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Abstract

Understanding web instructional videos is an essential

branch of video understanding in two aspects. First, most

existing video methods focus on short-term actions for a-

few-second-long video clips; these methods are not directly

applicable to long videos. Second, unlike unconstrained

long videos, e.g., movies, instructional videos are more

structured in that they have step-by-step procedures con-

straining the understanding task. In this work, we study

problem-solving on instructional videos via Visual Question

Answering (VQA). Surprisingly, it has not been an empha-

sis for the video community despite its rich applications. We

thereby introduce YouCookQA, an annotated QA dataset for

instructional videos based on YouCook2 [27]. The ques-

tions in YouCookQA are not limited to cues on a single

frame but relations among multiple frames in the tempo-

ral dimension. Observing the lack of effective representa-

tions for modeling long videos, we propose a set of care-

fully designed models including a Recurrent Graph Con-

volutional Network (RGCN) that captures both temporal

order and relational information. Furthermore, we study

multiple modalities including descriptions and transcripts

for the purpose of boosting video understanding. Exten-

sive experiments on YouCookQA suggest that RGCN per-

forms the best in terms of QA accuracy and better per-

formance is gained by introducing human-annotated de-

scriptions. YouCookQA dataset is available at https:

//github.com/Jossome/YoucookQA.

1. Introduction

Humans can acquire knowledge by watching instruc-
tional videos online. A typical situation is that people con-

∗This work was done while they were at University of Rochester.

Figure 1: Demonstration of YouCookQA dataset. Colored
boxes and arrows represent different steps required to an-
swer the given questions. Red boxes denote the first step,
blue boxes denote the second, and green arrows are for the
final step. Better view zoomed in and with color.

fused by specific problems try to look for solutions in re-
lated instructional videos. For example, while learning to
cook new dishes, they may wonder how a particular ingre-

dient is added, and what happens between the two proce-

dures. Watching instructional videos can often clarify these
questions and hence, guide humans in accomplishing tasks.
The underlying process goes beyond the simple recogni-
tion of objects and actions. Still, it requires more compli-
cated spatiotemporal and commonsense reasoning, which
imposes a set of new challenges for existing AI algorithms.
We hereby propose the question: can machines also under-
stand instructional videos as humans do? As a proxy to
answer this question, we study Visual-Question-Answering
(VQA) for web instructional videos.

Current instructional video understanding studies focus
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on various tasks e.g., reference resolution [7], procedure lo-
calization [27, 2], dense captioning [28, 18], activity de-
tection [15, 12] and visual grounding [8, 20]. Despite its
potential rich applications, VQA for instructional videos is
less well-developed. Yet, it may act as a unified testbed
for the above collective tasks. Previous works, e.g., Im-
ageQA [3, 13, 11], and VideoQA [17, 25], also leverage the
QA task as an automatic evaluation for image and short-
video understanding. Still, QA on instructional videos has
never been tackled before.

Observing the lack of suitable dataset on instruc-
tional videos, we propose YouCook Question Answering
(YouCookQA) dataset based on YouCook2 [27], a recent
popular instructional video dataset. We employ question-
answering as intuitive interpretations for various styles of
problem-solving. Figure 1 presents two exemplar QA pairs
in our dataset along with the corresponding example human
problem-solving steps involved to answer the questions.
YouCookQA dataset contains 15,355 manually-collected
QA pairs that are divided into different categories regarding
different problem-solving styles, e.g., counting, ordering,
comparison, and changing of properties.

Upon the newly built dataset, we explore in two direc-
tions. The first one concerns effective representations of
modeling instructional videos. The videos in our consid-
eration have an average length of 5.27 min and as instruc-
tional videos, they are structured and have step-by-step pro-
cedure constraining the understanding task. By modeling
the temporal relations among different procedures, we are
expecting valuable information to be extracted from the in-
structional videos, for which we study various model struc-
tures, including Recurrent Graph Convolutional Network
(RGCN). The RGCN deals with complex information ex-
change by message passing in the graph, but also maintains
the sequential ordering information by a supporting RNN.
In this design, graph and RNN can boost each other since
the information can be swapped between the two pathways.

Second, we explore the use of different modalities in
video modeling. Apart from visual information, temporal
boundaries, descriptions for each procedure, and transcripts
are explored. In this direction, we want to test the effect
of combining various types of available annotations with
our developed video models on understanding instructional
videos. Given that modeling instructional videos from vi-
sion alone is hard, combining such information approxi-
mates better the human learning experiences and it, in turn,
guides better models for machine intelligence.

We conduct extensive experiments on the YouCookQA
dataset. In the ablation study, we find that attention mech-
anism helps boost the performance. Our proposed RGCN
model outperforms all other models in overall accuracy,
even without attention. From the multi-modality perspec-
tive, modeling instructional videos using temporal bound-

aries together with descriptions can help dig more valu-
able information from videos. We also conduct human quiz
on the QAs in our dataset. Results show that machines
still have a large gap to human performance in that even
without visual information, humans still can answer some
questions correctly using life experience, or common sense,
which hints us that incorporating the external knowledge
with video models will be helpful for future works.

Our main contributions are summarized as follows.
(1) We propose YouCookQA dataset, a problem-solving-

oriented dataset for understanding instructional videos.
(2) We perform solid evaluations with both graph and

temporal models with various structures for video model-
ing. The RGCN model outperforms all other models even
without attention.

(3) We incorporate multi-modal information to perform
extensive experiments on YouCookQA showing that de-
scription can boost the video understanding capability,
while transcripts could not.

The rest of the paper is organized as the following. We
first discuss some related works in Sec. 2, and introduce the
proposed YouCookQA dataset in Sec. 3. Then in Sec. 4, we
set up series of baseline models for the dataset. In Sec. 5,
we demonstrate and discuss the experiment results. Con-
clusions are drawn in Sec. 6.

2. Related Work

Instructional Video Understanding: Instructional
video understanding has received much attention recently.
Alayrac et al. [2] and Kuehne et al. [12] both leverage the
natural language annotation of the videos to learn the in-
structional procedure in videos. Zhou et al. [27], however,
propose to learn the temporal boundaries of different steps
in a supervised manner without textual information. Dense
captioning is also posed on instructional videos in [28],
which aims at localizing temporal events from a video, and
describing them with natural language sentences. Visual-
linguistic ambiguities is a common problem in instructional
videos with narratives. Huang et al. [7] focus on ambigui-
ties caused by the changing in visual appearance and refer-
ring expression, and aim to resolve references with no su-
pervision. Huang et al. [8] perform visual grounding task in
instructional videos, also coping with visual-linguistic am-
biguities. Yet, none of these works have tackled the QA
problem on instructional videos, despite the uniqueness for
instructional videos.

Video Question Answering: People are gaining inter-
ests in video question answering (VideoQA) in recent years.
Most of the current VideoQA tasks are focusing on direct
facts in short videos [22, 26, 25, 21, 29]. They all auto-
matically generate QA pairs using a state-of-the-art ques-
tion generation algorithm proposed in [5]. However, such
auto-generation mechanism often generates QA pairs with
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poor quality and low diversity, though grammatically cor-
rect. Worse still, auto-generated QA pairs rarely involve
temporal relations among multiple frames. MovieQA [17]
use human annotated QA pairs on movies to evaluate auto-
matic story comprehension. SVQA [16], following the step
of [10], extend the CLEVR dataset to the video version.
Yet, it still focuses on short-term relations, and does not fit
natural settings.

An other branch for VQA is neural-symbolic reason-
ing [24, 14, 23] which mainly focus on synthesized images
and questions with composed logic and the paired reasoning
program. While YouCookQA has real videos with multi-
hop logic, combining symbolic reasoning would be an in-
teresting future direction.

3. YouCookQA Dataset

To validate the proposed task of problem-solving on
instructional video, we introduce YouCookQA dataset,
a video question answering dataset based on YouCook2
dataset. The dataset contains 15,355 question-answer (QA)
pairs in total. Tailored for our dataset, we annotate the QA
pairs with six different tags, where each QA pair could be
labeled with more than one tag. We show example QA pairs
for each tag described below in appendix.
Counting: This tag annotates a QA pair that involves
counting. One may count the occurrence time of certain ac-
tions or the number of certain ingredients. E.g., “How many
white ingredients are used in the recipe?” Apart from count-
ing, we also need to find out the target ingredients according
to their colors.
Time: Time is a distinguishing feature in videos com-
pared to images. This category of questions are mainly
about timing and duration. A typical example is, “Which
one is faster: adding water or adding salt?”. To answer this
question, we not only need to know how long it takes for
both actions, but also need to compare the duration.
Order: Long-term temporal order is a unique feature
for instructional videos, because instructional videos come
with step-by-step procedures, and the order information
matters. E.g., in YouCook2, the ordering of procedure is
critical to the success of one recipe. Therefore, we stress
out questions related to action orders, e.g., “What happens
before/after/between ...?”, and “Does it matter to change the
order of ... and ...?”
Taste: YouCook2 is an instructional cooking video
dataset, so we bring up with the taste questions. This type
of QA pairs is about the flavor and the texture of the dish.
Taste can be a unique type of question in this dataset that
one can infer the taste from the ingredients used, and the
texture from the cooking methods applied. Note that we
avoid questions that are subjective such as “Is this burger
tasty?”, which involves too much subjective inspection.
Multi-hop: This tag presents a broader concept than all

(a) Distribution on categories. (b) Different answer tags.

Figure 2: Statistics for our dataset.

other tags above. By “multi-hop”, we emphasize a question
involving more than 2 sets of frames. This type of questions
overlaps with all other types.
Property: Cooking usually involves changes of ingredi-
ents. The properties of ingredients, e.g. their shape, color,
size, location, etc., may vary at different time points as the
cooking procedure goes on. This type of questions is differ-
ent from “order” questions since we are asking about certain
ingredients rather than actions.

In Tab. 1, we contrast our dataset to some other VideoQA
datasets. Our dataset is unique in that we not only build
the dataset based on instructional videos, but also focus on
relations among multiple frames.

3.1. QA collection

Many existing VideoQA datasets [25, 21, 26, 22, 29]
adopt an automatic question-answer (QA) generation tech-
nique proposed by [5] to generate QA pairs from texts.
However, QA pairs obtained via this method suffer from ex-
tremely low diversity. Also, automatic methods can hardly
generate questions involving multiple frames, which goes
against our goal of constructing the dataset. Therefore, we
apply Amazon Mechanical Turk (AMT) to collect question
and answer pairs. For details about the collection of QA and
multiple choice alternatives, please refer to appendix.

3.2. Statistics

In Fig. 2a, we show the statistics of six different cate-
gories of questions. We have 7,200 multi-hop QA pairs,
consisting nearly half of our dataset. Other questions in-
volve fewer frames, but still cannot be answered by direct
observation from the videos. On average, we have 1.478
tags per QA pair, 2.289 words per answer, and 7.678 QA
pairs per video.

To illustrate our dataset better, we split the QA pairs
into four categories with respect to answer types, namely
“Yes/No” for answers containing yes or no; “Numeric” for
answers containing numbers, mostly related to counting
and time; “Single word” for answers with only one word,
excluding QA pairs in “Yes/No” and “Numeric”; “Text”

1132



Table 1: Comparison among different video question answering datasets. The first four columns are: “Inst.” for whether it
is based on instructional videos; “Natural” for whether videos are of natural world settings; “Reason” for whether questions
are related to reasoning; “Human” for whether QA pairs are collected through human labor.

Inst. Natural Reason Human # of QA Per video length Answering form

VTW [25] ! " ! ! 174955 1.5 min Open-ended

Xu et al. [21] ! " ! ! 294185 14.07 sec K-Space

Zhu et al. [29] ! " ! ! 390744 >33 sec Fill in blank

Zhao et al. [26] ! " ! ! 54146 3.10 sec Open-ended

SVQA [16] ! ! " ! 118680 - K-Space

MovieQA [17] ! " " " 6462 200 sec Multiple choice

YouCookQA (Ours) " " " " 15355 5.27 min Multiple choices and K-Space

for answers with multiple words, excluding QA pairs in
“Yes/No” and “Numeric”. Fig. 2b shows the distribution
of four different types of answers in our dataset.

4. VQA on Instructional Videos

With the newly collected YouCookQA dataset, we per-
form VQA tasks by answering questions on instructional
videos. We first formally define our problem in Sec. 4.1.
Then in Sec. 4.2, based on attention mechanism, we de-
sign sequential model (SEQ-SA) and graph convolutional
model (GCN-SA). We also propose Recurrent Graph Con-
volutional Network (RGCN) which captures both temporal
order and multi-hop relations to overcome the limitation of
SEQ-SA and GCN-SA. In Sec. 4.3, additional modalities
such as description and transcripts are added to the multi-
modal model to help gain better performance.

4.1. Problem Formalization

Multiple Choice: Since the questions in the
YouCookQA dataset have alternative choices, we can
use a three-way score function f(v, q, a) to evaluate each
alternative and choose the one with the highest score as
correct answer:

j∗ = argmax
j=1,...,M

f(v, q, aj) , (1)

where M = 5 in our case, and v, q, a represent the feature
of video, question and answer respectively. In this work, q
and a are the final hidden states by encoding the question
and answer via RNNs. Here, f(·, ·, ·) denotes a MLP whose
input is the concatenation of v, q, and a and output is a
single neuron classifying how likely the given answer a is
the correct one.

K-Space: Similar to other VQA problems, our task can
also be formulated as a classification problem on the answer
space. Then the alternative (negative) answers are all other
answers in the training set. Here, K types of distinct an-
swers are assigned to K categories {Ai}Ki=1. A MLP with
K output neurons is tasked to predict the correct answer A∗

by taking in v and q:

A∗ = argmax
j=1,...,K

gj(v, q) , (2)

where gj denotes the output score of the j-th neuron.

4.2. Models

In this section, we mainly focus on the design of video
models that can capture procedure relations in instructional
events. Their generated video feature v will be used for
question answering. First, we describe how we pre-process
the videos. Then, we introduce the architecture of proposed
models that are suitable for VideoQA. Especially, we lever-
age RGCN architecture that can perform message passing
between two paths: RNN and GCN, in order to capture both
time series and global properties for modeling videos.

In Fig. 3, we present all the model architectures we
use in this paper. In (a), we demonstrate the pre-
processing procedure. We show an example video on how
to make hash brown potatoes (YouTube ID: kj5y 71bsJM).
It demonstrates the basic concepts of instructional videos
in YouCook2 dataset. Temporal boundaries means the hu-
man annotated start/end time stamp of a procedure, which is
well defined in [27]. Video are segmented into several seg-

ments (procedures) by the temporal boundaries. Descrip-
tions are also annotated by human, corresponding to each
procedure. Transcripts are auto-generated by speech recog-
nition on YouTube. An example QA pair for the video in
(a) is, Q:“How many actions involving physical changes to

potatoes are done before adding salt?” A:“2.”. In (b) and
(c), we have question feature attending on each segment.
In (d), we illustrate the structure of our proposed RGCN
model, where GCN interacts with RNN via “swap” opera-
tion which takes in RNN’s hidden state ht−1 and outputs
the graph node St

t−1 of GCN. We zoom in the first swap
operation to provide an intuitive visualization.
Pre-processing: The videos in our consideration have an
average length of 5.27 minutes, which requires us to pro-
cess the videos into more tractable representations before
any sophisticated modelings. Following [27], we define
procedure as the sequence of necessary steps comprising
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(a) Preprocessing (b) SEQ-SA

(c) GCN-SA (d) RGCN
Figure 3: Model architectures.

a complex instructional event and segment a video into N
procedure segments (see Fig.3a). To directly benchmark
the problem-solving ability, we use the ground truth pro-
vided by [27] instead to avoid any errors caused by inter-
mediate processing. Note that one can apply method devel-
oped in [27] for automatically segmentation. The frames
within each segment are sampled, of which the features are
then extracted by ResNet [4] and encoded by a RNN model.
Therefore, we can obtain the features of the procedure seg-
ments {Xi}Ni=1 ∈ Rd and use them for relation modeling.

SEQ-SA: We first propose an attention-based RNN
model (see Fig. 3b for an example of N = 4) to model video
representation v, where the encoded question feature is used
to attend all video features at different time steps. The simi-
larity ai between question feature q and segment feature Xi

is computed by taking the dot product of q and Xi: followed

by a soft-max normalization: ai = exp(qTXi)∑
exp(qTXi)

. Then

we multiply each Xi by ai to obtain the question-attended
video feature X

′

i : X
′

i = aiXi. Finally, we feed X
′

i into an
RNN model of which the final hidden state hN of RNN is
taken as the video feature representation v.

GCN-SA: We consider a fully-connected graph (see
Fig. 3c) to model multi-hop relations among the procedure
segments. Although the time dependencies defined by the
original video are omitted, different edges in the graph can
mine different relations for various problem-solving tasks.
We use a multi-layer GCN model for this purpose. We

define {Sj
i }

N
i=1

M

j=1, where Sj
i ∈ Rd, as the graph nodes,

where N is the number of nodes within one layer, M is

the number of layers. We first initialize nodes {S1
i }

N
i=1

in the first layer by segment features {Xi}Ni=1 correspond-
ingly. We adopt the same GCN structure as described in
[19]: Z = ReLU{GSW}, where G ∈ RN×N represents
the adjacency graph, S ∈ RN×d denotes the concatena-
tion of all node features {Si}Ni=1 in one arbitrary layer, and
W ∈ Rd×d is the weight matrix which is different for each
layer. Each element Gij in G is the dot product similarity
ST
i Sj . Three GCN layers are used, where the output of the

previous layer serves as the input of the next layer.

To apply the attention mechanism, we add an additional
node in the last layer of the GCN to represent the ques-
tion feature q, and this question node is connected with all
other graph nodes {SM

i }Ni=1 through N edges. Question
node attends to each graph node through different weights
on the edges. Similar to SEQ-SA, the weights between q
and {SM

i }Ni=1 are the dot products of corresponding node
pairs, followed by a soft-max normalization. Finally, we
use an average pooling operation to compress the output of
the last layer Z ∈ RN×d to v ∈ Rd.

RGCN: Since the aforementioned GCN-SA is unable to
capture the temporal order of video features [19], and SEQ-
SA cannot model the relations between segments with long
time spans, we construct Recurrent Graph Convolutional
Network (RGCN) architecture (see Fig. 3d) to overcome
such limitation. The RGCN is a recurrent model that con-
sists of two pathways: RNN and GCN. RNN interacts with
GCN mainly through a swap operation (see Fig. 3d). On
one hand, the swap operation enables the temporal informa-
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tion flows from the RNN path to GCN path, which enhances
the representation power of GCN. On the other hand, graph
convolution operation in GCN provides structural represen-
tation of different time steps of the video like humans do,
which, in turn, provides more information for RNN model.
The details are as follows.

The RNN pathway with N time steps takes in the seg-
ment features Xi at each time step. The GCN pathway has
N layers, each of which contains N graph nodes. Note
that the GCN has the same number of layers as the time
steps in RNN pathway. We adopt the same GCN architec-
ture as described in GCN-SA model except that a recurrent
computation paradigm is applied here, where the weights
W is shared among all layers. The computation within
the RNN memory cell at each time step and the compu-
tation of each GCN layer are performed alternatively. For
each time step t, we first concatenate together the segment
feature Xt and the feature of node St

t−1 in GCN, which is
then used as the input to RNN memory cell at the t-th time
step. Following [6], we update the hidden state ht of RNN:
ht = RNN{[Xt, S

t
t−1], ht−1}.

Then we replace GCN’s graph node St
t with the updated

hidden state ht of RNN. This swap operation act as a bridge
between RNN and GCN for message passing. Finally, the
(t+1)-th GCN layer takes all {St

i}
N
i=1 as input to compute

the response {St+1
i }Ni=1: Zt+1 = ReLU{GZtW}, where

Zt is the concatenation of {St
i}

N
i=1. We take the final hidden

state hN of RNN as the video representation v.

Additionally, we extend the proposed RGCN with atten-
tion mechanism. The two pathways corresponds to the SEQ
and GCN model, so we simply adopt how attention is cast
on both pathways, and obtain RGCN-SA.

4.3. Multiple modalities

Besides videos and questions, we further investigate how
much benefit we can obtain from other modalities such as
narratives, which is very common in instructional videos.
We are interested in two types of narratives, namely tran-
scripts and descriptions.

Transcripts: The audio signal is an important modality
for videos. In our dataset, the valuable audio information
in videos is all chefs speaking. Therefore, we substitute
audio with auto-generated transcripts on YouTube. Tran-
scripts, which can be seen as describing the corresponding
procedures, are highly unstructured, noisy, and misaligned
narratives [7] in that chefs may talk about things not related
to the cooking procedure, or that the speech recognition on
YouTube may generate some unexpected sentences. Nev-
ertheless, it can provide extra information to solve visual
ambiguities, e.g., distinguishing water from white vinegar.

Descriptions: In YouCook2 dataset, each procedure in a
video corresponds to a sentence of language description an-
notated by a human. Different from transcripts, descriptions

are much less dense with respect to time, and can be seen
as highly constrained narratives because human labor is ap-
plied to extract the essence of the corresponding procedures.
Each piece of description is associated with the procedure it
describes because they are highly related semantically .

For each individual modality (which can be description
or transcripts), we aim to model a feature representation
m, then fuse it with v and q to predict the answer A∗. To
achieve this goal, we make use of a hierarchical RNN struc-
ture: a lower-level RNN models the natural language words
within each segment, and a higher level RNN models the
gloabal feature of the video.

5. Experiments

First, we introduce the implementation details of the
training process. Then some baseline models are described,
followed by results analysis. Also, we explored the benefit
introduced by other modalities such as description and tran-
scripts. All experiments conducted in this work are evalu-
ated on both multiple choice and K-Space evaluation met-
rics. In Tab. 2, only multiple choice accuracy is provided for
discussion. All other results on K-Space are in appendix.

5.1. Implementation details

Our codes are based on PyTorch deep learning frame-
work. ResNet is used to extract visual features of 500
frames in each video, producing a 512-d vector. By using
embedding layers, the question words are transformed into
300-d vectors which are optimized during the training pro-
cess. For all models involving RNNs in this work, we apply
single direction LSTMs [6] (an improved version of vanilla
RNN) with 512 hidden units. Adam optimizer is used with
the learning rate of 0.0001.

We split the training/testing set according to the original
YouCook2 dataset. All videos in the YouCook2 training
set are used as training videos in our dataset. Therefore,
there are 10,179 QA pairs in our training set, and the rest
are treated as testing set.

5.2. Baselines

We set up some baseline models which takes no instruc-
tional information, i.e. only the original video is presented
to the models without temporal boundaries or descriptions.
Bare QA: First, we build the QA model which pre-
dicts answers based on questions only (without videos).
Then for multiple choice, the answer is predicted by a sim-
ilar way as Eq. 1: j∗ = argmaxj=1...M f(q, a). For
K-Space, we adopt a similar formula as Eq. 2: A∗ =
argmaxj=1,...,K gj(q).
Naive RNN: RNN is a base of most state-of-the-art Im-
ageQA [3, 13, 11] and VideoQA[21, 25] models. Instead of
applying the segmentation pre-processing which we intro-
duced in Sec. 4.2, Naive RNN takes in the ResNet feature
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Table 2: Results on different model architectures.

Count Order Taste Time Multi-hop Property All

Common sense 0.535 0.432 0.654 0.485 0.511 0.588 0.528

Bare QA 0.435 0.321 0.466 0.239 0.292 0.438 0.348

Naive RNN 0.434 0.330 0.467 0.234 0.283 0.449 0.347

MAC 0.438 0.331 0.462 0.229 0.294 0.437 0.348

SEQ 0.452 0.337 0.476 0.230 0.288 0.449 0.352

GCN 0.452 0.341 0.464 0.224 0.282 0.427 0.346

RGCN 0.522 0.371 0.478 0.277 0.329 0.490 0.392

SEQ-SA 0.473 0.355 0.483 0.256 0.316 0.465 0.373

GCN-SA 0.477 0.343 0.487 0.229 0.311 0.446 0.365

RGCN-SA 0.545 0.367 0.481 0.279 0.316 0.486 0.403

of sampled video frames directly. Similar to other models
discussed previously, we take the final hidden state of the
RNN as the video feature v. Then we evaluate the model
performance based on Eq. 1 and Eq. 2.

MAC: MAC [9] is currently the state-of-the-art model on
CLEVR dataset. Since our proposed YouCookQA dataset
shares similar question style with CLEVR dataset, we adopt
MAC as another alternative model. To extend MAC, which
is designed for spatial relations, to the temporal relations
in our work, we replace the input image features {Ii}Li=1,
where Ii ∈ Rd (L is the number of spatial dimension of an
image), with video frame features {Xi}Ni=1, where Xi ∈ Rd

(N is the number of sampled frames).

Human quiz: Apart from using deep learning models
to complete VideoQA tasks, we also conduct human test
with ten workers. First, they are asked to answer the ques-
tions without any other information, but by guessing or us-
ing common sense. Second, they are allowed to watch the
videos without audio. Finally, audio is also turned on to
match transcripts. Details of the setting are in appendix.

5.3. Results Analysis

Tab. 2 shows the experiment results on all models and
baselines. We start with the comparison among baseline
models that are without temporal boundary information
(i.e., Bare QA, Naive RNN and MAC). As we can see
from row 2 to row 4 of Tab. 2 that the three baselines have
very close overall accuracy. Though Naive RNN take in
the video stream, it cannot achieve better results than the
bare QA. Therefore, we claim that as the base of most
state-of-the-art VQA models, RNN fails to extract mean-
ingful visual information for problem-solving on instruc-
tional video. The reason is that it is difficult for RNN to
model multi-hop relations due to its sequential structure.
Another reason is that RNN cannot capture long time de-
pendencies of videos due to the memory limitation, even for
RNN variants such as LSTM and GRU. As the best model
on CLEVR, MAC achieves the same overall accuracy with
Bare QA on YouCookQA, which demonstrates the special

difficulty of video understanding compared with ImageQA.
Besides, the high performance of bare QA suggests that we
can use counterfactual modeling [1] to reduce bias.

Then we analyze the performance of models proposed in
Sec 4.2, which incorporate temporal boundary information
of instructional videos to boost the performance. Recall that
the temporal boundaries are provided by the ground truth
in [27]. First, to evaluate the improvement introduced by
attention mechanism, we remove the question attention op-
eration to formulate the models: SEQ, GCN, RGCN, the
results of which are shown in row 5 to row 7 of Tab. 2.
We can see from row 5 to row 10 of Tab. 2 that the mar-
gins gained by introducing attention are from 1.1% to 2.1%,
which demonstrates that question can guide the models to
extract more meaningful features, and all these models out-
perform baselines by a big margin. Especially, RGCN-SA
achieves the highest overall accuracy of 40.3%, 5.5% higher
than MAC, and SEQ-SA ranks second among the atten-
tion based models with an overall accuracy of 37.3%. This
demonstrates that the procedure segmentation helps models
make better use of video streams.

Finally, we investigate the performance of attention
based models on various question categories. The com-
parison between SEQ-SA and GCN-SA shows that GCN-
SA achieves higher accuracy scores on “count” and “taste”
questions, while SEQ-SA performs better on all other cat-
egories. Intuitively, “order”, “property” questions require
temporal order information to be answered, because the
questions usually contain sequence-related keywords, e.g.,
“before/after/between”. Graph structure can hardly capture
such ordering information. Nevertheless, the capability of
modeling relations gives graph structure a reasonably good
performance, especially on “count” and “taste” questions
which challenge less on ordering. Since both sequence and
graph models show advantages on different categories of
questions, we take the advantages of both two models to
build RGCN-SA, which is capable of passing messages be-
tween the two different pathways. Results show that graph
and sequence can boost each others’ performance on most
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Table 3: Results on multiple modalities, where V stands for visual information, CC for transcripts, and D for descriptions.

SEQ SEQ-SA GCN GCN-SA RGCN RGCN-SA

MC KS MC KS MC KS MC KS MC KS MC KS

Visual 0.352 0.160 0.373 0.164 0.346 0.150 0.365 0.164 0.392 0.179 0.403 0.182

CC 0.346 0.159 0.353 0.152 0.343 0.143 0.346 0.150 0.361 0.152 0.366 0.144

Description 0.353 0.158 0.365 0.156 0.352 0.157 0.347 0.153 0.385 0.163 0.389 0.162

V+CC 0.347 0.151 0.375 0.167 0.348 0.150 0.375 0.177 0.390 0.173 0.393 0.180

V+D 0.351 0.160 0.379 0.173 0.349 0.148 0.383 0.183 0.413 0.194 0.416 0.203

question types except for “taste”.

5.4. Multimodalities

Based on temporal boundary annotations, we further ex-
plore other modalities. As described in Sec. 4.3, we exper-
iment on two types of narratives, unconstrained transcripts
and concentrated descriptions. Descriptions are already as-
sociated with video segments in the YouCook2 dataset, so
we only need to align the transcripts with segments by se-
lecting transcripts that lay between the temporal boundaries.
Results are shown in Tab. 3.

As for different modalities, we first compare visual infor-
mation, transcripts and description separately. Although de-
scriptions are human annotated, highly refined reconstruc-
tion of the content of instructional videos, mere description
seems not helpful when compared with visual information.
Transcripts, to be worse, always decrease the performance.
However, when narratives and visual information are com-
bined together, we can see a significant increase in accu-
racy scores. SEQ-SA, GCN-SA, RGCN and RGCN-SA all
achieve highest multiple choice accuracy when trained with
both visual features and descriptions. SEQ with visual and
description information also gets the highest K-Space ac-
curacy compared to SEQ models trained on other modali-
ties. However, transcripts still fail to provide as much valu-
able information as descriptions on videos, since the perfor-
mance of models with visual and transcript information is
worse than visual plus description. Transcripts even have a
negative effect on SEQ and RGCN in that multiple choice
accuracy is dropped when transcripts are added to visual in-
formation. Possible reasons are that the transcripts are too
dense, and the quality of auto-generated transcripts are un-
controllable. As for different structures, we can see that our
RGCN-SA still achieves the highest performance, while all
attention models provides reasonable results.

5.5. Human quiz

In the human quiz part, participants are asked to do three
sets of tests, namely guessing with common sense, with vi-
sual information, and with both visual and audio informa-
tion. The results of the guessing step are shown at the top
row in Tab. 2. As we can see, even without any video infor-
mation, human can achieve an accuracy as high as 52.8%.
An interesting fact here is that human participants did a

good job on the “when” questions, which is unexpected be-
cause one cannot know the exact time point of what is go-
ing to happen without watching the video. The reason is
that humans have an intuition of which ingredients is more
likely to be added first, or which step is less likely to happen
at the beginning, owing to their common sense or life expe-
rience. Another support for the power of common sense is
the high accuracy score for “taste” questions. For machines,
the taste can only possibly be learned from the relations be-
tween ingredients and correct answers. However, for human
beings, the tastes of different ingredients is already known
in daily life. Given visual information, the human perfor-
mance becomes almost perfect (97.0%), which is not pro-
vided in the form of tables. This is reasonable because hu-
man has a powerful visual understanding and comprehend-
ing system. Given that the accuracy is already very high
and that the dataset is collected without audio information,
the improvement is minor (97.7%) after adding audio in-
formation. It is worth mention that RGCN-SA outperforms
the human baseline on “count” questions, yet there is still a
long way to go in VQA tasks on instructional videos.

6. Conclusion

In this paper, we emphasize problem-solving on instruc-
tional videos. We construct YouCook Question Answer-
ing (YouCookQA) dataset, and three models with sequence
(SEQ), graph (GCN), and fused (recurrent graph convo-
lutional network, RGCN) structures are proposed to ex-
plore the instructional information. Attention mechanism
is applied on the proposed models to boost performance,
and RGCN-SA achieves the best accuracy on both multiple
choice and K-Space evaluation metrics. Experiments show
that RGCN successfully fuse the order and relation infor-
mation together for modeling instructional videos. Also,
multiple modalities for instructional videos are analyzed,
showing that human annotated temporal boundaries and de-
scriptions are critical for instructional video understanding.
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2018, Montréal, Canada, pages 1039–1050, 2018.

[25] Kuo-Hao Zeng, Tseng-Hung Chen, Ching-Yao Chuang,

Yuan-Hong Liao, Juan Carlos Niebles, and Min Sun. Lever-

aging video descriptions to learn video question answering.

In Proceedings of the Thirty-First AAAI Conference on Arti-

ficial Intelligence, February 4-9, 2017, San Francisco, Cali-

fornia, USA., pages 4334–4340, 2017.

[26] Zhou Zhao, Qifan Yang, Deng Cai, Xiaofei He, and Yuet-

ing Zhuang. Video question answering via hierarchical

spatio-temporal attention networks. In Proceedings of the

Twenty-Sixth International Joint Conference on Artificial In-

telligence, IJCAI 2017, Melbourne, Australia, August 19-25,

2017, pages 3518–3524, 2017.

[27] Luowei Zhou, Chenliang Xu, and Jason J. Corso. To-

wards automatic learning of procedures from web instruc-

tional videos. In Proceedings of the Thirty-Second AAAI

Conference on Artificial Intelligence, (AAAI-18), the 30th

innovative Applications of Artificial Intelligence (IAAI-18),

and the 8th AAAI Symposium on Educational Advances in

Artificial Intelligence (EAAI-18), New Orleans, Louisiana,

USA, February 2-7, 2018, pages 7590–7598, 2018.

[28] Luowei Zhou, Yingbo Zhou, Jason J. Corso, Richard Socher,

and Caiming Xiong. End-to-end dense video captioning with

masked transformer. CoRR, abs/1804.00819, 2018.

[29] Linchao Zhu, Zhongwen Xu, Yi Yang, and Alexander G.

Hauptmann. Uncovering temporal context for video ques-

tion and answering. CoRR, abs/1511.04670, 2015.

1139


