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ABSTRACT

A common challenge in computer experiments and related fields is to efficiently explore the input space
using a small number of samples, that is, the experimental design problem. Much of the recent focus in the
computer experiment literature, where modeling is often via Gaussian process (GP) surrogates, has been
on space-filling designs, via maximin distance, Latin hypercube, etc. However, it is easy to demonstrate
empirically that such designs disappoint when the model hyperparameterization is unknown, and must
be estimated from data observed at the chosen design sites. This is true evenwhen the performancemetric
is prediction-based, or when the target of interest is inherently or eventually sequential in nature, such
as in blackbox (Bayesian) optimization. Here we expose such inefficiencies, showing that in many cases a
purely randomdesign is superior to higher-powered alternatives.We then propose a family of new schemes
by reverse engineering the qualities of the random designs which give the best estimates of GP length
scales. Specifically, we study the distribution of pairwise distances between design elements, and develop
a numerical scheme to optimize those distances for a given sample size and dimension. We illustrate how
our distance-based designs, and their hybrids withmore conventional space-filling schemes, outperform in
both static (one-shot design) and sequential settings.
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1. Introduction

Computer simulation experiments are widely used in the
applied sciences to simulate time-consuming or costly physical,
biological, or social dynamics. Depending on the dynamics
being simulated, these experiments can themselves be com-
putationally demanding, limiting the number of runs that can
be entertained. Design and meta-modeling considerations have
spawned a research area at the intersection of spatial model-
ing, optimization, sensitivity analysis, and calibration. Santner,
Williams, and Notz (2003) provided an excellent review.

Gaussian process (GP) surrogates, originally for interpolat-
ing data from deterministic computer simulations (Sacks et al.
1989), have percolated to the top of the hierarchy formanymeta-
modeling purposes. GP surrogates are fundamentally the same
kriging from the spatial statistics literature (Matheron 1963),
but generally applied in higher dimensional (i.e., >2d) settings.
They are preferred for their simple, partially analytic, nonpara-
metric structure. GPs’ out-of-sample predictive accuracy and
coverage properties are integral to diverse applications such as
Bayesian optimization (BO, Jones, Schonlau, and Welch 1998),
calibration (Kennedy and O’Hagan 2001; Higdon et al. 2004),
and input sensitivity analysis (Saltelli et al. 2008). Although
there aremany variations onGP specification, Chen et al. (2016)
nicely summarize how such nuances often have little impact in
practice.

On the other hand, Chen et al. cited experimental design as
playing an out-sized role. Despite GPs’ elevation to “canonical”
status as surrogates, there has not been quite the same degree
of confluence in how to design a computer experiment for the
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purpose of such modeling. In part this is simply a consequence
of different goals emitting different criteria for valuing, and thus
selecting, inputs. An exception may be the general agreement
that it is sensible, if possible, to proceed sequentially, either one
point at a time or in batches. An underlying theme for static
(all-at-once) design, or for seeding a sequential design, has been
to seek space-fillingness, where the selected inputs are spread
out across the study space. For a nice review, see Pronzato and
Müller (2011).

There are many ways in which a design might be con-
sidered space-filling. Maximin-distance and minimax-distance
designs (Johnson, Moore, and Ylvisaker 1990) are two common
approaches based on geometric criteria. A maximin design
attempts to make the smallest distance between neighboring
points as large as possible; conversely,minimax attempts tomin-
imize themaximum distance. A common variation onmaximin
is φp (Morris and Mitchell 1995),

φp =
[

K
∑

k=1

Jkd
−p
k

]1/p

,

where dk is one of the K unique pairwise distances in a design
and Jk is the number of pairs at that distance.1 Designs obtained
by minimizing φp are actually maximin for all p, that is, the
smallest distance mink dk is maximized. At p → ∞ the equiva-
lence is immediate; φp designs for smaller p have greater spread
in smaller distances (d(−k)).

1In most applications, K =
(n
2

)

and all Jk = 1.
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Alternatively, one may desire a design that spreads points
evenly across the range of each individual input, that is, where
projections on each dimension are still space-filling. Maximin
andminimax designs do not produce such an effect; in fact, they
can be pathologically bad in this regard. Latin hypercube sam-
pling (LHS,Mckay, Beckman, and Conover 1979) can guarantee
this one-dimensional uniformity property. For a nice review of
LHS and other space-filling designs for computer experiments,
see Lin and Tang (2015).

Space-filling designs intuitively work well when prediction
accuracy is of primary interest, seeking cover everywhere you
might want to predict. However, it is easy to show (as we do in
Section 3) that space-filling designs are inefficient for learning
GP hyperparameters, discussed in further detail in Section 2. It
turns out that a random uniform design is actually better than
maximin, φp and LHS in that setting, echoing a rule-of-thumb
from variogram estimation with lattice data in geostatistics
(Zhao and Wall 2004).

Considering that GP predictive prowess depends upon
hyperparameterization, good prediction results must tacitly
depend upon fortuitously chosen hyperparameters. If good set-
tings are indeed known, then model-based design represents
an attractive alternative to (model-free) space-filling design.
Example criteria include maximizing the entropy between prior
and posterior (maximum entropy design), minimizing the
integrated mean-squared prediction error (IMSPE, Santner,
Williams, and Notz 2003, chap. 6), and Fisher information
(Zimmerman 2006). These lead to nice sequential extensions,
when alternating between design and learning stages. However,
such schemes can suffer when initialized poorly. Seemly optimal
choices of seed design or hyperparameter can lead to patholog-
ically poor performance.

Here, we propose a new class of designs that attempts to
resolve that chicken-or-egg problem. GP correlation structures
are typically built upon scaled pairwise distance calculations,
so we hypothesize that certain sets of pairwise distances offer
a more favorable basis for estimating those scales: so-called GP
length scale hyperparameters. The spirit of our study is similar
to that of Morris (1991), but we take a more empirical approach
andultimately provide amessage that ismore upbeat.Quite sim-
ply, we observe the empirical distribution of pairwise distances
of random designs which are better than space-filling ones for
the purpose of length scale estimation. We then parameterize
those distributions within the Beta(α,β) family, and propose a
numerical optimization scheme to tune (α,β) to design size n
and input dimension d. In this way, our methodology can be
seen as amore aggressive and constructive variation of Zhao and
Wall’s study for variograms.

Despite sacrificing positional space-fillingness for relative
distance-fillingness to target hyperparameter estimation, we
show that “betadist” designs still perform favorably in pre-
diction exercises. Inspired by Morris and Mitchell’s (1995)
hybridization of LHS and maximin, we propose hybridizing
LHS with betadist designs to strike a balance between space and
distance-filling toward even more accurate prediction.

The remainder of the article is organized as follows. In Sec-
tion 2, we review GP modeling and design details pertinent to
our methodological contribution. Section 3 demonstrates how
space-filling designs fall short in certain respects, and proposes

distance-based remedies based on reverse engineering qualities
of the best random designs. Section 4 explores hybrids of these
betadist designs with LHS. Illustrative examples and empirical
comparisons are provided throughout. Section 5 provides a
comprehensive empirical validation in two disparate sequential
design settings, where betadist, LHS hybrids and comparators
are used to build initial/seed designs. We conclude in Section 6
with a brief discussion.

2. Setup and RelatedWork

Here, we review essentials as a means of framing our contribu-
tions, establishing notation, and connecting to related work on
design and modeling for computer experiments.

2.1. GP Surrogates

Let f : R
d → R, denote an unknown function, generically,

but standing in specifically for a computationally expensive
computer model simulation. There is interest in limiting the
evaluation of f , so one designs an experimental plan of runswith
the aim of fitting a meta-model, for example, a GP, which can be
used as a surrogate in lieu of future expensive evaluations. Let
X = {x1, . . . , xn} denote the chosen d-dimensional design, and
let Y = (y1, . . . , yn)

⊤ collect outputs yi = f (xi), for i = 1, . . . , n.
Putting a GP prior on f amounts to specifying that any

finite realization of f , for example, our n observations Y, has a
multivariate normal (MVN) distribution. MVNs are uniquely
specified by a mean vector and covariance matrix. It is common
in the computer experiments literature to take the mean to be
zero, and to specify the covariance structure via scaled inverse
Euclidean distances. For example, Y ∼ Nn(0,Kn), where Kij

follows

Kij = kτ 2,θ (xi, xj) = τ 2 exp

{

−
||xi − xj||2

θ

}

. (1)

Above, τ 2 is an amplitude hyperparameter, and θ is the length
scale, determining the rate of decay of correlation as a func-
tion of distance in the input space. This choice of correlation
structure is called the isotropic Gaussian family. Although we
assume this structure throughout for simplicity, we see no rea-
son why our proposed methodology (which emphasizes design,
not modeling) could not be extended to other correlation fami-
lies, or to the stochastic (f + ε) setting via additional hyperpa-
rameters.

Fixing θ and τ 2, the GP predictive equations at new inputs
x, given the data (X,Y), have a convenient closed form derived
from simple MVN conditioning identities. The (posterior) pre-
dictive distribution for Y(x) | Y is Gaussian with

mean μ(x | Y) = k⊤(x)K−1
n Y, (2)

and variance σ 2(x | Y) = kτ 2,θ (x, x) − k⊤(x)K−1
n k(x),

where k⊤(x) is the n-vector whose ith component is kτ 2,θ (x, xi).
Unknown hyperparameters can be inferred by viewing Y ∼

Nn(0,Kn) as a likelihood and maximizing its logarithm numer-
ically, or via Bayesian posterior sampling. In the former case
(MLE), we obtain τ̂ 2 = n−1Y⊤K−1

n Y in closed form, whichmay
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be used to derive a profile/concentrated multivariate Student’s-
t likelihood for θ . In the Bayesian setting, τ 2 may analytically
be integrated out under an inverse-Gamma prior (see, e.g.,
Gramacy and Apley 2015). Either way, numerical methods are

required to learn appropriate length scale settings θ̂ . Through-
out, we use mleGP from the laGP library (Gramacy 2016)
for R (R Core Team 2018) via “L-BFGS-B” (Byrd et al. 1995)
leveraging closed form derivatives.

2.2. Thinking About Designs for GPs

The prediction equations (2) suggest a space-filling training
design for X since σ 2(x), for testing x, is quadratically related
to distances to nearby xi locations through k(x). However, that
tacitly assumes the hyperparameters, particularly the length
scale θ , are known. Where is a good θ supposed to come from?
While we acknowledge that it is sometimes possible to intuit
reasonable values or ranges for θ , based on knowledge of the
underlying dynamics being modeled, such cases are rare in
practice, and useless as a default modus operandi, for example,
in software. Thus, our presumption is that θ must be learned
from data, which requires a design. Intuitively, a space-filling
design is poor for such purposes since its deliberate inability
to furnish short distances biases inference toward longer length
scales.

Sequential design, iterating between design and learning,
has been suggested as a remedy. Yet space-filling design is still
common in initial stages. For example, Tan (2013) wrote “min-
imax designs are intended to be initial designs for computer
experiments, which are almost always sequential in nature.”
While we agree with the spirit of that statement, we disagree
that spreading out the points is the best way to seed this
process. The reason is that subsequent sequential selections
are usually model-based, for example, via σ 2(x), and thus
hyperparameter-sensitive. Note that in sequential application,
both IMSPE and maximum entropy-based designs are about
predictive variance. The former maximizes integrated variance;
the latter maximizes directly. One must be careful not to intro-
duce a feedback loop where sequential decisions reinforce bad
hyperparameters.

Some say that way out of that vicious cycle is to use other
geometric rather thanmodel-based criteria for sequential selec-
tion, for example, with cascading LHSs (Lin et al. 2010). How-
ever, if the design goal is not directly prediction-based, such
as in BO (Jones, Schonlau, and Welch 1998), that approach is
clearly inefficient. Plus in the BO literature, regularity conditions
underlying the theory for convergence (to global optima) insist
on fixed hyperparameterization. This is specifically to avoid
pathological settings arising from feedback between sequential
acquisition and inference calculations (Bull 2011).

Perhaps ourmain thesis is that initial design for hyperparam-
eter learning is paramount to obtaining robust (good) behavior
in repeated application. While some space-filling designs are
better than others in this context, we observe that it is important
to be filling in a different sense. Inference for hyperparameters
via the likelihood involves pairwise inverse distances xi − xj
through Kij. Therefore, it could help to be more filling in

that dimension. As we show in Section 3, simple random uni-
form designs are actually better than the typical maximin and
LHS alternatives, sometimes substantially so. Intuitively, this is
because random designs lead to a less clumpy, more unimodal,
distribution of relative distances compared to maximin, for
example. (See Figure 3 and surrounding discussion.) Based on
the outcome of that study, we speculated that having a uniform
distribution of such pairwise distances—as opposed to uniform
in position—would fare even better.

That intuition turned out to be incorrect. However, ini-
tial investigations pointed to a promising class of alternatives,
targeting a more refined choice of desirable pairwise distance
distributions. Although the strategy we propose imminently
is novel in the context of design and analysis of computer
simulation experiments, it is not without precedent in the spa-
tial statistics literature, where variogram-based inference is,
historically, at least as common as likelihood-based methods
(see, e.g., Russo 1984; Cressie 1985). Out of that literature
came the rule-of-thumb that at least 30 pairs of data points
should populate certain distance strata. Morris (1991) subse-
quently revised that number upward, accounting for spatial
correlations which devalue information provided by nearby
pairs.

The spirit of our contribution is similar to these works,
although we shall make no recommendations about design
size. Suggestions along these lines in the computer experiments
literature, such as n = 10d (Loeppky, Moore, and Williams
2009), have been met with mixed reviews—never mind that
the nuance of arguments behind that particular suggestion is
often forgotten. Instead, presuming small fixed (initial) design
sizes, we target the search for coordinates with desirable qual-
ities for length scale estimation. Our first idea ignores position
information entirely, focusing expressly on pairwise distances.
We later revise that perspective to hybridize with LHS and
acknowledge that a degree of space-fillingness may be desir-
able when the over-arching modeling goal is oriented toward
prediction.

3. Better Than Random

Consider the following simple experiment in the input space
[0, 1]d, for d = 2, 3, 4, 5, 6, taken in turn. For 30 equally spaced

“true” length scales θ (t) ∈ (0.1,
√
d]d, for t = 1, . . . , 30 we

generate i = 1, . . . , 1000 designs X(t,i) of size n = 2d+1 and
simulate Y(t,i) ∼ N (0,Kn). Entries of Kn are calculated as in
(1) via the rows of X(t,i) and hyperparameters τ 2 = 1 and
θ (t). Several design criteria are discussed shortly. For each (t, i),

MLEs θ̂ (t,i) are calculated from data (X(t,i),Y(t,i)). Finally, we
collect average squared discrepancies between estimated and

true length scales via logMSEt = log
{

∑1000
i=1 (θ̂ (t,i) − θ (t))2

}

.

As an example of the logMSEs obtained, the left panel of
Figure 1 shows the (d = 3, n = 16) case. The first thing to notice
in that plot is that as θ (t) increases so does logMSEt , for all design
methods. Apparently, it is “harder” to accurately estimate length
scales θ as they become longer. Harder is in quotes because this
metric obscures the relative performance of the designmethods,
although some consistently stand out as worse (maximin/black
circles) or better (beta/pink squares or lhsbeta/yellow squares)
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Figure 1. logMSEs from design experiment and de-trending surface.

than others. To level the playing field for subsequent analysis,
we calculated standardized residuals using a de-trending surface
estimated from all of the dots, taken together. To cope with the
outliers we fit a heteroscedastic Student’s-t GP as described by
Chung et al. (2018) and implemented in the hetGP package
(Binois and Gramacy 2018). Section 3.2 provides further details
on our use of hetGP in this context. Standardized residuals
(rt = (logMSEt − μt)/σt , with μt and σt from hetGP) are
shown in the right panel of the figure.

Figure 2 shows boxplots of these standardized logM-
SEs, marginalizing over θ (t)s, for all five experiments d ∈
{2, 3, 4, 5, 6}. The number written on each boxplot resides in the
position of the mean of that comparator, and indicates relative
rank of that mean. To help better quantify relative comparisons,
the final panel provides the outcome of pairwise paired t-tests,
with pairing determined by adjacent ranks: best versus second
best, etc. First consider the “Common designs” block including
boxplots of logMSEs for maximin, minphi2 (φ2), LHS, and
random designs. Although the final panel does not include a
p-value for LHS or random versus maximin when d = 2,3,
because neither is ranked adjacently with maximin, it is quite
clear these beat maximin, which consistently beats minphi2.
LHS and random, on the other hand, offer quite similar results.

Observe that the four “Common designs” follow a similar
ranking for all d ≤ 5. However, when d = 6 maximin
and minphi2 are better than LHS and random. This happens
because maximin’s (and φp’s) pathologies are partly corrected
in higher dimension. These designs push sites to the corners of
the input hyperrectangle. As dimension grows the diversity of
distances between corners increases. This helps MSE, but only
coincidentally. Deliberate diversity via unifdist and betadist is
still better.

The outcome of this experiment, including just those four
common designs as comparators, sparked our search for alter-
natives. It is perhaps surprising that a purely randomdesign is at
least as good for hyperparameter estimation as more thoughtful
alternatives like maximin and LHS. The following subsections
describe our journey toward improved designs, ultimately out-
lining details behind the other comparators in Figure 2.

3.1. Uniform to Beta Designs

Intuitively, random and LHS are better thanmaximin for length
scale (θ) inference because they result in a less adversarial
distribution of pairwise distances. Maximin designs are calcu-
lated to ensure there are no small pairwise distances, which
is presumably too few. Consequently, the distance distribution
is multimodal: there are many distances near that minimum,
with the rest occurring at “lower harmonics” (multiples of that
minimal distance). Figure 3 offers a visualization. Random and
LHS designs do not preclude small relative distances, although
the latter does enforce a degree of uniformity in position. Both
tend to yield distance distributionswhich are unimodal. Figure 3
demonstrates this for a subset of random designs, which will be
discussed in more detail momentarily. The situation is similar
for LHS, which we shall revisit in Section 4.

Init: Fill X with a random design of size n, that is,

xi
iid∼ Unif[0, 1]d, i = 1, . . . , n.

for s = 1, . . . , S do
Select an index i ∈ {1, . . . , n} at random.
Generate x′

i ∼ Unif[0, 1]d.
Propose new design X′ as X with xi swapped with x′

i.
if KSD(X′, F) < KSD(X, F) then

xi ← x′
i in the ith row of X;

that is, accept X ← X′

end

end

Return: n × d design X.

Algorithm 1: MC calculation of size n in [0, 1]d targeting
distance distribution F.

The experimental outcomes just described got us thinking
about desirable distance distributions for length scale estima-
tion. We speculated that it could be advantageous to have a
uniform distance design (unifdist), so that all distances were
represented—or as many as possible up to the desired design
size n. Throughout we presume inputs have been scaled to
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Figure 2. Standardized logMSE boxplots to 30 gridded θ (t) values for seven comparators using n = 2d+1 over input dimension d ∈ {2, 3, 4, 5, 6}. The comparators are
described in the text. Two outlying standardized logMSE values were clipped by the y-axes to enhance boxplot viewing: random (d = 4) at 10.9 and LHS (d = 6) at 17.4.
The bottom-right panel provides p-values for lower-tail paired t-tests comparing adjacent performers as ranked by their mean logMSE from best (top) to worst (bottom).

[0, 1]d, and restrict the search for length scales to θ ∈ (0,
√
d].

So when we say uniform, or any other distribution, we mean

Unif(0,
√
d].2 To calculate a design whose distribution of pair-

wise distances resembles a reference F, we follow the pseudo-
code provided by Algorithm 1 which is based on S stochastic

2OurMLEcalculations restrict θ tobegreater than the square-rootofmachine
precision, which is near 1e−8 on most machines.

swap proposals that are accepted or rejected via Kolmogorov–
Smirnov distances (KSD) against F. In our examples we fix S =
105 and use a faster, custom implementation of KSD based on
isolating the $statistic output of the built-in ks.test

function in R. Besides being stochastic, the search is greedy
which means that it only guarantees local convergence as S →
∞. Nevertheless we find that in practice it furnishes empirical
pairwise distance distributions close to the target F. There is
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Figure 3. Empirical density curves corresponding to random designs in 2d with
lowest 50 logMSE(θ ) values from 1000 random design realizations. Empirical max-
imin and Beta(2.5, 4) densities are shown for comparison.

little benefit in restarting the algorithm to search for a more
global optimum.

Unfortunately, our intuition about unifdist designs did not
completely match our results. As summarized along with our
earlier RMSE comparison in Figure 2, unifdist designs are better
than maximin, but worse than LHS and random. This out-
come prompted a more careful investigation into why random
designs, work so well.

Consider the lines in Figure 3 labeled “1–50,” representing
the empirical density of distances among the random designs
whose logMSE was among the fifty best in a large Monte Carlo
(MC) exercise. Observe that this density is unimodal, having
more small distances than maximin and very few really large
distances. The solid red curve in the figure is a Beta(2.5, 4)
density scaled to [0,

√
2] as a representative example of a

parametric distribution similar to that of those best random
distances.

Unifdist designs, which are not shown in the figure, target a
flat line across the [0,

√
2] domain. Unifdist outperforms max-

imin, but not the best (or even the typical) random designs.
This suggests that while having more short distances is desir-
able, having as many distances at the extremes—both large and
small—may not be helpful on average. As the results in Figure 2
show, having Beta-distributed distances, focusing the distribu-
tion on mid–low-range pairwise distances, leads to statistically
significant improvements over random in all three cases. In
fact, these “betadist” designs (being ranked 2 or 1) are the only
ones in that figure whose logMSEs are statistically better (see p-
values in the lower-right panel) than all other designs of lower
rank.

Although Figure 3 suggests that a Beta(2.5, 4) is a good target
distribution for a betadist design, that was not the specification
used to generate all results summarized in Figure 2. The best

setting of shape parameters, (α̂, β̂) in Beta(α,β) depends on
dimension d and design size n, as we explore below. However,
it is worth nothing that Beta(2.5, 4) does generally perform well
because, as we show, the set of decent (α,β) values is relatively
big, and does not vary substantially in n and d. But it is not so
big as to choose arbitrarily.

3.2. Optimization of Shape Parameters of Betadist Design

Here we view the choice of betadist parameterization, α̂ and β̂

in Beta(α,β), for particular design size n in input dimension
d, as an optimization problem. That is, we wish to automate
the search for betadistn,d(α̂, β̂). Discussion around Figure 1
indicates that a degree of detrending will be required to not
over-emphasize larger θ settings in the optimization criteria. To

address this, we seek (α̂, β̂) = argminα,β deRIMSEn,d(α,β)

where the criteria deRIMSE is defined following a scheme sim-
ilar to that described around Figure 1.

Begin by establishing a regular grid of θ values (θ (1) =
0.1, . . . , θ (T) =

√
d), just like in Figure 1. Next, generate one

pair (α,β) ∼ Unif(1, 10)2 and use these to create D designs

X
(i)
n ∼ betadistn,d(α,β), for i = 1, . . . ,D followingAlgorithm1.

Averaging over more random (α,β) will be described momen-

tarily. For each X
(i)
n and each θ (t) generate random responses

Y
(t,i)
n ∼ (X

(i)
n , θ (t)) under the GP MVN and estimate θ̂ (t,i) via

MLE. Finally, calculate RMSE(t) =
√

∑D
i=1(θ̂

(t,i) − θ (t))2/D

to estimate the accuracy of those MLE calculations for each
t = 1, . . . ,T. Then draw new (α,β) ∼ Unif(1, 10)2 yielding
RMSE(t,r), repeating the entire scheme above R times, that is,
for r = 1, . . . ,R. In our empirical work, we chose D = 5 and
R = T = 30.

Next, take pairs (θ (t), {RMSE(t,r)}Rr=1) as T × R observations
of the quality of length scale estimation—RMSE dynamics—
across θ-space and fit a Student’s-t hetGP to these observa-
tions yielding a surrogate described by mean μt ≡ μ(θ (t))

and σ 2
t ≡ σ 2(θ (t)). Now we are ready to define the criteria

deRIMSEn,d(α,β) as

deRIMSE(α,β) ≡ 1

T

T
∑

t=1

RMSE(t)(α,β) − μt

σt
,

where RMSE(t)(α,β) is calculated just as described above with
the specific (not random) settings of (α,β) in question.

As a warmup experiment toward solving that optimization
problem, consider n = 16 and d = 2. We built a size 200
LHS design of (α,β) settings in [1, 10]2 with five replicates on
each for a total of 1000 evaluations of deRIMSE. The bottom
end of that region, α,β ≥ 1, was chosen to limit the search
to unimodal beta distributions; the top end of 10 was cho-
sen based on a smaller pilot study. Each deRIMSE evaluation
took about 50 sec, leading to almost 14 hr of total simulation
time.

Figure 4 shows the design (dots) and fitted surface of deR-
IMSE values obtained with hetGP, that is, treating deRIMSE
simulation as a stochastic computer experiment and fitting a
surrogate to a limited number of evaluations. Outliers are less
of a concern when averaging over θ (t)-values, so there was no
need to include Student’s-t features in this regression. However,
accommodating a degree of heteroscedasticity and leveraging
replication in the calculations were essential to obtain a good
fit in a reasonable amount of time (Binois, Gramacy, and Lud-

kovski 2018). The blue square, at about (α̂, β̂) = (3, 6.5) in
the figure, shows where the predictive surface is minimized;
the green and purple contours outline regions wherein pre-
dicted deRIMSE values are within 5% and 10% of that best
setting.
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Figure 4. deRIMSE surface with T = 1000 for n = 16 and d = 2 as estimated
by hetGP. Dots show the design sites; lighter (heat) colors correspond to higher
deRIMSEs.

Fourteen hours of simulation to choose the characteristics
of a random design is rather extreme. However, once done for
a particular choice of covariance structure, design size n and
dimension d, it need not be redone. Still, finding appropriate
designs in higher dimension, withmore runs to fill out the larger
volume could be computationally daunting. Doubling n, for
example, would result in more than double the computational
effort.

For a more thrifty approach we turn to BO via EI. The idea
is to replace a space-filling evaluation with a sequential design
strategy that targets the minimum of the mean of deRIMSE.
For a given (n, d)-setting, the setup is as follows. Begin by
performing deRIMSE calculations on a maximin design of size
20, with 10 replicates at each setting, and by fitting a hetGP to
those realizations, deriving a predictive surface. Then comes the
so-called BO acquisition. Based on hetGP posterior predictive
equations described bymeanμ(x) and standard deviation σ(x),
where x = (α,β) in this case, numerically optimize EI(x):

EI(x) = (μmin − μ(x))	

(

μmin − μ(x)

σ (x)

)

+ σ(x)φ

(

μmin − μ(x)

σ (x)

)

, (3)

where μmin = minx μ(x) and 	 and φ are the standard
Gaussian cdf and pdf, respectively. After (a) solving x∗ =
argminx EI(x), which we accomplish using a hybrid of discrete
search over replicates and continuous multi-start R-optim-
based search with method="L-BFGS-B"; (b) simulating
y∗ = deRIMSE(x∗); and (c) incorporating the new data pair
into the design and updating the hetGP model fit; the process
repeats (back to (a)).

For details on EI and BO, see Jones, Schonlau, and Welch
(1998) and Santner,Williams, andNotz (2003, chap. 6.3). Snoek,
Larochelle, and Adams (2012) offer a somewhat more modern
machine learning perspective centered around the use of BO for
estimating hyperparameters of deep neural networks. Our use
here—to tune a design—is related in spirit but distinct in form.
In fact, the setupwe propose is fractal. It solves a design problem

(for estimating length scale) with the solution to another design
problem: for function minimization. One could argue that our
choice of an initial maximin design for BO is suboptimal, and
we will do just that in Section 5.2.

For a set of representative n and d, we allowed our BO scheme
to collect an additional 600 deRIMSE simulations. The resulting
selections, overlayed with final predictive mean surface from

hetGP, the best value of (α̂, β̂) and a 5% and 10% contour are
shown in Figure 5. Several noteworthy patterns emerge from the
panels in the figure. First, although some of the surfaces appear
to be multimodal, or at least to have ridges of low deRIMSE
values, there is usually a setting with relatively low (α,β) which
works well. Sometimes a larger setting is predicted as optimal;
but there is usually an alternate setting, reported as (α̃, β̃) in the
figure, which is almost as good (within 5%).

These “near-optimal” (α̃, β̃) were used in our betadist
designs, and subsequent boxplots and p-value calculations, in
Figure 1. They are reused throughout the remainder of the
article in our empirical work (Sections 5.1 and 5.2), and like-
wise with the hybrid lhsbeta designs discussed momentarily.
Although the computational demands are still sizable even
with the more thrifty BO, these designs are “up-front.” Once
saved as we do for the nine choices above, no recalculation is
required.

4. Hybrid Betadist and LHS

Having a betadist design, which provides better estimates of
hyperparameters like the length scale θ , is advantageous only
insofar as the resulting surrogate fits, that is, their predictive
equations (2), are accurate. Since GP surrogates are inherently
spatial predictors, practitioners have long preferred designs
which fill the space, so that those sites may serve as nearby
anchors to good out-of-sample predictive performance. Betadist
designs space-fill less than common alternatives, both quanti-
tatively (i.e., via the maximin criteria) and qualitatively (since
they are inherently random). Thus, they hold the potential to
be inferior as predictive anchors. Yet in our empirical work, we
have only been able to demonstrate this negative result (not
shown here) when good hyperparameter settings are known.
Betadist shines brightest in sequential application (Section 5),
where the impact of early estimates of hyperparameters can
have a substantial affect—exceptionally deleterious in patholog-
ical cases—on subsequent design decisions in several common
situations.

Still, betadist designs consider only relative distance, com-
pletely ignoring position except that the points lie in the study
area. Among more-or-less equivalent optimal betadist designs,
somemay have better positional properties and thus offer better
anchoring for prediction without compromising on hyperpa-
rameter quality. To explore this possibility we considered a
hybrid between betadist and LHS designs. Our “lhsbeta” is
similar in spirit to maximin–LHS hybrids where maximin helps
avoid second-order aliasing commonwith LHSs, and LHS helps
maximin avoid clumpymarginals. In lhsbeta, we primarily view
LHS as helping betadist acquire a degree of positional prefer-
ence, however, the alternate perspective of preferring LHSs with
better relative distances is no less valid.
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Figure 5. Outcomes of BO of RIMSE surfaces for various choices of n and d. Numbers show location and number of replicates in acquisitions; blue square shows (α̂, β̂);
purple and green contours show 5% and 10% from the optimal.

Our stochastic search strategy for finding lhsbeta designs
is coded in Algorithm 2. Like in Algorithm 1 for betadist,
we presume an input space coded to [0, 1]d. The algorithm is
initialized with an LHS X, built in the canonical way (see, e.g.,

Lin and Tang 2015) by first choosing d random permutations of
{1, . . . , n}, saved in a n × d matrix L describing the n selected
hypercubes out of the nd possible partitions of the input space,
and then applying jitter in that selected cube. Each subsequent
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Init: Fill X with a LHS of size n in d dimensions.
for s = 1, . . . , S do

Randomly select a pair of design points xi, xj.
Randomly select a dimension k ∈ {1, . . . , d}.
Propose a new design X′ by swapping Latin squares Li,k
and Lj,k producing
new x′

i and x′
j after rejittering with 2d new uniform

random numbers.
if KSD(X′, F) < KSD(X, F) then

xi ← x′
i and xj ← x′

j in the (i, j)th rows of X;

i.e., accept X ← X′

end

end
Algorithm 2: Hybrid F-dist–LHS via S MC iterations for a
design of size n in d dimensions.

iteration of stochastic search involves randomly proposing to
swap pairs of rows and columns of L, effectively swapping the
pair of Latin squares without destroying the one-dimensional
uniformity property, and then rejittering that pair points within
their respective squares. That proposal is then accepted or
rejected according to KSD measured against a distribution F,
which in our applications is Beta(α̃, β̃) fromSection 3. Since two
types of random proposals are being performed simultaneously,
compared to Algorithm 1’s single random swap, we prefer a
multiple of two larger S in Algorithm 2; S = 105 in our empirical
work.

Figure 6 shows a visual comparison between maximin,
betadist and lhsbeta designs so constructed. The plots provide
a 2d projection for the case n = 16 and d = 3. Observe
that maximin’s 1d margins, shown as red triangles at the axes
in the left panel, are not uniform. Neither are those in the
2d projection shown as open circles. First-order aliasing is
severe in both projections. In the middle panel, our betadist
design has a similar problem (although perhaps not to the
same degree), yet we know that the distribution of pairwise
distances in 3d are much better than maximin for the purpose
of length scale inference. In the right panel the 1d and 2d
margins lookmuchbetter, because the sample is an LHS.Among
LHSs, this lhsbeta design has a near optimal distribution of
pairwise distances for this setting (n, d). Figure 2 shows that
lhsbeta designs are sometimes worse than ordinary betadist

designs, but they both are consistently better than all of the other
comparators in the figure. This is perhaps not surprising because
lhsbeta designs are indeed betadist designs, yet selected for
an additional feature not relevant for length scale information:
space-fillingness. As we show in two prediction-based compar-
isons below, lhsbeta designs are sometimes superior on those
tasks.

5. Application to Sequential Design

Herewe provide two applications of betadist and lhsdist as initial
designs for a subsequent sequential analysis. In both cases,
these distance distribution-based designs are only engaged in
a limited way, as a means of seeding the sequential procedure.
Subsequent design acquisitions are then off-loaded to other
criteria. Still, it is remarkable how profound the effect of this
initial choice can be. A poorly chosen initial design of just
ninit = 8 points, say, can be detrimental to predictive accuracy
at n = 64.

5.1. Active LearningMacKay

First consider the so-called active learning MacKay (ALM;
MacKay 1992) method of sequential design for reducing pre-
dictive uncertainty. Acquisitions are determined bymaximizing
the predictive variance σ 2(x). The rationale for that choice is
that ME designs for GPs involve maximizing the determinant of
the covariance matrix Kn, and one can show that log |Kn+1| =
log |Kn| + log σ 2(xn+1). After many applications the result is
space-filling, however, the degree to which design points are
pushed toward the boundaries of the study region depends
crucially on the length scale(s) used to define Kn. For more
details on ALMwith GPs, see, for example, Seo et al. (2000) and
Gramacy and Lee (2009).

The target of our experiment is a function f (x) observed

under light noise as Y(x) = f (x) + ε, with ε
iid∼ N (0, 0.012).

For f (x) we use the function

f (x) = x1 exp{−x2i − x22} with x ∈ [−2, 4]2,

first introduced as an active learning benchmark by Gramacy
and Lee (2009). We begin with an initial design of size ninit = 8,
and perform 56 additional ALM acquisitions for a total of n =
64 evaluations. Along the way, root mean-squared prediction

Figure 6. 2d (black circles) and 1d (red triangles) projections of three d = 3 designs, n = 16.
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Figure 7. RMSPE comparison of initial designs (ninit = 8) as a function of the number of subsequent sequential design iterations via ALM. Each comparator has a pair of
lines: those in the left panel indicate mean RMSE; those on the right are the upper 90% quantile.

error (RMSPE) is calculated on noise-free outputs obtained on
a regular 100 × 100 testing grid in the input space. For the
initial design, we consider random, LHS, 2d optimal (α̃ =
2, β̃ = 5) betadist and lhsdist designs, and maximin. Unifdist
has been dropped from the comparison on the grounds that it is
a suboptimal betadist alternative.

In keeping with our earlier experiments, MLE calculations
limited to (0,

√
2] are updated after each sequential design

acquisition. To accommodate the noisy evaluations, we aug-
ment our covariance with a nugget hyperparameter which is
included in the MLE calculation via jmleGP in the laGP
package. An L-BFGS-B scheme is used to solve argminxσ

2(x)

via optim in R. Variance surfaces can be highly multi-modal,
having as many maxima as design points which is what creates
the “sausage”-like shape characteristic of the error-bars pro-
duced by GP predictive equations. We deployed an n-factor
sequential maximin multi-start scheme to avoid inferior local
modes of the variance surface. This means that maximin is
used to choose the optim initializations, to space out starting
locations relative to each other and to the existing Xn design
locations.

Figure 7 shows the outcome of this exercise viamean RMSPE
(left panel) and upper 90% RMSPE quantile (right) obtained
from 1000 MC repetitions of the scheme described above.
Several striking observations stand out. Betadist, lhsbeta and
random perform about the same, with betadist winning out in
the end.However, in early stages lhsdist is best and random is the
worst of the three. Beta-distributed distances (from betadist and
lhsbeta) lead to better hyperparameter estimates than random.
Yet position of design sites is more important than length scale
quality when there are little data. After many sequential acqui-
sitions, position is less important—ALM takes care of that—
but the final results are still sensitive to the choice of the first
ninit = 8 points, even though MLEs θ̂ are recalculated after
each selection. Seeding the sequential design, which is often
glossed over as an implementation detail, can be crucial to good
performance in active learning.

Consequently, betadist, lhsbeta and random vastly outper-
form LHS and maximin. The trouble with these space-filling

seed designs is evident in the 90% quantile, which fails to
improve even after many new design sites are added. Too much

spread in the initial design results in large θ̂ ’s, which is reinforced
by subsequent ALM acquisitions at the boundaries of the input
space. The early behavior of maximin is particularly strange:
gettingworse before better even in cases where sequential acqui-
sitions lead to decent results. Its 90% quantile is eventually no
worse than LHS’s—quite poor. The fact that maximin’s average
RMSPE is nearly as bad suggests that maximin rarely recovers
from that poor initial design.

5.2. Expected Improvement for Optimization

Here we show that betadist and lhsbeta initial designs are also
superior in a BO context similar to that used to find the best
α̂ and β̂ settings in Section 3.2. Specifically, acquisitions are
gathered via EI (3) using a random five-start scheme including
the location of the best input setting (corresponding to μmin)
from the previous iteration. As a test function, we use the so-
called Greiwank function

fd(x) =
d

∑

i=1

x2i
4000

−
d

∏

i=1

cos

(

xi√
i

)

+ 1.

For visualizations and further details, including R implementa-
tion, see the Virtual Library of Simulation Experiments: https://
www.sfu.ca/~ssurjano/griewank.html.

A nice feature of the Greiwank is that it is defined for arbi-
trary input dimension d, and is flexible about the bounds b of
the inputs, x ∈ [−b, b]d. These two settings, b and d, together
determine the complexity of the response surface. The global
minima is always at the origin, however, the number of local
minima grows quickly as b and d are increased. We utilize
these knobs to vary the complexity of the function, to span a
range of optimization problems. By varying the bounds b in
particular, we vary themagnitude of the best length scale for the
purpose of surrogate modeling, and thereby create a situation
where an initial design is key to obtaining good performance
in BO.
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Our experimental setup is as follows. We consider three
(ninit, d)-pairs from Figure 5 and track the progress of EI-based
BO measured by the lowest value of the objective found over
the sequential design iterations. In each of 1000 MC repeti-
tions, we create initial ninit-sized designs via maximin, ran-
dom, LHS, betadist and lhsbeta, with subsequent acquisitions
handled by EI. In accordance with the theory for convergence

of EI-based BO (Bull 2011), we do not update θ̂ after each
EI acquisition, but fix it at the setting obtained immediately
after the initial design. This has the benefit of accentuating the
effect of the initial design, which suits our illustrative purposes.
It is also more computationally efficient, leading to an O(n3)
calculation rather thanO(n4) if MLEs are recalculated regularly.
However, the results are not much different under that latter
alternative.

To vary the complexity of the underlying optimization prob-
lem, and thus best effective length scale for GP surrogate, we
draw b ∼ Unif(0, 10) at the start of each MC repetition. In so
doing, each of 1000MC repetitions targets a Greiwank function
having a different degree of waviness, and number of local
optima. By holding b fixed for each of the five initial design
choices, and subsequent EI-optimizations, we create a setting
wherein pairwise t-tests can be used to adjudicate between those
comparators. Finally, all calculations were formedwithmethods
built into the laGP package on CRAN. Since we observe fd(x)
without noise, no nugget hyperparameters are required. Not
presuming to know the randomly generated scale b, we allow

MLE calculations for θ̂ to search in a space that would be
appropriate for the largest settings, θ ∈ (0, 10

√
d], regardless

of b.
Table 1 summarizes results obtained from the (ninit = 8, d =

2) case in two views: after n = 20 total acquisitions, and then
after n = 70. The bolded p-values in the table(s) are below the
typical 5% threshold. Observe in both cases that random and
LHS design are consistently better than maximin, but betadist
is significantly better than all three. Hybrid lhsbeta outperforms
all of the others. In other words, the story here is more or less
the same as before. The only substantial difference is that lhsbeta
outperforms betadist.

Table 2 summarizes results from the (ninit = 16, d = 3)
case. In higher dimension, the problem is more challenging
with many more local minima. Both a bigger initial design, and
a larger run of EI acquisitions is necessary to obtain reliable

Table1. Pairwise t-testp-value table for (ninit = 8, d = 2)and twosettingsn = 25
(top table) and n = 70 (bottom).

n = 25 Maximin LHS Random Betadist Lhsbeta

Maximin NA 0.95 0.98 >0.99 >0.99
LHS 0.048 NA 0.67 >0.99 >0.99
Random 0.022 0.33 NA >0.99 >0.99
Betadist <1e−7 2e−5 8e−5 NA >0.99
Lhsbeta <1e−7 <1e−7 <1e−7 <1e−7 NA

n = 70 maximin LHS random betadist lhsbeta

Maximin NA >0.99 >0.99 >0.99 >0.99
LHS 5e−7 NA 0.89 >0.99 >0.99
Random <1e−7 0.11 NA >0.99 >0.99
Betadist <1e−7 <1e−7 2e−6 NA >0.99
Lhsbeta <1e−7 <1e−7 <1e−7 <1e−7 NA

NOTE: Statistically significant p-values, that is, below 5%, are in bold.

results. At n = 50 the pecking order is similar: maximin, LHS,
betadist, lhsbeta—all statistically significant at the 5% level.
Random outperforms LHS, but not significantly so at the 5%
level.

Finally, Table 3 summarizes the (ninit = 32, d = 4) case
with n = 200 and n = 500. Except when the randomly chosen
b is very small, this setting represents an extremely difficult
optimization with dozens of local minima. A large number of
samples is required to obtain decent global BO results. The story
here is very similar to Tables 1 and 2.

6. Discussion

We have described a new scheme for design for surrogate
modeling of computer experiments based on pairwise distance
distributions. The idea was borne out of the occasionally puz-
zling behavior of more conventional maximin and LHS designs,
especially as deployed as initial designs in a sequential setting.
Maximin designs, and to a certain extent LHS, lead to a highly
irregular pairwise distance distribution which all but precludes
the estimation of small length scales except when the design
is very large. By deliberately targeting a simpler family of uni-
modal distance distributions we have found that it is possible
to avoid that puzzling behavior, obtain a more accurate estimate
of the length scale, and ultimately make better predictions and
sequential design decisions. For reproducibility, the code behind
our empirical work is provided in an open Git repository on
Bitbucket: https://bitbucket.org/gramacylab/betadist.

Table 2. Pairwise t-test p-value table for (ninit = 16, d = 3) and two settings
n = 50 (top table) and n = 100 (bottom).

n = 50 Maximin LHS Random Betadist Lhsbeta

Maximin NA >0.99 >0.99 >0.99 >0.99
LHS <1e−7 NA 0.95 >0.99 >0.99
Random <1e−7 5.3e−2 NA >0.99 >0.99
Betadist <1e−7 <1e−7 <1e−7 NA >0.99
Lhsbeta <1e−7 <1e−7 <1e−7 1e−3 NA

n = 100 maximin LHS random betadist lhsbeta

Maximin NA >0.99 >0.99 >0.99 >0.99
LHS <1e−7 NA >0.99 >0.99 >0.99
Random <1e−7 3e−3 NA >0.99 >0.99
Betadist <1e−7 <1e−7 <1e−7 NA >0.99
Lhsbeta <1e−7 <1e−7 <1e−7 8e−3 NA

NOTE: Statistically significant p-values, that is, below 5%, are in bold.

Table 3. Pairwise t-test p-value table for (ninit = 32, d = 4) and two settings
n = 200 (top table) and n = 500 (bottom).

n = 200 Maximin LHS Random Betadist Lhsbeta

Maximin NA >0.99 >0.99 >0.99 >0.99
LHS <1e−7 NA 0.43 >0.99 >0.99
Random <1e−7 0.57 NA >0.99 >0.99
Betadist <1e−7 2e−4 2e−4 NA >0.99
Lhsbeta <1e−7 <1e−7 <1e−7 <1e−7 NA

n = 500 Maximin LHS Random Betadist Lhsbeta

Maximin NA >0.99 >0.99 >0.99 >0.99
LHS <1e−7 NA 0.25 >0.99 >0.99
Random <1e−7 0.75 NA >0.99 >0.99
Betadist <1e−7 8e−3 2e−3 NA >0.99
Lhsbeta <1e−7 <1e−7 <1e−7 <1e−7 NA

NOTE: Statistically significant p-values, that is, below 5%, are in bold.
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We proposed an optimization strategy for finding the best
distance distributions within the Beta family conditional on
the design setting, specified kernel family, design size (n)
and input dimension (d). Many potential avenues for fur-
ther investigation naturally suggest themselves. For simplic-
ity, we limited our study to the isotropic Gaussian family.
One could check that similar results hold for other com-
mon families like the Matérn. A more ambitious extension
would be to separable structures where there is a length scale
for each input coordinate: θ1, . . . , θd. Obtaining appropriate
pairwise distance distributions in each coordinate simulta-
neously could prove difficult, especially in small-n large-d
settings. However, we speculate that the problem could be
effectively reduced down to d univariate ones. Considering
nugget hyperparameters in the optimization would add yet
another layer of complication. In that setting, we may wish
to consider replication (i.e., zero-inflated distance distribu-
tions) as a means of separating signal from noise (Binois et al.
2019).

Many response surfaces from simulations of industrial sys-
tems are exceedingly smooth and slowly varying over the study
region of interest. Such knowledge, when available, could trans-
late into an a priori belief about large length scales θ , or even
a lower bound on θ . In our empirical work, and searches for
optimal betadistn,d(α,β) through simulated θ-values, we took
a lower bound on θ of effectively zero. However, we see no
reason why a different lower bound could not be applied. We
speculate that narrowing the range of θ , especially toward the
upper end, would result in an organic preference for larger

pairwise distances through the search for optimal (α̂, β̂), and
that these designs will perform more similarly to space-filling
ones like maximin.

Another family of target distance distributions, that is,
besides the Beta, could prove easier to optimize over, or other-
wise lead to better designs. A higher-powered search for designs,
besides random swapping, might mitigate the computational
burden of finding optimal distance-distributed designs which
becomes problematic when n is large. Some researchers have
recently had success with particle swarm optimization (PSO) in
design settings, like minimax design (Chen et al. 2015), which
might port well to the distance-distribution setting and the
lhsbeta hybrid.

Perhaps the most important take home message from this
article is that maximin designs can be awful. LHSs are bet-
ter, because they avoid a multi-modal distance distribution
and, simultaneously, a degree of aliasing through their one-
dimensional uniformity property. However, we argue that the
most important thing is to have a good design for hyper-
parameter inference, which neither method targets directly.
In fact, random design is better than both in this respect,
which is perhaps surprising. If you assume to know the
hyperparameters, then LHS and maximin are great. It is
worth noting that ascribing physical or interpretive mean-
ing to length scale hyperparameters can be extremely chal-
lenging. Therefore, it is hard to imagine that one could con-
sistently choose appropriate length scales without help from
automatic procedures like MLE—which, of course, need a
design.
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