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Abstract—Page relocation (paging) from DRAM to swap
devices is an important task of a virtual memory system in
operating systems. Existing Linux paging mechanisms have two
main deficiencies: (1) they may incur a high I/O latency due to
write interference on solid-state disks and aggressive memory
page reclaiming rate under high memory pressure and (2) they
do not provide predictable latency bound for latency-sensitive
applications because they cannot control the allocation of system
resources among concurrent processes sharing swap devices.

In this paper, we present the design and implementation of a
latency-aware paging mechanism called NVSwap. It supports a
hybrid swap space using both regular secondary storage devices
(e.g., solid-state disks) and non-volatile main memory (NVMM).
The design is more cost-effective than using only NVMM as swap
spaces. Furthermore, NVSwap uses NVMM as a persistent paging
buffer to serve the page-out requests and hide the latency of
paging between the regular swap device and DRAM. It supports
in-situ paging for pages in the persistent paging buffer avoiding
the slow I/O path. Finally, NVSwap allows users to specify latency
bounds for individual processes or a group of related processes
and enforces the bounds by dynamically controlling the resource
allocation of NVMM and page reclaiming rate in memory among
scheduling units. We have implemented a prototype of NVSwap
in the Linux kernel-4.4.241 based on Intel Optane DIMMs. Our
results demonstrate that NVSwap reduces paging latency by up
to 99% and provides performance guarantee and isolation among
concurrent applications sharing swap devices.

Index Terms—Paging, Virtual Memory, Storage QoS, Non-
Volatile Main Memory

I. INTRODUCTION

In the Linux operating system, paging is designed to extend
the main memory capacity using the space of secondary
storage devices [1]. The existing paging policy in Linux is
designed to improve the overall I/O throughput of concurrent
paging workloads. For example, upon paging out, memory
pages are written out to swap space in the unit of page
clusters [2] to exploit spatial locality. However, the tail la-
tency (i.e., X" percentile latency) of paging for a particular
application can be unprohibitedly high because it is affected
by many factors such as queuing time in kernels and I/O
interference of applications concurrently accessing the swap
devices. In addition, the latency is unpredictable because the
existing paging systems cannot enforce the latency bound of

978-1-7281-7744-1/21/$31.00 ©2021 IEEE

Xuechen Zhang
School of Engineering and Computer Science
Washington State University Vancouver
Vancouver, WA 98685 USA
xuechen.zhang @wsu.edu

paging for an application, which may result in poor swap
experience of users of latency-sensitive applications, e.g., in-
memory databases and mobile applications.

In this paper, we present a new paging system called
NVSwap using Non-Volatile Main Memory (NVMM) (e.g.,
Intel Optane DIMMs [3], [4]) to extend memory capacity
for serving latency-sensitive memory-demanding applications.
Supporting paging to NVMM in operating systems hides
the complexity of programming and enables programmers to
directly run memory-demanding legacy code without the need
of understanding NVMM memory models and their program-
ming interface. NVSwap has the following desirable properties
to hide paging latency and improve users’ experience.

A cost-effective hybrid swap space: For paging, NVSwap
employs two swap zones including a swap zone in NVMM on
the memory bus and a regular swap zone in solid-state disks
(SSDs) on the I/0 bus. Latency-sensitive applications can page
to both of the zones according to their latency requirements.
Other applications can page to the regular zone for a low cost.
NVSwap may swap in pages in NVMM in an in-situ manner
(in-situ paging) without extra memory copy, which will further
reduce the latency of paging.

Latency-bound enforcement: NVSwap allows users to
specify QoS requirements in the form of tail latency bounds
of page-in requests for any latency-sensitive processes. These
may be set for individual processes or collectively for a group
of related processes. NVSwap enforces the latency bound for
page-in requests by controlling the space allocation of NVMM
among scheduling units (e.g., processes). According to the
latency requirements, it also dynamically selects the host swap
device from the regular swap zone and the NVMM zone and
adjusts the rate of memory page reclaiming to reduce the
queuing time of paging requests in the disk scheduling queue.

Persistent paging buffer: We implemented a persistent
paging buffer in NVMM for latency enforcement and reducing
I/O interference in the regular swap zone. It organizes its
space into multiple latency groups, each of which consists
of pages from processes having the same latency bound.
The pages in the buffer are destaged in the unit of latency
groups and in descending order of their respective latency
bounds. In this way, pages from latency-sensitive processes
will have a higher chance of staying in NVMM. It exploits
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Fig. 1. (a) and (b) show the minimum, 95" percentile, and 99" percentile latency of DB update and read ogerations of with one instance of

memcached (Dedicated) and two concurrent instances (Concurrent). (c) and (d) show the minimum, 95°

percentile, and 99°" percentile

latency of page-out and page-in operations during the execution of memcached.

the temporal locality by storing the pages in the same group
in the order of eviction from DRAM. By serving the page-
out requests using the persistent paging buffers and providing
higher priority to read requests in the disk scheduling queue,
NVSwap significantly reduces write interference on SSDs.
Finally, subsequent page-in requests that hit any pages in the
buffer will be directly copied to the swap zone in NVMM and
then mapped to process address spaces. With the help of in-
situ paging, the page can be immediately used by the process
without triggering the overhead of block-level I/O processing.

We have implemented a prototype of NVSwap in the Linux
kernel-4.4.241. Our extensive evaluation with the in-memory
database and YCSB benchmark show that NVSwap can reduce
the paging latency by up to 99% compared to those using only
SSDs for swapping. Furthermore, it dynamically adapts the
allocation of system resources for enforcing the X*" percentile
latency for concurrent paging workloads and provides the
desired performance isolation among them.

II. MOTIVATION AND RELATED WORK
A. Needs for Latency-Aware Paging

Paging in virtual memory is a core component of the Linux
operating system. Paging out happens when the swap out
daemon kswapd in the kernel is wakened up under memory
pressure or when direct page reclaiming is required under an
even higher memory pressure [5], [6]. To swap out a page in
DRAM, the kernel needs to generate a block-level I/O request
and adds it to a disk scheduling queue associated with the
device for dispatch. Then the page is written to the swap
space hosted on block storage devices, e.g., SSDs. When a
page fault is triggered by STORE or LOAD CPU instructions,
the kernel needs to swap in the page to be accessed back to
DRAM. Paging to NVMM hides the complexity of the new
memory models and enables programmers to smoothly adapt
their applications to the new hardware.

The current Linux paging mechanism is designed to im-
prove the overall I/O bandwidth of slow swap devices [2] by
exploiting spatial locality. For paging out, the kernel typically
selects 32 pages from the list of inactive pages and sequentially
writes them in a page cluster on swap devices. The size of a
cluster ranges from 8§ KB to 4096 KB. For paging in, the
kernel prefetches multiple pages in a cluster benefiting from
high sequential read bandwidth of storage devices.

However, these design options may cause a long paging
latency at both kernel and application levels. To illustrate
the impact of paging on the latency of major operations of
applications. We run the memcached in-memory database
server provided in the YCSB benchmark [7]. The server
daemons access an SSD-based swap device. The size of the
main memory and swap space is set to 5 GB and 10 GB
respectively. We run Workload A with 50/50 read/update
ratio, 1 KB record size, and zipfian request distribution. The
detailed hardware configuration can be found in Section VI. In
Figure 1, we compare the latency of major database operations
(e.g., update and read) with one memcached server using the
swap space (Dedicated) to that with two memcached servers
concurrently accessing the space (Concurrent). We have the
following observations from the results.

1. During paging, both of the DB read and update
operations may have a long tail latency. With dedicated
accesses to the swap space, the 99" percentile latency of DB
read operations (840 us as shown in Figure 1(b)) is 25X longer
than its minimum latency (34 us). With concurrent accesses to
the swap space, the 99t" percentile latency of read operations
is increased to 2143 us which is 61X higher than its minimum
latency (35 us) while the minimum latency is increased by
only 3%. A similar pattern is observed for DB updates. This
is because the read (page-in) requests might be blocked by
write (page-out) requests, causing a long tail latency [8] at the
application level when page-in requests and page-out requests
are mixed and concurrently access the SSD.

2. The Linux paging system is not able to enforce latency
bounds. We observed the huge variation between minimum
latency and its corresponding 99" percentile latency for page-
in and page-out requests in Figure 1.

3. The OS page-in latency has a critical impact on the
latency of DB operations at the application level. Our ex-
perimental results show that the OS page-in latency is directly
correlated to users’ perceived latency because the latency of
serving page-in requests is in the critical path of major page
faults while page-out requests can be asynchronously served
in the kernel. As a result, the 99*" percentile latency of page-
in requests is comparable to those of DB reads and updates.
In contrast, the tail latency of page-out requests can be 122X
higher than the latency of the DB operations.

In summary, the current deficiencies in the design of the



Linux paging system prevent users who are sensitive to
latency from using the swap space and prevent paging from
being used with in-memory applications and mobile devices
requiring predictable and low latency bounds for improving
users’ experience or used with high-performance computing
applications whose performance is sensitive to OS noises.

B. Related Work

Paging Approaches for NVMM: NVMM is used for
paging because it has low latency and vendor-guaranteed
lifespan [3], [9] of 5 years at a minimum. Memorage manages
NVMM as storage space when storage capacity is low and
manages it as the main memory extension when the availability
of memory pages is low [10]. By dynamically changing
the allocation of NVMM to main memory, it uses existing
virtual memory managers to improve the performance of in-
memory applications. Dr. Swap uses a direct read to reduce the
overhead of memory copy from NVMM to DRAM for paging
in [11]. Refinery swap and nCode were designed to reduce
the number of page-out and page-in requests by swapping
out less-frequently accessed pages [12] or read-only code
page to NVMM [13]. Both SmartSwap [14] and Mars [15]
reduce the user-perceived latency of application relaunching
in mobile devices. They typically swap in the whole process
address space of the application for relaunching. Other paging
approaches have been designed to reduce paging overhead in
virtual machines using distributed NVMM [16]. Awad et al.
comprehensively studied the impact of the existing techniques
(e.g., page prefetching, and page replacement algorithms) on
the performance of NVMM-based paging systems [17].

Latency Enforcement in Storage Systems: For non-
distributed storage systems, SARC+Avatar is a two-level
scheduler that uses the earliest deadline first scheduling policy
to achieve latency control [18]. In the Xen hypervisor, PSLO
was proposed to enforce tail latency for consolidated VM
storage by controlling the level of I/O concurrency and arrival
rate for each VM issue queue [19]. Tiny-tail flash was designed
to eliminate the tail latency induced by garbage collection in
solid-state disks. Because the Linux paging system does not
maintain an individual issue queue for each process, NVSwap
cannot directly use the approaches like AVATAR or PSLO.
Instead, it uses user-defined latency bound to control the disk
scheduling queue size and process paging location. It also
needs to adjust the page pre-cleaning rate and the arrival rate
of page-out requests of processes competing for the slots of the
disk scheduling queue and NVMM space. In parallel storage
systems, Zhang et al. provides QoS support for I/O-intesive
applications [20]. Karki et al. designed scheduling algorithms
to provide QoS enforcement in I/O pipelines [21].

III. NVSWAP DESIGN

The objective of NVSwap is to enforce latency bounds
of paging for latency-sensitive processes using NVMM. We
focus on page-in latency in the paper because it has a direct
impact on users’ perceived latency as shown in Section II. In
this section, we discuss the key concepts and overall design
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Fig. 2. NVSwap system architecture. The latency control module
is a new module added to the Linux kernel although other modules
have also been modified accordingly.

of NVSwap. Figure 2 shows the system architecture with
multiple processes accessing a shared swap space. From the
perspective of software architecture, NVSwap has similar basic
functionalities as Linux including paging to/from disks, page
prefetching to hide disk access latency, page pre-cleaning
to eagerly swapping out dirty pages before new pages are
needed using kswapd, and other functionalities (e.g., swap
space management). Besides these, NVSwap supports paging
to/from NVMM. It has a new latency control module, which
is responsible for determining memory page reclaim rate and
the dynamic allocation of NVMM for each paging process
according to its user-specified tail latency bound. Since page-
out requests are served asynchronously, we only provide
latency control for page-in requests. We describe the algorithm
used for latency control and page reclaim in Section IV.

The swap space of NVSwap has four main components: a
regular-zone, an NV-zone, a persistent paging buffer, and a
shadow mapping table. The regular-zone is hosted on block
storage devices, e.g., solid-state disks. It is used to serve
paging requests dispatched from a disk scheduling queue as
the Linux paging scheme does. The NV-zone and persistent
paging buffer are hosted in NVMM. They are used to serve
paging requests to enforce the latency bounds as specified by
users. The NV-zone consists of NVMM page frames that can
be directly accessed in process address spaces. The persistent
paging buffer stores swapped-out pages from latency-sensitive
processes and prefetched pages from the regular-zone. When
the buffer is full, NVSwap needs to asynchronously flush
pages to the regular-zone in background. When page flushing
happens, NVSwap does not need to change the page table
entry of its corresponding process. Instead, the new disk
location of the flushed pages in the regular-zone is recorded in
the shadow mapping table. Then the incoming page-in requests
to access the flushed pages will be served using their new disk
addresses looked up from the shadow mapping table.

Paging-out: According to the output of the latency control
module, the page-out requests are directed to access either the
persistent paging buffer or the regular-zone. In Figure 3(a), we
illustrate three page-out paths of NVSwap. (1) For Page(1),
it is paged out to the persistent paging buffer first and then
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Fig. 3. Illustration of NVSwap paging scheme. (a) Paging out; (b)
Paging in.

asynchronously flushed to the regular-zone when the buffer is
full. Because the persistent paging buffer is on the memory
bus, NVSwap simply copies the page to be swapped out in
DRAM to a new page frame in NVMM. Since the persistent
paging buffer is non-volatile, a page-out request can be con-
sidered complete once it is sent to the main memory extension.
We schedule writing pages from NVMM to the regular-zone
when the scheduling queue is not saturated. (2) For Page(2),
it is simply paged out to NVMM. After the termination of
the process referencing Page(2), the page frame is freed for
future usage by other processes. (3) Page(3) is paged out to
the regular-zone. The page-out request should be dispatched
by the scheduling queue in DRAM. The size of the scheduling
queue is measured in queue slots. It has a huge impact on the
tail latency of paging requests as shown in Figure 1. Therefore,
the latency control module periodically adjusts the queue size
based on the latency requirements of processes.

Paging-in: When a STORE/LOAD instruction triggers a
page fault to access a page in the swap space, NVSwap has
two paths for serving the page-in request. We illustrate them
in Figure 3(b). (1) If the page (e.g., Page(3)) is stored in
the regular-zone, NVSwap first issues a read request to read
the page from the block device to a new DRAM page frame
allocated for serving the page fault. Then by updating the page
table entry (PTE) of the process which references the page,
it sets up the PTE mapping from the virtual address to the
physical address in DRAM. Finally, the process can write/read
the data to/from the page. This page-in path is the same as
Linux. (2) If the page (e.g., Page(2)) is stored in the persistent
paging buffer, NVSwap allocates a page frame in the NV-zone.
Then it sets up the PTE mapping from the virtual address to
the physical address in NVMM. Finally, it copies the data
from the persistent paging buffer to the NVMM page frame

in the NV-zone. The existing buffer slot hosting the page is
freed. This operation is called in-situ paging in NVSwap. In-
situ paging replaces the operation of reading the regular-zone
with the memory copy from the persistent paging buffer to
the N'V-zone. Consequently, it reduces the page-in latency of
serving the page fault.

Resizing the persistent paging buffer: The size of the
persistent paging buffer is periodically adjusted according to
the ratio of the number of page-in requests and page-out
requests. Specifically, let’s assume the size of NVMM is
Cromm, the size of the persistent paging buffer is Chy f fer, and
the size of the NV-zone is C),yz0one. We further assume the rate
of page-in and page-out is Rate;,, and Rate,,: respectively.
Then Cryzone = Ratei, * Crymm/(Rateoys + Rate;,) and
Chouffer Chuvsone- To calculate Rate;, and
Rateoyt, NVSwap maintains a moving average of the total
number of page-in and page-out requests being served in a
1-second time window. It does not induce additional overhead
as Linux already tracks these metrics (e.g., the number of page
faults). When the NV-zone is full, in-situ paging is disabled
until the existing page frames are freed or more NVMM page
frames are allocated for the zone.

The page layout of swap space and prefetching: When
flushing occurs in the persistent paging buffer, NVSwap evicts
pages from processes that have the highest latency bounds
specified by users. For this purpose, it organizes the space of
the persistent paging buffer into multiple latency groups, each
of which consists of 64 pages from processes having the same
latency bound. When a latency group is full, it is split into two
latency groups of the same latency requirement. Furthermore,
it exploits the temporal locality by storing the pages in the
same group in the order of eviction from DRAM. We schedule
writing a group of pages from the persistent paging buffer
to the regular-zone when the scheduling queue is not full.
NVSwap manages page slots using a cluster-based approach
like Linux for the regular-zone.

Serving the read requests from the regular-zone is in the
critical path and may significantly increase the latency of page
fault handling. Linux prefetches pages after a page fault to
hide the latency [2]. However, the existing prefetching mech-
anism reads pages from the regular-zone into DRAM, which
may cause memory thrashing under high memory pressure.
In contrast, upon page fault to the regular-zone, NVSwap
prefetches the pages from the regular-zone to the persistent
paging buffer in the unit of a latency group. Furthermore,
it only prefetches the pages of latency-sensitive processes
that are set to access NVMM according to the output of
the latency control module. When page prefetching happens,
NVSwap does not need to change the page table entry of
its corresponding process. Instead, the new page frame ID of
the prefetched pages in NVMM is recorded in the shadow
mapping table. The incoming page-in requests to access the
prefetched page will be served using the new NVMM page
frame. Because our flushing and prefetching algorithm exploits
applications’ semantics (e.g., latency bound) and temporal
locality, the pages in the same cluster in the regular-zone will
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likely be accessed together.

IV. LATENCY CONTROL MODULE

NVSwap supports storage QoS specified using X*" per-
centile page-in latency. These may be set for individual
processes or collectively for a group of related processes.
According to our observations, the paging latency is affected
by the characteristics of both swap devices and workloads,
e.g., read/write latency, disk scheduling queue size, and I/O
arrival rate. NVSwap selects a host swap device for each
latency-sensitive process according to its tail latency bound.
Then according to the latency requirements of the processes
accessing the regular-zone, it determines the disk scheduling
queue size to control the queuing time. Finally, according to
the size of the queue, it adjusts the rate of memory page
reclaiming to control the I/O arrival rate. In this section, we
describe the algorithm used in NVSwap to enforce the latency
bounds.

Selecting the host swap device and the queue size: The
default host swap device is the regular-zone for processes.
Then given the capacity of the regular-zone, NVSwap may
select NVMM as the host swap device for latency-sensitive
processes. We adopt a control strategy to estimate the ca-
pacity in terms of the scheduling queue size. The strategy
is inspired by those used in Storage Resource Pools [22] and
PARDA [23].

Let’s assume that the paging latency is Lat; for pro-
cess P; (1<i<n). Then the latency goal to achieve using
the scheduling queue Latgoq is min(Laty, ..., Lat,). The
queue size is adjusted based on Latgeq; and observed latency
Lat opserveq using Equation 1, where S(t) denotes the size of
the scheduling queue at time ¢ and ~y is a smoothing parameter
between 0 and 1. For measuring Lat,pserved, We instrumented
the Linux kernel to collect the latency of paging requests.

Lat oa
S(t4+1) = (1 =) % S(t) + 7% (S(t) ¥ — 2L ) (1)
Latobserved

Using the control strategy, if the observed latency is higher
than Lat a1, NVSwap will reduce the queue size. Otherwise,
it will increase the queue size. If the queue size is too large,
we are at risk of losing data in the queue upon system failures.
Consequently, we set the maximum queue size to be no larger
than Sy,aq. If S(t+1) > Simaz, S(E+1) = Smax- We set Spax
to be 1024 in the paper. Furthermore, we also set the minimum
queue size to be no smaller than S,,,;,,. For example, S,,,;, can
be set as the number of channels of SSDs to explore its I/O
parallelism. If the queue size S(t + 1) is smaller than .S,,,;,
using Equation 1, NVSwap considers that the regular-zone is
under-provisioned. It will serve the requests from the most
latency-sensitive processes using the persistent write buffer to
reduce the load on the regular-zone until S(¢+ 1) becomes no
smaller than S,,;,. Algorithm 1 describes the algorithm for
the assignment of host swap devices and the determination of
queue size.

NVSwap reserves a fixed number of slots in the queue to
serve other processes that are not latency-sensitive for solving

Algorithm 1: Algorithm for the assignment of host
swap devices and determination of queue size
Input:
Lat;: User-specified paging latency of process i,
1<i<n;
Set LS: Ordered set {ls1, ls2, ..., ls,} of elements
from set {Laty, Lats, ..., Lat, };
index[i]: equals k if [s; is Laty;
Simin and S,,4.: minimum and maximum size of the
scheduling queue respectively;
Sreserve : the reserved slots in the scheduling queue;
Latpserveq: Observed latency of accessing the queue.
Output:
Set NS: the set of processes using the persistent
paging buffer;
Set RS: the set of processes using the regular-zone;
S(t+1): the size of the scheduling queue.
1 NS ={}, RS={1, .., n}.
2 forkin i, ..., ndo
// Set the latency goal using the

minimum latency

3 Latgoar = lsg;

// Update the scheduling queue size
using user-specified latency

s | S(EH1) = (1) % S() + 7% (S() * )

// Handle the case of u
under-provisioned regular-zone by
serving latency-sensitive processes
using persistent paging buffer

5 if S(t+1) < Sy, then

NS = NS U index[k];
L RS = RS - index[k];

8 else
9 L break;

// Handle the case of extremely large

queue size
10 if S(t+ 1) > Sy, then
11 L S(t+ ]-) = Smam;
// Add reserved slots for processes that

are not latency-sensitive

12 S(t+1) += Sreserves

the starvation issue in request scheduling (#L12). Finally, it
is designed to reduce the write interference in the regular-
zone. For this purpose, in the scheduling queue, we set read
requests to have higher priority than write requests to avoid
write interference.

Latency-sensitive page reclaiming: Page replacement al-
gorithm determines which pages should be swapped out.
And SWAP_CLUSTER_MAX determines how many pages
should be swapped out [24]. It is set to 32 in Linux [2],
indicating that kswapd will swap out 32 pages from the list
of inactive pages. For latency enforcement, instead of using



SWAP_CLUSTER_MAX with a fixed value, NVSwap sets the
maximum number of pages to swap out according to the size
of the scheduling queue S(t). As a result, the rate of page
scanning matches the capacity of the regular-zone given the
latency bounds of processes.

The page replacement algorithm is modified to evict pages
from latency-sensitive processes in V.S to the persistent paging
buffer and evict pages from not in NS to the regular-zone.
Specifically, for selecting a page to reclaim, the algorithm
scans pages from the end of the inactive_list or until the list
is empty. We use reverse mapping to map the page frame
to its associated process indexed by the process ID. If the
process is in N.S, NVSwap directs the paging request to access
the persistent write buffer. Otherwise, it directs the request
to access the regular-zone. The scanning process in a loop is
completed until the number of reclaimed pages from processes
not in V.S reaches S(¢) or until the list is empty.

Tail latency monitoring and enforcement: In the Linux
kernel, we implemented a monitor, which collects the rate of
paging and the X' percentile latency of paging processes for
any time window k (k > 0). Let’s assume that the X*" latency
specified by users is Tail¥ for process P; (1<i<n) at the time
window k. If the observed tail latency is higher than T'ail¥, all
the page-out requests from P; at the next time window k + 1
will be served using the persistent write buffer. In addition, it
will trigger prefetching the pages from P; so that the page-in
requests issued at the time window k + 1 will be served using
NVMM to reduce page-in latency Tailf“.

V. IMPLEMENTATION ISSUES

Admission control: A key question that arises in the
implementation of NVSwap is how many latency-sensitive
paging processes can we serve on a hybrid swap space using
NVMM? We need to understand both the system capacity
and the total I/O demand to answer the question. We use the
following equation to provide a general understanding of I/O
demand.

1
Lati

DemandIOPS = Z 2)
i=1

For the capacity of the regular-zone, we suggest computing
its throughput (IOPS) using random I/O workloads. The re-
quest size should be equal to the page size in Linux, e.g., 4
KB. The measurement should be conducted with an increased
number of I/O concurrency. This can be done either during
system installation or later by running micro-benchmarks,
e.g., IOMETER [25]. NVSwap only copies the pages to the
persistent write buffer. For measuring the capacity of the
persistent write buffer, we develop a simple tool to measure the
latency of copying pages from DRAM to the buffer. Then we
convert it to throughput. Using this approach, we obtained the
capacity of the regular-zone and persistent write buffer is 7,900
and 215,000 paging I/O operations per second respectively in
our experiments. With the capacity being set, NVSwap can
automatically determine whether to admit a process given the

existing total I/O demand DemandIOPS and the latency
bound of the incoming process.

Reducing writes to NVMM: Many existing approaches
have been proposed to reduce the number of writes to NVMM
during paging, thus increasing its lifetime [12], [13]. In
NVSwap, we focus on the software design related to the
enforcement of paging latency. However, we believe our idea
can also benefit from those schemes. For example, without
violating the latency requirement, NVSwap may swap out less-
frequently accessed pages or read-only pages (e.g., those store
program codes) to persistent write buffers.

VI. EVALUATION

A. System Setup

We implemented NVSwap in the Linux kernel-4.4.241,
which is a long-term state version. We instrumented the Linux
/proc file system to pass the value of X*" percentile latency
bound specified by users for the corresponding processes to the
kernel. By default, processes are not latency-sensitive. Other
code modifications are in the virtual memory management
system, for example in the do_swap_page() function for in-
situ paging, and in the shrink_page_list() function to select
reclaimed pages using the latency control module.

For the experiments, we used a server that is configured with
one 8-core Intel Xeon Scalable Silver 4208 2.1 GHz CPU, 32
GB DRAM, two Intel Optane DC Persistent Memory 128 GB
modules, one 240 GB SSD (Samsung PM883 Series SATA 6
GB/s), and one 1 TB hard disk (Seagate Barracuda 7200.12).
The hard disk is used to host the operating system. The SSD is
used to host the regular-zone. In most of the experiments, we
configured the computer so that the kernel can only address
5 GB DRAM as the main memory. A reserved NVMM space
of 10 GB is used to host the persistent write buffer and the
NV-zone.

We used the YCSB [7] benchmark for benchmarking in
our experiments. YCSB is a framework developed for bench-
marking cloud system performance. It provides a YCSB client
for workload generation and a variety of database backends.
In the experiments, we use memcached, an in-memory key-
value database, as the default backend [26]. Unless otherwise
specified, we use Workload A with 50/50 read/update ratio
by default. The database record size is 1 KB. Its request
distribution is zipfian. Both of the total recordcount and
operationcount are set to 3 million. To demonstrate the
practical effectiveness of NVSwap, we experimented with
other Workloads including B, C, and F. We also varied
the I/O characteristics of workloads, e.g., DB record size
and operation types. We use both dedicated workloads and
concurrent workloads to generate paging requests. Please find
the configurations of the corresponding experiments in the
following sections.

NVSwap is also effective with other applications (e.g., Im-
ageMagick which is a software package providing command-
line functionality for image editing). Due to the space limita-
tion, we did not show their results here.



250000 - 24a19"
EEl Linux-swap

EEE NVSwap

350 || M Linux-swap

300 ||HEEE NVSwap 200000

150000 155677

100000

Latency (us)

50000

My 95t 99% My 95 99
y vere Pere, perc,

(a) OS Page In (b) OS Page Out

1000 1000

I Linux-swap
800 800 | gl NVSwap

N Linux-swap
N NVSwap

600

400 400

Latency (us)
Latency (us)

200 200

My osn 99+

ey, 1t
eens, (0} pe’CEnnle

(c) DB Update Records (d) DB Read Records

Fig. 4. (a), (b), (c), and (d) show the minimum, 95th percentile, and 99th percentile latency of OS page-in, page-out, DB update, and DB
read records respectively with one instance of memcached. We set the 99'" percentile latency bound of page-in requests to be 200 us which

is indicated by the green line.

B. Latency Enforcement

In this section, we present several experiments based on the
YCSB benchmark that show the effectiveness of NVSwap in
enforcing the latency bounds with both single and concurrent
workloads.

1) Single Workloads: We study the effectiveness of latency
control using NVSwap with a single memcached server access-
ing the swap space in the experiment. We compare NVSwap to
the Linux swap system without latency control. For NVSwap,
we set the 99'" percentile latency bound to be 200 us for
page-in requests. Figure 4 shows the results. We have the
following observations. First, from Figure 4(a), we observe
that the 99*" percentile latency is reduced from 345 us to 192
us, which is below the latency bound 200 us. The result shows
the effectiveness of NVSwap in enforcing latency bounds.
It achieves the QoS goal by synergistically managing the
disk scheduling queue and NVMM allocation. For example,
the memcached server wrote 418,577 pages to the persistent
paging buffer. The minimum latency of page-in requests is
reduced from 86 us to 0.08 us because serving the requests
using NVMM has a smaller latency than using SSDs. Second,
from Figure 4(b), we observe that the 95" and 99" percentile
latency of page-out requests are reduced by 99.6% and 96.7%
respectively. It shows that using the persistent paging buffer
can significantly alleviate the write interference on SSDs and
reduce the congestion in the disk scheduling queue while
also exploring the locality of workloads. Third, the latency of
application-level requests was reduced by up to 74%. And the
99" percentile latency of DB read and update is comparable
to that of OS page-in requests.

Workload | Read% | Update% | 99% Latency Bound
A 50% 50% 1000 us
B 95% 5% 500 us
C 100% 0% 300 us
TABLE T

CONFIGURATIONS OF WORKLOAD A, B, AND C.

2) Concurrent Heterogeneous Workloads: In this section,
we study the effectiveness of NVSwap using concurrent het-
erogeneous workloads. In the experiment we run three YCSB
workloads A, B, and C. We show their configurations in
Table I. The DB record size is 1 KB. The results are shown in

Figure 5. We observed that the 99! percentile latency of page-
in requests is 737 us, 323 us, and 255 us for Workload A, B,
and C respectively. They are smaller than their corresponding
latency bounds, indicating that the QoS requirements were
met with the help of NVSwap. In addition, because of the
larger ratio of DB read operations in the workloads leading
to a higher cache hit ratio, the 99" percentile latency of
DB operations is on average 33% smaller than the respective
latency bound.

C. Changing Latency Bounds Dynamically

In this experiment, we show how the latency bounds set
dynamically at the process level are respected. For this ex-
periment, we ran two Workloads A and C sharing the swap
space. Their initial 99" percentile latency bounds are set to
100 us and 1000 us for Workload A and C respectively. Then
the latency bound of Workload C is changed from 1000 us to
800 us at ¢ = 200 second and from 800 us to 600 us at ¢t = 450
second. Figure 6(a) shows the tail latency of DB operations in
each 1-second time window during the execution of the two
workloads.

At the start, the tail latency of the workloads matches the ini-
tial latency bounds as expected. Because of the latency bounds,
the persistent paging buffer was used to serve Workload A
and the regular-zone was used to serve Workload C. After
the latency bound was reduced from 1000 us to 600 us for
Workload C, more of its pages were directed to the persistent
paging buffer to meet its QoS requirements. For example, after
the tail latency became 600 us at ¢ = 450 second, we see
up to 90% of paging requests were served by the persistent
paging buffer. The latency of the other workload Workload
A was not affected showing the strong performance isolation
between the two workloads. The overall paging performance is
shown in Figure 6(b). We also observe that the measured 99"
percentile latency of Workload A is smaller than 100 us. For
Workload C, its 99" percentile latency is 748 us overall. This
experiment shows the latency bound can be dynamically set
and enforced by NVSwap during the execution of processes.
Performance isolation is achieved between latency-sensitive
paging processes.
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Fig. 7. Comparison of latency by NVSwap versus Dr. swap.

D. Comparison with Other Systems

We compared NVSwap with other state-of-the-art systems
that support swapping using NVMM. Among them, we choose
to implement Dr. swap as it is a page-level solution and pro-
vides direct read from NVMM, which is similar to the in-situ
paging used in NVSwap. Because Dr. swap was not designed
to provide latency enforcement, we only study the performance
of NVSwap without using the latency control module. In
the experiment, both Dr. swap and NVSwap only access
NVMM for paging. No regular-zone is configured. We ran two
instances of Workload A concurrently accessing NVMM. The
99*" percentile latency of DB operations is shown in Figure 7.
Since the kernel-level tracing is disabled, we did not show the
latency of page-in requests for the fairness of the study. The
results show that the tail latency of NVSwap is 0.8% higher
than that of Dr. swap. The reason is that NVSwap needs to
copy the page from the persistent write buffer to the NV-zone,

which is then mapped to process address spaces. In contrast,
Dr. swap directly mapped it without the additional latency of
memory copy.

VII. CONCLUSION

In this paper, we studied the problem of latency-aware
paging in the virtual memory of operating systems. We pro-
pose a novel paging scheme called NVSwap which provides a
cost-effective and hybrid swap space using both NVMM and
SSD. It allows the setting of X" percentile page-in latency
bound for a single process or a group of processes. NVSwap
controls the host swap device, the memory page reclaim rate,
the scheduling queue size in DRAM, and the allocation of
persistent paging buffer in NVMM for paging processes. We
implemented NVSwap in Linux kernel-4.4.241. Our evaluation
with a diverse set of YCSB workloads shows that NVSwap can
enforce the tail latency while providing strong performance
isolation for latency-sensitive processes.
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