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Molecular dynamics simulations often classically evolve the nuclear geometry on adiabatic potential
energy surfaces (PESs), punctuated by random hops between energy levels in regions of strong cou-
pling, in an algorithm known as surface hopping. However, the computational expense of integrating
the geometry on a full-dimensional PES and computing the required couplings can quickly become
prohibitive as the number of atoms increases. In this work, we describe a method for surface hopping
that uses only important reaction coordinates, performs all expensive evaluations of the true PESs
and couplings only once before simulating dynamics (offline), and then queries the stored values
during the surface hopping simulation (online). Our Python codes are freely available on GitHub.
Using photodissociation of azomethane as a test case, this method is able to reproduce experimental
results that have thus far eluded ab initio surface hopping studies.

1 Introduction
Many important phenomena in chemistry are the result of nona-
diabatic, femtosecond-level quantum transitions between elec-
tronic states.1 Light-induced electronic transitions, for example,
have attracted considerable recent study.2 Applications include
the mechanism of vision,3,4 photophysics of DNA,5 photocataly-
sis,6–8 photovoltaics,9–13 and spectroscopy.14–16 Due to the com-
putational expense of simulating nonadiabatic processes with a
fully quantum mechanical treatment, modern techniques favor
a mixed quantum–classical dynamics (MQCD) approach.1,17 A
popular and straightforward MQCD framework is the Ehrenfest
(mean-field) method, where the nuclei evolve classically on a sin-
gle potential energy surface (PES) that is the weighted average
of the different quantum states.18,19 However, the mean-field ap-
proach is generally only valid in regions with weak coupling or
similar nuclear behavior between quantum states.1

Trajectory-based approaches seek to overcome the limitations
of the pure mean-field approximation by using multiple PESs and
computing PES couplings along a classical trajectory.2 Indeed,
these methods have become immensely popular over the last two
and a half decades.1,2 Two of the most popular trajectory-based
methods are multiple spawning20–23 and surface hopping.24–28
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Multiple spawning begins with Gaussian wave packets centered
around the classical trajectory on a given PES and stochastically
spawns new wave packets on a different PES when the classical
trajectory approaches a conical intersection.22 In this way, dy-
namics proceed on multiple PESs simultaneously. In surface hop-
ping, however, the trajectory marches along a given PES and in-
termittently hops between surfaces in regions of strong coupling.
Each surface hopping simulation runs on exactly one PES at any
given time. The framework of multiple spawning treats quan-
tum effects more rigorously from first principles,2 while surface
hopping is attractive because it is straightforward to implement
and analyze. The two methods typically produce similar results
at similar costs if time integration is done efficiently.2 Due to its
ubiquity and simplicity, surface hopping is the MQCD approach
we utilize in this work.

Computing the nonadiabatic coupling (NAC) vector required
for surface hopping is an area of much recent activity, enabled by
advances in computing power.29–31 However, the computational
expense of time-dependent density functional theory (TD-DFT)
is still large enough that it is impractical to query the ab initio
excitation energies and nonadiabatic couplings at each time point
of every trajectory in the surface-hopping swarm.

Furthermore, the full (3N− 6)-dimensional PES Ei(xxx) of an N-
atom molecule in electronic state i typically includes only a hand-
ful of relevant reaction coordinates for a particular reaction. One
can partition the geometry into the relevant coordinates (called
design variables, qqq ∈ Rd) and everything else (called remainder
variables, ξξξ ∈ R3N−6−d). Then the so-called “relaxed PES” comes
from optimizing over the remainder variables to produce a sur-
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face that is only a function of the design variables:

Ei(qqq) = min
ξξξ

Ei(qqq,ξξξ ) . (1)

We use the relaxed PES in this paper to reduce the dimension of
the problem, but the optimization over ξξξ is still computationally
costly.§ The selection of design variables is an important and chal-
lenging aspect of chemical dynamics,32 which our method does
not directly address. Frequently, important coordinates are cho-
sen based on trial-and-error or chemical intuition, though auto-
mated selection based on principal component analysis (PCA) of
a full-dimensional molecular dynamics (MD) simulation has been
proposed.33 Due to the presence of existing work on our model
molecule and expense of running a (3N−6)-dimensional dynam-
ics trajectory, we use the design variables from previous studies,
which we will describe later in greater detail.

Since evaluating the full or relaxed PES with an electronic
structure program is computationally expensive, construction of
surrogate PESs is an active area of research. These surrogates al-
low the costly optimizations to be contained as an up-front cost
in the offline phase, incurred only when first constructing the sur-
rogate. Techniques of surrogate PES construction include per-
mutationally invariant polynomials,34–37 neural networks,38–40

interpolative moving least-squares,41–44 modified Shepard inter-
polation,45–48 Gaussian processes,49,50 and the finite-element
method.51 Previous work in our group has approximated PESs
with sparse interpolation. To build the surrogate, one simply
needs to evaluate the true PES in the offline phase at a set of
known design variable values {qqq j}. The Smolyak sparse inter-
polation algorithm ensures that the number of nodes qqq j grows
polynomially—rather than exponentially—in d, the number of
design variables.52–55 In addition, a relaxed reduced-dimensional
molecular dynamics (rr-MD) method, also from our group, allows
for online MD simulations of the design variables only.56

Construction of surrogate PESs with sparse interpolation in our
group has used polynomial,9,57,58 trigonometric,59,60 and mixed
polynomial–trigonometric61 basis functions. The original devel-
opment of trigonometric surrogate PESs occurred because energy
would not be conserved in NVE¶ rr-MD simulations with a poly-
nomial surrogate PES if a component of qqq were periodic and
crossed the periodic boundary.60,61 Implementations of the rr-MD
method exist in both polynomial56 and mixed61 basis settings.

This paper presents an implementation of Tully’s fewest-
switches surface hopping (FSSH) algorithm25 in a reduced-
dimensional framework (rr-FSSH) where all expensive electronic
structure calculations are performed in the offline phase. This
method focuses only on a reduced-dimensional version of “stan-
dard” FSSH, though various corrections to FSSH have been pro-
posed in order to account for different phenomena1 and could
be a fruitful area of future work in a reduced-dimensional set-
ting. We organize the remainder of this paper as follows. In

§ Hereafter, if we say “PES” without qualification, we refer to the relaxed PES.
¶ Microcanonical ensemble; conserves number of particles in the system (N), volume

(V), and energy (E).

Section 2, we describe the computational details of our method:
reduced-dimensional molecular dynamics, reduced-dimensional
surface hopping, sparse grids, and the approximation of nonadia-
batic couplings. In Section 3, we test our method on the photodis-
sociation of azomethane in vacuo and compare against known
experimental62–65 and ab initio66–73 results. Conclusions are in
Section 4.

2 Computational Methods
In this section, we describe our online and offline computational
methods. In the online phase, we run a swarm of molecular dy-
namics trajectories that rely on the surrogate PESs and NACs. In
the offline phase, we use electronic structure programs to eval-
uate the required high-fidelity ground-state energies, excitation
energies, and coupling vectors. While all methods in this section
appear in the online phase, the first two subsections comprise the
bulk of the online simulation, and the latter two subsections illu-
minate the quantities to compute offline.
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Fig. 1 Azomethane with design variables labeled.

2.1 Reduced-dimensional MD
We briefly summarize the NVE ensemble within the rr-MD frame-
work originally developed by Liu and coworkers.56 The design
variables qqq and generalized momenta ppp evolve classically accord-
ing to Hamiltonian dynamics:74,75{

q̇qq = ∇ppp H

ṗpp =−∇qqq H
(2)

with the initial conditions qqq(0) = qqq0 and ppp(0) = ppp0. Here, H =

H(qqq, ppp) is the classical Hamiltonian, expressed as a sum of poten-
tial and kinetic energy:

H(qqq, ppp) =V (qqq)+K(qqq, ppp) . (3)

In our context, V (qqq) is the relaxed PES and K(qqq, ppp) involves the
curvilinear mass-metric tensor GGG:

K(qqq, ppp) =
1
2

pppT GGG−1(qqq) ppp, (4)

Gi j(qqq) =
3N

∑
k=1

mk
∂Xk(qqq)

∂qi

∂Xk(qqq)
∂q j

. (5)

The function XXX : Rd → R3N is a mapping from the design vari-
ables to the optimized Cartesian molecular geometry, and mk is
the atomic mass of atom ceil(k/3). XXX(qqq) is formatted so that the
first three components are the (x,y,z) coordinates of atom 1 and
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so on. From Equations (3)-(5), we see that we must construct
surrogates of V (qqq) and XXX(qqq) for use in the online phase.

If we have previous dynamics history, we take qqq0 and ppp0 to
be the geometry and momenta at the last time step. If not, we
select a desired starting geometry qqq0 and construct ppp0 as follows.
We first choose a starting temperature T and draw 3N Cartesian
velocities vvv0 from a Boltzmann distribution:

vvv0 =

√
kB MMM−1 T RRRt , (6)

where RRRt is a 3N-dimensional standard normal random variable||

realized at time t, kB is the Boltzmann constant in appropriate
units, and MMM = diag(m1, . . . ,m3N). We then project vvv0 onto the
design variable space by setting

ppp0 = XXX ′(qqq0)
T vvv0, (XXX ′(qqq))i j =

∂Xi(qqq)
∂q j

. (7)

We integrate the system forward in time using the Störmer–Verlet
method.76,77

2.2 Reduced-dimensional FSSH

We now present the reduced-dimensional adaptation of Tully’s
immensely popular fewest-switches surface hopping (FSSH)
method.25 As noted previously, various modifications of FSSH
have been proposed in order to account for different phenom-
ena,1 such as nuclear quantum effects,78 decoherence,79 quan-
tum interference,25 and representation-dependence.80 However,
the aim of this paper is to use “standard” FSSH25,26 as a starting
point for a reduced-dimensional surface hopping paradigm where
the various corrections of FSSH can also be implemented in the
future.

We let Ĥ0(zzz;XXX) denote the electronic Hamiltonian, where zzz is
the electronic coordinate and XXX ∈ R3N is the Cartesian geometry
of the molecule. We opt to use the orthonormal eigenfunctions
Φ j(zzz;XXX) of Ĥ0 as the expansion basis. With this choice, we define
the matrix elements

V cart
i j (xxx) = 〈Φi(zzz;XXX)|Ĥ0(zzz;XXX)|Φ j(zzz;XXX)〉= Ei(XXX)δi j (8)

where Ei(XXX) is the full PES of state i as a function of Cartesian
geometry, δi j is the Kronecker delta, and the brackets denote in-
tegration over zzz. In Tully’s original formulation, the nonadiabatic
coupling vector in Cartesian coordinates is

dddcart
i j (XXX) = 〈Φi(zzz;XXX)|∇XXX Φ j(zzz;XXX)〉 . (9)

However, we now want the couplings in terms of the design vari-
ables qqq. Since XXX = XXX(qqq) reconstructs the Cartesian geometry after
optimizing the remainder variables, we get

Vi j(qqq) = Ei(qqq)δi j (10)

|| That is, RRRt ∈ R3N where each component is independent and normally distributed
with mean µ = 0 and standard deviation σ = 1.

The chain rule yields

dddi j(qqq) = 〈Φi(zzz;XXX(qqq))|∇qqqΦ j(zzz;XXX(qqq))〉= XXX ′(qqq)T dddcart
i j (XXX(qqq)) . (11)

We now express the wavefunction of the electronic state of our
system at time t in terms of the electronic basis functions

Ψ(zzz,qqq, t) = ∑
j

c j(t)Φ j(zzz;qqq) (12)

where we have expressed dependence directly in terms of qqq
for notational ease. Combining (12) with the time-dependent
Schrödinger equation, we may derive

i}ċk = ∑
j

(
Ek(qqq)δk j− i}q̇qq ·dddk j(qqq)

)
c j . (13)

With adiabatic electronic wavefunctions, the probability of tran-
sition from state i to state j during a time interval [t, t +∆t] is25,26

P(i→ j) = max
{

2Re
(

c j

ci
q̇qq ·dddi j(qqq)

)
∆t, 0

}
. (14)

We integrate (13) with the Crank–Nicolson method,81,82 which
conserves the `2 norm of the solution, so that all state occupations
sum to 1. The time step required to integrate (13) accurately is
much smaller than that used for the classical dynamics (2), so
we linearly interpolate all relevant quantities during intermediate
steps.25,26

The transition probability in (14) is evaluated at each classical
time step. If a switch from state i to j occurs at t = tn and E j(qqqn) 6=
Ei(qqqn), then we must adjust the momentum pppn to conserve total
energy.25 Similarly to Hammes–Schiffer and Tully,26 we set

pppcorr
n = pppn−α dddi j(qqqn) (15)

and solve for α in light of (3)-(5), yielding the equation

1
2
(dddT GGG−1ddd)α2− (pppT GGG−1ddd)α +(E j−Ei) = 0 . (16)

Above, for notational simplicity, ddd = dddi j and all quantities are eval-
uated at t = tn or qqq = qqqn. If E j > Ei and momentum is insufficient
to overcome the energy gap, i.e.

(pppT GGG−1ddd)2−2(dddT GGG−1ddd)(E j−Ei)< 0, (17)

then we have a frustrated hop. In this case, we reflect momentum
in the direction of ddd by setting

α = 2
pppT GGG−1ddd

dddT GGG−1ddd
. (18)

If, however, the inequality in (17) is reversed and two solutions
of (16) exist, we have

α =
(pppT GGG−1ddd)±

√
(pppT GGG−1ddd)2−2(dddT GGG−1ddd)(E j−Ei)

dddT GGG−1ddd
(19)

and we take the “+” solution if pppT GGG−1ddd < 0 and the “−” solu-
tion otherwise.26 We then proceed with the dynamics in (2) using
V (qqq) = E j(qqq), qqq = qqqn, and ppp = pppcorr

n .
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2.3 Sparse interpolation

We use mixed-basis interpolation for the surrogate PESs since
azomethane photodissociation involves both periodic and nonpe-
riodic coordinates (see Fig. 1).61,68 The notation of sparse grids
can be rather dense, so we suppress some of the mathematical de-
tails here for the sake of brevity and clarity. The interested reader
can find a much fuller account in the ESI, Sec. 1.†

Generally, the single-basis interpolant of a target function f :
[0,1]d → R is given by53,59,82

G[ f ](qqq) =
M

∑
j=1

c j φ j(qqq) (20)

where φ j are interpolation basis functions and c j are interpolation
coefficients. Though the canonical domain of each component is
[0,1], the domain can be shifted to any closed interval using a
simple affine transformation. Computing c j requires the values
f (qqq j) at a set of nodes {qqq j}M

j=1 such that

G[ f ](qqq j) = f (qqq j), j = 1, . . . ,M . (21)

If d > 1, then φ j are products of one-dimensional basis functions
`i(x):

φ j(qqq) =
d

∏
k=1

`ik( j)(qk) (22)

where ik( j) is the interpolation level in dimension k correspond-
ing to node j. The advantage of sparse grids is to choose ik( j)
so that the φ j in (20) are the dominant modes in the L2 expan-
sion of f , e.g. in a Fourier59 or Legendre53 series. In this way,
we require fewer nodes to obtain a given level of approximation
accuracy, improving the overall numerical convergence rate com-
pared to interpolation with tensor-product grids.53,54,59

Now we turn our attention to the mixed-basis construction.61

The Lagrange polynomials with Clenshaw–Curtis83 points {x j}
are a popular choice of ` j(x) for nonperiodic f :

` j(x) =
m

∏
i=0, i6= j

x− xi

x j− xi
. (23)

The corresponding interpolation coefficients in one dimension are
c j = f (x j). For periodic f , a trigonometric basis ` j(x) that will
preserve the periodicity of the gradient is55,59

` j(x) = exp(2πi ·σ( j) · x) , j = 0, . . . ,m

σ( j) =

{
− j/2, j even

( j+1)/2, j odd
.

Here, the one-dimensional interpolation coefficients c j come out
of a discrete Fourier transform of f (x j) at equally spaced nodes.
The polynomial and trigonometric interpolation rules that we use
are nested with respect to the level. As a result, we only need to
evaluate the additional points when we refine the grid.

Since the two basis choices have interpolation coefficients with
different forms, we need to rewrite (20) differently in order to
combine polynomial and trigonometric interpolation. We may
rewrite the single-basis sparse interpolant (20) in adjoint form84

as

G[ f ](qqq) =
M

∑
j=1

f (qqq j)ψ j(qqq) (24)

for some adjoint functions ψ j. With (24), we can create one
sparse grid for periodic components and one for nonperiodic com-
ponents, take their tensor product, and combine them as follows:

Gmix[ f ](qqq) =
Mtrig

∑
i=1

Mpoly

∑
j=1

f (ααα i,βββ j)ψ
trig
i (ααα)ψ

poly
j (βββ ) . (25)

In (25), we have partitioned qqq into the periodic components ααα

and the nonperiodic components βββ . Because the two sparse grids
are independent, the number of nodes, number of components,
and decay patterns of the dominant L2 coefficients can be con-
trolled separately. We use the Tasmanian package to handle all
sparse interpolation.53,59,84–86 In the context of PES approxima-
tion, we must compute the values of En(qqq) and XXX(qqq) at the nodes
(ααα i,βββ j) in the offline phase.

2.4 Approximation of nonadiabatic couplings

The computation of dddcart
i j in (9) is relatively costly, so we would

like to avoid doing it at every time step in the online phase. The
Landau–Zener formula87–89 is a popular approach to computing
the transition probability (14) because it avoids NACs and is de-
rived from first principles. However, the Landau–Zener formula
is only applicable where the energy difference Ei(qqq)− E j(qqq) is
at a local minimum along the trajectory qqq = qqq(t).90,91 Another
possibility is to define custom diabatic wavefunctions that allow
for easier evaluation of the NACs,67 but such methods tend to
be molecule-specific. We desire a general, molecule-impartial
method of querying the transition probability at all time steps and
not only those corresponding to a local minimum of the energy
difference along the trajectory.

Many components of the coupling vector will peak sharply in a
small region and be zero over large portions of the design variable
domain, behavior which is not amenable to interpolation with
globally defined basis functions. As a result, we compute dddcart

i j in
the offline phase at a list of design variable values known mathe-
matically to possess a space-filling property known as low discrep-
ancy.92,93 At every time point in the online phase, we approxi-
mate the NAC along the simulation trajectory using the known
coupling at the nearby space-filling points.

We obtain the space-filling points from the Sobol’ sequence,94

which is implemented in MATLAB and part of a class of sequences
known as quasi-random. Such sequences are deterministic but
fill a domain in much the same way that uniformly distributed
random variables would. However, the number of quasi-random
points needed to fill a domain is much lower than that of random
variables. Quasi-random sequences are the core of quasi-Monte
Carlo integration, which has significantly faster convergence than
fully stochastic Monte Carlo techniques92,93 and is an active area
of research.95–98

Using MATLAB, we obtain a set of Sobol’ points {qqqsobol
m } ⊂ [0,1]d

such that no point is more than 0.02 away from its nearest neigh-
bor. We then transform these points, in place, by converting each
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Fig. 2 (a) Mixed-basis S0 and S1 PESs (kcal/mol) with stability-checked wavefunctions. Energies are relative to the optimized trans- structure. (b)
PESs using restricted wavefunctions.

component of qqqsobol
m from [0,1] to the corresponding physical do-

main (see Table 1). We evaluate the Cartesian NACs (9) at the
geometries XXX(qqqsobol

m ), m = 1, . . . ,Nsobol .

At time t = tn in the online phase, we approximate dddcart
i j (qqqn)

as the weighted average of all dddcart
i j (qqqsobol

m ) within some user-
adjustable radius R of qqqn. (For notational simplicity, we express
dependence of dddcart

i j only on qqq.) We define the set

Sn(R) = {m ∈ N, : ‖DDD−1(qqqsobol
m −qqqn)‖2 ≤ R} , (26)

where DDD is a diagonal matrix with Dii being the length of the
physical domain of component qi. We include DDD to account for
different length scales across components. If Sn(R) is empty, then
we use the nearest neighbor:

dddcart
i j (qqqn)≈ dddcart

i j

(
argmin

1≤m≤Nsobol

‖DDD−1(qqqsobol
m −qqqn)‖2

)
. (27)

Otherwise, we compute the weights

wm =
bm

∑k∈Sn(R) bk
, m ∈ Sn(R),

bm = exp

(
− ‖DDD−1(qqqsobol

m −qqqn)‖2

mink∈Sn(R) ‖DDD
−1(qqqsobol

k −qqqn)‖2

)
, m ∈ Sn(R),

and take
dddcart

i j (qqqn)≈ ∑
m∈Sn(R)

wm dddcart
i j (qqqsobol

m ) . (28)

Lastly, we use Equation (11) and continue with the trajectory.

While this approach will be less accurate than exactly evaluat-
ing dddi j at each classical time step, it will also be less costly since
we perform only Nsobol evaluations of the NACs. In our examples,
we have Nsobol = 10000, and with possibly thousands of members
of a trajectory swarm, the computational savings quickly become
apparent. Furthermore, the maximum nearest-neighbor distance
of the Sobol points is at most 0.02, so we have a robust set of data
with which to compute (28).

3 Results and Discussion
In this section, we describe the simulation setup and present
ab initio results for our test reaction: the photodissociation of
gaseous azomethane in a vacuum.

3.1 Electronic structure calculations (offline)

We perform ground-state density-functional theory (DFT) opti-
mizations of azomethane at the nodes of the mixed-basis grid in
Gaussian 1699 at the B3LYP/6-311G* level of theory.100–104 Af-
ter each geometry optimization, we perform stability analysis105

to determine whether a closed- or open-shell wavefunction yields
lower energy. If an instability is found, the geometry is reopti-
mized. We use Orca v4.2.1106,107 to compute S0→ S1 excitation
energies (TD-DFT) at the optimized ground-state geometries, as
well as Hellmann–Feynman nonadiabatic couplings at the Sobol’
points (CIS). We use the stability-tested wavefunction to compute
the NACs. We have included example input files for Gaussian and
Orca in Sec. 2 of the ESI.† We refine the sparse grid until the en-
ergy differences of the minima and transition states on the S0 sur-
face are within ∼5% or ∼1 kcal/mol of their Gaussian-optimized
value (ESI Tables S1 and S2)† and XXX(qqq) is smoothly varying. The
final mixed-basis grid (see ESI) has 7215 nodes.†

We have previously described the design variables qqq (Fig. 1) in
great detail elsewhere,61 but we briefly reiterate them here. Ta-
ble 1 summarizes the d = 5 design variables we use for this study,
chosen to capture rotation, inversion, and dissociation transition
states. As noted previously, these design variables come from a
previous study of dimension-reduced azomethane photodynam-
ics, namely Cattaneo and Persico’s 2001 study.68 A preliminary
1998 study by Cattaneo and Persico66 simplified the molecular
geometry by treating the two methyl groups as point masses,
which unfortunately eliminated several high- and low-frequency
normal modes.68 We opted to include the two methyl dihedrals
not only to capture two of the low-frequency modes, like Catta-
neo and Persico’s 2001 study, but also to ensure smoothness of
the interpolated XXX(qqq).
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Fig. 3 (a) First hopping times using unrestricted PESs and NACs. (b) State populations for the same.

Table 1 List of design variables from Fig. 1

Label Structural coordinate Domain Periodic?
q1 C2–N2–N1–C1 torsion [−180,180] deg Y
q2 N2–N1–C1–H torsion [−180,180] deg Y
q3 N1–N2–C2–H′ torsion [−180,180] deg Y
q4 N1–C1 distance [1.1,2.5] Å N
q5 N2–N1–C1 angle [90,270] deg N

As described previously,61 since q5 can be linear or larger than
180◦, we must do internal bookkeeping to encode the variables
appropriately in an electronic structure program. Specifically, if
q5 > 180, then we add q1 to 180◦ and subtract q5 from 360. Since
the linear structure is within the q5 domain, we also must take
care to avoid multivalued geometries as q5→ 180. We accomplish
this by offsetting q2 by (q1 +180) whenever q5 6= 180. We include
several animations in the ESI† to demonstrate the smoothness of
XXX(qqq) and to motivate our definition of q2.

In Fig. 2(a), we show a slice of the mixed-basis S0 and S1 PESs
constructed with stability checks. Unlike previous work,66,69 the
unrestricted PES does not have a crossing seam, leading to small
nonadiabatic coupling between the S0 and S1 surfaces. Indeed,
we will demonstrate this phenomenon in the following section
with a surface hopping swarm; see Figs. 3, 4(c), and 4(e) and
associated discussion. To capture the crossing seam, we construct
the S0 PES by performing single-point energy calculations with re-
stricted (closed-shell) wavefunctions at the geometries that were
optimized with stability checks. We do this because directly per-
forming constrained optimizations with restricted wavefunctions
yielded undesirable structures, in which hydrogen atoms migrate
between the C and N atoms. We show the resulting restricted
S0 PES in Fig. 2(b). For this PES, we compute the couplings us-
ing restricted wavefunctions only. We did not observe meaningful
changes in the S1 PES between the two cases. Therefore, in both
cases we employed the S1 PES constructed from the TD-DFT cal-
culations using the restricted S0 PES as a reference.

3.2 Surface hopping swarm (online)

We sample 2000 initial geometries and momenta by running a
reduced-dimensional Langevin thermostat56,61 on the S0 PES at
298.15 K (γ = 0.01 fs−1), starting at the trans- conformation. The
experimental boiling point of azomethane at 1 atm is 273.45
K,108 which ensures that we are in the gaseous regime. We in-
tegrate the Langevin equations for a burn-in period of 10 ps and
then sample every 20 fs to construct an ensemble of qqq0 and ppp0,
similarly to Cattaneo and Persico.66,68

For each ensemble member, we excite vertically to the S1 sur-
face but keep qqq0 and ppp0 unchanged. We integrate the classical
dynamics (2) with a time step of ∆tc = 0.25 fs and the quantum
amplitudes (13) with ∆tq = 0.01 fs, up to 5 ps. The transition
probabilities and momenta adjustments (including for frustrated
hops) are given in Section 2.2. We approximate the NACs ac-
cording to Section 2.4 using 10000 space-filling Sobol’ points† and
the cutoff radius R = 0.05. The computing environment is XSEDE
Bridges-2,109,110 where each trajectory receives 2 GB RAM and
one core of an AMD EPYC 7742 CPU. All codes are freely avail-
able on GitHub.**

We show the results of surface hopping with the unrestricted
PES and couplings in Fig. 3. The median hopping time is 1760
fs, which is far larger than previous theoretical predictions of
100–500 fs.66–71 Indeed, more than 50% of trajectories are in
the S1 state until 3 ps, and more than 20% are still in S1 after 5 ps
[Fig. 3(b)]. Therefore, we now use the restricted S0 PES described
in the previous section. We compare the maximum elements of
the NAC vectors between the two cases, and we find that S0/S1

couplings are 20 times larger for the restricted S0 surface than for
the unrestricted S0 surface. We explain this observation by not-
ing that the unrestricted S0 PES exhibits an avoided crossing near
q1 ≈ ±90, while the restricted S0 PES shows a crossing seam in
the same region.

We show the results for the restricted PES in Fig. 4. An anima-
tion of one trajectory is also in the ESI,† which visually demon-

** https://github.com/zbmorrow/rrFSSH
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Fig. 4 Results using the restricted PESs and NACs. (a) Values of q1 at first hop. (b) Values of q1 vs time of first hop. (c) Time of first S1 → S0
transition. (d) Lag between final S1→ S0 transition and dissociation. (e) Populations of the S0/S1 states and nondissociated molecules. (f) Values of
q1 at dissociation.

strates the relaxation on S1 and S0, as well as the ability of XXX(qqq)
to reconstruct the geometry accurately. All trajectories dissociated
within 5 ps (defined as q4 > 2.5 Å), and all dissociations occur on
the S0 surface. From Figs. 4(a) and 4(b), we can see that the
molecule is near the S0/S1 crossing seam (q1 ≈ ±90◦) when the
first hop occurs. The slight curvature in the swarms of Fig. 4(b)
reflects the geometry of the molecule cycling through the mini-
mum on the S1 surface. The median time of first hop is 276 fs
[Fig. 4(c)], and the median lag time between final hop and dis-
sociation is 224 fs [Fig. 4(d)], implying that dissociation happens
relatively quickly after internal conversion (IC). We fit the S1 and
nondissociated populations of Fig. 4(e) to the exponential decay
function

y = exp(−(t− t1)/t2) (29)

where t1 and t2 are the latency and decay times, respectively. The
overall lifetime is τ = t1 + t2. For the S1 population, we obtain
t1 = 78 fs and t2 = 342 fs, yielding a lifetime of τ = 420 fs. For
the lifetime of the nondissociated molecule, we find t1 = 188 fs
and t2 = 675 fs, yielding a lifetime of τ = 863 fs. We note that the
latency time of the nondissociated population decay is smaller
than the lifetime of the S1 population, again showing an overlap
between the time scales of IC and dissociation.

Fig. 4(f) shows the values of q1 at dissociation. Upon disso-
ciation, we find very few trajectories in the vicinity of the cross-
ing seam; most have relaxed into either cis- or trans- structures.
If we define trans- as q1 ∈ [−180,−150]∪ [150,180) and cis- as

q1 ∈ [−30,30] (for q5 < 180),66,68 then 31% of trajectories ended
in trans and 37% in cis. This is in agreement with the vibrational
frequency of C–N–N–C torsion (290.90 cm−1), which yields a pe-
riod of 115 fs. Since dissociation occurs around 224 fs after the
last hop (in the median), then there is ample time to relax to the
cis- or trans- conformations.

We also test the robustness of our method with respect param-
eter choices by altering various values while holding all others
constant: ∆tc = 0.05 fs, ∆tq = 0.001 fs; Nsobol = 5000; Nsobol = 1000;
R = 0.20; R = 10−4 (forced nearest-neighbor); and R = 10−4,
Nsobol = 1000. We display the results in Table 2. Our results also
appear to be consistent across parameter choices, with the excep-
tion of excessively large radius R. Refining the time step does
not significantly alter the results. Similarly, forcing the nearest-
neighbor NAC approximation (R = 10−4) does not cause a large
change in the outputs. The nearest-neighbor NAC approxima-
tion appears to comparable in accuracy to the weighted average—
without needing to compute exponential weights. Furthermore,
if the evaluation of the NACs in the offline phase is quite costly,
these results indicate that one may use a smaller number of Sobol’
points (Nsobol = 5000, d = 5) to obtain lifetimes in agreement with
previous ab initio studies. However, if Nsobol is too small, the accu-
racy tends to degrade somewhat (Nsobol = 1000 in our examples).
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Table 2 Comparison of results for various parameter modifications. Section 2.4 discusses Nsobol and R, while ∆tc and ∆tq were described earlier in this
section.

S1 time constants
Alteration t1 (fs) t2 (fs) τ (fs) Med. hop–dissoc. gap (fs) % yield, trans- % yield, cis-
None (baseline) 78 342 420 224 31 37
∆tc = 0.05, ∆tq = 0.001 108 285 393 232 33 36
Nsobol = 5000 119 324 443 232 29 39
Nsobol = 1000 140 407 547 241 37 33
R = 0.20 190 790 980 230 36 34
R = 10−4 109 290 399 236 30 37
Nsobol = 1000, R = 10−4 142 404 546 236 37 32

3.3 Discussion

The photochemical and thermal properties of azoalkanes have a
long history of study,69,111–113 particularly azomethane, as the
simplest member of this class of compounds. This wealth of
prior work makes azomethane a desirable test system. A se-
ries of studies within the last three decades has established that
the photodissociation of azomethane happens stepwise in the S0

state:62,64–66,68

CH3NNCH3→ CH3NN · +CH3 · (30)

CH3NN · +CH3 · → N2 +2CH3 · (31)

with the second dissociation quickly (femtosecond-level) follow-
ing the first. Because this reaction mechanism is well-established,
we include only one C–N bond length in our design variables,
focusing on the first step of the mechanism. We compare the
results of our reduced-dimensional method to previous experi-
mental and highly accurate full-dimensional ab initio results in
terms of excited-state lifetimes and lifetimes of the nondissoci-
ated molecule. Since there are various setup parameters across
the studies, we opt to discuss in paragraph rather than tabular
form.

Recent literature is in very good agreement on the lifetime of
azomethane in the S1 state: 70–100 fs (experimental)65 and 100–
500 fs (theoretical).66–71 The spread within theoretical results is
largely due to a variety of model chemistries and simulation pa-
rameters. Using a custom-built diabatic wavefunction, Cattaneo
and Persico found the majority of first hops occurring before 400
fs, with an S1 lifetime of approximately 400 fs.66–68 With com-
plete active space (CAS) and multireference configuration inter-
action (MRCI) calculations, Sellner and coworkers computed an
S1 lifetime of 163–191 fs using a Wigner distribution of initial
conditions and no additional torsional bias.69 Around the same
time, Ruckenbauer and coworkers computed an S1 lifetime of 113
fs, using CAS-type methods and Wigner-distributed initial con-
ditions.70 Studies using the multiple spawning method obtained
S1 lifetimes of 125–150 fs, though dissociation was either absent
or rare.72,73 Recently, Minezawa and Nakajima developed a sur-
face hopping framework using spin-flip TD-DFT and obtained an
S1 lifetime of 155 fs, though simulations were terminated before
finding dissociation.71

Our computed least-squares lifetime of τ = 420 fs, obtained
with reduced-dimensional dynamics and a relatively simple un-

derlying model chemistry, is in excellent agreement with Catta-
neo and Persico’s S1 → S0 hopping results. The shorter lifetimes
found by recent studies can be attributed to performing direct dy-
namics with a custom or more computationally intensive model
chemistry, versus a surrogate PES built with B3LYP/6-311G*. Fur-
thermore, we emphasize that previous studies either treated the
methyl groups as point masses66 or used the full Cartesian ge-
ometry within the dynamics,68–70 whereas we use a relaxed PES
involving only the important reaction coordinates.

As noted by Sellner and coworkers,69 the time scale of dissoci-
ation following S0← S1 de-excitation is the subject of interesting,
unresolved debate. Dissociation occurs either on a picosecond
time-scale after relaxation to trans- or cis- conformations (sta-
tistical model), or on a femtosecond time-scale shortly after de-
excitation (impulsive model). Lee’s group observed experimental
results favoring the statistical model,62,63 while the experimen-
tal findings of Zewail’s group favor the impulsive model.64,65 As
noted by Zewail’s group in Science, many fast femtosecond-level
reactions do in fact occur, though they violate Rice–Ramsperger–
Kassel–Marcus (RRKM) theory and the underlying assumption of
statistical redistribution of vibrational energy.114

In spite of the split experimental findings, all recent ab initio
simulations of azomethane photodissociation favor the statistical
model. Cattaneo and Persico68 observed only 20% of dissocia-
tions within 1 ps of initial S0→ S1 excitation, with 10% occurring
before 400 fs and almost none before 250 fs. The same study
required 100 ps before 75% of trajectories dissociated. Using
the NEWTON-X package,28 Sellner et al observed a small num-
ber of dissociations (∼5%) prior to 500 fs when additional vibra-
tional quanta are added to the torsional rotation; without addi-
tional torsional bias, no dissociations occurred prior to 500 fs.69

Ruckenbauer and coworkers observed a small number (∼5%)
of sub-picosecond dissociations, occurring within 350 fs of de-
excitation.70

Unlike previous ab initio studies, our results favor a dissociation
time faster than the ∼ 1 ps prediction of the statistical model. Ex-
perimentally, Zewail’s group found a 70–100 fs rise time of the
CH3NN · fragment, clearly favoring the impulsive model. In our
simulations, 50% of trajectories dissociated within 700 fs of ini-
tial S0 → S1 excitation and 72% within 1 ps, so subpicosecond
dissociation is dominant. Moreover, our median time between
the last hop and dissociation is on the order of 200 fs; there are
intermediate hops back to S1 before the trajectory finally settles
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on S0. Though our results do not resolve the statistical–impulsive
debate, they provide evidence that the impulsive findings of Ze-
wail’s group merit further study and could be justifiable on ab
initio grounds.

4 Conclusions and Future Work
This paper has presented a framework for trajectory surface hop-
ping simulations in a reduced-dimensional setting, using only the
important reaction coordinates of the system, as determined by
the user. We have also presented a method for computing a mod-
est number of nonadiabatic coupling vectors in the offline phase
and then querying them in the online phase. This method is im-
plemented in Python and freely available on GitHub.|| When
applied to azomethane photodissociation, this method produces
excited-state lifetimes that are consistent with previous theoret-
ical and experimental studies. We have demonstrated that our
method is robust with respect to the choice of parameters used
to perform time integration and approximate the nonadiabatic
couplings. Lastly, our method unveils fast, femtosecond-level dis-
sociation after S0← S1 de-excitation that has previously only been
demonstrated experimentally, not computationally, in the litera-
ture.

Possible future directions and extensions include the use of au-
tomated design-variable selection,33 incorporating various statis-
tical modifications to account for phenomena in different physical
regimes,1,2,79 and applications to larger molecules. Of particular
interest are the surface-crossing dynamics of Fe(II) polypyridine
complexes,9 which have applications in photovoltaics.
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