2003)

Seo, S., Wallat, M., Graepel, T., Obermayer, K.: Gaussian process
regression: active data selection and test point rejection. In: Mus-
tererkennung 2000, pp. 27–34. Springer, Berlin (2000)

Smola, A.J., Bartlett, P.L.: Sparse greedy Gaussian process regression.
In: Leen, T.K.,Dietterich, T.G., Tresp,V. (eds.)Advances inNeural
Information Processing Systems, vol. 13, pp. 619–625.MIT Press,
Cambridge (2001)

123

http://bobby.gramacy.com/surrogates/
http://arxiv.org/abs/1905.13697
http://arxiv.org/abs/2005.00386

Statistics and Computing (2021) 31 :33 Page 21 of 21 33

Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-
inputs. In: Advances in Neural Information Processing Systems,
vol. 18, pp. 1257–1264 (2006)

Solin, A., Särkkä, S.: Hilbert space methods for reduced-rank Gaussian
process regression. Stat. Comput. 30(2), 419–446 (2020)

Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging,
Springer Series in Statistics. Springer, New York (2012)

Stein,M., Chi, Z.,Welty, L.: Approximating likelihoods for large spatial
data sets. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 66(2), 275–296
(2004)

Sun, F., Gramacy, R., Haaland, B., Lawrence, E., Walker, A.: Emulat-
ing satellite drag from large simulation experiments. IAM/ASA J.
Uncertain. Quantif. 7(2), 720–759 (2019)

Sung, C., Gramacy, R., Haaland, B.: Exploiting variance reduction
potential in local Gaussian process search. Stat. Sin. 28, 577–600
(2018)

Svendsen, D.H., Martino, L., Camps-Valls, G.: Active emulation of
computer codes with Gaussian processes—application to remote
sensing. Pattern Recognit. 100, 107103 (2020)

Tan, L.S., Ong, V.M., Nott, D.J., Jasra, A.: Variational inference for
sparse spectrumGaussian process regression. Stat. Comput. 26(6),
1243–1261 (2016)

Titsias,M.:Variational learningof inducingvariables in sparseGaussian
processes. In: Artificial Intelligence and Statistics, pp. 567–574
(2009)

Titsias, M.: Variational learning of inducing variables in sparse Gaus-
sian processes. In: van Dyk, D., Welling, M. (eds.) Proceedings
of the Twelth International Conference on Artificial Intelligence
and Statistics, Volume 5 of Proceedings of Machine Learning
Research, pp. 567–574. PMLR (2009b)

Ubaru, S., Chen, J., Saad, Y.: Fast estimation of tr(f (A)) via stochastic
Lanczos quadrature. SIAM J. Matrix Anal. Appl. 38(4), 1075–
1099 (2017)

Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New
York (2013)

Vecchia, A.: Estimation and model identification for continuous spa-
tial processes. J. R. Stat. Soc. Ser. B (Methodol.) 50(2), 297–312
(1988)

Vijayakumar, S., Schaal, S.: Locally weighted projection regression: an
o(n) algorithm for incremental real time learning in high dimen-
sional space. In: Proceedings of the Seventeenth International
Conference on Machine Learning (ICML 2000), vol. 1, pp. 288–
293 (2000)

Wahba,G.: SplineModels forObservationalData. Society for Industrial
and Applied Mathematics, Philadelphia (1990). Ch. 7

Wang,H., Li, J.:AdaptiveGaussian process approximation forBayesian
inference with expensive likelihood functions. Neural Comput.
30(11), 3072–3094 (2018)

Wang, K., Pleiss, G., Gardner, J., Tyree, S., Weinberger, K.Q., Wil-
son, A.G.: Exact Gaussian processes on a million data points. In:
Advances in Neural Information Processing Systems, pp. 14622–
14632 (2019)

Williams, C.K.I., Seeger, M.: Using the Nyström method to speed up
kernel machines. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.)
Advances in Neural Information Processing Systems, vol. 13, pp.
682–688. MIT Press, Cambridge (2001)

Wilson, A., Nickisch, H.: Kernel interpolation for scalable structured
Gaussian processes (KISS-GP). In: International Conference on
Machine Learning, pp. 1775–1784 (2015)

Worley, B.A.: Deterministic uncertainty analysis. Tech. rep., Oak Ridge
National Lab. (1987)

Zhang, B., Cole, D.A., Gramacy, R.B.: Distance-distributed design for
Gaussian process surrogates. Technometrics 63(1), 40–52 (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Locally induced Gaussian processes for large-scale simulation experiments
	Abstract
	1 Introduction
	2 Foundations in GP approximation
	2.1 Gaussian process regression
	2.2 Inducing points
	2.3 Optimal induction
	2.4 Local approximate GPs

	3 Inducing point neighborhoods
	3.1 Sequential selection of local inducing points
	3.2 Illustrations of Greedy inducing point search

	4 Refinements to neighborhood composition
	4.1 Inducing points template
	4.2 Space-filling templates

	5 Computation and benchmarking
	5.1 Implementation details
	5.2 Borehole
	5.3 Robot arm
	5.4 Satellite drag

	6 Discussion
	Acknowledgements
	A IMSE and ALC overview
	A.1 Derivations of wIMSE and its gradient

	B Determining neighborhood size
	References

