
T E CHN I C A L R E L E A S E

DAPT: A package enabling
distributed automated parameter
testing

Submitted: 01 March 2021
Accepted: 01 June 2021
Published: 04 June 2021

* Corresponding author. E-mail:
macklinp@iu.edu

Published by GigaScience Press.

Preprint submitted at https://doi.org/
10.20944/preprints202103.0116.v2

This is an Open Access article
distributed under the terms of the
Creative Commons Attribution
License (http://creativecommons.org/
licenses/by/4.0/), which permits
unrestricted reuse, distribution, and
reproduction in any medium,
provided the original work is
properly cited.

Gigabyte, 2021, 1–10

Ben Duggan1, John Metzcar1 and Paul Macklin1,*

1 Indiana University Luddy School of Informatics, Computing and Engineering, 107 S Indiana Ave,
Bloomington, IN 47405, USA

ABSTRACT
Modern agent-based models (ABM) and other simulation models require evaluation and testing
of many different parameters. Managing that testing for large scale parameter sweeps (grid
searches), as well as storing simulation data, requires multiple, potentially customizable steps
that may vary across simulations. Furthermore, parameter testing, processing, and analysis are
slowed if simulation and processing jobs cannot be shared across teammates or computational
resources. While high-performance computing (HPC) has become increasingly available, models
can often be tested faster with the use of multiple computers and HPC resources. To address
these issues, we created the Distributed Automated Parameter Testing (DAPT) Python package.
By hosting parameters in an online (and often free) “database”, multiple individuals can run
parameter sets simultaneously in a distributed fashion, enabling ad hoc crowdsourcing of
computational power. Combining this with a flexible, scriptable tool set, teams can evaluate
models and assess their underlying hypotheses quickly. Here, we describe DAPT and provide
an example demonstrating its use.

Subjects Software and Workflows, Software Engineering

STATEMENT OF NEED
Introduction
Evaluating a new computational model requires testing many parameter sets and
validating the results [1, 2], collectively called model exploration (ME) [3]. For complex
models with many parameters to explore, computational time can be high and managing
the testing pipeline, processing the results, and storing the data can quickly become
cumbersome. To mitigate this, tools to facilitate ME on high-performance computing (HPC)
resources such as Extreme-scale Model Exploration with Swift (EMEWS) [4] and Open
MOdeL Experiment (OpenMOLE) [5], have been developed. EMEWS and OpenMOLE
distribute large scale ME jobs to HPC systems. Additionally, they can adaptively explore
parameter spaces to achieve some predefined simulation outputs or goals.

However, there are several complications with HPC and by extension these ME software
packages. The “headless” (non-graphical) nature of HPC means that people unfamiliar with
command-line terminals may struggle to utilize the resources. This can be a particular
challenge that slows onboarding for multidisciplinary team members, or people less
familiar with servers. Sharing data produced from a simulation created on an HPC can also
be challenging. After prototyping simulation models and analysis workflows on desktop
workstations, it can be time consuming to adapt them to HPC resources, particularly for

Gigabyte, 2021, DOI: 10.46471/gigabyte.22 1/10

mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
mailto:macklinp@iu.edu
https://doi.org/10.20944/preprints202103.0116.v2
https://doi.org/10.20944/preprints202103.0116.v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.46471/gigabyte.22

B. Duggan et al.

applications that require a graphical user interface (GUI) or software not supported on the
HPC platform. Finally, not all teams may have low-cost access to HPC and cloud compute
resources.

As a result, many teams come to rely upon a single member to run the model exploration,
either on a personal computer or HPC. Since compute and processing times may already
take up a considerable portion of project time, concentrating this work on one team
member or one compute system compounds this already existing problem. One way to
combat this is by splitting up the parameter sets among the team (or a broader community),
having each team or community member run them on their computer or HPC resource, and
then uploading the results to a shared storage solution. This distributed computational
approach has been automated and shown to be effective on large scale projects such as
Folding@Home (F@H) [6]. F@H uses a community of people and organizations who
volunteer their computational resources to simulate protein folding. However, F@H is not
ideal for small groups because the code is closed-source, requiring the team to develop the
software anew, and requires the use of servers to assign jobs. Moreover, F@H is tailored to
one specific scientific problem; it was not used to facilitate independent third-party
scientific workflows.

There are many ways to leverage distributed computing for model testing. For example,
F@H uses a client-server architecture. With this approach, clients (computers operated by
community volunteers) get simulation parameters from a job distribution server. This
server also maintains a database of simulation parameters and job statuses. An alternative
is a database-centric design. In this approach, each client interacts directly with the
database to gather parameters and update the job status. This second method removes the
need for a centralized server, making setup and maintenance much simpler, as only the
database needs to be managed. Furthermore, depending on the database requirements,
there are many freely available cloud platforms which can be used to store parameters. For
example, Google Sheets can be used as an online “database” that stores tests in each row
and parameters in each column.

To address the issues discussed above, we created DAPT (Distributed Automated
Parameter Tester). In particular, we aimed to (1) make ME more broadly accessible to small
teams with diverse programming backgrounds through a simple Python library, (2) allow
small teams to pool their individual computational resources to perform concurrent,
distributed ME using a database-centric architecture, and (3) provide easy integration of
“off-the-shelf” cloud resources and storage services for simple inclusion in ME pipelines. By
adhering to these design principles, once the workflow is created, new teammates or even
those simply with idle computing resource can contribute to a team’s parameter studies
through straightforward code sharing. Thus, DAPT allows for ad hoc crowdsourcing of
computational power to create a small-scale, F@H-like testing environment.

Computational models require large amounts of parameter testing and simulations to
explore and validate a model. To our knowledge, there are no software packages that allow
pipelines to easily connect with application programming interfaces (APIs) and enable
serverless ad hoc crowdsourcing of computing power. We created DAPT to allow easy
integration of low-cost (or free) cloud services (e.g. Google Sheets and Box) into ME
pipelines and enable all members of a team to pool their computing resources to run
simulations, rather than just one person.

Gigabyte, 2021, DOI: 10.46471/gigabyte.22 2/10

https://doi.org/10.46471/gigabyte.22

B. Duggan et al.

Table 1. A description of the main components of DAPT along with an example showing how to use the component.

Class/Module Description Required Example accessing
db The db package contains many different databases.

These databases store the parameters and job metadata
and have methods to get and update the values.

Yes db = dapt.db.Delimited_file('database.csv')
Will create a ‘Delimited_file’ database from the
‘database.csv’ file.

Param The Param class is the main class that users interact
with. It is responsible for getting and updating tests.

Yes param = dapt.Param(db)
Creates a parameter object using the database db. The
next parameters can then be obtained by calling
param.next_parameters().

storage The storage package contains several modules which
make uploading and downloading files or folders easy.
There are several services where data can be obtained
from within the storage package.

No box = dapt.storage.Box(config=config)
This creates a Box class object which, after being
initialized by calling box.connect(), allows for the user
to interact with their files on Box.

Config The Config class uses a JSON file to store testing
settings, API credentials, and user custom parameters.
It is not required, but using the Config class makes
DAPT easier to use.

Recommended config = dapt.Config('config.json')
This will create a Config object from the config.json
file. If the value user-name was in the JSON file then it
could be retrieved by calling
config.get_value('user-name')

tools A collection of tools that make DAPT easier to use,
especially with PhysiCell.

No dapt.tools.sample_db() creates a Delimited_file
database.

IMPLEMENTATION
DAPT is written and tested for Python versions 3.6 through 3.9.1. It was written modularly,
allowing users to call individual DAPT components and create their own custom pipeline. It
is imported by adding import dapt at the top of the user’s script. The main components of
DAPT are shown in Table 1. The db (database) package contains modules capable of storing
parameters to be tested and simulation and job metadata. The Param class interacts with a
database class instance to get parameters to test, update test metadata, and mark when tests
finish. Figure 1 shows how DAPT is used to test a model and how multiple team members
can contribute simultaneously.

Parameters to test (and accompanying meta-data) are stored in a Database object. There
are many databases available in the db package, which all inherit the parent Database
(dapt.db.Database) class, ensuring compatibility with core methods. Database objects follow
a non-relational scheme where parameters are stored in a table. The table is similar to a
spreadsheet where rows hold an individual parameter set and job information and a
column holds the same attribute or parameter with potentially different values. The head of
the table holds the attribute names or the names of each parameter. An example database
can be seen in Table 2. Databases have a method named get_table() which retrieves the
entire set of parameters. The method get_attributes() returns the attributes of the
database. Lastly, the methods update_row() and update_cell() update an entire row or
specific entry, respectively. The current database options are delimited files (such as a
comma separated values [CSV] file) or free online spreadsheet applications. Delimited files
work well for a single user, whereas online spreadsheets—which are notable for their
user-friendly interface—are required to use DAPT in its distributed mode.

Each parameter set is encoded into a job, corresponding to one row in the database. Each
job must have a unique id associated with it and a status attribute. The id attribute is used
as a unique job identifier, and the status stores which job task is currently being completed.
The status field is initially empty and is updated as the job proceeds. The value “successful”
indicates a job is complete, “failed” means the job finished unsuccessfully, and any other
value shows which task of the user-defined pipeline the job is currently completing. Other
attributes can be included in the table to add additional information. For example, the
start-time attribute stores the time that a job was started. A complete list of Database

Gigabyte, 2021, DOI: 10.46471/gigabyte.22 3/10

https://doi.org/10.46471/gigabyte.22

B. Duggan et al.

Figure 1. Overview of typical model exploration pipeline using DAPT. (a) Shows how one resource can be used to
run the testing pipeline. The database and storagemodule can be local or cloud-hosted. (b) Multiple teammembers
or resources can be used to run the pipeline in a distributed manner. To test parameter sets collaboratively, the
database and storage option must be hosted online.

attributes is found in the documentation [7]. To test stochastic models that require multiple
runs at the same location in parameter space, parameter sets can be re-run in as many new,
unique jobs as needed.

The class that brings all the components together is the Param class, short for Parameter.
The Param class interacts with the Database instance to manage the compute jobs. The next
parameters to be tested are retrieved using the next_parameters() method. This method
returns the parameters from the next entry in the database with an empty status attribute.
Other constraints can be placed on this method, such as the required computational power
to run a parameter set. This method also marks the status as “in progress” and populates
any related fields present (e.g. start-time). This ensures that the job is not run twice. The
other methods of the Param class require the current id of the job be given. This means that
attributes of jobs other than the current job can be modified. For example, if your current
job id is “test1”, there are no restrictions preventing you from manipulating the attributes
of “test2”. As a consequence, only people you trust should participate in the crowdsourced
computing. The status of a job can be set using the update_status() method. The

Gigabyte, 2021, DOI: 10.46471/gigabyte.22 4/10

https://doi.org/10.46471/gigabyte.22

B. Duggan et al.

successful() and failed() methods are used to mark that a job was completed successfully
or with a problem, respectively.

DAPT also makes it easy to interact with cloud storage providers through the Storage
(storage) package. These modules support uploading, downloading, deleting, and renaming
files. While not required for core functionality, these modules allow data to be easily
uploaded to a shared location, or downloaded for a job or further processing. This
automated sharing facilitates discussion of simulation results and may enhance real-time
collaboration. Classes in the storage package must inherit the Storage
(dapt.storage.Storage) class which outlines the required methods. API credentials must be
created by each user. There are guides posted online for each storage API offered.

The last component discussed is the Config class. This class takes in a JavaScript Object
Notation (JSON) file and creates a dictionary or array from the contents of the file. The
Config class can be used by DAPT to store information about APIs (e.g. the Google Sheet ID),
how a job should be run (e.g. skip jobs meant for HPCs), how a set of jobs should be run (e.g.
the number of jobs to run before quitting) and data that gets updated and persists between
running (e.g. the last job id and API tokens). Instances of this class are used by all DAPT
classes, can also be used to store information for jobs, and makes initialization of classes
easy. This class also contains methods to update the JSON file so the changes persist to other
simulation runs.

Example
There are many basic examples provided with DAPT that demonstrate how each module
functions. They can be found in the examples folder of the GitHub repository [8]. To provide
a real-world example of how DAPT can be used, we will use PhysiCell [9] version 1.7.0, an
open-source, agent-based multicellular simulation framework. No knowledge of PhysiCell is
necessary to understand the example. In this example, we use the “biorobots” sample
project (included with every PhysiCell download) where “worker” cells drag biological
cargo towards “director” cells. More information about the model along with a GUI to
explore the parameters is available through the PhysiCell biorobots simulation tool on
nanoHUB [10]. The code for this example can be found in the paper_example.py file in the
DAPT example for this paper [11].

When creating a PhysiCell model, diffusion and cell parameters are defined in the C++
code and loaded from an Extensible Markup Language (XML) file. A sample of a PhysiCell
settings file is shown in Listing 1. There are several parameters, but the parameters of
interest for our example are <attached_worker_migration_bias> and
<unattached_worker_migration_bias>, located within the <user_parameters> tag. These
parameters range from zero to one. As the bias approaches zero, the cell migration path
approaches a random walk, while cell migration paths become more directed and
deterministic as the bias approaches one.

In this example, the XML tags will be represented as a path from the root of the file. For
instance, the <attached_worker_migration_bias> tag is represented as
/user_parameters/attached_worker_migration_bias. Using the dapt.tools.create_XML()
function, a dictionary containing these paths can be used to update the XML settings file.
The keys in the dictionary are paths with parameter values as the values. This method is
beneficial, as the code necessary to update the settings is not hard-coded. Another attribute
could then be added to the database without changing the testing script.

Gigabyte, 2021, DOI: 10.46471/gigabyte.22 5/10

https://doi.org/10.46471/gigabyte.22

B . D u g g a n e t al.

Li s ti n g 1. T h e s k el et o n of a P h y si C ell s etti n g s fil e. T h e “ att a c h e d _ w o r k e r _ mi g r ati o n _ bi a s ” i s a c u st o m v a ri a bl e
w hi c h c h a n g e s t h e mi g r ati o n bi a s of w o r k e r s att a c h e d t o c a r g o.

T a bl e 2. P a r a m et e r s u s e d f o r P h y si C ell e x a m pl e. T h e h e a d of t h e t a bl e h ol d s t h e att ri b ut e s u s e d. E a c h r o w i s a diff e r e nt j o b t o b e r u n, e a c h wit h it s o w n i d,
m et a d at a, a n d p a r a m et e r s et. T hi s t a bl e i s st o r e d a s a C S V n a m e d “ p a r a m et e r s. c s v ” w hi c h D A P T u s e s a s t h e d at a b a s e.

i d s t a t u s s t a r t- ti m e e n d- ti m e c o m m e n t a t t a c h e d _ w o r k e r _ bi a s ∗ u n a t t a c h e d _ w o r k e r _ bi a s †

d ef a ult 1. 0 0. 5

att a c h e d 0. 1 1. 0

u n att a c h e d 1. 0 0. 1

∗ F ull p at h “ / u s e r _ p a r a m e t e r s / a t t a c h e d _ w o r k e r _ m i g r a t i o n _ b i a s ”. † F ull p at h “ / u s e r _ p a r a m e t e r s / u n a t t a c h e d _ w o r k e r _ m i g r a t i o n _ b i a s ”.

F o r t hi s e x a m pl e, t h r e e j o b s will b e r u n a s s h o w n i n T a bl e 2 . A s e x pl ai n e d e a rli e r, t h e i d

a n d s t a t u s att ri b ut e s a r e r e q ui r e d. T h e s t a r t - t i m e , e n d - t i m e , a n d c o m m e n t att ri b ut e s a r e

o pti o n al, b ut t h e y p r o vi d e a d diti o n al i nf o r m ati o n. T h e s e p a r a m et e r s a r e s a v e d i n a c o m m a

s e p a r at e d v al u e s (C S V) fil e n a m e d p a r a m e t e r s . c s v . T hi s fil e i s u p d at e d a s t h e j o b s r u n,

s h o wi n g t h e p r o g r e s s t h at h a s b e e n m a d e.

T h e c o d e f o r t hi s e x a m pl e i s s h o w n i n Li sti n g 2 . T h e t h r e e D A P T m o d ul e s t h at a r e u s e d

a r e C o n f i g , D e l i m i t e d _ f i l e , a n d P a r a m . T h e c o n fi g u r ati o n f o r t hi s e x a m pl e i s st o r e d i n

c o n f i g . j s o n a n d h a s t w o o pti o n s: l a s t - t e s t a n d n u m - o f - r u n s . T h e fi r st o pti o n i s u s e d t o

st o r e t h e c u r r e nt j o b i d , w hi c h i s n e e d e d f o r D A P T t o r e s u m e a j o b if t h e p r o g r a m c r a s h e s o r

i s st o p p e d. T h e s e c o n d o pti o n all o w s t h e n u m b e r of j o b s t o r u n t o b e s p e ci fi e d w hi c h i s all

j o b s i n t hi s c a s e. T h e f ull c o nt e nt s of t h e c o n fi g fil e s h o ul d b e: " l a s t - t e s t " : n u l l ,

" n u m - o f - r u n s " : - 1 , s a v e d a s “ c o n fi g.j s o n ”.

T h e f ol d e r st r u ct u r e of t hi s p r oj e ct h a s t h e P yt h o n s c ri pt (Li sti n g 2), c o n fi g.j s o n, a n d

p a r a m et e r s. c s v i n si d e t h e P h y si C ell di r e ct o r y. T h e fi r st t w o li n e s of c o d e i m p o rt t h e

r e q ui r e d m o d ul e s. T h e o s m o d ul e i s u s e d f o r i nt e r a cti n g wit h t h e fil e s y st e m a n d t h e

p l a t f o r m m o d ul e i s u s e d t o d et e ct w hi c h o p e r ati n g s y st e m i s b ei n g u s e d. d a p t i m p o rt s all of

t h e D A P T m o d ul e s n e e d e d. Li n e s f o u r t h r o u g h si x i n st a nti at e t h e t h r e e D A P T m o d ul e s

n e e d e d. T h e c o n fi g fil e i s p a s s e d t o t h e P a r a m cl a s s, e n a bli n g t h e s etti n g s t o b e u s e d.

T h e n e xt li n e g et s t h e p a r a m et e r s et u si n g t h e n e x t _ p a r a m e t e r s () m et h o d. If t h e r e a r e n o

m o r e p a r a m et e r s t o r u n a n d t h u s n o m o r e j o b s i n t h e d at a b a s e, t h e n N o n e i s r et u r n e d. Li n e s

1 0 t h r o u g h 2 1 c o nt ai n s t h e m ai n pi p eli n e. T hi s st a rt s wit h a w hil e l o o p t h at c h e c k s t o s e e if

t h e r e a r e m o r e p a r a m et e r s t o r u n. T h e n e xt li n e u s e s t h e c r e a t e _ X M L () m et h o d t o l o a d t h e

p a r a m et e r s i nt o t h e s etti n g s fil e. T h e st at u s of t h e p a r a m et e r s et i s t h e n u p d at e d o n li n e 1 3.

Li n e s 1 5 t h r o u g h 1 8 c h e c k if t h e o p e r ati n g s y st e m i s Wi n d o w s o r U ni x- b a s e d, a s diff e r e nt

o p e r ati n g s y st e m s r u n e x e c ut a bl e fil e s diff e r e ntl y. T h e l a st t w o li n e s m a r k t hi s j o b a s

c o m pl et e a n d g et s t h e n e xt s et of p a r a m et e r s. T h e o ut p ut s f r o m t h e P h y si C ell si m ul ati o n a r e

s h o w n i n Fi g u r e 2 a n d t h e c o nt e nt s of t h e C S V fil e aft e r fi ni s hi n g t h e all j o b s a r e s h o w n i n

T a bl e 3 .

Gi g a b y t e , 2 0 2 1, D OI: 1 0. 4 6 4 7 1 / gi g a b y t e. 2 2 6 / 1 0

https://doi.org/10.46471/gigabyte.22

B . D u g g a n e t al.

Li s ti n g 2. A n e x a m pl e s h o wi n g h o w D A P T c a n b e u s e d t o p e rf o r m p a r a m et e r t e sti n g o n a n a g e nt- b a s e d m o d el s s u c h a s t h o s e w ritt e n i n P h y si C ell.

T a bl e 3. T h e P h y si C ell e x a m pl e C S V fil e f r o m T a bl e 2 u p d at e d aft e r r u n ni n g D A P T.

i d s t a t u s s t a r t- ti m e e n d- ti m e c o m m e n t a t t a c h e d _ w o r k e r _ bi a s ∗ u n a t t a c h e d _ w o r k e r _ bi a s †

d ef a ult s u c c e s sf ul 2 0 2 1- 0 2- 2 8 1 9: 3 6: 3 0 2 0 2 1- 0 2- 2 8 1 9: 3 8: 2 0 1. 0 0. 5

att a c h e d s u c c e s sf ul 2 0 2 1- 0 2- 2 8 1 9: 4 5: 0 9 2 0 2 1- 0 2- 2 8 1 9: 4 5: 0 9 0. 1 1. 0

u n att a c h e d s u c c e s sf ul 2 0 2 1- 0 2- 2 8 1 9: 4 6: 4 8 2 0 2 1- 0 2- 2 8 1 9: 4 9: 0 4 1. 0 0. 1

∗ F ull p at h “ / u s e r _ p a r a m e t e r s / a t t a c h e d _ w o r k e r _ m i g r a t i o n _ b i a s ”. † F ull p at h “ / u s e r _ p a r a m e t e r s / u n a t t a c h e d _ w o r k e r _ m i g r a t i o n _ b i a s ”.

T o all o w j o b s t o r u n a m o n g a t e a m c o n c u r r e ntl y, a n o nli n e d at a b a s e m u st b e u s e d. F o r

e x a m pl e, G o o gl e S h e et s c a n b e u s e d a s a d at a b a s e. O n c e t h e c r e d e nti al s f o r S h e et s h a v e

b e e n m a d e, li n e 5 of Li sti n g 2 n e e d s c h a n g e d t o d b = d a p t . d b . S h e e t s (c o n f i g = c o n f i g) ,

a s s u mi n g t h e c r e d e nti al s a r e st o r e d i n t h e c o n fi g u r ati o n fil e. T h e n m ulti pl e t e a m m e m b e r s

c a n e x e c ut e t h e s c ri pt l o c all y, c o m pl eti n g t h e s et of j o b s c o n c u r r e ntl y. D A P T will d et e r mi n e

w hi c h p a r a m et e r s e a c h p e r s o n s h o ul d r u n w h e n t h e n e x t _ p a r a m e t e r () m et h o d i s c all e d.

T h e s h e e t s _ e x a m p l e . p y s c ri pt [1 2] i n t h e P h y si C ell e x a m pl e r e p o sit o r y d e m o n st r at e s h o w

G o o gl e S h e et s c a n b e u s e d a s t h e d at a b a s e. G o o gl e S h e et s E x a m pl e S e cti o n of t h e R E A D M E

[1 3] o utli n e s r e q ui r e d c h a n g e s t o p a p e r _ e x a m pl e. p y t o e n a bl e u s e of S h e et s a n d h o w t o

s et u p G o o gl e S h e et s.

F u t u r e di r e c ti o n s
I n t h e n e xt v e r si o n of D A P T, w e pl a n t o i m pl e m e nt l o g gi n g u si n g t h e P yt h o n l o g g i n g li b r a r y.

L o g gi n g i s u s ef ul f o r k e e pi n g t r a c k of e r r o r s a n d p r o vi di n g m o r e d et ail f o r d e b u g gi n g.

A d diti o n all y, w e will all o w n oti fi c ati o n s t o b e s e nt t o u s e r s w h e n c e rt ai n e v e nt s h a v e

o c c u r r e d. F o r e x a m pl e, a n e m ail o r Sl a c k n oti fi c ati o n c o ul d b e s e nt o ut w h e n t h e r e a r e n o

m o r e p a r a m et e r s t o t e st. W e w o ul d li k e t o c r e at e a w e b i nt e rf a c e t o m a k e m a n a gi n g

p a r a m et e r s et s e a si e r. O nli n e s p r e a d s h e et p r o g r a m s li k e G o o gl e S h e et s h a v e u s e r f ri e n dl y

i nt e rf a c e s, b ut t h e s e s p r e a d s h e et s c a n b e di ffi c ult t o m a n a g e a s t h e n u m b e r of p a r a m et e r s

Gi g a b y t e , 2 0 2 1, D OI: 1 0. 4 6 4 7 1 / gi g a b y t e. 2 2 7 / 1 0

https://doi.org/10.46471/gigabyte.22

B. Duggan et al.

Figure 2. PhysiCell time series snapshots obtained by DAPT running the three parameter sets on the Biorobots sample project. The red (worker) cells drag the
blue (cargo) cells towards a green (cancer) cell in an effort to treat the cancer. (a)–(c) Initial, middle (1 day of simulated time) and final (2 days of simulated
time) image outputs of the default Biorobots simulation settings. (d)–(f) The same outputs as (a)–(c) but for the attached Biorobots simulation settings. (g)–(i) The
same outputs as (a)–(c) but for the unattached Biorobots simulation settings.

Gigabyte, 2021, DOI: 10.46471/gigabyte.22 8/10

https://doi.org/10.46471/gigabyte.22

B. Duggan et al.

grows. We also plan to integrate different APIs at a lower level to allow bots (e.g., Slack Bot)
to generate notifications and control parameter testing. Furthermore, we plan to allow
DAPT to be used in a tool via a command line interface (CLI). The Python scripting
capability will not be removed, as having that level of control can be desirable. However,
using DAPT directly in a CLI should increase efficiency in developing a testing pipeline.

AVAILABILITY OF SOURCE CODE AND REQUIREMENTS
DAPT (RRID:SCR_021032) is primarily hosted on GitHub [14]. It is licensed under the BSD
3-clause license. All operating systems that support Python versions 3.6 through 3.9.1 (most
recent version at time of publishing) can run DAPT. The best way to install DAPT is by using
the Python Package Index (pip) version 20.2.4 or newer. To install DAPT run pip install
dapt in the terminal (Linux/Mac OS) or command prompt (Windows). DAPT can also be
installed from source. The documentation for DAPT is hosted on ReadTheDocs [15].

DATA AVAILABILITY
Snapshots of our code and other supporting data are openly available in the GigaScience
Repository, GigaDB [16].

DECLARATIONS
LIST OF ABBREVIATIONS
CLI: command-line interface; CSV: comma separated values; DAPT: Distributed Automated
Parameters Tester; F@H: Folding @Home; HPC: high-performance computing; JSON:
JavaScript Object Notation; ME: model exploration.

ETHICAL APPROVAL
Not applicable.

COMPETING INTERESTS
The authors declare that they have no competing interests.

FUNDING
We thank the Jayne Koskinas Ted Giovanis Foundation for Health and Policy for generous
support. This work was partially supported by the National Science Foundation NRT Grant
1735095.

AUTHOR’S CONTRIBUTIONS
BSD conceived the main idea for the project and wrote the software. BSD and JPM tested the
code extensively. JPM and PM provided mentorship during the project. BSD and JPM wrote
the manuscript with help from PM.

ACKNOWLEDGEMENTS
We would like to thank Daniel Murphy and Brandon Fischer for helping with the design
and initial testing of DAPT. Thanks to Randy Heiland and the rest of the MathCancer lab for
their help and feedback on the project. Their feedback was greatly appreciated during the
development of this tool. FutureSystems, located at the Digital Science Center, Luddy School
of Informatics, Computing, and Engineering, Indiana University, was an invaluable
resource while developing DAPT.

Gigabyte, 2021, DOI: 10.46471/gigabyte.22 9/10

https://scicrunch.org/browse/resources/SCR_021032
https://doi.org/10.46471/gigabyte.22

B. Duggan et al.

REFERENCES
1 Metzcar J,Wang Y, Heiland R,Macklin P, A review of cell-based computational modeling in cancer

biology. JCO Clin. Cancer Inform., 2019; 3: 1–13, doi:10.1200/CCI.18.00069.

2 An G,Mi Q, Dutta-Moscato J, Vodovotz Y, Agent-based models in translational systems biology.Wiley
Interdiscip. Rev. Syst. Biol. Med., 2009; 1: 159–171, doi:10.1002/wsbm.45.

3 Ozik J, Collier NT,Wozniak JM,Macal CM, An G, Extreme-scale dynamic exploration of a distributed
agent-based model with the EMEWS framework. IEEE Trans. Comput. Soc. Syst., 2018; 5: 884–895,
doi:10.1109/TCSS.2018.2859189.

4 Ozik J, Collier NT,Wozniak JM, Spagnuolo C, From desktop to large-scale model exploration with
Swift/T. Proc. Winter Simul. Conf., 2016; 2016: 206–220, doi:10.1109/WSC.2016.7822090.

5 Reuillon R, Leclaire M, Rey-Coyrehourcq S, OpenMOLE, a workflow engine specifically tailored for
the distributed exploration of simulation models. Future Gen. Comput. Syst., 2013; 29: 1981–1990,
doi:10.1016/j.future.2013.05.003.

6 Snow CD, Nguyen H, Pande VS, Gruebele M, Absolute comparison of simulated and experimental
protein-folding dynamics. Nature, 2002; 420: 102–106, doi:10.1038/nature01160.

7 Duggan B, DAPT Documentation: Fields. https://dapt.readthedocs.io/en/latest/api/param.html#fields.
Accessed 31 May 2021.

8 Duggan B, DAPT GitHub Repository: Examples.
https://github.com/BenSDuggan/DAPT/tree/master/examples. Accessed 31 May 2021.

9 Ghaffarizadeh A, Heiland R, Friedman SH,Mumenthaler SM,Macklin P, PhysiCell: An open source
physics-based cell simulator for 3-D multicellular systems. PLOS Comput. Biol., 2020; 14: e1005991.
doi:10.1371/journal.pcbi.1005991.

10 Heiland R,Macklin P, PhysiCell biorobots simulation. 2020.
https://nanohub.org/resources/29471?rev=52. Accessed 24 Apr 2021.

11 Duggan B, DAPT GitHub Repository: Paper example. https://github.com/PhysiCell-Tools/DAPT-example.
Accessed 31 May 2021.

12 Duggan B, DAPT GitHub Repository: Sheets example.
https://github.com/PhysiCell-Tools/DAPT-example/blob/master/sheets_example.py. Accessed 31 May
2021.

13 Duggan B, DAPT README: Sheets example.
https://github.com/PhysiCell-Tools/DAPT-example/blob/master/README.md#google-sheets-example.
Accessed 31 May 2021.

14 Duggan B, DAPT GitHub Repository. https://github.com/BenSDuggan/DAPT. Accessed 31 May 2021.

15 Duggan B, DAPT ReadTheDocs. https://dapt.readthedocs.io/. Accessed 31 May 2021.

16 Duggan B,Metzcar J,Macklin P, Supporting data for “DAPT: A package enabling Distributed
Automated Parameter Testing”. GigaScience Database. 2021; http://dx.doi.org/10.5524/100905.

Gigabyte, 2021, DOI: 10.46471/gigabyte.22 10/10

https://doi.org/10.1200/CCI.18.00069
https://doi.org/10.1002/wsbm.45
https://doi.org/10.1109/TCSS.2018.2859189
https://doi.org/10.1109/WSC.2016.7822090
https://doi.org/10.1016/j.future.2013.05.003
https://doi.org/10.1038/nature01160
https://dapt.readthedocs.io/en/latest/api/param.html#fields
https://github.com/BenSDuggan/DAPT/tree/master/examples
https://doi.org/10.1371/journal.pcbi.1005991
https://nanohub.org/resources/29471?rev=52
https://github.com/PhysiCell-Tools/DAPT-example
https://github.com/PhysiCell-Tools/DAPT-example/blob/master/sheets_example.py
https://github.com/PhysiCell-Tools/DAPT-example/blob/master/README.md#google-sheets-example
https://github.com/BenSDuggan/DAPT
https://dapt.readthedocs.io/
http://dx.doi.org/10.5524/100905
https://doi.org/10.46471/gigabyte.22

	Statement of Need
	Introduction

	Implementation
	Example
	Future directions

	Availability of source code and requirements
	Data availability
	Declarations
	List of abbreviations
	Ethical approval
	Competing interests
	Funding
	Author’s Contributions
	Acknowledgements

