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Keywords:

The coupling between plasmons and external fields can facilitate effective light manipulations. Here, we

InSb implement time-domain THz spectroscopy in a Voigt reflection geometry to study the transverse-field magneto-
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optical effects in indium antimonide (InSb) at variable temperatures. The obtained results are analyzed by a
multi-carrier model, which allows the properties of both electrons and holes in undoped InSb to be fully char-
acterized between 5 K and 300 K. At higher temperatures, the change in the thermal carrier density effectively

modifies the dispersions of the three magneto-plasmon bands and produces strong reflectance modulations that
can be sensitively tuned by the temperature. At low temperatures when the conduction is dominated by
extrinsically doped electrons, a transport anisotropy in the (001) plane is detected. These results provide a
systematic understanding on the magneto-plasmon band structure in InSb and their coupling with THz lights.

Narrow-gap semiconductors with high electron mobilities and low
effective masses provide unique material platforms where carrier dy-
namics can effectively mediate the coupling between light and static
fields [1]. One prototypical example is InSb [2-19], which hosts strong
magneto-optical (MO) couplings that are tunable by temperature and
doping [18-23]. In recent years, tailored MO effects in InSb have
enabled a variety of intriguing functionalities, such as field induced
transparency [12,22], nonreciprocal polarization rotation or optical
isolation [18,19,24], and nontrivial photonic topology [11]. Besides
these successful demonstrations, the interplay between the plasmonic
charge oscillations and cyclotron resonances in InSb can also produce
field-controlled reflectivity modulations with superior performances.
Such effects produced at THz frequencies by intrinsic samples are less
explored in the existing literature, and thus needs to be systematically
mapped out, particularly at low temperatures.

In this work, we measure the THz reflectances of undoped InSb single
crystals in a Voigt geometry with transverse magnetic fields up to 0.7 T
and at varied temperatures from 5 K to 300 K. Due to the gapped bulk
plasmon band structure, the measured reflectance is strongly modulated
by the external field. The polarity, strength, and bandwidth of the
modulation can all be flexibly tuned by controlling the plasma frequency
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and the cyclotron frequency separately. The MO effect also sensitively
traces the transport properties of electrons and holes in InSb, allowing
the different conduction regions and a low-temperature anisotropy to be
faithfully and contactlessly captured. These findings not only provide a
clearer understanding on how the magnetic plasmon bands couple to the
light reflections, but also yield important material parameters of InSb
that are valuable for future active THz device developments.

Under a y-direction magnetic field B, the permittivity of a carrier
plasma is [1,3,4,6,12,18,25]:
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For a semiconductor such as InSb, with one electron band and two
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electron, light hole and heavy hole contributions, with corresponding
effective mass m]f', density n;, and mobility Wy €0 IS the vacuum
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permittivity, and ¢, is the material permittivity at infinite frequency, my,<<my,. Since the density of impurities in undoped single crystals is
oY = eB/m;.' is the cyclotron frequency, I'; = e/u;m; is the carrier scat- low, the samples studied in this work are quasi-intrinsic semiconductors
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Fig. 2. Field-dependent THz reflectances of undoped InSb (a, b) Reflectance spectra of InSb at 300K and 50K measured under different in-plane magnetic fields. (c, d)
Corresponding field-induced reflectance changes comparing data obtained with and without a magnetic field. Dashed curves in (a-d) show the fitting results based on

Eq. (3).



Y. Liang et al. Optical Materials 112 (2021) 110831
b 300 < A
2 2 10%2L o electron &9
o heavy hole
— — ight hole
S ~ S h
g g 152 ~100}
- = /
, & o
X x 10°k /I /A/L_
o A
: 0.5 : w B=07T 05 / A
N . - 19 P LA L
0 051 152 253 0 051 152 253 1075 100 200 300
w/2n(THzZ) w/2n(THz) T(K)
d w k=0 Wi, (k=0) W, (k=0) LIPPY
/ 4 15
0. . L ?a-—e——a—--e—e.a.o_ee_es
o N
'd 14 % £ 400 o electron
E 0 5\ 13> ~> o r‘lelavly hole
m 425 e A light hole
02 = 12% % S m a0,
’ -2 ey
11 10
0 051 152 253 0 051 152 253 0 100 200 300
w/2n(THz) w/2n(THz) T (K)

Fig. 3. Temperature dependences of the magneto-plasmonic properties (a, b, d, e) Temperature-frequency (a, b) and magnetic field-frequency (d, e) diagrams of the
THz reflectance. Dashed lines trace the changes in the critical frequencies. (a, d) show the experimental data, and (b, e) show the simulated results. (c, f)
Temperature-dependent changes in the carrier densities(c), mobilities(f) of electron, heavy hole, light hole.

the samples are mainly determined by electrons, though at frequencies

near wﬁhh

cant.

Plane waves propagating in such a gyrotropic medium are super-
positions of TE modes (electric field polarizes along the magnetic field
orientation) and TM modes (electric field polarizes perpendicular to the
magnetic field). In this work, we focus on the TM modes, which follow
the dispersion relation of [1,3,4,6,12,18,25]:

) the effects of heavy hole cyclotron resonance is also signifi-
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The polarizations of the TM modes are determined by: E,/ E, = —
ie, /€. At zero field (B = 0), TM modes are linearly polarized (Fig. 1c,
inset) and only present above the normalized plasma frequency cu; =

vV (mg))2 /€w (Fig. 1a). When a nonzero magnetic field is applied, this
single bulk optical band splits into three (Fig. 1d, g). The lowest band,
unique in the multi-carrier case, is produced by the field responses of the
electron-hole hybrid [1]; The middle band is right-elliptically polarized
(Fig. 1c) and called the cyclotron resonance in-active (CRI) mode [1].
The highest band, left-elliptically polarized, is called the cyclotron
resonance active (CRA) mode. The three bands are separated by two
bandgaps: BG1 and BG2. As shown in Fig. 1d and g, the positions and
sizes of the bandgaps are field-dependent. In the large field limit (B—
), BG1 closes near the heavy hole cyclotron frequency o™, and the
bottom edge of BG2 asymptotically approaches the electron cyclotron
frequency w®.

The presence of field-induced bulk optical bandgaps strongly mod-
ulates the reflectance of light incidences that follow the Voigt configu-
ration (inset in Fig. 1b). Solving the wave equation while considering the
continuity of tangential components of the electric and magnetic fields
at the boundary, we obtain the reflection coefficient for a TM plane wave
that incidents normally from a semi-infinite dielectric medium (with an
isotropic permittivity £4) to a semi-infinite gyrotropic plasma,

bV Ve 3)
M e +

Fig. 1b, e and h plot the reflectance (R = |rTM|2) spectra for an air/
plasma interface (¢4 = 1) under different field strengths. Near-unity
reflectances are found inside BG1 and BG2, whereas the reflectances
in each TM band are significantly suppressed.

In realistic materials with finite carriers mobilities, the nonzero
carrier scattering rates lead to modified plasmon dispersions (dashed
curves, Fig. la, d, g). True energy gaps that strictly forbid the bulk
plasmon propagation no longer exist, but the optical densities of states
inside the bandgaps remain low. Correspondingly, although the reflec-
tance spectra (dashed curves, Fig. 1b, e, h) deviate from the ideal lossless
cases, the magneto-optic modulations near the plasmon bandgap are still
very significant. Fig. 1f and i highlight the field effects by calculating the
ratio between the nonzero-field reflectance (R(B)) and the zero-field
reflectance (R(0)). The field-induced reflectance modulation is particu-
larly strong in the frequency window covering the CRI band and BG2. As
already discussed, the bandwidth of such frequency window increases
with the external field.

To study the field-controlled reflectance changes in experiments, we
perform terahertz time-domain spectroscopy (THz-TDS) measurements
in Voigt configuration on nominally undoped (001) InSb single crystals
(MTI Corp.) at different temperatures and fields. Fig. 2a and b show the
variable-field reflectance spectra obtained at 300 K and 50 K. Here, the
absolute reflectance R(B) is measured using an Au plate as the reference,
which has near-constant THz reflectances below 3 THz (More experi-
mental detail can be find in Supplemental Material). Due to the posi-
tioning error associated with the sample exchange and the atmospheric
light absorptions [12] that varies as the lab humidity fluctuates, minor
spurious signals in R(B) are inevitable. In comparison, the
self-referenced field-induced reflectance change spectra R(B)/R(0) tends
to be more robust (Fig. 2c and d). At 300 K, a single reflectance
enhancement peak near 2.2 THz is detected (Fig. 2c). As shown by the
theoretical calculation (Fig. 1f, i), the position of this peak is
field-independent and determined by a);. At 50 K, this peak moves to
0.45 THz, indicating a much lower plasma frequency caused by the

weakened thermal activation of carriers. Since a); is very low at 50 K,

BG2 becomes well separated from a); even for small magnetic fields. As a
result, a second peak emerges in R(B)/R(0), which has a field-dependent
center frequency that traces the position of BG2 (~a)£e)) (Fig. 2d). For
both temperatures, the observed data can be well fitted by the theoret-
ical model as described by Eq. (3) (dashed line curves, Fig. 2a—d).

To better visualize the dependences of the light reflection on tem-
perature and field, we plot the experimental data obtainedat5 K< T <
300 Kand 0 T<B<O0.7 T in forms of temperature-frequency and
field-frequency diagrams (Fig. 3a, d). For comparison, theoretical
calculation results are also shown in Fig. 3b and e. On these diagrams,
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Fig. 4. Anisotropy of carrier properties in InSb. (a, b) Temperature-dependent electron density (a) and mobility (b) measured at different in-plane sample rotations.
As shown by the inset of (a), # marks the angle between the external magnetic field and the [110] lattice axis.

the changes in critical frequencies, including o, a);, and the lower
edges of CRI, CRA bands (wcri(k = 0), wcra(k = 0)) are traced by dashed
lines.

Clearly, the field-induced reflectance modulations mainly occur
within the frequency range between wcg;(k = 0) and wcra (k = 0). Such

frequency window is wider at low temperatures when a); is much

smaller than a)ﬁe). The width reaches 1.2 THz at 50 K for a field of 0.7 T.
The reflectance is enhanced by the magnetic field for frequencies above
co;, and suppressed for frequencies below w;. As the temperature drops

from 300K to 150 K, since m; is reduced by more than 80%, the polarity

of field-induced reflectance change alters for a wide range of light fre-
quencies. In comparison, ol only depends on the temperature weakly
due to the small reduction in effective mass [26]. At a fixed temperature,

R(B)/R(0) is largest when w,* and w® are in resonance.

Based on the THz reflectance data, temperature-dependent carrier
parameters in the undoped InSb sample are extracted (Fig. 3c, f). Above
150 K, the conduction in InSb is dominated by thermally activated
intrinsic carriers. Consequently, the change in electron and hole den-

sities follows the Arrhenius law (n ~ exp( - %) ), where the activation

energy E;~0.29 eV represent the electronic bandgap size. Below 150 K,
as the population of the thermally excited intrinsic carriers diminishes,
extrinsic carriers doped from ionized impurities prevail, leading to the
nearly constant 102° m~2 level low-temperature electron densities. The
changes in electron and holes mobilities also fall into two temperature
regimes (Fig. 3f). At higher temperatures (T > 50 K), electron-phonon
interaction is the dominant venue of carrier scattering in InSb [23]. As
the phonon density decreases with the reducing temperature, carrier
mobilities rise. This trend is however reversed for temperatures below
50 K. Such behavior is due to the scattering between carriers and the
charged impurity dopants, which dominates over the carrier-phonon
scattering process at low temperatures and is stronger when the ther-
mal energy is low.

By rotating the sample in-plane, carrier properties along different
directions in the (001) plane can be characterized and compared. While
the THz magneto-reflectance is largely isotropic at room temperature,
clear anisotropy is observed at low temperatures. As shown in Fig. 4, the
low temperature carrier mobility is highest along the [110] crystal axis,
and lowest along the [110] axis (Fig. 4b). The trend of the electron
density is opposite to the mobility, which minimizes along the [110] axis
and maximizes along the [lTO} axis (Fig. 4a). Such uniaxial anisotropy,
distinct from the Hamiltonian calculated based on the Zincblende cubic
lattice structure [27], is likely caused by the anisotropic energy profile
associated with the impurity dopants. Consistent with this attribution,
similar anisotropy was not observed in experiments where the effects
related to the impurity doping are weak, such as when high-purity
samples are used [28] or when intrinsic thermal carriers dominate [10].

In summary, we have modeled and characterized the THz reflectance

of undoped InSb single crystals for a wide range of temperatures and
fields. Out of the three bulk TM bands, the field-induced reflectance
modulations mainly come from the two electron dominated ones (CRI
and CRA), whereas the contribution from the electron-hole hybrid band
is very weak. By tuning the plasma frequency and cyclotron frequency
relative to each other, the overall profile of the magneto-reflectance
spectrum can be flexibly modified, allowing control over both the
strength and the polarity of the field effect. Additionally, contactless
measurements of the temperature-dependent carrier parameters in InSb
are also obtained from 5K to 300K, yielding results highly useful for
future device design.
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