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Abstract

We prove that a positive proportion of hypersurfaces in products of projective spaces
over Q are everywhere locally soluble, for almost all multidegrees and dimensions, as a
generalization of a theorem of Poonen and Voloch [25]. We also study the specific case
of genus 1 curves in P1 × P1 defined over Q, represented as bidegree (2, 2)-forms, and
show that the proportion of everywhere locally soluble such curves is approximately
87.4%. As in the case of plane cubics [2], the proportion of these curves in P1 × P1

soluble over Qp is a rational function of p for each finite prime p. Finally, we include
some experimental data on the Hasse principle for these curves.

1 Introduction
Let V be a variety defined over Q. The study of rational points on V often involves
determining the local points V (Qν) for completions Qν of Q. We say that V is (globally)
soluble if the set V (Q) of rational points is nonempty, and V is everywhere locally soluble
if the set V (Qν) is nonempty for all places ν ≤ ∞ of Q.
Poonen and Voloch [25] show that a positive proportion of all hypersurfaces in Pn of

fixed degree d are everywhere locally soluble for n, d ≥ 2 and (n, d) �= (2, 2). In particular,
they prove that this proportion (as a limit) is exactly the product c = ∏

ν cν > 0 of local
factors cν , where cν is the proportion of hypersurfaces that have a Qν-point. In [1], Bright,
Browning, and Loughran generalized this theorem to other families of varieties. Poonen
and Voloch also conjecture that the proportion of globally soluble hypersurfaces is cwhen
2 ≤ d ≤ n (with c = 0 when (n, d) = (2, 2)), and is 0 when d > n + 1. This conjecture
implies that the Hasse principle is true for 100% and for 0% of the everywhere locally
soluble hypersurfaces in the two cases, respectively. Browning, Le Boudec, and Sawin [10]
have recently proved this conjecture for 2 ≤ d ≤ n and (n, d) �= (3, 3), i.e., that the Hasse
principle is satisfied 100% of the time for Fano hypersurfaces of degree d and dimension
at least 3 in Pn.
However, Poonen and Voloch [25] do not make any conjectures about local versus

global solubility in the boundary (Calabi-Yau) case where d = n + 1; this case is perhaps
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the most interesting and the most mysterious. The simplest of these cases, that of plane
cubics (d = 3 and n = 2), has been studied by Bhargava, Cremona, and the first author
[2], in which the authors explicitly compute the proportion c of everywhere locally soluble
plane cubics; the same authors [3] also study the proportion of everywhere locally soluble
hyperelliptic curves. In addition, Bhargava [9] shows that a positive proportion of plane
cubics fail the Hasse principle and a positive proportion satisfy the Hasse principle.
In this paper, we are interested in answering the analogous questions and computing

the explicit proportion of everywhere locally soluble hypersurfaces defined in products of
projective spaces. We also study a specific family of genus one curves over Q (analogous
to the plane cubics studied in [2]) and determine the proportion of such curves that are
everywhere locally soluble. In forthcoming work, Bhargava and the second author show
that the Hasse principle fails for a positive proportion of curves in this family [7]. In this
paper, we include some data on the success and failure of theHasse principle for randomly
selected sets of these curves with bounded coefficients.
In Sect. 2, we begin by proving the analogue of the theorem of Poonen and Voloch for

hypersurfaces in products of projective spaces:

Theorem 1.1 Let d1, . . . , dk , n1, . . . , nk be positive integers. The proportion of multidegree
(d1, . . . , dk ) hypersurfaces over Q in Pn1 × · · · × Pnk that are everywhere locally soluble
tends to a real number c > 0, where c is the product

∏
ν cν over all places ν and cν is the

proportion of such multidegree homogeneous polynomials with a nontrivial zero over Qν ,
as long as one of the following holds:

(i) k = 1 and n1 ≥ 2 but not (n1, d1) = (2, 2);
(ii) k ≥ 2.

For the cases with k = 1 not covered by (i), it may be shown that the proportion of
everywhere locally soluble hypersurfaces is 0.
We also predict the success or failure of theHasse principle for families of hypersurfaces

in products of projective spaces in many cases, depending on the multidegree of the
hypersurfaces:

Conjecture 1.2 For any positive integers di, ni for i ∈ {1, . . . , k}, consider the family of
multidegree (d1, . . . , dk )-hypersurfaces in Pn1 × · · · × Pnk over Q. Then

(i) If di > ni + 1 for all i = 1, . . . , k , then 100% of everywhere locally soluble
(d1, . . . , dk )-hypersurfaces fail the Hasse principle.

(ii) If di < ni + 1 for some i = 1, . . . , k , then 100% of everywhere locally soluble
(d1, . . . , dk )-hypersurfaces satisfy the Hasse principle. With these conditions, we
have that theproportionof solublehypersurfaces equals theproduct of local factors
c = ∏

ν cν .

Note that the numerical conditions in Conjecture 1.2(ii) are significantly more general
than just requiring the hypersurface to be Fano, which is equivalent to having di < ni + 1
for all i (not just some i). Still, as in the original Poonen–Voloch heuristic, there are some
remaining boundary cases, namely when di ≥ ni + 1 for all i with equality for at least
one i. In this paper, we compute the explicit probability of everywhere local solubility for
the simplest such case with k > 1, namely the family of bidegree (2, 2) curves in P1 × P1.
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Explicitly, these are the curves defined by the bihomogeneous bidegree (2, 2)-polynomials
of the form

F (X0, X1, Y0, Y1) = a00X2
0Y

2
0 + a01X2

0Y0Y1 + a02X2
0Y

2
1

+ a10X0X1Y 2
0 + a11X0X1Y0Y1 + a12X0X1Y 2

1

+ a20X2
1Y

2
0 + a21X2

1Y0Y1 + a22X2
1Y

2
1 (1.3)

where aij ∈ Q for i, j ∈ {0, 1, 2}. Smooth curves of this form have genus one. We show:

Theorem 1.4 For a finite prime p, the probability a bidegree (2, 2)-form with coefficients
in Zp is soluble over Qp is

ρ(p) = 1 − p(p − 1)(p2 − 1)f (p)
8(p8 − 1)(p9 − 1)

where f (p) = 4p11 − 4p10 + 4p9 − p8 + 5p7 − 2p6 + 5p5 − p4 + 2p3 − 2p2 + 6p − 2.

The probability a (2, 2)-form is soluble over the reals (when we choose the coefficients
uniformly at random in [−B, . . . , B] with B large) appears to be about 96.46%, based on a
Monte Carlo simulation. Note that the probability of solubility over R is greater than 7/8,
since for insolubility a00, a02, a20, a22 must all have the same sign.
Theorem 1.4 gives

∏
p<∞ ρ(p) ≈ 0.90592. Combining this with the estimate of the

previous paragraph, we have
∏

p≤∞
ρ(p) ≈ 0.8739,

thereby giving the following theorem:

Theorem 1.5 The probability that a random (2, 2)-form with coefficients in Q is p-locally
soluble for all p < ∞ is approximately 90.592%; assuming the truth of the Monte Carlo
experiment, the probability that a random (2, 2)-form with coefficients in Q is everywhere
locally soluble is approximately 87.39%.

A heuristic similar to that in [9] suggests that of the (2, 2)-forms that are everywhere
locally soluble, exactly 1/4 should be globally soluble. In Sect. 6, we report on an experi-
ment to test this prediction numerically.

2 Generalization of Poonen–Voloch’s theorem and conjecture
In this section, we generalize the main result and conjectures of [25] to hypersurfaces in
products of projective spaces. The main idea of the proof of the theorem is identical to
that of [25] but relies on a more general combinatorial inequality. We work over the field
Q for this section.
Fix an integer k ≥ 1 and positive integers ni, di for 1 ≤ i ≤ k . We consider mul-

tidegree (d1, · · · , dk ) hypersurfaces in the product space P := Pn1 × · · · × Pnk . In
particular, let Z[{xij}]d denote the set of multihomogeneous polynomials in Z[{xij :
1 ≤ i ≤ k, 0 ≤ j ≤ ni}] of multidegree d = (d1, . . . , dk ). There aremi :=

(ni+di
di

)
monomi-

als of degree di in (ni + 1) variables, so the total number of monomials of multidegree d
in Z[{xij}]d ism = ∏k

i=1mi.
Define the height h(f ) of f ∈ Z[{xij}]d to be the maximum of the absolute values of the

coefficients of f . Let MQ be the set of places of Q. We define the following counts for
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H > 0 and ν ∈ MQ:

Ntot(H ) := #{f ∈ Z[{xij}]d : h(f ) ≤ H} = (2�H	 + 1)m

N (H ) := #{f ∈ Z[{xij}]d : h(f ) ≤ H and ∃ x = {xij} ∈
k∏

i=1
Zni+1 \ {0} with f (x) = 0}

Nν(H ) := #{f ∈ Z[{xij}]d : h(f ) ≤ H and ∃ x = {xij} ∈
k∏

i=1
Qni+1

ν \ {0} with f (x) = 0}

Nloc(H ) := #{f ∈ Z[{xij}]d : h(f ) ≤ H and ∀ ν ∈ MQ, ∃ x ∈
k∏

i=1
Qni+1

ν \ {0} with f (x) = 0}.

In other words,Ntot(H ) is the total number ofmultidegree d polynomials inP of height
at most H , and N (H ), Nν(H ), and Nloc(H ) are the number of such polynomials that are
globally soluble, soluble over Qν , and everywhere locally soluble, respectively. The limits

lim
H→∞

N (H )
Ntot(H )

and lim
H→∞

Nloc(H )
Ntot(H )

,

if they exist, will be called the proportion of globally soluble and everywhere locally soluble
multidegree d hypersurfaces, respectively. Note that for any place ν, the local proportion
limH→∞ Nν(H )/Ntot(H ) exists. Indeed, as explained in Remark 2.3 of [25], after nor-
malizing the Haar measure (or Lebesgue measure for ν = ∞) on the space Zm

ν of the
multihomogeneous polynomials of degree d in the variables {xij : 1 ≤ i ≤ k, 0 ≤ j ≤ ni},
we see that this local proportion is the measure of the ν-adically closed subset of Zm

ν

corresponding to the multihomogeneous polynomials with a nontrivial zero over Qν . We
restate Theorem 1.1 using this language, now ignoring some of the trivial cases where
some di = 1:

Theorem 2.1 Let cν = limH→∞ Nν(H )/Ntot(H ). In the limit H → ∞, the proportion
Nloc(H )/Ntot(H ) tends to c := ∏

ν cν > 0, if one of the following conditions holds:

(i) k = 1 and n1, d1 ≥ 2 but not (n1, d1) = (2, 2);
(ii) k = 2, and if n1 = n2 = 1, then d1, d2 ≥ 2;
(iii) k ≥ 3.

Proof If f is absolutely irreducible modulo p, then for sufficiently large p, the Lang-Weil
estimate guarantees a smooth point on the hypersurface f = 0 modulo p, which may
be lifted to a Qp-point by Hensel’s lemma. By Lemmas 20 and 21 of [24], it suffices to
show that the space of reducible polynomials is of codimension at least 2 in the space of
all polynomials in Z[{xij}]d. This follows from Lemma 2.2 below, which shows that the
product of the projective spaces ofmultidegree (r1, · · · , rk ) polynomials and ofmultidegree
(d1−r1, · · · , dk−rk ) polynomials hasdimension atmostm−3,wherem−1 is thedimension
of the projective space of multidegree (d1, · · · , dk ) polynomials.

Lemma 2.2 Fix a positive integer k. Given positive integers ni, di, ri for 1 ≤ i ≤ k such
that 0 ≤ ri ≤ di for all i but 0 <

∑
i ri <

∑
i di, we have

k∏

i=1

(
ni + ri
ni

)

+
k∏

i=1

(
ni + di − ri

ni

)

<

k∏

i=1

(
ni + di

ni

)

(2.3)
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if one of the following conditions holds:

(i) k = 1 and n1, d1 ≥ 2 but not (n1, d1) = (2, 2);
(ii) k = 2, and if n1 = n2 = 1, then d1, d2 ≥ 2;
(iii) k ≥ 3.

Proof We define

S = {(A1, . . . , Ak ) : Ai ⊂ {1, 2, . . . , ni + di} with |Ai| = ni}
and subsets

S1 = {(A1, . . . , Ak ) ∈ S : Ai ∩ {1, . . . , ri} = ∅ for all 1 ≤ i ≤ k},
S2 = {(A1, . . . , Ak ) ∈ S : Ai ∩ {ri + 1, . . . , di} = ∅ for all 1 ≤ i ≤ k}.

Then |S1 ∩ S2| = 1. To prove |S1| + |S2| < |S| it suffices to show that |S \ (S1 ∪ S2)| ≥ 2.

(i) If k = 1 then by choosing A1 with

|A1 ∩ {1, . . . , r1}| = 1 and |A1 ∩ {r1 + 1, . . . , d1}| = 1

(and so |A1∩{d1+1, . . . , n1+d1}| = n1−2)we have |S\(S1∪S2)| ≥ r1(d1−r1)
(n1
2
)
,

which is at least 2 under the stated hypotheses.
(ii) If k = 2 then by choosing (A1, A2) with

|A1 ∩ {1, . . . , r1}| = δ, |A1 ∩ {r1 + 1, . . . , d1}| = 1 − δ,
|A2 ∩ {1, . . . , r2}| = 1 − δ, |A2 ∩ {r2 + 1, . . . , d2}| = δ,

for δ = 0, 1, we have |S \ (S1 ∪ S2)| ≥ (r1(d2 − r2) + r2(d1 − r1))n1n2, which is at
least 2 under the stated hypotheses.

(iii) If k ≥ 3 then |S \ (S1 ∪ S2)| ≥ ∑
i �=j ri(dj − rj) ≥ 2.

We also discuss the analogue of the conjecture of Poonen–Voloch in our setting:

Conjecture 2.4 For any positive integers di, ni for i ∈ {1, . . . , k}, consider the family of
multidegree (d1, . . . , dk )-hypersurfaces in Pn1 × · · · × Pnk over Q. Then

(i) If di > ni + 1 for all i = 1, . . . , k , then 100% of everywhere locally soluble
(d1, . . . , dk )-hypersurfaces fail the Hasse principle.

(ii) If di < ni + 1 for some i = 1, . . . , k , then 100% of everywhere locally soluble
(d1, . . . , dk )-hypersurfaces satisfy the Hasse principle.

Combining Conjecture 2.4(ii) with Theorem 2.1 implies that the proportion of globally
soluble hypersurfaces inP is a product of local densities for many cases (the last part of
Conjecture 1.2): If di < ni + 1 for some i = 1, . . . , k , we have that

lim
H→∞

N (H )
Ntot(H )

= c =
∏

ν

cν . (2.5)

Remark 2.6 If di < ni + 1 for some i, and yet the hypotheses of Theorem 2.1 are not
satisfied then either some di = 1 or (k, n1, d1) = (1, 2, 2). In the first case both sides of
(2.5) are 1. In the second case concerning plane conics, see, e.g., Theorem 2 of [4], which
states that cp = 1− p

2(p+1)2 for p a prime; and immediately implies the result of Serre [28]
that both sides of (2.5) are 0 in this case.
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2.1 Motivation for Conjecture 2.4(i)

Fix a point a = (a1, . . . , ak ) ∈ Zn1+1 × · · · × Znk+1 with each ai �= 0 and having coprime
coordinates, and consider the set of multidegree (d1, . . . , dk )-polynomials vanishing on
a. The set of these polynomials form a hyperplane in Zm, and to count the multidegree
(d1, . . . , dk ) polynomials up to height H vanishing on a is to count the set of integral
points contained in this hyperplane, whose coordinates are bounded byH . As in [25], the
number of integral points of height at most H in this hyperplane is given by

c(a)Hm−1

φ(a)
+ O(Hm−2),

where φ(a) denotes the covolume of the lattice of integer points on the hyperplane of
polynomials vanishing on a, and c(a) denotes the (m− 1)-dimensional volume of the part
of the hyperplane inside [−1, 1]m.
Ignoring the error term, we get that

N (H ) ≤ Hm−1
∑

a

c(a)
φ(a)

,

where the sum ranges over a ∈ Zn1+1 × · · · × Znk+1, excluding the zero vectors in each
of the components. Since c(a) is bounded by definition, it remains to understand the
convergence of

∑
a

1
φ(a) . Lemma 3.1 of [25] shows that φ(a) equals the Euclidean norm

of the vector b formed by the monomials of degree (d1, . . . , dk ) in the coordinates of
(a1, . . . , ak ) (the coprime condition in that lemma is not needed). Let φi(ai) denote the
Euclidean norm of the vector formed by plugging in the coordinates of ai into each of the
degree di monomials in ni + 1 variables. Because φ(a) = ∏k

i=1 φi(ai), we have
∑

a∈(Zn1+1\{0})×···×(Znk+1\{0})

1
φ(a)

=
⎛

⎝
∑

a1∈Zn1+1\{0}

1
φ1(a1)

⎞

⎠ · · · · ·
⎛

⎝
∑

ak∈Znk+1\{0}

1
φk (ak )

⎞

⎠ . (2.7)

We claim that each of the sums
∑

ai∈Zni+1\{0}
1

φi(ai) converges.
We decompose Zni+1 \ {0} = Tni+1 ∪ Tni ∪ · · · ∪ T1, where Tj consists of the vectors

in Zni+1 with exactly j nonzero coordinates. Let ai = (ai0, . . . , aini ). Then by applying the
AM-GM inequality to the definition of φi(ai), we have

φi(ai) ≥ m1/2
i

∣
∣
∣
∣
∣

ni∏

�=0
ai�

∣
∣
∣
∣
∣

di
ni+1

. (2.8)

In fact, for ai ∈ Tj , the product over � on the right side of (2.8) may be taken to be the
product of only the j nonzero ai� if we replace mi with mij :=

(j+di
di

)
and ni + 1 by j. We

thus have

∑

a∈Zni+1\{0}

1
φi(ai)

=
ni+1∑

j=1

∑

ai∈Tj

1
φi(ai)

≤
ni+1∑

j=1

∑

ai∈Tj

m−1/2
ij

∣
∣
∣
∣
∣
∣

∏

� : ai� �=0
ai�

∣
∣
∣
∣
∣
∣

− di
j

.
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The above sum converges if di > j for all j = 1, . . . , ni + 1, so it converges if di > ni + 1.
Thus, the original quantity (2.7) converges if di > ni + 1 for all i = 1, . . . , k .
This heuristic therefore predicts N (H ) = O(Hm−1). Combining this with the estimate

Ntot(H ) ∼ (2H )m gives Conjecture 2.4(i).

2.2 Motivation for Conjecture 2.4(ii)

We may restrict ourselves to only consider polynomials f for which f = 0 defines a
smooth geometrically integral hypersurface X inP (see also [25, Remark 2.1]). We use a
well known conjecture of Colliot-Thélène (see, e.g., [13]):

Conjecture 2.9 (Colliot-Thélène) Let X be a smooth proper geometrically integral vari-
ety over anumberfield. IfX is (geometrically) rationally connected, then theBrauer-Manin
obstruction to the Hasse principle for X is the only obstruction.

In particular, we show in Proposition 2.10 that if X is a multidegree (d1, . . . , dk )-
hypersurface in P = Pn1 × · · · × Pnk with di < ni + 1 for some i, then X is rationally
connected. We will show in Proposition 2.11 below that the Brauer–Manin obstruction
is vacuous for smooth complete intersections (of dimension at least 3) inP over number
fields. Thus, conditional on Conjecture 2.9, we see that the Hasse principle is satisfied for
these X of dimension ≥ 3.
In almost all cases with di < ni + 1 for some i where X has dimension 1 or 2, either

some di = 1 (and so X has a rational point) or X is a quadric hypersurface (and so is
known to satisfy the Hasse principle). One nontrivial case is handled in the proof of [25,
Proposition 3.4], which shows, under Conjecture 2.9, that the Hasse principle holds for a
density 1 set of cubic surfaces in P2. The last remaining nontrivial case is that of bidegree
(2, d2)-surfaces in P2 × P1 with d2 ≥ 2. Here, it is possible for the Hasse principle to
not be satisfied (e.g., the famous example of Iskovskih [21] where d2 = 4), but as we
explain in Lemma 2.13 below, Conjecture 2.9 still implies that, for any fixed d2 ≥ 2, the
Hasse principle holds for 100% of these hypersurfaces. The argument, which relies on the
generic member of this family having no Brauer-Manin obstruction by [20, Theorem 2.6],
is analogous to that for cubic surfaces.

Proposition 2.10 Fix an integer k ≥ 1 and positive integers di, ni for i ∈ {1, . . . , k}. Let X
be a smooth integral multidegree (d1, . . . , dk )-hypersurface in Pn1 ×· · ·×Pnk over C. Then
X is rationally connected if and only if di < ni + 1 for some i.

Proof One direction is easy: if di > ni for all i, then H0(X,ωX ) is nonzero, hence X
is not rationally connected. For the reverse direction, without loss of generality, suppose
d1 < n1+1.Then consider theprojectionπ : X → Pn2×· · ·×Pnk (note that this codomain
is a point if k = 1). The fibers of this projection π are degree d1 hypersurfaces in Pn1 ; the
general ones are smooth and, by assumption, Fano and thus rationally connected [12,22].
We apply a theorem of Graber–Harris–Starr [18], which states that if X → Y is a

dominantmorphismof complex varieties where the general fiber andY are both rationally
connected, then X is rationally connected as well. Here the projection map π is surjective
by a dimension count, and the codomain Pn2 × · · · × Pnk is rationally connected, so X
itself is rationally connected.
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In the following proposition, the notationBrY refers to the cohomological Brauer group
H2
ét(Y,Gm) for a scheme Y .

Proposition 2.11 Let K be a number field. Let X be a smooth complete intersection in a
productP = Pn1 × · · · × Pnk satisfying dimX ≥ 3. Then the natural map BrK → BrX
is an isomorphism, hence the Brauer-Manin obstruction for X is vacuous.

Proof We need only slightly modify the proof in [25, Appendix A and B] for the same
result where X is a smooth complete intersection in a single projective space Pn (see also
[27, Proposition 2.6] for a smooth complete intersection in the product of two projective
spaces). We summarize the argument here. We use the low degree exact sequence from
the Leray spectral sequence

0 → PicX → (PicXK )
GK → BrK → ker(BrX → BrXK ) → H1(K,PicXK ) (2.12)

where GK = Gal(K/K ). We need to check that PicX → (PicXK )
GK is an isomorphism,

H1(K,PicXK ) = 0, and BrXK = 0.
The restrictionmap PicPK → PicXK is an isomorphism sinceX is a smooth complete

intersections of dimension at least 3 [19, Corollary 3.3]. Then since PicP → PicPK is
an isomorphism, we find that the injections

PicX ↪→ (PicXK )
GK ↪→ PicXK

are isomorphisms and H1(K,PicXK ) = 0.
To show that BrXK = 0 here, we use the Kummer sequence to obtain, for any prime �,

0 (PicPK )/� H2(PK ,Z/�Z)

ψ

0 (PicXK )/� H2(XK ,Z/�Z) (BrXK )[�] 0.

The top horizontal injection is in fact an isomorphism, since both groups are rank k
over Z/�Z (using the Kunneth formula to compute H2(P ,Z/�Z)). By a version of Weak
Lefschetz (see, e.g., [25,CorollaryB.5]withV = P), the verticalmapψ is an isomorphism,
so we have (BrXK )[�] = 0 for all �. Since BrXK is torsion, it is in fact 0.
Thus, from (2.12), the map BrK → BrX is an isomorphism, so no elements of BrX

obstruct rational points on X .

Lemma 2.13 Assume Conjecture 2.9. Fix an integer d ≥ 2 and consider the family of
bidegree (2, d) hypersurfaces in P2 × P1. Then 100% of everywhere locally soluble such
hypersurfaces satisfy the Hasse principle.

Proof These surfaces S are conic bundles over P1, say given by equations of the form
f (x1, x2, x3, y1, y2) = 0, where x1, x2, x3 and y1, y2 are coordinates for P2 and P1, respec-
tively. We may also represent f as a symmetric 3 × 3 matrix M(y1, y2) of degree d forms
in y1, y2, i.e., such that f (x, y) = xTMx. Let Z be the singular locus in P1 of the fibration
S → P1; explicitly, Z is defined by the determinant of the matrix M(y1, y2), which has
degree 3d in y1, y2, and degree 3 in the coefficients a1, . . . , a6(d+1) of f .
For the generic member of this family over Q(a1, . . . , a6(d+1)), we claim that Z is irre-

ducible. This follows, e.g., from specialization, since for a prime p, the determinant of the
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3 × 3 matrix
⎛

⎜
⎝

0 yd2 yd1
yd2 yd1 0
yd1 0 pyd2

⎞

⎟
⎠

is irreducible byEisenstein’s criterion.Thus, the singular locus is irreducible for the generic
surface over Q(a1, . . . , a6(d+1)), and by Hilbert irreducibility, the same is true for a density
1 set of such surfaces over Q. Finally, if Z is irreducible, Theorem 2.6 of [20] immediately
implies that there is no Brauer-Manin obstruction for the surface S, so by Conjecture 2.9,
the Hasse principle holds.

3 Counting polynomials over finite fields
Our strategy for proving Theorems 1.4 and 1.5 can be viewed as an extension of Hensel’s
lemma. If the reduction of the (2, 2)-form mod p has a smooth Fp-point, then Hensel’s
lemma implies that this can be lifted to a Qp-point; conversely, if the reduction of the
(2, 2)-form has no Fp-points, then clearly it has no Qp-points. The p-adic solubility of
many (2, 2)-forms can be determined in this way, so it is crucial to understand (2, 2)-forms
over finite fields. We work over a finite field Fq , where q is a power of a prime p, for this
section, since it is no extra work to do so, though we will only need these results over Fp
for the later sections.

3.1 Preliminaries

Many (2, 2)-forms modulo p contain binary quadratic forms as one of its factors, so we
collect some relevant calculations here. These are easy to check.

Lemma 3.1 Of the q2 monic quadratic polynomials f ∈ Fq[X],

• q(q − 1)/2 have two distinct roots in Fq;
• (q2 − q)/2 have conjugate roots in Fq2 ;
• q have a double root in Fq.

Lemma 3.2 Of the q3 binary quadratic forms f ∈ Fq[X, Y ],

• (q − 1)(q + 1)q/2 have two distinct roots in Fq;
• (q − 1)(q2 − q)/2 have two conjugate roots in Fq2 ;
• (q − 1)(q + 1) have a double root in Fq;
• 1 is the zero form.

3.2 Reducible (2, 2)-forms

Now we look at the bihomogeneous polynomials of bidegree (d1, d2) in Fq[X0, X1;Y0, Y1]
for 0 ≤ d0, d1 ≤ 2, starting with the irreducible (d1, d2)-formswith (d1, d2) �= (2, 2). These
correspond to (d1, d2)-curves in P1 × P1, where we assume that (X0, X1) corresponds to
the coordinates in the first factor of P1 and (Y0, Y1) corresponds to the coordinates in the
second P1.

Lemma 3.3 The number of irreducible bihomogeneous polynomials in Fq[X0, X1;Y0, Y1]
(with bidegrees as indicated) are as follows:



6 Page 10 of 27 Fisher et al. Res. Number Theory (2021) 7:6

Bidegree Number of forms up to scaling by F×
q

(1,0) m10 = q + 1
(2,0) m20 = (q2 − q)/2
(1,1) m11 = q3 − q
(2,1) m21 = q5 − q3

Proof. There are q2 − 1 nonzero (1, 0)-forms, and so q + 1 up to scaling. The number
of irreducible (2, 0)-forms is taken from Lemma 3.2, taking into account scaling. The
coefficients of a (1, 1)-form may naturally be arranged as a 2 by 2 matrix, and the form is
irreducible if and only if this matrix is nonsingular. Therefore each irreducible (1, 1)-form
defines the graph of a Mobius map, and so m11 = |PGL2(Fq)| = q3 − q. Finally we
compute

m21 = (q6 − 1)/(q − 1) − m10m11 − m10m20 − m2
10(m10 + 1)/2 = q5 − q3.

We now consider all the different ways in which a (2, 2)-form can factor. We use the
notation (a1, b1)e1 · · · (ar , br)er to denote the bidegrees of the irreducible factors, with
multiplicity. For example, the factorization type (1, 0)2(0, 1)(0, 1) indicates that the (2, 2)-
form factors as a product F2

10F01G01, where F10, F01, and G01 are irreducible polynomials
in Fq[X0, X1;Y0, Y1] with bidegrees (1, 0), (0, 1), and (0, 1), respectively, and that F01 is not
an F×

q -multiple of G01.

Lemma 3.4 The number of reducible (2, 2)-forms over Fq with each factorization type are
as follows. Moreover, the curve C ⊂ P1 × P1 defined by such a form either always has a
smooth Fq-point, or never has a smooth Fq-point, as indicated in the right hand column.

Factorization type Number of forms up to scaling by F×
q Smooth point?

(1,1)(1,1)
(m11

2
) = (q3 − q)(q3 − q − 1)/2 yes

(2,1)(0,1) or (1,2)(1,0) 2m21m10 = 2q3(q + 1)2(q − 1) yes
(1,1)(1,0)(0,1) m11m2

10 = q(q + 1)3(q − 1) yes
(1,0)(1,0)(0,1)(0,1)

(m10
2

)2 = q2(q + 1)2/4 yes
(2,0)(0,1)(0,1) or (0,2)(1,0)(1,0) 2m20

(m10
2

) = q2(q + 1)(q − 1)/2 yes
(2,0)(0,2) m2

20 = q2(q − 1)2/4 no
(1, 0)2(0, 1)(0, 1) or (0, 1)2(1, 0)(1, 0) 2m10

(m10
2

) = q(q + 1)2 yes
(2, 0)(0, 1)2 or (0, 2)(1, 0)2 2m20m10 = q(q + 1)(q − 1) no
(1, 1)2 m11 = q(q + 1)(q − 1) no
(1, 0)2(0, 1)2 m2

10 = (q + 1)2 no

Proof The counts all follow from Lemma 3.3 as indicated. In each of the cases listed as
having smooth Fq-points, there is an irreducible factor of multiplicity 1 with bidegree
(1, 0), (0, 1), (1, 1), (2, 1) or (1, 2). Each such factor defines a smooth curve of genus 0
which, by projection to one of the factors, is isomorphic to P1. Moreover a case-by-case
analysis shows that this curve meets the other components of C in at most 2 points. Since
#P1(Fq) = q + 1 > 2 this shows that C has a smooth Fq-point. In the remaining cases
each irreducible factor is either repeated or has bidegree (2, 0) or (0, 2). So in these cases
there are no smooth Fq-points.
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3.3 Irreducible (2, 2)-forms

We now consider the irreducible (2, 2)-forms over Fq . We distinguish between those that
are absolutely irreducible (i.e., do not factor over Fq) and those that factor over Fq2 as the
product of a bidegree (1, 1)-form and its conjugate. In the latter case, we say the form has
factorization type (1, 1)(1, 1).

Lemma 3.5 Let C ⊂ P1 × P1 be a curve defined by an absolutely irreducible (2, 2)-form
F ∈ Fq[X0, X1;Y0, Y1]. Then C has a smooth Fq-point.

Proof IfC is smooth then it has genus 1, and the lemma follows by theHasse-Weil bound.
If C is singular, then it has geometric genus 0. The normalization is a smooth genus 0
curve, in fact P1 itself (e.g., by the Hasse-Weil bound), and thus has (q + 1) Fq-points.
Since the preimage of the singular point is at most length 2, the curveC must have at least
one smooth Fq-point.

Remark 3.6 The numbers of irreducible (2, 2)-forms are as follows:

Factorization type Number of forms up to scaling by F×
q

smooth q4(q + 1)2(q − 1)2
absolutely irreducible yet singular q3(q + 1)2(q − 1)2

(1, 1)(1, 1) (q3 − q)(q3 + q − 1)/2

In the case (1, 1)(1, 1) the (1, 1)-forms are irreducible over Fq2 , since the original (2, 2)-
form was irreducible over Fq . Each therefore defines the graph of a Mobius map, and so
the count in the last row is (# PGL2(Fq2 ) − # PGL2(Fq))/2. We omit the details of the
other two counts since these are not needed for the proof of Theorem 1.4. However, as a
check on our calculations, we note that these counts, together with those in Lemma 3.4,
do indeed add up to (q9 − 1)/(q − 1).

If F has factorization type (1, 1)(1, 1) then C is geometrically the union of two rational
curves. We subdivide into cases according as these meet in

(i) a pair of points defined over Fq ,
(ii) a pair of conjugate points defined over Fq2 ,
(iii) a single point defined over Fq .

Lemma 3.7 The number of (2, 2)-forms over Fq (up to scaling by F×
q ) in cases (i), (ii) and

(iii) above are, respectively,

n11 = q3(q + 1)2(q − 1)/4,

n12 = q2(q + 1)(q − 1)2(q − 2)/4,

n13 = q(q + 1)2(q − 1)2/2.

Proof (i) The singular points can be any pair of points inP1(Fq)×P1(Fq) that remain
distinct under both projection maps. This last condition comes from the fact,
noted in Remark 3.6, that each (1, 1)-form defines the graph of a Mobius map.
We make a change of coordinates to move the singular points to ((0 : 1), (0 : 1))
and ((1 : 0), (1 : 0)). By hypothesis F factors as the product of two (1, 1)-forms
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over Fq2 , and these are now linear combinations of X0Y1 and X1Y0. Therefore
F = f (X0Y1, X1Y0) for some irreducible binary quadratic form f . We compute n11
as the product of the (q2 − q)/2 choices for f (up to scaling), and the q2(q + 1)2/2
choices for the (unordered) pair of singular points.

(ii) We write Fq2 = Fq(α) where α2 + rα + s = 0 for some r, s ∈ Fq . As noted in (i),
the singular points remain distinct under both projection maps. After a change of
coordinates, defined over Fq , wemay therefore assume that the singular points are
((α : 1), (α : 1)) and itsGalois conjugate. ThenF = f (X0Y0+rX0Y1+sX1Y1, X0Y1−
X1Y0) for some irreducible binary quadratic form f . There are (q2−q)/2 choices for
f (up to scaling), but one of these gives F = (X2

0 +rX0X1+sX2
1 )(Y

2
0 +rY0Y1+sY 2

1 ).
Therefore n12 is the product of (q + 1)(q − 2)/2 and the (q2 − q)2/2 choices for
the singular points.

(iii) We make a change of coordinates to move the singular point to ((0 : 1), (0 : 1)).
Then F is the product of αX0Y0 + βX0Y1 + γX1Y0, and its Galois conjugate, for
some α,β , γ ∈ Fq2 with β , γ �= 0. If β and γ are a basis for Fq2 as an Fq-vector
space, then by substitutions of the form X1 ← X1 + λX0 and Y1 ← Y1 + μY0
with λ,μ ∈ Fq we may reduce to the case α = 0. But then the two components
also meet at ((1 : 0), (1 : 0)), which cannot happen in case (iii). Therefore F =
f (X0Y0, X0Y1 + cX1Y0) for some irreducible binary quadratic form f and constant
c ∈ F×

q . We compute n13 as the product of the (q2 − q)/2 choices for f (up to
scaling), the q − 1 choices for c, and the (q + 1)2 choices for the singular point.

As a final check, we note that n11 + n12 + n13 = (q3 − q)(q3 + q − 1)/2.

4 Local solubility for bidegree (2, 2)-forms
Fix a prime p, and consider the space of all (2, 2)-forms F ∈ Zp[X0, X1;Y0, Y1] with its
natural product Haar measure when viewed as a copy of Z9

p. In this section, we determine
the density of Qp-soluble forms in this space.
In order to determine the solubility of a given form F , it will often suffice to look at its

reduction mod p, denoted F ∈ Fp[X0, X1;Y0, Y1], and look for a smooth Fp-point on the
curveC defined by F , so that wemay apply Hensel’s lemma. As seen in the tables of Sect. 3
(where we now take q = p), it is easy to see that most of the factorization types for F have
a smooth Fp-point onC . According to the results of Sect. 3, only five cases require further
consideration, which we analyze in Sect. 4.3.

4.1 Preliminaries

Let v(a) = vp(a) denote the p-adic valuation of a ∈ Qp.
We will often keep track of the valuations of the coefficients of the (2, 2)-form (1.3) as a

3 × 3 table:
v(a00) v(a01) v(a02)
v(a10) v(a11) v(a12)
v(a20) v(a21) v(a22),

(4.1)

where each entry is the valuation of the coefficient of the corresponding monomial term
in

X2
0Y

2
0 X2

0Y0Y1 X2
0Y

2
1

X0X1Y 2
0 X0X1Y0Y1 X0X1Y 2

1
X2
1Y

2
0 X2

1Y0Y1 X2
1Y

2
1 .

(4.2)
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4.2 A useful lemma

Before analyzing the cases where Hensel’s lemma does not directly apply, we note that
the following lemma will be used several times in the next section, and is, in some sense,
typical of the arguments we use. In fact, we use it once in the analysis of Case 3 and twice
in the analysis of Case 5 (in Lemmas 4.11 and 4.15).

Lemma 4.3 Let a00, a01, a02, a10, a11, a20 be any fixed elements of Zp satisfying

v(a00) ≥ 2, v(a01) ≥ 2, v(a02) = 1,

v(a10) ≥ 1, v(a11) ≥ 1,

v(a20) = 0.

Let

S :=
⎧
⎨

⎩

2∑

i,j=0
aijX2−i

0 Xi
1Y

2−j
0 Y j

1 : a12 ∈ pZp, a21 ∈ Zp, a22 ∈ Zp

⎫
⎬

⎭
.

Then the proportion of the polynomials in S that have Qp-solutions for which p � X1Y1 is
1/2.

Proof Let σ (a00, a01, a02, a10, a11, a20) be the desired probability (that a polynomial in S

has aQp-solution with p � X1Y1), and let τ (a00, a01, a02, a10, a11, a20) be the corresponding
probability when S is replaced by its subset

T :=
⎧
⎨

⎩

2∑

i,j=0
aijX2−i

0 Xi
1Y

2−j
0 Y j

1 : a12, a21, a22 ∈ pZp

⎫
⎬

⎭
.

If F ∈ S, then F (0, 1;Y0, 1) reduces mod p to a quadratic polynomial in Y0, i.e., the
coefficient of Y 2

0 is nonzero mod p. Furthermore, all such quadratic polynomials occur
with equal probability. By Lemma 3.1, this quadratic splits into distinct factors over Fp
with probability 1

2 (1 − 1
p ). In this case, the point ((0 : 1), (α : 1)), where α is one of the

roots of the quadratic, is a smooth Fp-point, so by Hensel’s lemma, the curve defined by
F = 0 has a Qp-point of the form ((0 : 1), (̃α : 1)) for some lift α̃ ∈ Zp. If the quadratic
is instead irreducible, as happens with probability 1

2 (1 − 1
p ), then there are no Qp-points

with p � X1. It remains to consider the case F ≡ a20X2
1 (Y0 − cY1)2 (mod p), for some

0 ≤ c ≤ p − 1. Transforming F by the substitution Y0 ← Y0 + cY1 we find

σ

⎛

⎜
⎝

a00 a01 a02
a10 a11
a20

⎞

⎟
⎠=1

2

(

1 − 1
p

)

+ 1
p2

p−1∑

c=0
τ

⎛

⎜
⎝

a00 2ca00 + a01 c2a00 + ca01 + a02
a10 2ca10 + a11
a20

⎞

⎟
⎠ .

(4.4)

We note in particular that the arguments of τ satisfy the conditions in the statement of
the lemma.
If F ∈ T then F ≡ a20X2

1Y
2
0 (mod p). For a solution with p � X1 we need p | Y0. This

suggests making the substitution Y0 ← pY0. Dividing through by p, and then swapping
the X ’s and Y ’s we find

τ

⎛

⎜
⎝

a00 a01 a02
a10 a11
a20

⎞

⎟
⎠ = σ

⎛

⎜
⎝

pa00 pa10 pa20
a01 a11

p−1a02

⎞

⎟
⎠ . (4.5)
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Using (4.4) and (4.5) to solve for σ and τ , we find that σ = τ = 1/2.

4.3 The cases without smooth Fp-points

As remarked before, these are the factorization types of the (2, 2)-form F over Fp which
do not immediately yield a smooth Fp-point in the reduction of the corresponding curve.

Case number Factorization type Number of forms up to scaling by F×
p

1 (1, 1)(1, 1) n1 := (p3 − p)(p3 + p − 1)/2
2 (2, 0)(0, 2) n2 := p2(p − 1)2/4
3 (2, 0)(0, 1)2 or (0, 2)(1, 0)2 n3 := p(p + 1)(p − 1)
4 (1, 1)2 n4 := p(p + 1)(p − 1)
5 (1, 0)2(0, 1)2 n5 := (p + 1)2

Let n0 = (p9 − 1)/(p − 1) − (n1 + n2 + n3 + n4 + n5) be the number of forms lying in
none of the 5 cases, and let ξi be the probability of solubility in case i. Then the overall
probability of solubility is

ρ = n0 + n1ξ1 + n2ξ2 + n3ξ3 + n4ξ4 + n5ξ5
(p9 − 1)/(p − 1)

.

In this section we compute ξ1, . . . , ξ5 and hence obtain the final answer stated in Theo-
rem 1.4. In the context of computing ξ5, it is helpful to make the following definition for
ξ ′
i , and to compute the ξ ′

i alongside the ξi:

Definition 4.6 For 1 ≤ i ≤ 4, we let ξ ′
i be the probability of solubility given the following

conditions: we are in case i, the point ((0 : 1), (0 : 1)) is a singular point on the reduction
mod p, and v(a22) ≥ 2. We write ξ ′

1j for 1 ≤ j ≤ 3 for the same probability in cases 1(i),
1(ii), and 1(iii), as defined below. We define ξ ′

5 in the same way, except that we require
that the singular point ((0 : 1), (0 : 1)) is not the point where the two lines meet.

We compute the values of ξi and ξ ′
i in the next sections.

4.3.1 Case 1

In this case the reduction of our curve mod p is geometrically the union of two rational
curves. We subdivide into the cases (i), (ii), (iii) as defined immediately before Lemma 3.7,
and note that n1 = n11 + n12 + n13. Writing ξ11, ξ12, ξ13 for the probabilities of solubility
in cases 1(i), 1(ii) and 1(iii), respectively, we have

ξ1 = (n11ξ11 + n12ξ12 + n13ξ13)/n1.

Case 1(i)

In this case, the two components meet at a pair of points defined over Fp. We begin by
computing ξ11. As in the proof of Lemma 3.7(i) we may assume that F = f (X0Y1, X1Y0)
for some irreducible binary quadratic form f . The only Fp-points on the reduction are
the singular points ((0 : 1), (0 : 1)) and ((1 : 0), (1 : 0)). We must decide if they lift to
Qp-points. Let α be the probability that the singular point ((0 : 1), (0 : 1)) lifts.
Since ((0 : 1), (0 : 1)) is a singular point on the curve defined by F , we deduce that

all the valuations v(a12), v(a21), v(a22) are ≥ 1. If v(a22) = 1, then the singular point
((0 : 1), (0 : 1)) does not lift. Otherwise (with probability 1/p), we have v(a22) ≥ 2. Then
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the valuations of the coefficients of F satisfy

≥ 1 ≥ 1 = 0
≥ 1 ≥ 0 ≥ 1
= 0 ≥ 1 ≥ 2

where the equalities follow from f being irreducible. Making the substitutions X0 ← pX0,
Y0 ← pY0 and dividing through by p2, we obtain a (2, 2)-form G(X0, X1, Y0, Y1) whose
coefficients bij have valuations satisfying

≥ 3 ≥ 2 = 0
≥ 2 ≥ 0 ≥ 0
= 0 ≥ 0 ≥ 0.

We now investigate whether G ∈ Fp[X0, X1;Y0, Y1] is absolutely irreducible. Define a
ternary quadratic form Q(X0, Y0, Z0) by G(X0, 1, Y0, 1) = Q(X0, Y0, 1), so that the zero-set
of Q in A2

X0 ,Y0 ⊂ P2 coincides with the zero-set of G in A1
X0

× A1
Y0 ⊂ P1 × P1. Then the

curve defined by Q (and thus, the curve defined by G) is geometrically irreducible if and
only if the discriminant of Q is nonzero, equivalently

b22 disc(f ) − f (b21,−b12) �≡ 0 (mod p).

(This argument still works in characteristic 2 provided that the formula for the discrimi-
nant of a ternary quadratic form is scaled by appropriate powers of 2.)
If the curve defined by G is geometrically irreducible, then the argument in Lemma 3.5

shows that it has a smooth Fp-point. Otherwise (with probability 1/p), the reduction mod
p is geometrically the union of two rational curves meeting at ((1 : 0), (1 : 0)) and an Fp-
point of the form ((λ : 1), (μ : 1)). The two rational curves are not defined over Fp, since
the binary quadratic form f is irreducible.Wemake the substitutionsX0 ← X0 +λX1 and
Y0 ← Y0 +μY1 to move the second point of intersection to ((0 : 1), (0 : 1)), and start over
again considering whether this singular point lifts. The probability that it lifts is again α.
We thus obtain the recursive formula

α = 1
p

((

1 − 1
p

)

+ 1
p

α

)

,

and so α = 1/(p + 1).
We are interested in the probability that at least one of the singular points lifts. Since

these events depend on different coefficients of the (2, 2)-form they are independent.
Therefore

ξ11 = 1 −
(

1 − 1
p + 1

)2
= 2p + 1

(p + 1)2
.

A small modification of this argument (as required by Definition 4.6) gives

ξ ′
11 = 1 −

(

1 − 1
p + 1

)(

1 − p
p + 1

)

= p2 + p + 1
(p + 1)2

.

Case 1(ii)

The two components meet at a pair of conjugate points defined over Fp2 . There are no
Fp-points on the reduction. Therefore ξ12 = 0 and ξ ′

12 is not defined.
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Case 1(iii)

The two components meet at a single point defined over Fp. As in the proof of
Lemma 3.7(iii) wemay assume that F = f (X0Y0, X0Y1+X1Y0) for some irreducible binary
quadratic form f . The only Fp-point on the reduction is the singular point ((0 : 1), (0 : 1)).
If this lifts to a Qp-point then we must have v(a22) ≥ 2. Since this is exactly the condition
in Definition 4.6 it follows that ξ13 = (1/p)ξ ′

13.
We show in Sect. 5, using results from [3], that

ξ13 = 2p10 + 3p9 − p5 + 2p4 − 2p2 − 3p − 1
2(p + 1)2(p9 − 1)

.

As noted in the last paragraph, we have ξ ′
13 = pξ13.

4.3.2 Case 2

This is the case (2, 0)(0, 2). There are no Fp-points on the reduction. Therefore ξ2 = 0 and
ξ ′
2 is not defined.

4.3.3 Case 3

This is the case (2, 0)(0, 1)2 or (0, 2)(1, 0)2. We may assume without loss of generality that
F = f (X0, X1)Y 2

0 for some irreducible binary quadratic form f . The coefficients satisfy

= 0 ≥ 1 ≥ 1
≥ 0 ≥ 1 ≥ 1
= 0 ≥ 1 ≥ 1

where the equalities follow from f being irreducible. Making the substitution Y0 ← pY0
and dividing through by p gives

= 1 ≥ 1 ≥ 0
≥ 1 ≥ 1 ≥ 0
= 1 ≥ 1 ≥ 0

The reduction mod p is now g(X0, X1)Y 2
1 for some binary quadratic form g . If g is irre-

ducible, splits, or has repeated roots, then the probability of solubility is 0, 1, or 1/2,
respectively. In the last of these cases, we are using Lemma 4.3: more specifically, we
assume the double root is at (X0 : X1) = (0 : 1), make the substitution X0 ← pX0, divide
through by p, and then apply the lemma. Note that the lemma applies as v(a20) = 0, and
there are no solutions with p | X1Y1 in view of the substitutions we made to reach this
situation.
If g is identically zero, then we divide through by p, to obtain a (2, 2)-form H satisfying

the line condition, by which we mean thatH (X0, X1, 1, 0) (mod p) is an irreducible binary
quadratic form. Writing δline for the probability of solubility in this case, we have

ξ3 = 1
p3

(
p3 − p

2
· 1 + p(p − 1)2

2
· 0 + (p2 − 1) · 1

2
+ δline

)

(4.7)

and

ξ ′
3 = 1

p2

(

p(p − 1) · 1 + (p − 1) · 1
2

+ δline

)

. (4.8)



Fisher et al. Res. Number Theory (2021) 7:6 Page 17 of 27 6

Lemma 4.9 There are (up to scaling by F×
p ) exactly p7(p − 1)/2 forms over Fp satisfying

the line condition. The numbers of these in Cases 1 to 3 are

r11 = p3(p + 1)(p − 1)2/4

r12 = p2(p + 1)(p − 1)2(p − 2)/4

r13 = p2(p + 1)(p − 1)2/2

r2 = p2(p − 1)2/4

r3 = p2(p − 1)/2

There are none in Cases 4 and 5.

Proof It is easy to check that forms inCases 1(ii) and2 always satisfy the line condition, and
those in Cases 4 and 5 never satisfy the line condition. By double counting pairs consisting
of (2, 2)-forms and (0, 1)-forms (both up to scalars) that meet in a pair of conjugate points
over Fp2 , we find that (p + 1)r11 = (p − 1)n11 and (p + 1)r13 = pn13. In Case 3 we must
count the forms f (X0, X1)g(Y0, Y1)2 where f is an irreducible binary quadratic form, and
g is a linear form with g(1, 0) �= 0. We find that r3 is the product of the (p2 − p)/2 choices
for f and the p choices for g .

Let r0 = p7(p− 1)/2− (r11 + r12 + r13 + r2 + r3) be the number of forms satisfying the
line condition not in Cases 1 to 3. Then

δline = r0 + r11ξ11 + r12ξ12 + r13ξ13 + r2ξ2 + r3ξ3
p7(p − 1)/2

(4.10)

Using the values of ξ11, ξ12, ξ13 and ξ2 already computed, we can now solve (4.7) and (4.10)
for ξ3 and δline. We then use (4.8) to compute ξ ′

3. We find that

ξ3 = p10 + 2p9 + p6 − 2p5 + 2p3 + p2 − 3p − 2
2(p + 1)(p9 − 1)

and

ξ ′
3 = 2p10 + p9 + p7 − 2p6 + 2p4 + p3 − 2p2 − 2p − 1

2(p + 1)(p9 − 1)
.

4.3.4 Case 4

This is the case (1, 1)2. By a change of coordinates we may assume

F ≡ (X0Y1 − X1Y0)2 (mod p).

We show in Sect. 5, using results from [3], that

ξ4 = 5p10 + 8p9 + p8 − p7 + 2p6 − 3p5 + 4p3 − 10p − 6
8(p + 1)(p9 − 1)

,

and

ξ ′
4 = 4p10 + 3p9 − p7 + 2p6 − 2p5 + 2p3 − p2 − 5p − 2

4(p + 1)(p9 − 1)
.

4.3.5 Case 5

This is the case (1, 0)2(0, 1)2. By a change of coordinates we may assume

F ≡ X2
0Y

2
0 (mod p).
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The coefficients of F have valuations satisfying
= 0 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1.

LetQ andQ′ be the binary quadratic forms overFp determined by the last row and column,
i.e.,

Q(Y0, Y1) = 1
pF (0, 1;Y0, Y1) (mod p)

Q′(X0, X1) = 1
pF (X0, X1; 0, 1) (mod p)

Note that these forms have the same last coefficient c ∈ Fp as they share one entry in
the coefficient matrix corresponding to X2

1Y
2
1 . Writing ξ51 and ξ52 for the probabilities of

solubility in the cases c �= 0 and c = 0, respectively, we have

ξ5 = (1 − 1/p)ξ51 + (1/p)ξ52.

Lemma 4.11 We have ξ51 = 3/4.

Proof The coefficients satisfy

= 0 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1
≥ 1 ≥ 1 = 1.

The reduction mod p is the union of two double lines, meeting at a single point. Any
Qp-point has p | X0 or p | Y0, but not both since v(a22) = 1. In other words, any Qp-point
must reduce to lie on exactly one of the lines.
To investigate whether there are solutions with p | X0 we make the substitution X0 ←

pX0 and divide by p to get

= 1 ≥ 2 ≥ 2
≥ 1 ≥ 1 ≥ 1
≥ 0 ≥ 0 = 0.

We then apply Lemma 4.3 (with Y0 ↔ Y1). The probability of a solution with p | X0
and the probability of a solution with p | Y0 are each 1/2. The lemma also implies that
these two events are independent of each other, so the probability of insolubility of these
polynomials is 1/4. Hence, the probability of solubility is 3/4.

Definition 4.12 Let δ1 and δ2 be the probabilities of solubility in the cases

≥ 1 ≥ 1 ≥ 0
≥ 1 ≥ 0 ≥ 0
= 0 ≥ 0 ≥ 0

≥ 1 ≥ 1 = 0
≥ 1 ≥ 0 ≥ 0
= 0 ≥ 0 ≥ 0

(The subscript is the number of equalities in thematrix.) Let δ∗
1 and δ∗

2 be the probabilities
when we change the top left≥ 1 to= 1. Let ε1 and ε2 be the probabilities when we change
the top left ≥ 1 to ≥ 2.

Clearly we have
δ1 = (1 − 1/p)δ∗

1 + (1/p)ε1
δ2 = (1 − 1/p)δ∗

2 + (1/p)ε2
(4.13)
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Lemma 4.14 We have

ξ52 =
(

1 − 1
p2

)

+ 1
p2

(
1
p

(

1 − 1
p

)2
δ∗
2 + 2

1
p

(

1 − 1
p

)

δ∗
1 +

(
1
p

)2
ε1

)

Proof If at least one of the forms Q and Q′ has distinct roots in Fp then the (2, 2)-form
is soluble over Qp. This happens with probability 1 − 1/p2. Otherwise (with probability
1/p2) the coefficients satisfy

= 0 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 2
≥ 1 ≥ 2 ≥ 2

(The bottom right ≥ 2 comes from the assumption that c = 0, and the two adjacent ≥ 2
entries arise from assuming that neither Q nor Q′ has distinct roots in Fp.) We split into
3 cases:

(i) Suppose v(a02) = v(a20) = 1. If v(a22) = 2 then the (2, 2)-form is insoluble over
Qp. Otherwise,wefindby substitutingX0 ← pX0,Y0 ← pY0, anddividing through
by p3, that the probability of solubility is δ∗

2 .
(ii) Suppose v(a02) = 1 and v(a20) ≥ 2. We find by substituting X0 ← pX0, and

dividing through by p2, that the probability of solubility is δ∗
1 . The case where

v(a02) ≥ 2 and v(a20) = 1 works in exactly the same way via the substitution
Y0 ← pY0.

(iii) Suppose v(a02) ≥ 2 and v(a20) ≥ 2. Via either of the substitutions in (ii), the
probability of solubility is ε1.

Combining these gives the desired expression for ξ52.

Lemma 4.15 We have

ξ ′
5 =

(

1 − 1
p

)

+ 1
p

(

1 − 1
p

)
3
4

+
(
1
p

)2 (

1 − 1
p

)

+
(
1
p

)3
δ1.

Proof According to Definition 4.6, we may suppose the coefficients of F satisfy

= 0 ≥ 1 ≥ 2
≥ 1 ≥ 1 ≥ 1
≥ 1 ≥ 1 ≥ 1

If v(a12) = 1, thenQ′ has distinct roots in Fp and so F is soluble over Qp. Otherwise (with
probability 1/p), we have v(a12) ≥ 2.
If v(a22) = 1, then by an argument similar to Lemma 4.11, the probability of solubility

is 3/4. (The solutions with p | X0 are analysed in exactly the same way as before, whereas
to analyse those with p | Y0 we substitute Y0 ← pY0 and then X1 ← pX1.)
Otherwise (with probability 1/p), we have v(a22) ≥ 2. If v(a21) = 1, then Q has distinct

roots in Fp and so F is soluble overQp. Otherwise (with probability 1/p), we have v(a21) ≥
2. We find by substituting Y0 ← pY0 and then dividing through by p2 that the probability
of solubility is δ1.

Lemma 4.16 There are p5 possibilities for F (up to scaling by F×
p ) satisfying the conditions

in the definition of δ1. The number of these in Cases 1 to 5 are
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s11 = p3(p − 1)/2,

s12 = 0,

s13 = p(p − 1)2/2,

s2 = 0,

s3 = p(p − 1)/2,

s4 = p(p − 1)

s5 = p.

In Cases 1(i), 1(iii), and 4, these forms also satisfy the conditions in the definition of δ2. In
Cases 3 and 5, they do not.

Proof The conditions in the definition of δ1 are that F = 0 is singular at ((1 : 0), (1 : 0))
but does not contain the line Y1 = 0.We have (p+1)2s11 = 2n11 and (p+1)2s13 = n13. In
Cases 1(ii) and 2, there are no Fp-points so s12 = s2 = 0. In Cases 3, 4, and 5, we count the
formsX2

1 f (Y0, Y1), (αX1Y0+βX0Y1+γX1Y1)2, andX2
1 g(Y0, Y1)2 where f is an irreducible

binary quadratic form, α,β , γ ∈ F×
p with αβ �= 0, and g is a linear form with g(1, 0) �= 0.

Finally, it is only in Cases 3 and 5 that the reduction mod p contains the line X1 = 0.

For the final computation of ξ5, let s0 = p5 − (s11 + s13 + s3 + s4 + s5) and t0 =
p4(p − 1) − (s11 + s13 + s4) so that

δ1 = s0 + s11ξ11 + s13ξ13 + s3ξ3 + s4ξ4 + s5ξ5
p5

δ2 = t0 + s11ξ11 + s13ξ13 + s4ξ4
p4(p − 1)

.

Replacing each ξ by ξ ′ (see Definition 4.6) we have

ε1 = s0 + s11ξ ′
11 + s13ξ ′

13 + s3ξ ′
3 + s4ξ ′

4 + s5ξ ′
5

p5

ε2 = t0 + s11ξ ′
11 + s13ξ ′

13 + s4ξ ′
4

p4(p − 1)
.

Putting together all the equations derived in this section, together with the previously
computed ξ ’s, we are now able to solve for ξ5. We find ξ5 = f (p)/g(p) where

f (p) = 6p18 + 8p17 + 2p16 − 8p15 + 16p14 − 12p13 − 4p12 + 3p11 + 9p10 − 35p9

+ 8p8 − 11p7 + 3p6 − p5 + 8p4 − 6p3 − 4p2 + 10p + 8,

g(p) = 8(p + 1)(p9 − 1)(p8 − 1).

5 Relation to binary quartics
We compute some of the probabilities required in Sect. 4 by reducing them to proba-
bilities already computed in [3]. The basic idea is that a (2, 2)-form determines a binary
quartic form, by writing the (2, 2)-form as a binary quadratic form in Y0, Y1 and taking the
discriminant. However, since we also want results in the case p = 2, we will in fact work
with generalised binary quartics, defined as follows.
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Definition 5.1 A generalised binary quartic (G2, G4) is a pair of binary forms of degrees 2
and 4. A generalised binary quartic (G2, G4) is soluble over a fieldK if for someX0, X1, Z ∈
K with (X0, X1) �= (0, 0) we have Z2 + G2(X0, X1)Z = G4(X0, X1).

WewriteZp[X0, X1] = ⊕dZp[X0, X1]d andZp[X0, X1;Y0, Y1] = ⊕d,eZp[X0, X1;Y0, Y1]de
for the gradings of these rings by degree d and by bidegree (d, e), respectively.

Lemma 5.2 Let �, a ∈ Fp such that Z2 + �Z − a is irreducible over Fp, and let

S:={(G2, G4)∈Zp[X0, X1]2×Zp[X0, X1]4 : G2≡�X2
0 (mod p) and G4≡aX4

0 (mod p)},
T:={(G2, G4)∈Zp[X0, X1]2×Zp[X0, X1]4 : G2≡0 (mod p) and G4≡0 (mod p)},

and T∗ := {(G2, G4) ∈ T : G4(0, 1) �≡ 0 (mod p2)}. Then the proportions of generalised
binary quartics in S, T and T∗ that are soluble over Qp are, respectively,

σ = 2p10 + 3p9 − p5 + 2p4 − 2p2 − 3p − 1
2(p + 1)2(p9 − 1)

,

τ = 5p10 + 8p9 + p8 − p7 + 2p6 − 3p5 + 4p3 − 10p − 6
8(p + 1)(p9 − 1)

,

and

τ ∗ = 5p10 + 5p9 − p7 + 3p6 − 4p5 + 4p3 − 8p − 4
8(p + 1)(p9 − 1)

.

Proof These probabilities were computed in [3]. The probability σ was computed follow-
ing Corollary 18, where it was denoted λ. The probabilities τ and τ ∗ were computed in
Sects. 2.3.6 and 2.3.5, where they were denoted σ4 and σ ′

4.

We define a map

� : Zp[X0, X1;Y0, Y1]22 → Zp[X0, X1]2 × Zp[X0, X1]4
F0Y 2

0 + F1Y0Y1 + F2Y 2
1 �→ (F1,−F0F2).

It is easy to check that a (2, 2)-form F is soluble over Qp if and only if the generalised
binary quartic �(F ) is soluble over Qp. We write �p for the corresponding map on forms
with coefficients in Fp. The cases (i) and (ii) in the following lemma relate to Cases 1(iii)
and 4 in Sect. 4.3.

Lemma 5.3 Let F ∈ Fp[X0, X1;Y0, Y1]22 take one of the following forms:

(i) F = f (X0Y0, X0Y1 + X1Y0) where f is an irreducible binary quadratic form,
(ii) F = (X0Y1 − X1Y0)2.

Then � restricts to a measure-preserving map

{F ∈ Zp[X0, X1;Y0, Y1]22 : F ≡ F (mod p)}
→ {G ∈ Zp[X0, X1]2 × Zp[X0, X1]4 : G ≡ �p(F ) (mod p)}.

Proof The proof comes down to showing that the derivative of �p at F is a surjective
linear map F9

p → F8
p. In cases (i) and (ii), this linear map is given by
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F0Y 2
0 + F1Y0Y1 + F2Y 2

1 �→ (F1,−f (0, 1)X2
0F0 − f (X0, X1)F2), and

F0Y 2
0 + F1Y0Y1 + F2Y 2

1 �→ (F1,−X2
0F0 − X2

1F2),

respectively, which are both surjective.

Case 1(iii).
We use these lemmas to compute ξ13, that is, the probability of solubility where F mod

p is of the form indicated in Lemma 5.3(i). Let f have coefficients a, b, c. Then �p(F ) is
the generalised binary quartic with equation

(Z + cX0X1)2 + bX2
0 (Z + cX0X1) + acX4

0 = 0.

From this we see that ξ13 = σ as defined in Lemma 5.2.
Case 4.
We use these lemmas to compute ξ4, that is, the probability of solubility where F mod

p is of the form indicated in Lemma 5.3(ii). Since �p(F ) is identically zero, we see that
ξ4 = τ as defined in Lemma 5.2. To compute ξ ′

4 we must consider (2, 2)-forms F that
additionally satisfy v(a22) ≥ 2. Under the measure-preserving map in Lemma 5.3(ii) these
are mapped to T \ T∗. Therefore τ = (1 − 1/p)τ ∗ + (1/p)ξ ′

4 and so

ξ ′
4 = pτ − (p − 1)τ ∗ = 4p10 + 3p9 − p7 + 2p6 − 2p5 + 2p3 − p2 − 5p − 2

4(p + 1)(p9 − 1)
.

Remark 5.4 The same approach could be used to compute ξ11, and indeed our answer
agrees with [3, Lemma 15].

6 Connections to the Hasse principle
In Theorem 1.5, we determined that the proportion of (2, 2)-forms that are everywhere
locally soluble is c ≈ 0.8739. As we explain further in Sects. 6.1 and 6.2, a heuristic similar
to [9, Conjectures 6 and 7] predicts that the proportion of everywhere locally soluble (2, 2)-
forms that are globally soluble is 1

4 , i.e., in the notation of Sect. 2, that limH→∞ N (H )
Nloc(H ) = 1

4
and thus limH→∞ N (H )

Ntot(H ) = 1
4 c.

In this section we report on some experiments to test this conjecture numerically. A
similar study in the case of plane cubics was made in [15]. With the one exception noted
below, all computations were performed using Magma [5] and the data may be found at
[14].

6.1 Experiments and results

For each H ∈ {10, 30, 100, 300, 1000}, we chose 1000 (2, 2)-forms (i.e., polynomials of the
form (1.3)), with coefficients chosen uniformly at random from [−H,H ]∩Z. The numbers
of these that were soluble or everywhere locally soluble (ELS) were as follows:
The second column gives our initial estimate for the number of soluble (2, 2)-forms

out of the 1000. The lower bound was obtained by searching for rational solutions, with
the assistance of 4-descent in Magma. The upper bound was obtained by computing the
Cassels-Tate pairing on the 2-Selmer group of the Jacobian. For the improved estimates
in the third column we used a range of methods, described more fully below, that are
conditional on standard conjectures and sometimes were only practical forH sufficiently
small.
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initial range improved range
H # soluble # soluble # ELS
10 [753, 755] 753 885
30 [640, 652] 642 885
100 [536, 582] 549 875
300 [378, 502] [432, 433] 867
1000 [275, 464] [357, 464] 879

For the first 4 experiments, we also give the breakdown of these totals by the rank of the
Jacobian elliptic curve E/Q. The annotations + and − in the case H = 300 indicate that
we should add or subtract one if the remaining form whose solubility has not yet been
decided turns out to be soluble.

rank E(Q) singular 0 1 2 3 4 5 6 Total
H = 10 # ELS 5 0 86 344 313 116 21 0 885

# soluble 5 0 16 285 310 116 21 0 753

H = 30 # ELS 0 0 122 310 291 129 29 4 885
# soluble 0 0 1 208 274 126 29 4 642

H = 100 # ELS 0 0 171 321 257 96 25 5 875
# soluble 0 0 0 205 221 93 25 5 549

H = 300 # ELS 0 0 230− 373 187+ 58 19 0 867
# soluble 0 0 0 210 151+ 52 19 0 432+

Although we can see from our first table that the proportion of everywhere locally
soluble forms that are globally soluble is decreasing withH , this hardly amounts to strong
evidence that the limit is 1/4. However, the prediction of 1/4 arises since, in the limit, it
is expected that (i) 50% of the Jacobians have rank 1 and 50% have rank 2 (by, e.g., the
Minimalist Conjecture), and (ii) the proportions of forms that are soluble in these two
cases are 0 and 1/2, respectively (as explained below). Our second table therefore provides
much stronger evidence for the conjecture, and indeed we see that the convergence in (ii)
is happening much faster than that in (i).

6.2 The marked point and heuristics

As we saw in Sect. 5, if F ∈ Z[X0, X1;Y0, Y1] is a (2, 2)-form, then it determines a pair
of binary quartics. These binary quartics have the same discriminant, which is accord-
ingly called the discriminant of F . We should expect a randomly chosen (2, 2)-form to
have nonzero discriminant (and hence define a smooth curve). This was true in all our
experiments, except for 5 cases with H = 10, which were all in any case soluble. From
now on we assume that the discriminant is nonzero, and write E for the Jacobian of
C = {F = 0} ⊂ P1 × P1. Since the discriminant is a degree 12 polynomial in the coeffi-
cients of F , the conductor and discriminant of E each have size about H12.
There are two maps C → P1, given by projection to each factor, and the difference of

fibres is a nonzero marked point P0 ∈ E(Q). There is an explicit formula for P0 (see [6,
Section 6.1.2] or [17, Lemma 2.1]) in terms of the coefficients of F . As might be predicted
from this formula, we found in our experiments that P0 had canonical height at most
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log(2H2). The torsion subgroup of E(Q) was trivial in all but 6 cases with H = 10, when
it had order 2. In only one of these cases was P0 a torsion point.
We should expect that for a randomly chosen (2, 2)-form, the associated binary quartics

should not have any rational roots (i.e., linear factors). This was true in all but 69, 9 and
1 of our examples with H = 10, 30 and 100. We should also expect that P0 /∈ 2E(Q), and
this was true in all but 6 cases whenH = 10, and 2 cases whenH = 30. If P0 /∈ 2E(Q) and
the associated binary quartics do not have any rational roots, then if rank E(Q) = 1, the
(2, 2)-form is not soluble. We thus expect that the (2, 2)-form is not soluble in general if
rank E(Q) = 1.
We now explain why half of the forms with rank 2 Jacobian are expected to be soluble.

For an elliptic curve E of rank 2, we want to estimate the proportion of elements in
Sel2(E/Q) that are in the image of E(Q)/2E(Q). The average size of Sel2(E/Q) is 6 in this
family [8], but two of the 2-Selmer group elements correspond to (2, 2)-forms for which
one of the associated binary quartics has a rational root, which should only happen 0%
of the time when we order by height. Now the size of E(Q)/2E(Q) is 4 for the 100% of
elliptic curves E for which there is no 2-torsion, but we also subtract the same 2 elements
corresponding to the (2, 2)-forms for which one of the associated binary quartics has a
rational root. We thus predict that (4 − 2)/(6 − 2) = 1/2 of the forms are soluble.

Remark 6.1 Although one of the best methods for finding generators of large height on
an elliptic curve E/Q is to use Heegner points, this only works for curves of rank 1. Since
our elliptic curves all come with a known point of infinite order, this method was of no
use to us. We instead relied almost exclusively on descent methods.

6.3 The initial estimates: computing ranks of elliptic curves

The curve defined by a (2, 2)-form is isomorphic to the curve defined by either of the
associated binary quartics. Our interest is therefore in deciding the solubility of the genus
one curves associated to binary quartics.
LetC/Qbe a genus one curve definedby a binary quartic, and letE/Qbe its Jacobian. IfC

is everywhere locally soluble, then it defines a class [C] in the 2-Selmer group Sel2(E/Q).
Moreover C(Q) �= ∅ if and only if [C] ∈ im(δ) where δ is the connecting map in the
Kummer exact sequence

0 → E(Q)/2E(Q) δ→ Sel2(E/Q) → X(E/Q)[2] → 0.

Given a pointP ∈ E(Q) theMagma functionGenusOneModel(2,P) computes a binary
quartic representing δ(P). In conjunction with the function IsEquivalent for testing
equivalence of binary quartics, this gives a convenient way of reducing the problem of
deciding whether C(Q) �= ∅ to that of finding generators for E(Q).
An initial upper bound for the rank of E(Q) is obtained by 2-descent, that is, by com-

puting the 2-Selmer group Sel2(E/Q). This upper bound can sometimes be improved by
computing the Cassels-Tate pairing. Let Sn be the image of the natural map Sel2

n
(E/Q) →

Sel2(E/Q). If ξ , η ∈ Sn, say with ξ ′ �→ ξ and η′ �→ η, then there is an alternating pairing

〈 , 〉n : Sn × Sn → F2 ; (ξ , η) �→ 〈ξ ′, η〉CT = 〈ξ , η′〉CT (6.2)

whose kernel is Sn+1. We note the inclusions of F2-vector spaces

im(δ) ⊂ . . . ⊂ S3 ⊂ S2 ⊂ S1 = Sel2(E/Q).
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The function CasselsTatePairing in Magma, written by S. Donnelly, computes the
pairings

〈 , 〉CT : Sel2(E/Q) × Sel2(E/Q) → F2, (6.3)

and

〈 , 〉CT : Sel2(E/Q) × Sel4(E/Q) → F2, (6.4)

taking as input either a pair of binary quartics, or a binary quartic and a quadric inter-
section. (A variant of his method for computing (6.3) is described in [16].) We may thus
compute the pairing (6.2) for n = 1 and n = 2.
A lower bound for the rank of E(Q) may be obtained by searching for points either

directly on E, or better on one of its 4-coverings as computed using FourDescent in
Magma. In this way we obtained generators for a subgroup � ⊂ E(Q) of known points.
In all cases where it is possible that rank � < rank E(Q) we searched up to height 1010 on
the 4-coverings.
Our initial (unconditional) estimate on the number of (2, 2)-forms that are soluble was

obtained as follows. First, if the curve C defined by our (2, 2)-form is not everywhere
locally soluble, then it is obviously not soluble. Otherwise C (or more precisely one of
the associated binary quartics) determines a class [C] ∈ Sel2(E/Q). If [C] ∈ δ(�) then we
know that C(Q) �= ∅, and indeed from the generators for � we may compute an explicit
solution. Otherwise we look for [D] ∈ Sel2(E/Q) with 〈[C], [D]〉CT �= 0. If we succeed
in finding a binary quartic D with these properties, then it is a witness to the fact that
C(Q) = ∅.

6.4 The improved estimates

Both the improved estimates, and the second table (giving the breakdown by rank of the
Jacobian) are conditional on the following two standard conjectures.

• Parity conjecture: This is the parity part of the Birch–Swinnerton-Dyer conjecture,
i.e., the Mordell-Weil rank of an elliptic curve E/Q is even or odd according as its
root number w(E/Q) is +1 or −1.

• GeneralisedRiemannHypothesis (GRH) : This is needed for the class number calcula-
tions for 2-descent (butwould be easy to remove for smallH ) and for the computation
of analytic rank bounds.

For ease of exposition, we will assume (as is the case in all examples of interest) that
E(Q) has trivial torsion subgroup. We write r2n = dimF2 Sn for the upper bound on the
rank of E(Q) obtained by 2n-descent. Thus we have

rank � ≤ rank E(Q) ≤ . . . ≤ r8 ≤ r4 ≤ r2.

It is a theorem, originally due to Monsky [23], that w(E/Q) = (−1)r2 .
We improve our lower bounds on the number of forms that are soluble by using the

parity conjecture. Indeed, if rank � = r2n − 1 for some n, then we may conclude by
the parity conjecture that im(δ) = Sn. We mainly used this idea with n = 1, when the
conclusion is that binary quartics with Jacobian E satisfy theHasse principle, but also used
it with n = 2 in four examples with H = 1000.
In the two examples where we used the parity conjecture in the case H = 30, we

were also able to find the missing generators using EightDescent in Magma [29]. In
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particular on the curve {F = 0} ⊂ P1 × P1 where

F = 27X2
0Y

2
0 − X0X1Y 2

0 + 17X2
1Y

2
0 − 27X2

0Y0Y1 + 15X0X1Y0Y1 + 9X2
1Y0Y1

− 25X2
0Y

2
1 − 12X0X1Y 2

1 − 13X2
1Y

2
1 ,

we found the solution

X0 = 5998800628516423107297133082973646629266881508307007941326966876023,
X1 = 342294900150114936634770190317380320064921533929615189995360150770683,
Y0 = 246468494594162038245191010835877699291643209107952263886240062422805,
Y1 = −206172926328604047309514129427033995615708844556361901784128916991449.

This maps to a point on the Jacobian of canonical height ĥ ≈ 644.736, which is well
beyond the range that could be found by 4-descent. Unfortunately it was not practical
to run EightDescent in the experiments with H = 100, 300 and 1000, and so our
improved lower bounds in those cases remain conditional on the parity conjecture.
The main method we used to improve the upper bounds on the number of forms

that are soluble was to compute the Cassels-Tate pairing (6.4). In the experiments with
H = 10, 30, 100 and 300, we were left with 0, 1, 2 and 5 examples where r2 = r4 = r8 = 3,
yet (despite searching on all 4-coverings up to height bound 1010) we could only find one
generator. The elliptic curves in question are recorded in the following table.

y2 = x3 − 385216x − 118546643 � = 2.0

y2 + xy = x3 − x2 − 21940631x − 10062163381 � = 2.6

y2 + xy = x3 − x2 − 130106786x − 418444299752 � = 2.5

y2 = x3 + x2 − 674939767x + 9768411280745 � = 3.5

y2 + xy + y = x3 + 1365438724x + 1088450102306 � = 3.0

y2 + xy = x3 + x2 + 13646956x + 36868880351052 � = 3.6

y2 + y = x3 + 463718380x − 1653282652263 � = 3.9

y2 + xy = x3 + x2 − 6811523942x + 180704627470189

In all but the last of these examples, we were able to prove that the rank is 1 by using
Sage [26] to compute an upper bound on the analytic rank. The parameter � we used for
this calculation (see [11]) is recorded in the right hand column. In the last example we
obtained no rank bound better than 3, despite taking � = 4.0.
Unfortunately it was not practical to compute the pairing (6.4) in the experiment with

H = 1000. So we are left with a large number of unresolved cases. Writing t = rank � for
the number of generators known, there were 90 cases with (r2, r4 , t) = (3, 3, 1), 14 cases
with (r2, r4 , t) = (4, 4, 2), and one each with (r2, r4 , t) = (4, 4, 1), (5, 3, 1) and (5, 5, 3).

Acknowledgements
Much of this work was completed during a workshop organized by Alexander Betts, Tim Dokchitser, Vladimir Dokchitser
and Celine Maistret, a trimester organized by David Harari, Emmanuel Peyre, and Alexei Skorobogatov, and a workshop
organized by Michael Stoll; we thank the organizers as well as Baskerville Hall, Institut Henri Poincaré, and
Franken-Akademie Schloss Schney, respectively, for their hospitality during those periods. We also thank Bhargav Bhatt,
John Cremona, David Harari, Max Lieblich, Daniel Loughran, Bjorn Poonen, and the anonymous referee for helpful



Fisher et al. Res. Number Theory (2021) 7:6 Page 27 of 27 6

conversations and comments. WH was partially supported by NSF grants DMS-1701437 and DMS-1844763 and the Sloan
Foundation. JP was partially supported by NSF grant DMS-1902199.

Author details
1DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK,
2Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, 3Department of Mathematics, The Ohio
State University, Columbus, OH 43210, USA.

Received: 26 June 2020 Accepted: 12 October 2020 Published online: 5 January 2021

References
1. Bright,M.J., Browning, T.D., Loughran, D.: Failures ofweak approximation in families. Compos.Math.152(7), 1435–1475

(2016). MR3530447
2. Bhargava, M., Cremona, J.E., Fisher, T.A.: The proportion of plane cubic curves over Q that everywhere locally have a

point. Int. J. Number Theory 12(4), 1077–1092 (2016)
3. Bhargava, M., Cremona, J.E., Fisher, T.A.: The proportion of genus one curves over Q defined by a binary quartic that

everywhere locally have a point, (2020). to appear in International J. Number Theory, arXiv:2004.12085
4. Bhargava, M., Cremona, J.E., Fisher, T.A., Jones, N.G., Keating, J.P.: What is the probability that a random integral

quadratic form in n variables has an integral zero? Int. Math. Res. Not. IMRN 12, 3828–3848 (2016). MR3544620
5. Bosma,W., Cannon, J., Playoust, C.: TheMagmaalgebra system. I. Theuser language, 1997, pp. 235–265. Computational

algebra and number theory (London, 1993). MR1484478
6. Bhargava, M., Ho, W.: Coregular spaces and genus one curves. Camb. J. Math. 4(1), 1–119 (2016). MR3472915
7. Bhargava, M., Ho, W.: The Hasse principle for some genus one curves in P1 × P1, (2020). In preparation
8. Bhargava, M., Ho, W.: On average sizes of Selmer groups and ranks in families of elliptic curves having marked points,

(2020). Preprint
9. Bhargava, M.: A positive proportion of plane cubics fail the Hasse principle, (2014). arXiv:1402.1131
10. Browning, T., Le Boudec, P., Sawin, W.: The Hasse principle for random Fano hypersurfaces, (2020). arXiv:2006.02356
11. Bober, J.W.: Conditionally bounding analytic ranks of elliptic curves, ANTS X—Proceedings of the Tenth Algorithmic

Number Theory Symposium, pp. 135–144 (2013). MR3207411
12. Campana, F.: Connexité rationnelle des variétés de Fano. Ann. Sci. École Norm. Sup. (4) 25(5), 539–545 (1992).

MR1191735
13. Colliot-Thélène, J.-L.: Points rationnels sur les fibrations, Higher dimensional varieties and rational points (Budapest,

2001), pp. 171–221 (2003). MR2011747
14. Fisher, T.A., Ho, W., Park, J.: Data for “Everywhere local solubility for hypersurfaces in products of projective spaces”,

(2019). Available at https://www.dpmms.cam.ac.uk/~taf1000/papers/probs22.html
15. Fisher, T.A.: The proportion of plane cubic curves with a rational point, (2015). Oberwolfach report, Explicit methods

in number theory
16. Fisher, T.A.: On binary quartics and the Cassels-Tate pairing, (2016). http://www.dpmms.cam.ac.uk/~taf1000/papers/

bq-ctp.html
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